xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, trgint, xtal;
422 
423 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424 
425 	if (xtal == HWTRAP_XTAL_20MHZ) {
426 		dev_err(priv->dev,
427 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 			__func__);
429 		return -EINVAL;
430 	}
431 
432 	switch (interface) {
433 	case PHY_INTERFACE_MODE_RGMII:
434 		trgint = 0;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (xtal == HWTRAP_XTAL_25MHZ)
439 			ssc_delta = 0x57;
440 		else
441 			ssc_delta = 0x87;
442 		if (priv->id == ID_MT7621) {
443 			/* PLL frequency: 125MHz: 1.0GBit */
444 			if (xtal == HWTRAP_XTAL_40MHZ)
445 				ncpo1 = 0x0640;
446 			if (xtal == HWTRAP_XTAL_25MHZ)
447 				ncpo1 = 0x0a00;
448 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449 			if (xtal == HWTRAP_XTAL_40MHZ)
450 				ncpo1 = 0x0c80;
451 			if (xtal == HWTRAP_XTAL_25MHZ)
452 				ncpo1 = 0x1400;
453 		}
454 		break;
455 	default:
456 		dev_err(priv->dev, "xMII interface %d not supported\n",
457 			interface);
458 		return -EINVAL;
459 	}
460 
461 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 		   P6_INTF_MODE(trgint));
463 
464 	if (trgint) {
465 		/* Disable the MT7530 TRGMII clocks */
466 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467 
468 		/* Setup the MT7530 TRGMII Tx Clock */
469 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 		core_write(priv, CORE_PLL_GROUP4,
474 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 			   RG_SYSPLL_BIAS_LPF_EN);
476 		core_write(priv, CORE_PLL_GROUP2,
477 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 			   RG_SYSPLL_POSDIV(1));
479 		core_write(priv, CORE_PLL_GROUP7,
480 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 
483 		/* Enable the MT7530 TRGMII clocks */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 	}
486 
487 	return 0;
488 }
489 
490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 	u32 val;
493 
494 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495 
496 	return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498 
499 static int
500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 	return 0;
503 }
504 
505 static void
506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 	u32 top_sig;
509 	u32 hwstrap;
510 	u32 xtal;
511 	u32 val;
512 
513 	if (mt7531_dual_sgmii_supported(priv))
514 		return;
515 
516 	val = mt7530_read(priv, MT7531_CREV);
517 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 	if ((val & CHIP_REV_M) > 0)
520 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 						    HWTRAP_XTAL_FSEL_25MHZ;
522 	else
523 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524 
525 	/* Step 1 : Disable MT7531 COREPLL */
526 	val = mt7530_read(priv, MT7531_PLLGP_EN);
527 	val &= ~EN_COREPLL;
528 	mt7530_write(priv, MT7531_PLLGP_EN, val);
529 
530 	/* Step 2: switch to XTAL output */
531 	val = mt7530_read(priv, MT7531_PLLGP_EN);
532 	val |= SW_CLKSW;
533 	mt7530_write(priv, MT7531_PLLGP_EN, val);
534 
535 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 	val &= ~RG_COREPLL_EN;
537 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
538 
539 	/* Step 3: disable PLLGP and enable program PLLGP */
540 	val = mt7530_read(priv, MT7531_PLLGP_EN);
541 	val |= SW_PLLGP;
542 	mt7530_write(priv, MT7531_PLLGP_EN, val);
543 
544 	/* Step 4: program COREPLL output frequency to 500MHz */
545 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 	val &= ~RG_COREPLL_POSDIV_M;
547 	val |= 2 << RG_COREPLL_POSDIV_S;
548 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 	usleep_range(25, 35);
550 
551 	switch (xtal) {
552 	case HWTRAP_XTAL_FSEL_25MHZ:
553 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 		val &= ~RG_COREPLL_SDM_PCW_M;
555 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 		break;
558 	case HWTRAP_XTAL_FSEL_40MHZ:
559 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 		val &= ~RG_COREPLL_SDM_PCW_M;
561 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 		break;
564 	}
565 
566 	/* Set feedback divide ratio update signal to high */
567 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 	val |= RG_COREPLL_SDM_PCW_CHG;
569 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 	/* Wait for at least 16 XTAL clocks */
571 	usleep_range(10, 20);
572 
573 	/* Step 5: set feedback divide ratio update signal to low */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val &= ~RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 
578 	/* Enable 325M clock for SGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580 
581 	/* Enable 250SSC clock for RGMII */
582 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583 
584 	/* Step 6: Enable MT7531 PLL */
585 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 	val |= RG_COREPLL_EN;
587 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
588 
589 	val = mt7530_read(priv, MT7531_PLLGP_EN);
590 	val |= EN_COREPLL;
591 	mt7530_write(priv, MT7531_PLLGP_EN, val);
592 	usleep_range(25, 35);
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 	return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608 
609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 				u16 val)
611 {
612 	return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614 
615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 			       int devad, int regnum)
617 {
618 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620 
621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 				int regnum, u16 val)
623 {
624 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626 
627 static int
628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 			int regnum)
630 {
631 	struct mt7530_dummy_poll p;
632 	u32 reg, val;
633 	int ret;
634 
635 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636 
637 	mt7530_mutex_lock(priv);
638 
639 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 	if (ret < 0) {
642 		dev_err(priv->dev, "poll timeout\n");
643 		goto out;
644 	}
645 
646 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649 
650 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 	if (ret < 0) {
653 		dev_err(priv->dev, "poll timeout\n");
654 		goto out;
655 	}
656 
657 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 	      MT7531_MDIO_DEV_ADDR(devad);
659 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660 
661 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 	if (ret < 0) {
664 		dev_err(priv->dev, "poll timeout\n");
665 		goto out;
666 	}
667 
668 	ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 	mt7530_mutex_unlock(priv);
671 
672 	return ret;
673 }
674 
675 static int
676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 			 int regnum, u16 data)
678 {
679 	struct mt7530_dummy_poll p;
680 	u32 val, reg;
681 	int ret;
682 
683 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684 
685 	mt7530_mutex_lock(priv);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 	      MT7531_MDIO_DEV_ADDR(devad) | data;
707 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708 
709 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 	if (ret < 0) {
712 		dev_err(priv->dev, "poll timeout\n");
713 		goto out;
714 	}
715 
716 out:
717 	mt7530_mutex_unlock(priv);
718 
719 	return ret;
720 }
721 
722 static int
723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 val;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum);
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 	ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 	mt7530_mutex_unlock(priv);
755 
756 	return ret;
757 }
758 
759 static int
760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 			 u16 data)
762 {
763 	struct mt7530_dummy_poll p;
764 	int ret;
765 	u32 reg;
766 
767 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768 
769 	mt7530_mutex_lock(priv);
770 
771 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 	if (ret < 0) {
774 		dev_err(priv->dev, "poll timeout\n");
775 		goto out;
776 	}
777 
778 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 	      MT7531_MDIO_REG_ADDR(regnum) | data;
780 
781 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782 
783 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 	if (ret < 0) {
786 		dev_err(priv->dev, "poll timeout\n");
787 		goto out;
788 	}
789 
790 out:
791 	mt7530_mutex_unlock(priv);
792 
793 	return ret;
794 }
795 
796 static int
797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 	struct mt7530_priv *priv = bus->priv;
800 
801 	return priv->info->phy_read_c22(priv, port, regnum);
802 }
803 
804 static int
805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 	struct mt7530_priv *priv = bus->priv;
808 
809 	return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811 
812 static int
813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 	struct mt7530_priv *priv = bus->priv;
816 
817 	return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819 
820 static int
821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 		     u16 val)
823 {
824 	struct mt7530_priv *priv = bus->priv;
825 
826 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 			ETH_GSTRING_LEN);
841 }
842 
843 static void
844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 			 uint64_t *data)
846 {
847 	struct mt7530_priv *priv = ds->priv;
848 	const struct mt7530_mib_desc *mib;
849 	u32 reg, i;
850 	u64 hi;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 		mib = &mt7530_mib[i];
854 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855 
856 		data[i] = mt7530_read(priv, reg);
857 		if (mib->size == 2) {
858 			hi = mt7530_read(priv, reg + 4);
859 			data[i] |= hi << 32;
860 		}
861 	}
862 }
863 
864 static int
865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 	if (sset != ETH_SS_STATS)
868 		return 0;
869 
870 	return ARRAY_SIZE(mt7530_mib);
871 }
872 
873 static int
874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 	struct mt7530_priv *priv = ds->priv;
877 	unsigned int secs = msecs / 1000;
878 	unsigned int tmp_age_count;
879 	unsigned int error = -1;
880 	unsigned int age_count;
881 	unsigned int age_unit;
882 
883 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 		return -ERANGE;
886 
887 	/* iterate through all possible age_count to find the closest pair */
888 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890 
891 		if (tmp_age_unit <= AGE_UNIT_MAX) {
892 			unsigned int tmp_error = secs -
893 				(tmp_age_count + 1) * (tmp_age_unit + 1);
894 
895 			/* found a closer pair */
896 			if (error > tmp_error) {
897 				error = tmp_error;
898 				age_count = tmp_age_count;
899 				age_unit = tmp_age_unit;
900 			}
901 
902 			/* found the exact match, so break the loop */
903 			if (!error)
904 				break;
905 		}
906 	}
907 
908 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909 
910 	return 0;
911 }
912 
913 static const char *p5_intf_modes(unsigned int p5_interface)
914 {
915 	switch (p5_interface) {
916 	case P5_DISABLED:
917 		return "DISABLED";
918 	case P5_INTF_SEL_PHY_P0:
919 		return "PHY P0";
920 	case P5_INTF_SEL_PHY_P4:
921 		return "PHY P4";
922 	case P5_INTF_SEL_GMAC5:
923 		return "GMAC5";
924 	case P5_INTF_SEL_GMAC5_SGMII:
925 		return "GMAC5_SGMII";
926 	default:
927 		return "unknown";
928 	}
929 }
930 
931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 	struct mt7530_priv *priv = ds->priv;
934 	u8 tx_delay = 0;
935 	int val;
936 
937 	mutex_lock(&priv->reg_mutex);
938 
939 	val = mt7530_read(priv, MT7530_MHWTRAP);
940 
941 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943 
944 	switch (priv->p5_intf_sel) {
945 	case P5_INTF_SEL_PHY_P0:
946 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 		val |= MHWTRAP_PHY0_SEL;
948 		fallthrough;
949 	case P5_INTF_SEL_PHY_P4:
950 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952 
953 		/* Setup the MAC by default for the cpu port */
954 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 		break;
956 	case P5_INTF_SEL_GMAC5:
957 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 		val &= ~MHWTRAP_P5_DIS;
959 		break;
960 	case P5_DISABLED:
961 		interface = PHY_INTERFACE_MODE_NA;
962 		break;
963 	default:
964 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 			priv->p5_intf_sel);
966 		goto unlock_exit;
967 	}
968 
969 	/* Setup RGMII settings */
970 	if (phy_interface_mode_is_rgmii(interface)) {
971 		val |= MHWTRAP_P5_RGMII_MODE;
972 
973 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
974 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975 
976 		/* Don't set delay in DSA mode */
977 		if (!dsa_is_dsa_port(priv->ds, 5) &&
978 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
980 			tx_delay = 4; /* n * 0.5 ns */
981 
982 		/* P5 RGMII TX Clock Control: delay x */
983 		mt7530_write(priv, MT7530_P5RGMIITXCR,
984 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985 
986 		/* reduce P5 RGMII Tx driving, 8mA */
987 		mt7530_write(priv, MT7530_IO_DRV_CR,
988 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 	}
990 
991 	mt7530_write(priv, MT7530_MHWTRAP, val);
992 
993 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995 
996 	priv->p5_interface = interface;
997 
998 unlock_exit:
999 	mutex_unlock(&priv->reg_mutex);
1000 }
1001 
1002 /* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
1003  * of the Open Systems Interconnection basic reference model (OSI/RM) are
1004  * described; the medium access control (MAC) and logical link control (LLC)
1005  * sublayers. The MAC sublayer is the one facing the physical layer.
