xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 8ffdff6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phylink.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/gpio/driver.h>
22 #include <net/dsa.h>
23 
24 #include "mt7530.h"
25 
26 /* String, offset, and register size in bytes if different from 4 bytes */
27 static const struct mt7530_mib_desc mt7530_mib[] = {
28 	MIB_DESC(1, 0x00, "TxDrop"),
29 	MIB_DESC(1, 0x04, "TxCrcErr"),
30 	MIB_DESC(1, 0x08, "TxUnicast"),
31 	MIB_DESC(1, 0x0c, "TxMulticast"),
32 	MIB_DESC(1, 0x10, "TxBroadcast"),
33 	MIB_DESC(1, 0x14, "TxCollision"),
34 	MIB_DESC(1, 0x18, "TxSingleCollision"),
35 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
36 	MIB_DESC(1, 0x20, "TxDeferred"),
37 	MIB_DESC(1, 0x24, "TxLateCollision"),
38 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
39 	MIB_DESC(1, 0x2c, "TxPause"),
40 	MIB_DESC(1, 0x30, "TxPktSz64"),
41 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
42 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
43 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
44 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
45 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
46 	MIB_DESC(2, 0x48, "TxBytes"),
47 	MIB_DESC(1, 0x60, "RxDrop"),
48 	MIB_DESC(1, 0x64, "RxFiltering"),
49 	MIB_DESC(1, 0x6c, "RxMulticast"),
50 	MIB_DESC(1, 0x70, "RxBroadcast"),
51 	MIB_DESC(1, 0x74, "RxAlignErr"),
52 	MIB_DESC(1, 0x78, "RxCrcErr"),
53 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
54 	MIB_DESC(1, 0x80, "RxFragErr"),
55 	MIB_DESC(1, 0x84, "RxOverSzErr"),
56 	MIB_DESC(1, 0x88, "RxJabberErr"),
57 	MIB_DESC(1, 0x8c, "RxPause"),
58 	MIB_DESC(1, 0x90, "RxPktSz64"),
59 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
60 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
61 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
62 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
63 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
64 	MIB_DESC(2, 0xa8, "RxBytes"),
65 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
66 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
67 	MIB_DESC(1, 0xb8, "RxArlDrop"),
68 };
69 
70 static int
71 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
72 {
73 	struct mii_bus *bus = priv->bus;
74 	int value, ret;
75 
76 	/* Write the desired MMD Devad */
77 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
78 	if (ret < 0)
79 		goto err;
80 
81 	/* Write the desired MMD register address */
82 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
83 	if (ret < 0)
84 		goto err;
85 
86 	/* Select the Function : DATA with no post increment */
87 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
88 	if (ret < 0)
89 		goto err;
90 
91 	/* Read the content of the MMD's selected register */
92 	value = bus->read(bus, 0, MII_MMD_DATA);
93 
94 	return value;
95 err:
96 	dev_err(&bus->dev,  "failed to read mmd register\n");
97 
98 	return ret;
99 }
100 
101 static int
102 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
103 			int devad, u32 data)
104 {
105 	struct mii_bus *bus = priv->bus;
106 	int ret;
107 
108 	/* Write the desired MMD Devad */
109 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
110 	if (ret < 0)
111 		goto err;
112 
113 	/* Write the desired MMD register address */
114 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
115 	if (ret < 0)
116 		goto err;
117 
118 	/* Select the Function : DATA with no post increment */
119 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
120 	if (ret < 0)
121 		goto err;
122 
123 	/* Write the data into MMD's selected register */
124 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
125 err:
126 	if (ret < 0)
127 		dev_err(&bus->dev,
128 			"failed to write mmd register\n");
129 	return ret;
130 }
131 
132 static void
133 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
134 {
135 	struct mii_bus *bus = priv->bus;
136 
137 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
138 
139 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
140 
141 	mutex_unlock(&bus->mdio_lock);