1006  *
1007  * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
1008  * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
1009  * of the Bridge, at least two Ports, and higher layer entities with at least a
1010  * Spanning Tree Protocol Entity included.
1011  *
1012  * Each Bridge Port also functions as an end station and shall provide the MAC
1013  * Service to an LLC Entity. Each instance of the MAC Service is provided to a
1014  * distinct LLC Entity that supports protocol identification, multiplexing, and
1015  * demultiplexing, for protocol data unit (PDU) transmission and reception by
1016  * one or more higher layer entities.
1017  *
1018  * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
1019  * Entity associated with each Bridge Port is modeled as being directly
1020  * connected to the attached Local Area Network (LAN).
1021  *
1022  * On the switch with CPU port architecture, CPU port functions as Management
1023  * Port, and the Management Port functionality is provided by software which
1024  * functions as an end station. Software is connected to an IEEE 802 LAN that is
1025  * wholly contained within the system that incorporates the Bridge. Software
1026  * provides access to the LLC Entity associated with each Bridge Port by the
1027  * value of the source port field on the special tag on the frame received by
1028  * software.
1029  *
1030  * We call frames that carry control information to determine the active
1031  * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
1032  * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
1033  * Protocol Data Units (MVRPDUs), and frames from other link constrained
1034  * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
1035  * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
1036  * forwarded by a Bridge. Permanently configured entries in the filtering
1037  * database (FDB) ensure that such frames are discarded by the Forwarding
1038  * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
1039  *
1040  * Each of the reserved MAC addresses specified in Table 8-1
1041  * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
1042  * permanently configured in the FDB in C-VLAN components and ERs.
1043  *
1044  * Each of the reserved MAC addresses specified in Table 8-2
1045  * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
1046  * configured in the FDB in S-VLAN components.
1047  *
1048  * Each of the reserved MAC addresses specified in Table 8-3
1049  * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1050  * TPMR components.
1051  *
1052  * The FDB entries for reserved MAC addresses shall specify filtering for all
1053  * Bridge Ports and all VIDs. Management shall not provide the capability to
1054  * modify or remove entries for reserved MAC addresses.
1055  *
1056  * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1057  * propagation of PDUs within a Bridged Network, as follows:
1058  *
1059  *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1060  *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1061  *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1062  *   PDUs transmitted using this destination address, or any other addresses
1063  *   that appear in Table 8-1, Table 8-2, and Table 8-3
1064  *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1065  *   therefore travel no further than those stations that can be reached via a
1066  *   single individual LAN from the originating station.
1067  *
1068  *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1069  *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1070  *   Bridge can forward; however, this address is relayed by a TPMR component.
1071  *   PDUs using this destination address, or any of the other addresses that
1072  *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1073  *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1074  *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1075  *   C-VLAN component, or MAC Bridge.
1076  *
1077  *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1078  *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1079  *   relayed by TPMR components and S-VLAN components. PDUs using this
1080  *   destination address, or any of the other addresses that appear in Table 8-1
1081  *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1082  *   will be relayed by TPMR components and S-VLAN components but will propagate
1083  *   no further than the nearest C-VLAN component or MAC Bridge.
1084  *
1085  * Because the LLC Entity associated with each Bridge Port is provided via CPU
1086  * port, we must not filter these frames but forward them to CPU port.
1087  *
1088  * In a Bridge, the transmission Port is majorly decided by ingress and egress
1089  * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1090  * For link-local frames, only CPU port should be designated as destination port
1091  * in the FDB, and the other functions of the Forwarding Process must not
1092  * interfere with the decision of the transmission Port. We call this process
1093  * trapping frames to CPU port.
1094  *
1095  * Therefore, on the switch with CPU port architecture, link-local frames must
1096  * be trapped to CPU port, and certain link-local frames received by a Port of a
1097  * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1098  * from it.
1099  *
1100  * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1101  * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1102  * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1103  * doesn't count) of this architecture will either function as a standard MAC
1104  * Bridge or a standard VLAN Bridge.
1105  *
1106  * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1107  * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1108  * we don't need to relay PDUs using the destination addresses specified on the
1109  * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1110  * section where they must be relayed by TPMR components.
1111  *
1112  * One option to trap link-local frames to CPU port is to add static FDB entries
1113  * with CPU port designated as destination port. However, because that
1114  * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1115  * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1116  * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1117  * entries. This switch intellectual property can only hold a maximum of 2048
1118  * entries. Using this option, there also isn't a mechanism to prevent
1119  * link-local frames from being discarded when the spanning tree Port State of
1120  * the reception Port is discarding.
1121  *
1122  * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1123  * registers. Whilst this applies to every VID, it doesn't contain all of the
1124  * reserved MAC addresses without affecting the remaining Standard Group MAC
1125  * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1126  * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1127  * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1128  * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1129  * The latter option provides better but not complete conformance.
1130  *
1131  * This switch intellectual property also does not provide a mechanism to trap
1132  * link-local frames with specific destination addresses to CPU port by Bridge,
1133  * to conform to the filtering rules for the distinct Bridge components.
1134  *
1135  * Therefore, regardless of the type of the Bridge component, link-local frames
1136  * with these destination addresses will be trapped to CPU port:
1137  *
1138  * 01-80-C2-00-00-[00,01,02,03,0E]
1139  *
1140  * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1141  *
1142  *   Link-local frames with these destination addresses won't be trapped to CPU
1143  *   port which won't conform to IEEE Std 802.1Q-2022:
1144  *
1145  *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1146  *
1147  * In a Bridge comprising an S-VLAN component:
1148  *
1149  *   Link-local frames with these destination addresses will be trapped to CPU
1150  *   port which won't conform to IEEE Std 802.1Q-2022:
1151  *
1152  *   01-80-C2-00-00-00
1153  *
1154  *   Link-local frames with these destination addresses won't be trapped to CPU
1155  *   port which won't conform to IEEE Std 802.1Q-2022:
1156  *
1157  *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1158  *
1159  * To trap link-local frames to CPU port as conformant as this switch
1160  * intellectual property can allow, link-local frames are made to be regarded as
1161  * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1162  * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1163  * State function of the Forwarding Process.
1164  *
1165  * The only remaining interference is the ingress rules. When the reception Port
1166  * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1167  * There doesn't seem to be a mechanism on the switch intellectual property to
1168  * have link-local frames bypass this function of the Forwarding Process.
1169  */
1170 static void
1171 mt753x_trap_frames(struct mt7530_priv *priv)
1172 {
1173 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1174 	 * VLAN-untagged.
1175 	 */
1176 	mt7530_rmw(priv, MT753X_BPC,
1177 		   MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1178 			   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1179 			   MT753X_BPDU_PORT_FW_MASK,
1180 		   MT753X_PAE_BPDU_FR |
1181 			   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1182 			   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1183 			   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1184 			   MT753X_BPDU_CPU_ONLY);
1185 
1186 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1187 	 * them VLAN-untagged.
1188 	 */
1189 	mt7530_rmw(priv, MT753X_RGAC1,
1190 		   MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1191 			   MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1192 			   MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1193 		   MT753X_R02_BPDU_FR |
1194 			   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1195 			   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1196 			   MT753X_R01_BPDU_FR |
1197 			   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1198 			   MT753X_BPDU_CPU_ONLY);
1199 
1200 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1201 	 * them VLAN-untagged.
1202 	 */
1203 	mt7530_rmw(priv, MT753X_RGAC2,
1204 		   MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1205 			   MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1206 			   MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1207 		   MT753X_R0E_BPDU_FR |
1208 			   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1209 			   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1210 			   MT753X_R03_BPDU_FR |
1211 			   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1212 			   MT753X_BPDU_CPU_ONLY);
1213 }
1214 
1215 static int
1216 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1217 {
1218 	struct mt7530_priv *priv = ds->priv;
1219 	int ret;
1220 
1221 	/* Setup max capability of CPU port at first */
1222 	if (priv->info->cpu_port_config) {
1223 		ret = priv->info->cpu_port_config(ds, port);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 
1228 	/* Enable Mediatek header mode on the cpu port */
1229 	mt7530_write(priv, MT7530_PVC_P(port),
1230 		     PORT_SPEC_TAG);
1231 
1232 	/* Enable flooding on the CPU port */
1233 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1234 		   UNU_FFP(BIT(port)));
1235 
1236 	/* Set CPU port number */
1237 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1238 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1239 
1240 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1241 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1242 	 * is affine to the inbound user port.
1243 	 */
1244 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1245 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1246 
1247 	/* CPU port gets connected to all user ports of
1248 	 * the switch.
1249 	 */
1250 	mt7530_write(priv, MT7530_PCR_P(port),
1251 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1252 
1253 	/* Set to fallback mode for independent VLAN learning */
1254 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1255 		   MT7530_PORT_FALLBACK_MODE);
1256 
1257 	return 0;
1258 }
1259 
1260 static int
1261 mt7530_port_enable(struct dsa_switch *ds, int port,
1262 		   struct phy_device *phy)
1263 {
1264 	struct dsa_port *dp = dsa_to_port(ds, port);
1265 	struct mt7530_priv *priv = ds->priv;
1266 
1267 	mutex_lock(&priv->reg_mutex);
1268 
1269 	/* Allow the user port gets connected to the cpu port and also
1270 	 * restore the port matrix if the port is the member of a certain
1271 	 * bridge.
1272 	 */
1273 	if (dsa_port_is_user(dp)) {
1274 		struct dsa_port *cpu_dp = dp->cpu_dp;
1275 
1276 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1277 	}
1278 	priv->ports[port].enable = true;
1279 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1280 		   priv->ports[port].pm);
1281 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1282 
1283 	mutex_unlock(&priv->reg_mutex);
1284 
1285 	return 0;
1286 }
1287 
1288 static void
1289 mt7530_port_disable(struct dsa_switch *ds, int port)
1290 {
1291 	struct mt7530_priv *priv = ds->priv;
1292 
1293 	mutex_lock(&priv->reg_mutex);
1294 
1295 	/* Clear up all port matrix which could be restored in the next
1296 	 * enablement for the port.
1297 	 */
1298 	priv->ports[port].enable = false;
1299 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1300 		   PCR_MATRIX_CLR);
1301 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1302 
1303 	mutex_unlock(&priv->reg_mutex);
1304 }
1305 
1306 static int
1307 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1308 {
1309 	struct mt7530_priv *priv = ds->priv;
1310 	int length;
1311 	u32 val;
1312 
1313 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1314 	 * largest MTU of the slave ports. Because the switch only has a global
1315 	 * RX length register, only allowing CPU port here is enough.
1316 	 */
1317 	if (!dsa_is_cpu_port(ds, port))
1318 		return 0;
1319 
1320 	mt7530_mutex_lock(priv);
1321 
1322 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1323 	val &= ~MAX_RX_PKT_LEN_MASK;
1324 
1325 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1326 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1327 	if (length <= 1522) {
1328 		val |= MAX_RX_PKT_LEN_1522;
1329 	} else if (length <= 1536) {
1330 		val |= MAX_RX_PKT_LEN_1536;
1331 	} else if (length <= 1552) {
1332 		val |= MAX_RX_PKT_LEN_1552;
1333 	} else {
1334 		val &= ~MAX_RX_JUMBO_MASK;
1335 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1336 		val |= MAX_RX_PKT_LEN_JUMBO;
1337 	}
1338 
1339 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1340 
1341 	mt7530_mutex_unlock(priv);
1342 
1343 	return 0;
1344 }
1345 
1346 static int
1347 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1348 {
1349 	return MT7530_MAX_MTU;
1350 }
1351 
1352 static void
1353 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1354 {
1355 	struct mt7530_priv *priv = ds->priv;
1356 	u32 stp_state;
1357 
1358 	switch (state) {
1359 	case BR_STATE_DISABLED:
1360 		stp_state = MT7530_STP_DISABLED;
1361 		break;
1362 	case BR_STATE_BLOCKING:
1363 		stp_state = MT7530_STP_BLOCKING;
1364 		break;
1365 	case BR_STATE_LISTENING:
1366 		stp_state = MT7530_STP_LISTENING;
1367 		break;
1368 	case BR_STATE_LEARNING:
1369 		stp_state = MT7530_STP_LEARNING;
1370 		break;
1371 	case BR_STATE_FORWARDING:
1372 	default:
1373 		stp_state = MT7530_STP_FORWARDING;
1374 		break;
1375 	}
1376 
1377 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1378 		   FID_PST(FID_BRIDGED, stp_state));
1379 }
1380 
1381 static int
1382 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1383 			     struct switchdev_brport_flags flags,
1384 			     struct netlink_ext_ack *extack)
1385 {
1386 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1387 			   BR_BCAST_FLOOD))
1388 		return -EINVAL;
1389 
1390 	return 0;
1391 }
1392 
1393 static int
1394 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1395 			 struct switchdev_brport_flags flags,
1396 			 struct netlink_ext_ack *extack)
1397 {
1398 	struct mt7530_priv *priv = ds->priv;
1399 
1400 	if (flags.mask & BR_LEARNING)
1401 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1402 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1403 
1404 	if (flags.mask & BR_FLOOD)
1405 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1406 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1407 
1408 	if (flags.mask & BR_MCAST_FLOOD)
1409 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1410 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1411 
1412 	if (flags.mask & BR_BCAST_FLOOD)
1413 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1414 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1415 
1416 	return 0;
1417 }
1418 
1419 static int
1420 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1421 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1422 			struct netlink_ext_ack *extack)
1423 {
1424 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1425 	struct dsa_port *cpu_dp = dp->cpu_dp;
1426 	u32 port_bitmap = BIT(cpu_dp->index);
1427 	struct mt7530_priv *priv = ds->priv;
1428 
1429 	mutex_lock(&priv->reg_mutex);
1430 
1431 	dsa_switch_for_each_user_port(other_dp, ds) {
1432 		int other_port = other_dp->index;
1433 
1434 		if (dp == other_dp)
1435 			continue;
1436 
1437 		/* Add this port to the port matrix of the other ports in the
1438 		 * same bridge. If the port is disabled, port matrix is kept
1439 		 * and not being setup until the port becomes enabled.
1440 		 */
1441 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1442 			continue;
1443 
1444 		if (priv->ports[other_port].enable)
1445 			mt7530_set(priv, MT7530_PCR_P(other_port),
1446 				   PCR_MATRIX(BIT(port)));
1447 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1448 
1449 		port_bitmap |= BIT(other_port);
1450 	}
1451 
1452 	/* Add the all other ports to this port matrix. */
1453 	if (priv->ports[port].enable)
1454 		mt7530_rmw(priv, MT7530_PCR_P(port),
1455 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1456 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1457 
1458 	/* Set to fallback mode for independent VLAN learning */
1459 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1460 		   MT7530_PORT_FALLBACK_MODE);
1461 
1462 	mutex_unlock(&priv->reg_mutex);
1463 
1464 	return 0;
1465 }
1466 
1467 static void
1468 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1469 {
1470 	struct mt7530_priv *priv = ds->priv;
1471 	bool all_user_ports_removed = true;
1472 	int i;
1473 
1474 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1475 	 * bridge. Don't set standalone ports to fallback mode.
1476 	 */
1477 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1478 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1479 			   MT7530_PORT_FALLBACK_MODE);
1480 
1481 	mt7530_rmw(priv, MT7530_PVC_P(port),
1482 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1483 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1484 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1485 		   MT7530_VLAN_ACC_ALL);
1486 
1487 	/* Set PVID to 0 */
1488 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1489 		   G0_PORT_VID_DEF);
1490 
1491 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1492 		if (dsa_is_user_port(ds, i) &&
1493 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1494 			all_user_ports_removed = false;
1495 			break;
1496 		}
1497 	}
1498 
1499 	/* CPU port also does the same thing until all user ports belonging to
1500 	 * the CPU port get out of VLAN filtering mode.
1501 	 */
1502 	if (all_user_ports_removed) {
1503 		struct dsa_port *dp = dsa_to_port(ds, port);
1504 		struct dsa_port *cpu_dp = dp->cpu_dp;
1505 
1506 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1507 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1508 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1509 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1510 	}
1511 }
1512 
1513 static void
1514 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1515 {
1516 	struct mt7530_priv *priv = ds->priv;
1517 
1518 	/* Trapped into security mode allows packet forwarding through VLAN
1519 	 * table lookup.
1520 	 */
1521 	if (dsa_is_user_port(ds, port)) {
1522 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1523 			   MT7530_PORT_SECURITY_MODE);
1524 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1525 			   G0_PORT_VID(priv->ports[port].pvid));
1526 
1527 		/* Only accept tagged frames if PVID is not set */
1528 		if (!priv->ports[port].pvid)
1529 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1530 				   MT7530_VLAN_ACC_TAGGED);
1531 
1532 		/* Set the port as a user port which is to be able to recognize
1533 		 * VID from incoming packets before fetching entry within the
1534 		 * VLAN table.
1535 		 */
1536 		mt7530_rmw(priv, MT7530_PVC_P(port),
1537 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1538 			   VLAN_ATTR(MT7530_VLAN_USER) |
1539 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1540 	} else {
1541 		/* Also set CPU ports to the "user" VLAN port attribute, to
1542 		 * allow VLAN classification, but keep the EG_TAG attribute as
1543 		 * "consistent" (i.o.w. don't change its value) for packets
1544 		 * received by the switch from the CPU, so that tagged packets
1545 		 * are forwarded to user ports as tagged, and untagged as
1546 		 * untagged.
1547 		 */
1548 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1549 			   VLAN_ATTR(MT7530_VLAN_USER));
1550 	}
1551 }
1552 
1553 static void
1554 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1555 			 struct dsa_bridge bridge)
1556 {
1557 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1558 	struct dsa_port *cpu_dp = dp->cpu_dp;
1559 	struct mt7530_priv *priv = ds->priv;
1560 
1561 	mutex_lock(&priv->reg_mutex);
1562 
1563 	dsa_switch_for_each_user_port(other_dp, ds) {
1564 		int other_port = other_dp->index;
1565 
1566 		if (dp == other_dp)
1567 			continue;
1568 
1569 		/* Remove this port from the port matrix of the other ports
1570 		 * in the same bridge. If the port is disabled, port matrix
1571 		 * is kept and not being setup until the port becomes enabled.
1572 		 */
1573 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1574 			continue;
1575 
1576 		if (priv->ports[other_port].enable)
1577 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1578 				     PCR_MATRIX(BIT(port)));
1579 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1580 	}
1581 
1582 	/* Set the cpu port to be the only one in the port matrix of
1583 	 * this port.
1584 	 */
1585 	if (priv->ports[port].enable)
1586 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1587 			   PCR_MATRIX(BIT(cpu_dp->index)));
1588 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1589 
1590 	/* When a port is removed from the bridge, the port would be set up
1591 	 * back to the default as is at initial boot which is a VLAN-unaware
1592 	 * port.