142 }
143 
144 static void
145 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
146 {
147 	struct mii_bus *bus = priv->bus;
148 	u32 val;
149 
150 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
151 
152 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
153 	val &= ~mask;
154 	val |= set;
155 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
156 
157 	mutex_unlock(&bus->mdio_lock);
158 }
159 
160 static void
161 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
162 {
163 	core_rmw(priv, reg, 0, val);
164 }
165 
166 static void
167 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
168 {
169 	core_rmw(priv, reg, val, 0);
170 }
171 
172 static int
173 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	struct mii_bus *bus = priv->bus;
176 	u16 page, r, lo, hi;
177 	int ret;
178 
179 	page = (reg >> 6) & 0x3ff;
180 	r  = (reg >> 2) & 0xf;
181 	lo = val & 0xffff;
182 	hi = val >> 16;
183 
184 	/* MT7530 uses 31 as the pseudo port */
185 	ret = bus->write(bus, 0x1f, 0x1f, page);
186 	if (ret < 0)
187 		goto err;
188 
189 	ret = bus->write(bus, 0x1f, r,  lo);
190 	if (ret < 0)
191 		goto err;
192 
193 	ret = bus->write(bus, 0x1f, 0x10, hi);
194 err:
195 	if (ret < 0)
196 		dev_err(&bus->dev,
197 			"failed to write mt7530 register\n");
198 	return ret;
199 }
200 
201 static u32
202 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
203 {
204 	struct mii_bus *bus = priv->bus;
205 	u16 page, r, lo, hi;
206 	int ret;
207 
208 	page = (reg >> 6) & 0x3ff;
209 	r = (reg >> 2) & 0xf;
210 
211 	/* MT7530 uses 31 as the pseudo port */
212 	ret = bus->write(bus, 0x1f, 0x1f, page);
213 	if (ret < 0) {
214 		dev_err(&bus->dev,
215 			"failed to read mt7530 register\n");
216 		return ret;
217 	}
218 
219 	lo = bus->read(bus, 0x1f, r);
220 	hi = bus->read(bus, 0x1f, 0x10);
221 
222 	return (hi << 16) | (lo & 0xffff);
223 }
224 
225 static void
226 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
227 {
228 	struct mii_bus *bus = priv->bus;
229 
230 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
231 
232 	mt7530_mii_write(priv, reg, val);
233 
234 	mutex_unlock(&bus->mdio_lock);
235 }
236 
237 static u32
238 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
239 {
240 	return mt7530_mii_read(p->priv, p->reg);
241 }
242 
243 static u32
244 _mt7530_read(struct mt7530_dummy_poll *p)
245 {
246 	struct mii_bus		*bus = p->priv->bus;
247 	u32 val;
248 
249 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
250 
251 	val = mt7530_mii_read(p->priv, p->reg);
252 
253 	mutex_unlock(&bus->mdio_lock);
254 
255 	return val;
256 }
257 
258 static u32
259 mt7530_read(struct mt7530_priv *priv, u32 reg)
260 {
261 	struct mt7530_dummy_poll p;
262 
263 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
264 	return _mt7530_read(&p);
265 }
266 
267 static void
268 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
269 	   u32 mask, u32 set)
270 {
271 	struct mii_bus *bus = priv->bus;
272 	u32 val;
273 
274 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
275 
276 	val = mt7530_mii_read(priv, reg);
277 	val &= ~mask;
278 	val |= set;
279 	mt7530_mii_write(priv, reg, val);
280 
281 	mutex_unlock(&bus->mdio_lock);
282 }
283 
284 static void
285 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
286 {
287 	mt7530_rmw(priv, reg, 0, val);
288 }
289 
290 static void
291 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
292 {
293 	mt7530_rmw(priv, reg, val, 0);
294 }
295 
296 static int
297 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
298 {
299 	u32 val;
300 	int ret;
301 	struct mt7530_dummy_poll p;
302 
303 	/* Set the command operating upon the MAC address entries */
304 	val = ATC_BUSY | ATC_MAT(0) | cmd;
305 	mt7530_write(priv, MT7530_ATC, val);
306 
307 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
308 	ret = readx_poll_timeout(_mt7530_read, &p, val,
309 				 !(val & ATC_BUSY), 20, 20000);
310 	if (ret < 0) {
311 		dev_err(priv->dev, "reset timeout\n");
312 		return ret;
313 	}
314 
315 	/* Additional sanity for read command if the specified