1593 	 */
1594 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1595 		   MT7530_PORT_MATRIX_MODE);
1596 
1597 	mutex_unlock(&priv->reg_mutex);
1598 }
1599 
1600 static int
1601 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1602 		    const unsigned char *addr, u16 vid,
1603 		    struct dsa_db db)
1604 {
1605 	struct mt7530_priv *priv = ds->priv;
1606 	int ret;
1607 	u8 port_mask = BIT(port);
1608 
1609 	mutex_lock(&priv->reg_mutex);
1610 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1611 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1612 	mutex_unlock(&priv->reg_mutex);
1613 
1614 	return ret;
1615 }
1616 
1617 static int
1618 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1619 		    const unsigned char *addr, u16 vid,
1620 		    struct dsa_db db)
1621 {
1622 	struct mt7530_priv *priv = ds->priv;
1623 	int ret;
1624 	u8 port_mask = BIT(port);
1625 
1626 	mutex_lock(&priv->reg_mutex);
1627 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1628 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1629 	mutex_unlock(&priv->reg_mutex);
1630 
1631 	return ret;
1632 }
1633 
1634 static int
1635 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1636 		     dsa_fdb_dump_cb_t *cb, void *data)
1637 {
1638 	struct mt7530_priv *priv = ds->priv;
1639 	struct mt7530_fdb _fdb = { 0 };
1640 	int cnt = MT7530_NUM_FDB_RECORDS;
1641 	int ret = 0;
1642 	u32 rsp = 0;
1643 
1644 	mutex_lock(&priv->reg_mutex);
1645 
1646 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1647 	if (ret < 0)
1648 		goto err;
1649 
1650 	do {
1651 		if (rsp & ATC_SRCH_HIT) {
1652 			mt7530_fdb_read(priv, &_fdb);
1653 			if (_fdb.port_mask & BIT(port)) {
1654 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1655 					 data);
1656 				if (ret < 0)
1657 					break;
1658 			}
1659 		}
1660 	} while (--cnt &&
1661 		 !(rsp & ATC_SRCH_END) &&
1662 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1663 err:
1664 	mutex_unlock(&priv->reg_mutex);
1665 
1666 	return 0;
1667 }
1668 
1669 static int
1670 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1671 		    const struct switchdev_obj_port_mdb *mdb,
1672 		    struct dsa_db db)
1673 {
1674 	struct mt7530_priv *priv = ds->priv;
1675 	const u8 *addr = mdb->addr;
1676 	u16 vid = mdb->vid;
1677 	u8 port_mask = 0;
1678 	int ret;
1679 
1680 	mutex_lock(&priv->reg_mutex);
1681 
1682 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1683 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1684 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1685 			    & PORT_MAP_MASK;
1686 
1687 	port_mask |= BIT(port);
1688 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1689 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1690 
1691 	mutex_unlock(&priv->reg_mutex);
1692 
1693 	return ret;
1694 }
1695 
1696 static int
1697 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1698 		    const struct switchdev_obj_port_mdb *mdb,
1699 		    struct dsa_db db)
1700 {
1701 	struct mt7530_priv *priv = ds->priv;
1702 	const u8 *addr = mdb->addr;
1703 	u16 vid = mdb->vid;
1704 	u8 port_mask = 0;
1705 	int ret;
1706 
1707 	mutex_lock(&priv->reg_mutex);
1708 
1709 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1710 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1711 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1712 			    & PORT_MAP_MASK;
1713 
1714 	port_mask &= ~BIT(port);
1715 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1716 			 port_mask ? STATIC_ENT : STATIC_EMP);
1717 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1718 
1719 	mutex_unlock(&priv->reg_mutex);
1720 
1721 	return ret;
1722 }
1723 
1724 static int
1725 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1726 {
1727 	struct mt7530_dummy_poll p;
1728 	u32 val;
1729 	int ret;
1730 
1731 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1732 	mt7530_write(priv, MT7530_VTCR, val);
1733 
1734 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1735 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1736 				 !(val & VTCR_BUSY), 20, 20000);
1737 	if (ret < 0) {
1738 		dev_err(priv->dev, "poll timeout\n");
1739 		return ret;
1740 	}
1741 
1742 	val = mt7530_read(priv, MT7530_VTCR);
1743 	if (val & VTCR_INVALID) {
1744 		dev_err(priv->dev, "read VTCR invalid\n");
1745 		return -EINVAL;
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static int
1752 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1753 			   struct netlink_ext_ack *extack)
1754 {
1755 	struct dsa_port *dp = dsa_to_port(ds, port);
1756 	struct dsa_port *cpu_dp = dp->cpu_dp;
1757 
1758 	if (vlan_filtering) {
1759 		/* The port is being kept as VLAN-unaware port when bridge is
1760 		 * set up with vlan_filtering not being set, Otherwise, the
1761 		 * port and the corresponding CPU port is required the setup
1762 		 * for becoming a VLAN-aware port.
1763 		 */
1764 		mt7530_port_set_vlan_aware(ds, port);
1765 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1766 	} else {
1767 		mt7530_port_set_vlan_unaware(ds, port);
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static void
1774 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1775 		   struct mt7530_hw_vlan_entry *entry)
1776 {
1777 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1778 	u8 new_members;
1779 	u32 val;
1780 
1781 	new_members = entry->old_members | BIT(entry->port);
1782 
1783 	/* Validate the entry with independent learning, create egress tag per
1784 	 * VLAN and joining the port as one of the port members.
1785 	 */
1786 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1787 	      VLAN_VALID;
1788 	mt7530_write(priv, MT7530_VAWD1, val);
1789 
1790 	/* Decide whether adding tag or not for those outgoing packets from the
1791 	 * port inside the VLAN.
1792 	 * CPU port is always taken as a tagged port for serving more than one
1793 	 * VLANs across and also being applied with egress type stack mode for
1794 	 * that VLAN tags would be appended after hardware special tag used as
1795 	 * DSA tag.
1796 	 */
1797 	if (dsa_port_is_cpu(dp))
1798 		val = MT7530_VLAN_EGRESS_STACK;
1799 	else if (entry->untagged)
1800 		val = MT7530_VLAN_EGRESS_UNTAG;
1801 	else
1802 		val = MT7530_VLAN_EGRESS_TAG;
1803 	mt7530_rmw(priv, MT7530_VAWD2,
1804 		   ETAG_CTRL_P_MASK(entry->port),
1805 		   ETAG_CTRL_P(entry->port, val));
1806 }
1807 
1808 static void
1809 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1810 		   struct mt7530_hw_vlan_entry *entry)
1811 {
1812 	u8 new_members;
1813 	u32 val;
1814 
1815 	new_members = entry->old_members & ~BIT(entry->port);
1816 
1817 	val = mt7530_read(priv, MT7530_VAWD1);
1818 	if (!(val & VLAN_VALID)) {
1819 		dev_err(priv->dev,
1820 			"Cannot be deleted due to invalid entry\n");
1821 		return;
1822 	}
1823 
1824 	if (new_members) {
1825 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1826 		      VLAN_VALID;
1827 		mt7530_write(priv, MT7530_VAWD1, val);
1828 	} else {
1829 		mt7530_write(priv, MT7530_VAWD1, 0);
1830 		mt7530_write(priv, MT7530_VAWD2, 0);
1831 	}
1832 }
1833 
1834 static void
1835 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1836 		      struct mt7530_hw_vlan_entry *entry,
1837 		      mt7530_vlan_op vlan_op)
1838 {
1839 	u32 val;
1840 
1841 	/* Fetch entry */
1842 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1843 
1844 	val = mt7530_read(priv, MT7530_VAWD1);
1845 
1846 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1847 
1848 	/* Manipulate entry */
1849 	vlan_op(priv, entry);
1850 
1851 	/* Flush result to hardware */
1852 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1853 }
1854 
1855 static int
1856 mt7530_setup_vlan0(struct mt7530_priv *priv)
1857 {
1858 	u32 val;
1859 
1860 	/* Validate the entry with independent learning, keep the original
1861 	 * ingress tag attribute.
1862 	 */
1863 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1864 	      VLAN_VALID;
1865 	mt7530_write(priv, MT7530_VAWD1, val);
1866 
1867 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1868 }
1869 
1870 static int
1871 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1872 		     const struct switchdev_obj_port_vlan *vlan,
1873 		     struct netlink_ext_ack *extack)
1874 {
1875 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1876 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1877 	struct mt7530_hw_vlan_entry new_entry;
1878 	struct mt7530_priv *priv = ds->priv;
1879 
1880 	mutex_lock(&priv->reg_mutex);
1881 
1882 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1883 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1884 
1885 	if (pvid) {
1886 		priv->ports[port].pvid = vlan->vid;
1887 
1888 		/* Accept all frames if PVID is set */
1889 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1890 			   MT7530_VLAN_ACC_ALL);
1891 
1892 		/* Only configure PVID if VLAN filtering is enabled */
1893 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1894 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1895 				   G0_PORT_VID_MASK,
1896 				   G0_PORT_VID(vlan->vid));
1897 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1898 		/* This VLAN is overwritten without PVID, so unset it */
1899 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1900 
1901 		/* Only accept tagged frames if the port is VLAN-aware */
1902 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1903 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1904 				   MT7530_VLAN_ACC_TAGGED);
1905 
1906 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1907 			   G0_PORT_VID_DEF);
1908 	}
1909 
1910 	mutex_unlock(&priv->reg_mutex);
1911 
1912 	return 0;
1913 }
1914 
1915 static int
1916 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1917 		     const struct switchdev_obj_port_vlan *vlan)
1918 {
1919 	struct mt7530_hw_vlan_entry target_entry;
1920 	struct mt7530_priv *priv = ds->priv;
1921 
1922 	mutex_lock(&priv->reg_mutex);
1923 
1924 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1925 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1926 			      mt7530_hw_vlan_del);
1927 
1928 	/* PVID is being restored to the default whenever the PVID port
1929 	 * is being removed from the VLAN.
1930 	 */
1931 	if (priv->ports[port].pvid == vlan->vid) {
1932 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1933 
1934 		/* Only accept tagged frames if the port is VLAN-aware */
1935 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1936 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1937 				   MT7530_VLAN_ACC_TAGGED);
1938 
1939 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1940 			   G0_PORT_VID_DEF);
1941 	}
1942 
1943 
1944 	mutex_unlock(&priv->reg_mutex);
1945 
1946 	return 0;
1947 }
1948 
1949 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1950 {
1951 	return (id == ID_MT7531 || id == ID_MT7988) ?
1952 		       MT7531_MIRROR_PORT_GET(val) :
1953 		       MIRROR_PORT(val);
1954 }
1955 
1956 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1957 {
1958 	return (id == ID_MT7531 || id == ID_MT7988) ?