316 	 * entry is invalid
317 	 */
318 	val = mt7530_read(priv, MT7530_ATC);
319 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
320 		return -EINVAL;
321 
322 	if (rsp)
323 		*rsp = val;
324 
325 	return 0;
326 }
327 
328 static void
329 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
330 {
331 	u32 reg[3];
332 	int i;
333 
334 	/* Read from ARL table into an array */
335 	for (i = 0; i < 3; i++) {
336 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
337 
338 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
339 			__func__, __LINE__, i, reg[i]);
340 	}
341 
342 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
343 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
344 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
345 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
346 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
347 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
348 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
349 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
350 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
351 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
352 }
353 
354 static void
355 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
356 		 u8 port_mask, const u8 *mac,
357 		 u8 aging, u8 type)
358 {
359 	u32 reg[3] = { 0 };
360 	int i;
361 
362 	reg[1] |= vid & CVID_MASK;
363 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
364 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
365 	/* STATIC_ENT indicate that entry is static wouldn't
366 	 * be aged out and STATIC_EMP specified as erasing an
367 	 * entry
368 	 */
369 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
370 	reg[1] |= mac[5] << MAC_BYTE_5;
371 	reg[1] |= mac[4] << MAC_BYTE_4;
372 	reg[0] |= mac[3] << MAC_BYTE_3;
373 	reg[0] |= mac[2] << MAC_BYTE_2;
374 	reg[0] |= mac[1] << MAC_BYTE_1;
375 	reg[0] |= mac[0] << MAC_BYTE_0;
376 
377 	/* Write array into the ARL table */
378 	for (i = 0; i < 3; i++)
379 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
380 }
381 
382 /* Setup TX circuit including relevant PAD and driving */
383 static int
384 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
385 {
386 	struct mt7530_priv *priv = ds->priv;
387 	u32 ncpo1, ssc_delta, trgint, i, xtal;
388 
389 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
390 
391 	if (xtal == HWTRAP_XTAL_20MHZ) {
392 		dev_err(priv->dev,
393 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
394 			__func__);
395 		return -EINVAL;
396 	}
397 
398 	switch (interface) {
399 	case PHY_INTERFACE_MODE_RGMII:
400 		trgint = 0;
401 		/* PLL frequency: 125MHz */
402 		ncpo1 = 0x0c80;
403 		break;
404 	case PHY_INTERFACE_MODE_TRGMII:
405 		trgint = 1;
406 		if (priv->id == ID_MT7621) {
407 			/* PLL frequency: 150MHz: 1.2GBit */
408 			if (xtal == HWTRAP_XTAL_40MHZ)
409 				ncpo1 = 0x0780;
410 			if (xtal == HWTRAP_XTAL_25MHZ)
411 				ncpo1 = 0x0a00;
412 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
413 			if (xtal == HWTRAP_XTAL_40MHZ)
414 				ncpo1 = 0x0c80;
415 			if (xtal == HWTRAP_XTAL_25MHZ)
416 				ncpo1 = 0x1400;
417 		}
418 		break;
419 	default:
420 		dev_err(priv->dev, "xMII interface %d not supported\n",
421 			interface);
422 		return -EINVAL;
423 	}
424 
425 	if (xtal == HWTRAP_XTAL_25MHZ)
426 		ssc_delta = 0x57;
427 	else
428 		ssc_delta = 0x87;
429 
430 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
431 		   P6_INTF_MODE(trgint));
432 
433 	/* Lower Tx Driving for TRGMII path */
434 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
435 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
436 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
437 
438 	/* Setup core clock for MT7530 */
439 	/* Disable MT7530 core clock */
440 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
441 
442 	/* Disable PLL, since phy_device has not yet been created
443 	 * provided for phy_[read,write]_mmd_indirect is called, we
444 	 * provide our own core_write_mmd_indirect to complete this
445 	 * function.
446 	 */
447 	core_write_mmd_indirect(priv,
448 				CORE_GSWPLL_GRP1,
449 				MDIO_MMD_VEND2,
450 				0);
451 
452 	/* Set core clock into 500Mhz */
453 	core_write(priv, CORE_GSWPLL_GRP2,
454 		   RG_GSWPLL_POSDIV_500M(1) |
455 		   RG_GSWPLL_FBKDIV_500M(25));
456 
457 	/* Enable PLL */
458 	core_write(priv, CORE_GSWPLL_GRP1,
459 		   RG_GSWPLL_EN_PRE |
460 		   RG_GSWPLL_POSDIV_200M(2) |
461 		   RG_GSWPLL_FBKDIV_200M(32));
462 
463 	/* Enable MT7530 core clock */
464 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
465 
466 	/* Setup the MT7530 TRGMII Tx Clock */
467 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
468 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
469 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
470 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
471 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
472 	core_write(priv, CORE_PLL_GROUP4,
473 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
474 		   RG_SYSPLL_BIAS_LPF_EN);
475 	core_write(priv, CORE_PLL_GROUP2,
476 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
477 		   RG_SYSPLL_POSDIV(1));
478 	core_write(priv, CORE_PLL_GROUP7,
479 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
480 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
481 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
482 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
483 
484 	if (!trgint)
485 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
486 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
487 				   RD_TAP_MASK, RD_TAP(16));
488 	return 0;
489 }
490 
491 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
492 {
493 	u32 val;
494 
495 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
496 
497 	return (val & PAD_DUAL_SGMII_EN) != 0;
498 }
499 
500 static int
501 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
502 {
503 	struct mt7530_priv *priv = ds->priv;
504 	u32 top_sig;
505 	u32 hwstrap;
506 	u32 xtal;
507 	u32 val;
508 
509 	if (mt7531_dual_sgmii_supported(priv))
510 		return 0;
511 
512 	val = mt7530_read(priv, MT7531_CREV);
513 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
514 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
515 	if ((val & CHIP_REV_M) > 0)
516 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
517 						    HWTRAP_XTAL_FSEL_25MHZ;
518 	else
519 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
520 
521 	/* Step 1 : Disable MT7531 COREPLL */
522 	val = mt7530_read(priv, MT7531_PLLGP_EN);
523 	val &= ~EN_COREPLL;
524 	mt7530_write(priv, MT7531_PLLGP_EN, val);
525 
526 	/* Step 2: switch to XTAL output */
527 	val = mt7530_read(priv, MT7531_PLLGP_EN);
528 	val |= SW_CLKSW;
529 	mt7530_write(priv, MT7531_PLLGP_EN, val);
530 
531 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
532 	val &= ~RG_COREPLL_EN;
533 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
534 
535 	/* Step 3: disable PLLGP and enable program PLLGP */
536 	val = mt7530_read(priv, MT7531_PLLGP_EN);
537 	val |= SW_PLLGP;
538 	mt7530_write(priv, MT7531_PLLGP_EN, val);
539 
540 	/* Step 4: program COREPLL output frequency to 500MHz */
541 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
542 	val &= ~RG_COREPLL_POSDIV_M;
543 	val |= 2 << RG_COREPLL_POSDIV_S;
544 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
545 	usleep_range(25, 35);
546 
547 	switch (xtal) {
548 	case HWTRAP_XTAL_FSEL_25MHZ:
549 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
550 		val &= ~RG_COREPLL_SDM_PCW_M;
551 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
552 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
553 		break;
554 	case HWTRAP_XTAL_FSEL_40MHZ:
555 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
556 		val &= ~RG_COREPLL_SDM_PCW_M;
557 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
558 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
559 		break;
560 	}
561 
562 	/* Set feedback divide ratio update signal to high */
563 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
564 	val |= RG_COREPLL_SDM_PCW_CHG;
565 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
566 	/* Wait for at least 16 XTAL clocks */
567 	usleep_range(10, 20);
568 
569 	/* Step 5: set feedback divide ratio update signal to low */
570 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
571 	val &= ~RG_COREPLL_SDM_PCW_CHG;
572 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
573 
574 	/* Enable 325M clock for SGMII */
575 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
576 
577 	/* Enable 250SSC clock for RGMII */
578 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
579 
580 	/* Step 6: Enable MT7531 PLL */
581 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
582 	val |= RG_COREPLL_EN;
583 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
584 
585 	val = mt7530_read(priv, MT7531_PLLGP_EN);
586 	val |= EN_COREPLL;
587 	mt7530_write(priv, MT7531_PLLGP_EN, val);
588 	usleep_range(25, 35);
589 
590 	return 0;
591 }
592 
593 static void
594 mt7530_mib_reset(struct dsa_switch *ds)
595 {
596 	struct mt7530_priv *priv = ds->priv;
597 
598 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
600 }
601 
602 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
603 {
604 	struct mt7530_priv *priv = ds->priv;
605 
606 	return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608 