1959 		       MT7531_MIRROR_PORT_SET(val) :
1960 		       MIRROR_PORT(val);
1961 }
1962 
1963 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1964 				  struct dsa_mall_mirror_tc_entry *mirror,
1965 				  bool ingress, struct netlink_ext_ack *extack)
1966 {
1967 	struct mt7530_priv *priv = ds->priv;
1968 	int monitor_port;
1969 	u32 val;
1970 
1971 	/* Check for existent entry */
1972 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1973 		return -EEXIST;
1974 
1975 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1976 
1977 	/* MT7530 only supports one monitor port */
1978 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1979 	if (val & MT753X_MIRROR_EN(priv->id) &&
1980 	    monitor_port != mirror->to_local_port)
1981 		return -EEXIST;
1982 
1983 	val |= MT753X_MIRROR_EN(priv->id);
1984 	val &= ~MT753X_MIRROR_MASK(priv->id);
1985 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1986 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1987 
1988 	val = mt7530_read(priv, MT7530_PCR_P(port));
1989 	if (ingress) {
1990 		val |= PORT_RX_MIR;
1991 		priv->mirror_rx |= BIT(port);
1992 	} else {
1993 		val |= PORT_TX_MIR;
1994 		priv->mirror_tx |= BIT(port);
1995 	}
1996 	mt7530_write(priv, MT7530_PCR_P(port), val);
1997 
1998 	return 0;
1999 }
2000 
2001 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
2002 				   struct dsa_mall_mirror_tc_entry *mirror)
2003 {
2004 	struct mt7530_priv *priv = ds->priv;
2005 	u32 val;
2006 
2007 	val = mt7530_read(priv, MT7530_PCR_P(port));
2008 	if (mirror->ingress) {
2009 		val &= ~PORT_RX_MIR;
2010 		priv->mirror_rx &= ~BIT(port);
2011 	} else {
2012 		val &= ~PORT_TX_MIR;
2013 		priv->mirror_tx &= ~BIT(port);
2014 	}
2015 	mt7530_write(priv, MT7530_PCR_P(port), val);
2016 
2017 	if (!priv->mirror_rx && !priv->mirror_tx) {
2018 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
2019 		val &= ~MT753X_MIRROR_EN(priv->id);
2020 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
2021 	}
2022 }
2023 
2024 static enum dsa_tag_protocol
2025 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
2026 		     enum dsa_tag_protocol mp)
2027 {
2028 	return DSA_TAG_PROTO_MTK;
2029 }
2030 
2031 #ifdef CONFIG_GPIOLIB
2032 static inline u32
2033 mt7530_gpio_to_bit(unsigned int offset)
2034 {
2035 	/* Map GPIO offset to register bit
2036 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
2037 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
2038 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
2039 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
2040 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
2041 	 */
2042 	return BIT(offset + offset / 3);
2043 }
2044 
2045 static int
2046 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
2047 {
2048 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2049 	u32 bit = mt7530_gpio_to_bit(offset);
2050 
2051 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
2052 }
2053 
2054 static void
2055 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
2056 {
2057 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2058 	u32 bit = mt7530_gpio_to_bit(offset);
2059 
2060 	if (value)
2061 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2062 	else
2063 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2064 }
2065 
2066 static int
2067 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2068 {
2069 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2070 	u32 bit = mt7530_gpio_to_bit(offset);
2071 
2072 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2073 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2074 }
2075 
2076 static int
2077 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2078 {
2079 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2080 	u32 bit = mt7530_gpio_to_bit(offset);
2081 
2082 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2083 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2084 
2085 	return 0;
2086 }
2087 
2088 static int
2089 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2090 {
2091 	struct mt7530_priv *priv = gpiochip_get_data(gc);
2092 	u32 bit = mt7530_gpio_to_bit(offset);
2093 
2094 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2095 
2096 	if (value)
2097 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2098 	else
2099 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2100 
2101 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2102 
2103 	return 0;
2104 }
2105 
2106 static int
2107 mt7530_setup_gpio(struct mt7530_priv *priv)
2108 {
2109 	struct device *dev = priv->dev;
2110 	struct gpio_chip *gc;
2111 
2112 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2113 	if (!gc)
2114 		return -ENOMEM;
2115 
2116 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2117 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2118 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2119 
2120 	gc->label = "mt7530";
2121 	gc->parent = dev;
2122 	gc->owner = THIS_MODULE;
2123 	gc->get_direction = mt7530_gpio_get_direction;
2124 	gc->direction_input = mt7530_gpio_direction_input;
2125 	gc->direction_output = mt7530_gpio_direction_output;
2126 	gc->get = mt7530_gpio_get;
2127 	gc->set = mt7530_gpio_set;
2128 	gc->base = -1;
2129 	gc->ngpio = 15;
2130 	gc->can_sleep = true;
2131 
2132 	return devm_gpiochip_add_data(dev, gc, priv);
2133 }
2134 #endif /* CONFIG_GPIOLIB */
2135 
2136 static irqreturn_t
2137 mt7530_irq_thread_fn(int irq, void *dev_id)
2138 {
2139 	struct mt7530_priv *priv = dev_id;
2140 	bool handled = false;
2141 	u32 val;
2142 	int p;
2143 
2144 	mt7530_mutex_lock(priv);
2145 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2146 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2147 	mt7530_mutex_unlock(priv);
2148 
2149 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2150 		if (BIT(p) & val) {
2151 			unsigned int irq;
2152 
2153 			irq = irq_find_mapping(priv->irq_domain, p);
2154 			handle_nested_irq(irq);
2155 			handled = true;
2156 		}
2157 	}
2158 
2159 	return IRQ_RETVAL(handled);
2160 }
2161 
2162 static void
2163 mt7530_irq_mask(struct irq_data *d)
2164 {
2165 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2166 
2167 	priv->irq_enable &= ~BIT(d->hwirq);
2168 }
2169 
2170 static void
2171 mt7530_irq_unmask(struct irq_data *d)
2172 {
2173 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2174 
2175 	priv->irq_enable |= BIT(d->hwirq);
2176 }
2177 
2178 static void
2179 mt7530_irq_bus_lock(struct irq_data *d)
2180 {
2181 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2182 
2183 	mt7530_mutex_lock(priv);
2184 }
2185 
2186 static void
2187 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2188 {
2189 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2190 
2191 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2192 	mt7530_mutex_unlock(priv);
2193 }
2194 
2195 static struct irq_chip mt7530_irq_chip = {
2196 	.name = KBUILD_MODNAME,
2197 	.irq_mask = mt7530_irq_mask,
2198 	.irq_unmask = mt7530_irq_unmask,
2199 	.irq_bus_lock = mt7530_irq_bus_lock,
2200 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2201 };
2202 
2203 static int
2204 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2205 	       irq_hw_number_t hwirq)
2206 {
2207 	irq_set_chip_data(irq, domain->host_data);
2208 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2209 	irq_set_nested_thread(irq, true);
2210 	irq_set_noprobe(irq);
2211 
2212 	return 0;
2213 }
2214 
2215 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2216 	.map = mt7530_irq_map,
2217 	.xlate = irq_domain_xlate_onecell,
2218 };
2219 
2220 static void
2221 mt7988_irq_mask(struct irq_data *d)
2222 {
2223 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2224 
2225 	priv->irq_enable &= ~BIT(d->hwirq);
2226 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2227 }
2228 
2229 static void
2230 mt7988_irq_unmask(struct irq_data *d)
2231 {
2232 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2233 
2234 	priv->irq_enable |= BIT(d->hwirq);
2235 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2236 }
2237 
2238 static struct irq_chip mt7988_irq_chip = {
2239 	.name = KBUILD_MODNAME,
2240 	.irq_mask = mt7988_irq_mask,
2241 	.irq_unmask = mt7988_irq_unmask,
2242 };
2243 
2244 static int
2245 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2246 	       irq_hw_number_t hwirq)
2247 {
2248 	irq_set_chip_data(irq, domain->host_data);
2249 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2250 	irq_set_nested_thread(irq, true);
2251 	irq_set_noprobe(irq);
2252 
2253 	return 0;
2254 }
2255 
2256 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2257 	.map = mt7988_irq_map,
2258 	.xlate = irq_domain_xlate_onecell,
2259 };
2260 
2261 static void
2262 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2263 {
2264 	struct dsa_switch *ds = priv->ds;
2265 	int p;
2266 
2267 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2268 		if (BIT(p) & ds->phys_mii_mask) {
2269 			unsigned int irq;
2270 
2271 			irq = irq_create_mapping(priv->irq_domain, p);
2272 			ds->slave_mii_bus->irq[p] = irq;
2273 		}
2274 	}
2275 }
2276 
2277 static int
2278 mt7530_setup_irq(struct mt7530_priv *priv)
2279 {
2280 	struct device *dev = priv->dev;
2281 	struct device_node *np = dev->of_node;
2282 	int ret;
2283 
2284 	if (!of_property_read_bool(np, "interrupt-controller")) {
2285 		dev_info(dev, "no interrupt support\n");
2286 		return 0;
2287 	}
2288 
2289 	priv->irq = of_irq_get(np, 0);
2290 	if (priv->irq <= 0) {
2291 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2292 		return priv->irq ? : -EINVAL;
2293 	}
2294 
2295 	if (priv->id == ID_MT7988)
2296 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2297 							 &mt7988_irq_domain_ops,
2298 							 priv);
2299 	else
2300 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2301 							 &mt7530_irq_domain_ops,
2302 							 priv);
2303 
2304 	if (!priv->irq_domain) {
2305 		dev_err(dev, "failed to create IRQ domain\n");
2306 		return -ENOMEM;
2307 	}
2308 
2309 	/* This register must be set for MT7530 to properly fire interrupts */
2310 	if (priv->id != ID_MT7531)
2311 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2312 
2313 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2314 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2315 	if (ret) {
2316 		irq_domain_remove(priv->irq_domain);
2317 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2318 		return ret;
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 static void
2325 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2326 {
2327 	int p;
2328 
2329 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2330 		if (BIT(p) & priv->ds->phys_mii_mask) {
2331 			unsigned int irq;
2332 
2333 			irq = irq_find_mapping(priv->irq_domain, p);
2334 			irq_dispose_mapping(irq);
2335 		}
2336 	}
2337 }
2338 
2339 static void
2340 mt7530_free_irq_common(struct mt7530_priv *priv)
2341 {
2342 	free_irq(priv->irq, priv);
2343 	irq_domain_remove(priv->irq_domain);
2344 }
2345 
2346 static void
2347 mt7530_free_irq(struct mt7530_priv *priv)
2348 {
2349 	mt7530_free_mdio_irq(priv);
2350 	mt7530_free_irq_common(priv);
2351 }
2352 
2353 static int
2354 mt7530_setup_mdio(struct mt7530_priv *priv)
2355 {
2356 	struct dsa_switch *ds = priv->ds;
2357 	struct device *dev = priv->dev;
2358 	struct mii_bus *bus;
2359 	static int idx;
2360 	int ret;
2361 
2362 	bus = devm_mdiobus_alloc(dev);
2363 	if (!bus)
2364 		return -ENOMEM;
2365 
2366 	ds->slave_mii_bus = bus;
2367 	bus->priv = priv;
2368 	bus->name = KBUILD_MODNAME "-mii";
2369 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2370 	bus->read = mt753x_phy_read_c22;
2371 	bus->write = mt753x_phy_write_c22;
2372 	bus->read_c45 = mt753x_phy_read_c45;
2373 	bus->write_c45 = mt753x_phy_write_c45;
2374 	bus->parent = dev;
2375 	bus->phy_mask = ~ds->phys_mii_mask;
2376 
2377 	if (priv->irq)
2378 		mt7530_setup_mdio_irq(priv);
2379 
2380 	ret = devm_mdiobus_register(dev, bus);
2381 	if (ret) {
2382 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2383 		if (priv->irq)
2384 			mt7530_free_mdio_irq(priv);
2385 	}
2386 
2387 	return ret;
2388 }
2389 
2390 static int
2391 mt7530_setup(struct dsa_switch *ds)
2392 {
2393 	struct mt7530_priv *priv = ds->priv;
2394 	struct device_node *dn = NULL;
2395 	struct device_node *phy_node;
2396 	struct device_node *mac_np;
2397 	struct mt7530_dummy_poll p;
2398 	phy_interface_t interface;
2399 	struct dsa_port *cpu_dp;
2400 	u32 id, val;
2401 	int ret, i;
2402 
2403 	/* The parent node of master netdev which holds the common system
2404 	 * controller also is the container for two GMACs nodes representing
2405 	 * as two netdev instances.