609 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
610 			    u16 val)
611 {
612 	struct mt7530_priv *priv = ds->priv;
613 
614 	return mdiobus_write_nested(priv->bus, port, regnum, val);
615 }
616 
617 static int
618 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
619 			int regnum)
620 {
621 	struct mii_bus *bus = priv->bus;
622 	struct mt7530_dummy_poll p;
623 	u32 reg, val;
624 	int ret;
625 
626 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
627 
628 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
629 
630 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
631 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
632 	if (ret < 0) {
633 		dev_err(priv->dev, "poll timeout\n");
634 		goto out;
635 	}
636 
637 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
638 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
639 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
640 
641 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
642 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
643 	if (ret < 0) {
644 		dev_err(priv->dev, "poll timeout\n");
645 		goto out;
646 	}
647 
648 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
649 	      MT7531_MDIO_DEV_ADDR(devad);
650 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
651 
652 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
653 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
654 	if (ret < 0) {
655 		dev_err(priv->dev, "poll timeout\n");
656 		goto out;
657 	}
658 
659 	ret = val & MT7531_MDIO_RW_DATA_MASK;
660 out:
661 	mutex_unlock(&bus->mdio_lock);
662 
663 	return ret;
664 }
665 
666 static int
667 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
668 			 int regnum, u32 data)
669 {
670 	struct mii_bus *bus = priv->bus;
671 	struct mt7530_dummy_poll p;
672 	u32 val, reg;
673 	int ret;
674 
675 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
676 
677 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
678 
679 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
680 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
681 	if (ret < 0) {
682 		dev_err(priv->dev, "poll timeout\n");
683 		goto out;
684 	}
685 
686 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
687 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
688 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
689 
690 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
691 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
692 	if (ret < 0) {
693 		dev_err(priv->dev, "poll timeout\n");
694 		goto out;
695 	}
696 
697 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
698 	      MT7531_MDIO_DEV_ADDR(devad) | data;
699 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
700 
701 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
702 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
703 	if (ret < 0) {
704 		dev_err(priv->dev, "poll timeout\n");
705 		goto out;
706 	}
707 
708 out:
709 	mutex_unlock(&bus->mdio_lock);
710 
711 	return ret;
712 }
713 
714 static int
715 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
716 {
717 	struct mii_bus *bus = priv->bus;
718 	struct mt7530_dummy_poll p;
719 	int ret;
720 	u32 val;
721 
722 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
723 
724 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
725 
726 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
727 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
728 	if (ret < 0) {
729 		dev_err(priv->dev, "poll timeout\n");
730 		goto out;
731 	}
732 
733 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
734 	      MT7531_MDIO_REG_ADDR(regnum);
735 
736 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
737 
738 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
739 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
740 	if (ret < 0) {
741 		dev_err(priv->dev, "poll timeout\n");
742 		goto out;
743 	}
744 
745 	ret = val & MT7531_MDIO_RW_DATA_MASK;
746 out:
747 	mutex_unlock(&bus->mdio_lock);
748 
749 	return ret;
750 }
751 
752 static int
753 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
754 			 u16 data)
755 {
756 	struct mii_bus *bus = priv->bus;
757 	struct mt7530_dummy_poll p;
758 	int ret;
759 	u32 reg;
760 
761 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
762 
763 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
764 
765 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
766 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
767 	if (ret < 0) {
768 		dev_err(priv->dev, "poll timeout\n");
769 		goto out;
770 	}
771 
772 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
773 	      MT7531_MDIO_REG_ADDR(regnum) | data;
774 
775 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
776 
777 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
778 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
779 	if (ret < 0) {
780 		dev_err(priv->dev, "poll timeout\n");
781 		goto out;
782 	}
783 
784 out:
785 	mutex_unlock(&bus->mdio_lock);
786 
787 	return ret;
788 }
789 
790 static int
791 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum)
792 {
793 	struct mt7530_priv *priv = ds->priv;
794 	int devad;
795 	int ret;
796 
797 	if (regnum & MII_ADDR_C45) {
798 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