2406 	 */
2407 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2408 		dn = cpu_dp->master->dev.of_node->parent;
2409 		/* It doesn't matter which CPU port is found first,
2410 		 * their masters should share the same parent OF node
2411 		 */
2412 		break;
2413 	}
2414 
2415 	if (!dn) {
2416 		dev_err(ds->dev, "parent OF node of DSA master not found");
2417 		return -EINVAL;
2418 	}
2419 
2420 	ds->assisted_learning_on_cpu_port = true;
2421 	ds->mtu_enforcement_ingress = true;
2422 
2423 	if (priv->id == ID_MT7530) {
2424 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2425 		ret = regulator_enable(priv->core_pwr);
2426 		if (ret < 0) {
2427 			dev_err(priv->dev,
2428 				"Failed to enable core power: %d\n", ret);
2429 			return ret;
2430 		}
2431 
2432 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2433 		ret = regulator_enable(priv->io_pwr);
2434 		if (ret < 0) {
2435 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2436 				ret);
2437 			return ret;
2438 		}
2439 	}
2440 
2441 	/* Reset whole chip through gpio pin or memory-mapped registers for
2442 	 * different type of hardware
2443 	 */
2444 	if (priv->mcm) {
2445 		reset_control_assert(priv->rstc);
2446 		usleep_range(5000, 5100);
2447 		reset_control_deassert(priv->rstc);
2448 	} else {
2449 		gpiod_set_value_cansleep(priv->reset, 0);
2450 		usleep_range(5000, 5100);
2451 		gpiod_set_value_cansleep(priv->reset, 1);
2452 	}
2453 
2454 	/* Waiting for MT7530 got to stable */
2455 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2456 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2457 				 20, 1000000);
2458 	if (ret < 0) {
2459 		dev_err(priv->dev, "reset timeout\n");
2460 		return ret;
2461 	}
2462 
2463 	id = mt7530_read(priv, MT7530_CREV);
2464 	id >>= CHIP_NAME_SHIFT;
2465 	if (id != MT7530_ID) {
2466 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2467 		return -ENODEV;
2468 	}
2469 
2470 	/* Reset the switch through internal reset */
2471 	mt7530_write(priv, MT7530_SYS_CTRL,
2472 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2473 		     SYS_CTRL_REG_RST);
2474 
2475 	/* Lower Tx driving for TRGMII path */
2476 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2477 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2478 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2479 
2480 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2481 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2482 			   RD_TAP_MASK, RD_TAP(16));
2483 
2484 	/* Enable port 6 */
2485 	val = mt7530_read(priv, MT7530_MHWTRAP);
2486 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2487 	val |= MHWTRAP_MANUAL;
2488 	mt7530_write(priv, MT7530_MHWTRAP, val);
2489 
2490 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2491 
2492 	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2493 		mt7530_pll_setup(priv);
2494 
2495 	mt753x_trap_frames(priv);
2496 
2497 	/* Enable and reset MIB counters */
2498 	mt7530_mib_reset(ds);
2499 
2500 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2501 		/* Disable forwarding by default on all ports */
2502 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2503 			   PCR_MATRIX_CLR);
2504 
2505 		/* Disable learning by default on all ports */
2506 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2507 
2508 		if (dsa_is_cpu_port(ds, i)) {
2509 			ret = mt753x_cpu_port_enable(ds, i);
2510 			if (ret)
2511 				return ret;
2512 		} else {
2513 			mt7530_port_disable(ds, i);
2514 
2515 			/* Set default PVID to 0 on all user ports */
2516 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2517 				   G0_PORT_VID_DEF);
2518 		}
2519 		/* Enable consistent egress tag */
2520 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2521 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2522 	}
2523 
2524 	/* Allow mirroring frames received on the local port (monitor port). */
2525 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2526 
2527 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2528 	ret = mt7530_setup_vlan0(priv);
2529 	if (ret)
2530 		return ret;
2531 
2532 	/* Setup port 5 */
2533 	priv->p5_intf_sel = P5_DISABLED;
2534 	interface = PHY_INTERFACE_MODE_NA;
2535 
2536 	if (!dsa_is_unused_port(ds, 5)) {
2537 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2538 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2539 		if (ret && ret != -ENODEV)
2540 			return ret;
2541 	} else {
2542 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2543 		for_each_child_of_node(dn, mac_np) {
2544 			if (!of_device_is_compatible(mac_np,
2545 						     "mediatek,eth-mac"))
2546 				continue;
2547 
2548 			ret = of_property_read_u32(mac_np, "reg", &id);
2549 			if (ret < 0 || id != 1)
2550 				continue;
2551 
2552 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2553 			if (!phy_node)
2554 				continue;
2555 
2556 			if (phy_node->parent == priv->dev->of_node->parent) {
2557 				ret = of_get_phy_mode(mac_np, &interface);
2558 				if (ret && ret != -ENODEV) {
2559 					of_node_put(mac_np);
2560 					of_node_put(phy_node);
2561 					return ret;
2562 				}
2563 				id = of_mdio_parse_addr(ds->dev, phy_node);
2564 				if (id == 0)
2565 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2566 				if (id == 4)
2567 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2568 			}
2569 			of_node_put(mac_np);
2570 			of_node_put(phy_node);
2571 			break;
2572 		}
2573 	}
2574 
2575 #ifdef CONFIG_GPIOLIB
2576 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2577 		ret = mt7530_setup_gpio(priv);
2578 		if (ret)
2579 			return ret;
2580 	}
2581 #endif /* CONFIG_GPIOLIB */
2582 
2583 	mt7530_setup_port5(ds, interface);
2584 
2585 	/* Flush the FDB table */
2586 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2587 	if (ret < 0)
2588 		return ret;
2589 
2590 	return 0;
2591 }
2592 
2593 static int
2594 mt7531_setup_common(struct dsa_switch *ds)
2595 {
2596 	struct mt7530_priv *priv = ds->priv;
2597 	int ret, i;
2598 
2599 	mt753x_trap_frames(priv);
2600 
2601 	/* Enable and reset MIB counters */
2602 	mt7530_mib_reset(ds);
2603 
2604 	/* Disable flooding on all ports */
2605 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2606 		     UNU_FFP_MASK);
2607 
2608 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2609 		/* Disable forwarding by default on all ports */
2610 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2611 			   PCR_MATRIX_CLR);
2612 
2613 		/* Disable learning by default on all ports */
2614 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2615 
2616 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2617 
2618 		if (dsa_is_cpu_port(ds, i)) {
2619 			ret = mt753x_cpu_port_enable(ds, i);
2620 			if (ret)
2621 				return ret;
2622 		} else {
2623 			mt7530_port_disable(ds, i);
2624 
2625 			/* Set default PVID to 0 on all user ports */
2626 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2627 				   G0_PORT_VID_DEF);
2628 		}
2629 
2630 		/* Enable consistent egress tag */
2631 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2632 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2633 	}
2634 
2635 	/* Allow mirroring frames received on the local port (monitor port). */
2636 	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2637 
2638 	/* Flush the FDB table */
2639 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2640 	if (ret < 0)
2641 		return ret;
2642 
2643 	return 0;
2644 }
2645 
2646 static int
2647 mt7531_setup(struct dsa_switch *ds)
2648 {
2649 	struct mt7530_priv *priv = ds->priv;
2650 	struct mt7530_dummy_poll p;
2651 	u32 val, id;
2652 	int ret, i;
2653 
2654 	/* Reset whole chip through gpio pin or memory-mapped registers for
2655 	 * different type of hardware
2656 	 */
2657 	if (priv->mcm) {
2658 		reset_control_assert(priv->rstc);
2659 		usleep_range(5000, 5100);
2660 		reset_control_deassert(priv->rstc);
2661 	} else {
2662 		gpiod_set_value_cansleep(priv->reset, 0);
2663 		usleep_range(5000, 5100);
2664 		gpiod_set_value_cansleep(priv->reset, 1);
2665 	}
2666 
2667 	/* Waiting for MT7530 got to stable */
2668 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2669 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2670 				 20, 1000000);
2671 	if (ret < 0) {
2672 		dev_err(priv->dev, "reset timeout\n");
2673 		return ret;
2674 	}
2675 
2676 	id = mt7530_read(priv, MT7531_CREV);
2677 	id >>= CHIP_NAME_SHIFT;
2678 
2679 	if (id != MT7531_ID) {
2680 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2681 		return -ENODEV;
2682 	}
2683 
2684 	/* all MACs must be forced link-down before sw reset */
2685 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2686 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2687 
2688 	/* Reset the switch through internal reset */
2689 	mt7530_write(priv, MT7530_SYS_CTRL,
2690 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2691 		     SYS_CTRL_REG_RST);
2692 
2693 	mt7531_pll_setup(priv);
2694 
2695 	if (mt7531_dual_sgmii_supported(priv)) {
2696 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2697 
2698 		/* Let ds->slave_mii_bus be able to access external phy. */
2699 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2700 			   MT7531_EXT_P_MDC_11);
2701 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2702 			   MT7531_EXT_P_MDIO_12);
2703 	} else {
2704 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2705 	}
2706 	dev_dbg(ds->dev, "P5 support %s interface\n",
2707 		p5_intf_modes(priv->p5_intf_sel));
2708 
2709 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2710 		   MT7531_GPIO0_INTERRUPT);
2711 
2712 	/* Let phylink decide the interface later. */
2713 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2714 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2715 
2716 	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2717 	 * phy_device has not yet been created provided for
2718 	 * phy_[read,write]_mmd_indirect is called, we provide our own
2719 	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2720 	 */
2721 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2722 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2723 	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2724 	val &= ~MT7531_PHY_PLL_OFF;
2725 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2726 				 CORE_PLL_GROUP4, val);
2727 
2728 	/* Disable EEE advertisement on the switch PHYs. */
2729 	for (i = MT753X_CTRL_PHY_ADDR;
2730 	     i < MT753X_CTRL_PHY_ADDR + MT7530_NUM_PHYS; i++) {
2731 		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2732 					 0);
2733 	}
2734 
2735 	mt7531_setup_common(ds);
2736 
2737 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2738 	ret = mt7530_setup_vlan0(priv);
2739 	if (ret)
2740 		return ret;
2741 
2742 	ds->assisted_learning_on_cpu_port = true;
2743 	ds->mtu_enforcement_ingress = true;
2744 
2745 	return 0;
2746 }
2747 
2748 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2749 				     struct phylink_config *config)
2750 {
2751 	switch (port) {
2752 	case 0 ... 4: /* Internal phy */
2753 		__set_bit(PHY_INTERFACE_MODE_GMII,
2754 			  config->supported_interfaces);
2755 		break;
2756 
2757 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2758 		phy_interface_set_rgmii(config->supported_interfaces);
2759 		__set_bit(PHY_INTERFACE_MODE_MII,
2760 			  config->supported_interfaces);
2761 		__set_bit(PHY_INTERFACE_MODE_GMII,
2762 			  config->supported_interfaces);
2763 		break;
2764 
2765 	case 6: /* 1st cpu port */
2766 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2767 			  config->supported_interfaces);
2768 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2769 			  config->supported_interfaces);
2770 		break;
2771 	}
2772 }
2773 
2774 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2775 {
2776 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2777 }
2778 
2779 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2780 				     struct phylink_config *config)
2781 {
2782 	struct mt7530_priv *priv = ds->priv;
2783 
2784 	switch (port) {
2785 	case 0 ... 4: /* Internal phy */
2786 		__set_bit(PHY_INTERFACE_MODE_GMII,
2787 			  config->supported_interfaces);
2788 		break;
2789 
2790 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2791 		if (mt7531_is_rgmii_port(priv, port)) {
2792 			phy_interface_set_rgmii(config->supported_interfaces);
2793 			break;
2794 		}
2795 		fallthrough;
2796 
2797 	case 6: /* 1st cpu port supports sgmii/8023z only */
2798 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2799 			  config->supported_interfaces);
2800 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2801 			  config->supported_interfaces);
2802 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2803 			  config->supported_interfaces);
2804 
2805 		config->mac_capabilities |= MAC_2500FD;
2806 		break;
2807 	}
2808 }
2809 
2810 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2811 				     struct phylink_config *config)
2812 {
2813 	phy_interface_zero(config->supported_interfaces);
2814 
2815 	switch (port) {
2816 	case 0 ... 4: /* Internal phy */
2817 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2818 			  config->supported_interfaces);
2819 		break;
2820 
2821 	case 6:
2822 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2823 			  config->supported_interfaces);
2824 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2825 					   MAC_10000FD;
2826 	}
2827 }
2828 
2829 static int
2830 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2831 {
2832 	struct mt7530_priv *priv = ds->priv;
2833 
2834 	return priv->info->pad_setup(ds, state->interface);
2835 }
2836 
2837 static int
2838 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2839 		  phy_interface_t interface)
2840 {
2841 	struct mt7530_priv *priv = ds->priv;
2842 
2843 	/* Only need to setup port5. */
2844 	if (port != 5)
2845 		return 0;
2846 
2847 	mt7530_setup_port5(priv->ds, interface);
2848 
2849 	return 0;
2850 }
2851 
2852 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2853 			      phy_interface_t interface,
2854 			      struct phy_device *phydev)
2855 {
2856 	u32 val;
2857 
2858 	if (!mt7531_is_rgmii_port(priv, port)) {
2859 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2860 			port);
2861 		return -EINVAL;
2862 	}
2863 
2864 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2865 	val |= GP_CLK_EN;
2866 	val &= ~GP_MODE_MASK;
2867 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2868 	val &= ~CLK_SKEW_IN_MASK;
2869 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2870 	val &= ~CLK_SKEW_OUT_MASK;
2871 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2872 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2873 
2874 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2875 	if (!phydev || phy_driver_is_genphy(phydev)) {
2876 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2877 		switch (interface) {
2878 		case PHY_INTERFACE_MODE_RGMII:
2879 			val |= TXCLK_NO_REVERSE;
2880 			val |= RXCLK_NO_DELAY;
2881 			break;
2882 		case PHY_INTERFACE_MODE_RGMII_RXID:
2883 			val |= TXCLK_NO_REVERSE;
2884 			break;
2885 		case PHY_INTERFACE_MODE_RGMII_TXID:
2886 			val |= RXCLK_NO_DELAY;
2887 			break;
2888 		case PHY_INTERFACE_MODE_RGMII_ID:
2889 			break;
2890 		default:
2891 			return -EINVAL;
2892 		}
2893 	}
2894 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2895 
2896 	return 0;
2897 }
2898 
2899 static bool mt753x_is_mac_port(u32 port)
2900 {
2901 	return (port == 5 || port == 6);
2902 }
2903 
2904 static int
2905 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2906 		  phy_interface_t interface)
2907 {
2908 	if (dsa_is_cpu_port(ds, port) &&
2909 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2910 		return 0;
2911 
2912 	return -EINVAL;
2913 }
2914 
2915 static int
2916 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2917 		  phy_interface_t interface)
2918 {
2919 	struct mt7530_priv *priv = ds->priv;
2920 	struct phy_device *phydev;
2921 	struct dsa_port *dp;
2922 
2923 	if (!mt753x_is_mac_port(port)) {
2924 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2925 		return -EINVAL;
2926 	}
2927 
2928 	switch (interface) {
2929 	case PHY_INTERFACE_MODE_RGMII:
2930 	case PHY_INTERFACE_MODE_RGMII_ID:
2931 	case PHY_INTERFACE_MODE_RGMII_RXID:
2932 	case PHY_INTERFACE_MODE_RGMII_TXID:
2933 		dp = dsa_to_port(ds, port);
2934 		phydev = dp->slave->phydev;
2935 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2936 	case PHY_INTERFACE_MODE_SGMII:
2937 	case PHY_INTERFACE_MODE_NA:
2938 	case PHY_INTERFACE_MODE_1000BASEX:
2939 	case PHY_INTERFACE_MODE_2500BASEX:
2940 		/* handled in SGMII PCS driver */
2941 		return 0;
2942 	default:
2943 		return -EINVAL;
2944 	}
2945 
2946 	return -EINVAL;
2947 }
2948 
2949 static int
2950 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2951 		  const struct phylink_link_state *state)
2952 {
2953 	struct mt7530_priv *priv = ds->priv;
2954 
2955 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2956 }
2957 
2958 static struct phylink_pcs *
2959 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2960 			      phy_interface_t interface)
2961 {
2962 	struct mt7530_priv *priv = ds->priv;
2963 
2964 	switch (interface) {
2965 	case PHY_INTERFACE_MODE_TRGMII:
2966 		return &priv->pcs[port].pcs;
2967 	case PHY_INTERFACE_MODE_SGMII:
2968 	case PHY_INTERFACE_MODE_1000BASEX:
2969 	case PHY_INTERFACE_MODE_2500BASEX:
2970 		return priv->ports[port].sgmii_pcs;
2971 	default:
2972 		return NULL;
2973 	}
2974 }
2975 
2976 static void
2977 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2978 			  const struct phylink_link_state *state)
2979 {
2980 	struct mt7530_priv *priv = ds->priv;
2981 	u32 mcr_cur, mcr_new;
2982 
2983 	switch (port) {
2984 	case 0 ... 4: /* Internal phy */
2985 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2986 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2987 			goto unsupported;
2988 		break;
2989 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2990 		if (priv->p5_interface == state->interface)
2991 			break;
2992 
2993 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2994 			goto unsupported;
2995 
2996 		if (priv->p5_intf_sel != P5_DISABLED)
2997 			priv->p5_interface = state->interface;
2998 		break;
2999 	case 6: /* 1st cpu port */
3000 		if (priv->p6_interface == state->interface)
3001 			break;
3002 
3003 		mt753x_pad_setup(ds, state);
3004 
3005 		if (mt753x_mac_config(ds, port, mode, state) < 0)
3006 			goto unsupported;
3007 
3008 		priv->p6_interface = state->interface;
3009 		break;
3010 	default:
3011 unsupported:
3012 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
3013 			__func__, phy_modes(state->interface), port);
3014 		return;
3015 	}
3016 
3017 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
3018 	mcr_new = mcr_cur;
3019 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
3020 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
3021 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
3022 
3023 	/* Are we connected to external phy */
3024 	if (port == 5 && dsa_is_user_port(ds, 5))
3025 		mcr_new |= PMCR_EXT_PHY;
3026 
3027 	if (mcr_new != mcr_cur)
3028 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
3029 }
3030 
3031 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
3032 					 unsigned int mode,
3033 					 phy_interface_t interface)
3034 {
3035 	struct mt7530_priv *priv = ds->priv;
3036 
3037 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
3038 }
3039 
3040 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
3041 				       unsigned int mode,
3042 				       phy_interface_t interface,
3043 				       int speed, int duplex)
3044 {
3045 	if (pcs->ops->pcs_link_up)
3046 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
3047 }
3048 
3049 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
3050 				       unsigned int mode,
3051 				       phy_interface_t interface,
3052 				       struct phy_device *phydev,
3053 				       int speed, int duplex,
3054 				       bool tx_pause, bool rx_pause)
3055 {
3056 	struct mt7530_priv *priv = ds->priv;
3057 	u32 mcr;
3058 
3059 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
3060 
3061 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
3062 	 * variants.
3063 	 */
3064 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
3065 	    (phy_interface_mode_is_8023z(interface))) {
3066 		speed = SPEED_1000;
3067 		duplex = DUPLEX_FULL;
3068 	}
3069 
3070 	switch (speed) {
3071 	case SPEED_1000:
3072 		mcr |= PMCR_FORCE_SPEED_1000;
3073 		break;
3074 	case SPEED_100:
3075 		mcr |= PMCR_FORCE_SPEED_100;
3076 		break;
3077 	}
3078 	if (duplex == DUPLEX_FULL) {
3079 		mcr |= PMCR_FORCE_FDX;
3080 		if (tx_pause)
3081 			mcr |= PMCR_TX_FC_EN;
3082 		if (rx_pause)
3083 			mcr |= PMCR_RX_FC_EN;
3084 	}
3085 
3086 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
3087 		switch (speed) {
3088 		case SPEED_1000:
3089 			mcr |= PMCR_FORCE_EEE1G;
3090 			break;
3091 		case SPEED_100:
3092 			mcr |= PMCR_FORCE_EEE100;
3093 			break;
3094 		}
3095 	}
3096 
3097 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
3098 }
3099 
3100 static int
3101 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
3102 {
3103 	struct mt7530_priv *priv = ds->priv;
3104 	phy_interface_t interface;
3105 	int speed;
3106 	int ret;
3107 
3108 	switch (port) {
3109 	case 5:
3110 		if (mt7531_is_rgmii_port(priv, port))
3111 			interface = PHY_INTERFACE_MODE_RGMII;
3112 		else
3113 			interface = PHY_INTERFACE_MODE_2500BASEX;
3114 
3115 		priv->p5_interface = interface;
3116 		break;
3117 	case 6:
3118 		interface = PHY_INTERFACE_MODE_2500BASEX;
3119 
3120 		priv->p6_interface = interface;
3121 		break;
3122 	default:
3123 		return -EINVAL;
3124 	}
3125 
3126 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
3127 		speed = SPEED_2500;
3128 	else
3129 		speed = SPEED_1000;
3130 
3131 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
3132 	if (ret)
3133 		return ret;
3134 	mt7530_write(priv, MT7530_PMCR_P(port),
3135 		     PMCR_CPU_PORT_SETTING(priv->id));
3136 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
3137 				   interface, speed, DUPLEX_FULL);
3138 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
3139 				   speed, DUPLEX_FULL, true, true);
3140 
3141 	return 0;
3142 }
3143 
3144 static int
3145 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
3146 {
3147 	struct mt7530_priv *priv = ds->priv;
3148 
3149 	mt7530_write(priv, MT7530_PMCR_P(port),
3150 		     PMCR_CPU_PORT_SETTING(priv->id));
3151 
3152 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
3153 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
3154 				   SPEED_10000, DUPLEX_FULL, true, true);
3155 
3156 	return 0;
3157 }
3158 
3159 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
3160 				    struct phylink_config *config)
3161 {
3162 	struct mt7530_priv *priv = ds->priv;
3163 
3164 	/* This switch only supports full-duplex at 1Gbps */
3165 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
3166 				   MAC_10 | MAC_100 | MAC_1000FD;
3167 
3168 	priv->info->mac_port_get_caps(ds, port, config);
3169 }
3170 
3171 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
3172 			       unsigned long *supported,
3173 			       const struct phylink_link_state *state)
3174 {
3175 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
3176 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
3177 	    phy_interface_mode_is_8023z(state->interface))
3178 		phylink_clear(supported, Autoneg);
3179 
3180 	return 0;
3181 }
3182 
3183 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
3184 				 struct phylink_link_state *state)
3185 {
3186 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3187 	int port = pcs_to_mt753x_pcs(pcs)->port;
3188 	u32 pmsr;
3189 
3190 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3191 
3192 	state->link = (pmsr & PMSR_LINK);
3193 	state->an_complete = state->link;
3194 	state->duplex = !!(pmsr & PMSR_DPX);
3195 
3196 	switch (pmsr & PMSR_SPEED_MASK) {
3197 	case PMSR_SPEED_10:
3198 		state->speed = SPEED_10;
3199 		break;
3200 	case PMSR_SPEED_100:
3201 		state->speed = SPEED_100;
3202 		break;
3203 	case PMSR_SPEED_1000:
3204 		state->speed = SPEED_1000;
3205 		break;
3206 	default:
3207 		state->speed = SPEED_UNKNOWN;
3208 		break;
3209 	}
3210 
3211 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3212 	if (pmsr & PMSR_RX_FC)
3213 		state->pause |= MLO_PAUSE_RX;
3214 	if (pmsr & PMSR_TX_FC)
3215 		state->pause |= MLO_PAUSE_TX;
3216 }
3217 
3218 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3219 			     phy_interface_t interface,
3220 			     const unsigned long *advertising,
3221 			     bool permit_pause_to_mac)
3222 {
3223 	return 0;
3224 }
3225 
3226 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3227 {
3228 }
3229 
3230 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3231 	.pcs_validate = mt753x_pcs_validate,
3232 	.pcs_get_state = mt7530_pcs_get_state,
3233 	.pcs_config = mt753x_pcs_config,
3234 	.pcs_an_restart = mt7530_pcs_an_restart,
3235 };
3236 
3237 static int
3238 mt753x_setup(struct dsa_switch *ds)
3239 {
3240 	struct mt7530_priv *priv = ds->priv;
3241 	int i, ret;
3242 
3243 	/* Initialise the PCS devices */
3244 	for (i = 0; i < priv->ds->num_ports; i++) {
3245 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3246 		priv->pcs[i].pcs.neg_mode = true;
3247 		priv->pcs[i].priv = priv;
3248 		priv->pcs[i].port = i;
3249 	}
3250 
3251 	ret = priv->info->sw_setup(ds);
3252 	if (ret)
3253 		return ret;
3254 
3255 	ret = mt7530_setup_irq(priv);
3256 	if (ret)
3257 		return ret;
3258 
3259 	ret = mt7530_setup_mdio(priv);
3260 	if (ret && priv->irq)
3261 		mt7530_free_irq_common(priv);
3262 
3263 	if (priv->create_sgmii) {
3264 		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3265 		if (ret && priv->irq)
3266 			mt7530_free_irq(priv);
3267 	}
3268 
3269 	return ret;
3270 }
3271 
3272 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3273 			      struct ethtool_eee *e)
3274 {
3275 	struct mt7530_priv *priv = ds->priv;
3276 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3277 
3278 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3279 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3280 
3281 	return 0;
3282 }
3283 
3284 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3285 			      struct ethtool_eee *e)
3286 {
3287 	struct mt7530_priv *priv = ds->priv;
3288 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3289 
3290 	if (e->tx_lpi_timer > 0xFFF)
3291 		return -EINVAL;
3292 
3293 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3294 	if (!e->tx_lpi_enabled)
3295 		/* Force LPI Mode without a delay */
3296 		set |= LPI_MODE_EN;
3297 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3298 
3299 	return 0;
3300 }
3301 
3302 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3303 {
3304 	return 0;
3305 }
3306 
3307 static int mt7988_setup(struct dsa_switch *ds)
3308 {
3309 	struct mt7530_priv *priv = ds->priv;
3310 
3311 	/* Reset the switch */
3312 	reset_control_assert(priv->rstc);
3313 	usleep_range(20, 50);
3314 	reset_control_deassert(priv->rstc);
3315 	usleep_range(20, 50);
3316 
3317 	/* Reset the switch PHYs */
3318 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3319 
3320 	return mt7531_setup_common(ds);
3321 }
3322 
3323 const struct dsa_switch_ops mt7530_switch_ops = {
3324 	.get_tag_protocol	= mtk_get_tag_protocol,
3325 	.setup			= mt753x_setup,
3326 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3327 	.get_strings		= mt7530_get_strings,
3328 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3329 	.get_sset_count		= mt7530_get_sset_count,
3330 	.set_ageing_time	= mt7530_set_ageing_time,
3331 	.port_enable		= mt7530_port_enable,
3332 	.port_disable		= mt7530_port_disable,
3333 	.port_change_mtu	= mt7530_port_change_mtu,
3334 	.port_max_mtu		= mt7530_port_max_mtu,
3335 	.port_stp_state_set	= mt7530_stp_state_set,
3336 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3337 	.port_bridge_flags	= mt7530_port_bridge_flags,
3338 	.port_bridge_join	= mt7530_port_bridge_join,
3339 	.port_bridge_leave	= mt7530_port_bridge_leave,
3340 	.port_fdb_add		= mt7530_port_fdb_add,
3341 	.port_fdb_del		= mt7530_port_fdb_del,
3342 	.port_fdb_dump		= mt7530_port_fdb_dump,
3343 	.port_mdb_add		= mt7530_port_mdb_add,
3344 	.port_mdb_del		= mt7530_port_mdb_del,
3345 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3346 	.port_vlan_add		= mt7530_port_vlan_add,
3347 	.port_vlan_del		= mt7530_port_vlan_del,
3348 	.port_mirror_add	= mt753x_port_mirror_add,
3349 	.port_mirror_del	= mt753x_port_mirror_del,
3350 	.phylink_get_caps	= mt753x_phylink_get_caps,
3351 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3352 	.phylink_mac_config	= mt753x_phylink_mac_config,
3353 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3354 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3355 	.get_mac_eee		= mt753x_get_mac_eee,
3356 	.set_mac_eee		= mt753x_set_mac_eee,
3357 };
3358 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3359 
3360 const struct mt753x_info mt753x_table[] = {
3361 	[ID_MT7621] = {
3362 		.id = ID_MT7621,
3363 		.pcs_ops = &mt7530_pcs_ops,
3364 		.sw_setup = mt7530_setup,
3365 		.phy_read_c22 = mt7530_phy_read_c22,
3366 		.phy_write_c22 = mt7530_phy_write_c22,
3367 		.phy_read_c45 = mt7530_phy_read_c45,
3368 		.phy_write_c45 = mt7530_phy_write_c45,
3369 		.pad_setup = mt7530_pad_clk_setup,
3370 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3371 		.mac_port_config = mt7530_mac_config,
3372 	},
3373 	[ID_MT7530] = {
3374 		.id = ID_MT7530,
3375 		.pcs_ops = &mt7530_pcs_ops,
3376 		.sw_setup = mt7530_setup,
3377 		.phy_read_c22 = mt7530_phy_read_c22,
3378 		.phy_write_c22 = mt7530_phy_write_c22,
3379 		.phy_read_c45 = mt7530_phy_read_c45,
3380 		.phy_write_c45 = mt7530_phy_write_c45,
3381 		.pad_setup = mt7530_pad_clk_setup,
3382 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3383 		.mac_port_config = mt7530_mac_config,
3384 	},
3385 	[ID_MT7531] = {
3386 		.id = ID_MT7531,
3387 		.pcs_ops = &mt7530_pcs_ops,
3388 		.sw_setup = mt7531_setup,
3389 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3390 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3391 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3392 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3393 		.pad_setup = mt7531_pad_setup,
3394 		.cpu_port_config = mt7531_cpu_port_config,
3395 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3396 		.mac_port_config = mt7531_mac_config,
3397 	},
3398 	[ID_MT7988] = {
3399 		.id = ID_MT7988,
3400 		.pcs_ops = &mt7530_pcs_ops,
3401 		.sw_setup = mt7988_setup,
3402 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3403 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3404 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3405 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3406 		.pad_setup = mt7988_pad_setup,
3407 		.cpu_port_config = mt7988_cpu_port_config,
3408 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3409 		.mac_port_config = mt7988_mac_config,
3410 	},
3411 };
3412 EXPORT_SYMBOL_GPL(mt753x_table);
3413 
3414 int
3415 mt7530_probe_common(struct mt7530_priv *priv)
3416 {
3417 	struct device *dev = priv->dev;
3418 
3419 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3420 	if (!priv->ds)
3421 		return -ENOMEM;
3422 
3423 	priv->ds->dev = dev;
3424 	priv->ds->num_ports = MT7530_NUM_PORTS;
3425 
3426 	/* Get the hardware identifier from the devicetree node.
3427 	 * We will need it for some of the clock and regulator setup.
3428 	 */
3429 	priv->info = of_device_get_match_data(dev);
3430 	if (!priv->info)
3431 		return -EINVAL;
3432 
3433 	/* Sanity check if these required device operations are filled
3434 	 * properly.
3435 	 */
3436 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3437 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3438 	    !priv->info->mac_port_get_caps ||
3439 	    !priv->info->mac_port_config)
3440 		return -EINVAL;
3441 
3442 	priv->id = priv->info->id;
3443 	priv->dev = dev;
3444 	priv->ds->priv = priv;
3445 	priv->ds->ops = &mt7530_switch_ops;
3446 	mutex_init(&priv->reg_mutex);
3447 	dev_set_drvdata(dev, priv);
3448 
3449 	return 0;
3450 }
3451 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3452 
3453 void
3454 mt7530_remove_common(struct mt7530_priv *priv)
3455 {
3456 	if (priv->irq)
3457 		mt7530_free_irq(priv);
3458 
3459 	dsa_unregister_switch(priv->ds);
3460 
3461 	mutex_destroy(&priv->reg_mutex);
3462 }
3463 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3464 
3465 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3466 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3467 MODULE_LICENSE("GPL");
3468