799 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
800 					      regnum & MII_REGADDR_C45_MASK);
801 	} else {
802 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
803 	}
804 
805 	return ret;
806 }
807 
808 static int
809 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum,
810 		     u16 data)
811 {
812 	struct mt7530_priv *priv = ds->priv;
813 	int devad;
814 	int ret;
815 
816 	if (regnum & MII_ADDR_C45) {
817 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
818 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
819 					       regnum & MII_REGADDR_C45_MASK,
820 					       data);
821 	} else {
822 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
823 	}
824 
825 	return ret;
826 }
827 
828 static void
829 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
830 		   uint8_t *data)
831 {
832 	int i;
833 
834 	if (stringset != ETH_SS_STATS)
835 		return;
836 
837 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
838 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
839 			ETH_GSTRING_LEN);
840 }
841 
842 static void
843 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
844 			 uint64_t *data)
845 {
846 	struct mt7530_priv *priv = ds->priv;
847 	const struct mt7530_mib_desc *mib;
848 	u32 reg, i;
849 	u64 hi;
850 
851 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
852 		mib = &mt7530_mib[i];
853 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
854 
855 		data[i] = mt7530_read(priv, reg);
856 		if (mib->size == 2) {
857 			hi = mt7530_read(priv, reg + 4);
858 			data[i] |= hi << 32;
859 		}
860 	}
861 }
862 
863 static int
864 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
865 {
866 	if (sset != ETH_SS_STATS)
867 		return 0;
868 
869 	return ARRAY_SIZE(mt7530_mib);
870 }
871 
872 static int
873 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
874 {
875 	struct mt7530_priv *priv = ds->priv;
876 	unsigned int secs = msecs / 1000;
877 	unsigned int tmp_age_count;
878 	unsigned int error = -1;
879 	unsigned int age_count;
880 	unsigned int age_unit;
881 
882 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
883 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
884 		return -ERANGE;
885 
886 	/* iterate through all possible age_count to find the closest pair */
887 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
888 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
889 
890 		if (tmp_age_unit <= AGE_UNIT_MAX) {
891 			unsigned int tmp_error = secs -
892 				(tmp_age_count + 1) * (tmp_age_unit + 1);
893 
894 			/* found a closer pair */
895 			if (error > tmp_error) {
896 				error = tmp_error;
897 				age_count = tmp_age_count;
898 				age_unit = tmp_age_unit;
899 			}
900 
901 			/* found the exact match, so break the loop */
902 			if (!error)
903 				break;
904 		}
905 	}
906 
907 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
908 
909 	return 0;
910 }
911 
912 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
913 {
914 	struct mt7530_priv *priv = ds->priv;
915 	u8 tx_delay = 0;
916 	int val;
917 
918 	mutex_lock(&priv->reg_mutex);
919 
920 	val = mt7530_read(priv, MT7530_MHWTRAP);
921 
922 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
923 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
924 
925 	switch (priv->p5_intf_sel) {
926 	case P5_INTF_SEL_PHY_P0:
927 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
928 		val |= MHWTRAP_PHY0_SEL;
929 		fallthrough;
930 	case P5_INTF_SEL_PHY_P4:
931 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
932 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
933 
934 		/* Setup the MAC by default for the cpu port */
935 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
936 		break;
937 	case P5_INTF_SEL_GMAC5:
938 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
939 		val &= ~MHWTRAP_P5_DIS;
940 		break;
941 	case P5_DISABLED:
942 		interface = PHY_INTERFACE_MODE_NA;
943 		break;
944 	default:
945 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
946 			priv->p5_intf_sel);
947 		goto unlock_exit;
948 	}
949 
950 	/* Setup RGMII settings */
951 	if (phy_interface_mode_is_rgmii(interface)) {
952 		val |= MHWTRAP_P5_RGMII_MODE;
953 
954 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
955 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
956 
957 		/* Don't set delay in DSA mode */
958 		if (!dsa_is_dsa_port(priv->ds, 5) &&
959 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
960 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
961 			tx_delay = 4; /* n * 0.5 ns */
962 
963 		/* P5 RGMII TX Clock Control: delay x */
964 		mt7530_write(priv, MT7530_P5RGMIITXCR,
965 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
966 
967 		/* reduce P5 RGMII Tx driving, 8mA */
968 		mt7530_write(priv, MT7530_IO_DRV_CR,
969 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
970 	}
971 
972 	mt7530_write(priv, MT7530_MHWTRAP, val);
973 
974 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
975 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
976 
977 	priv->p5_interface = interface;
978 
979 unlock_exit:
980 	mutex_unlock(&priv->reg_mutex);
981 }
982 
983 static int
984 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
985 {
986 	struct mt7530_priv *priv = ds->priv;
987 	int ret;
988 
989 	/* Setup max capability of CPU port at first */
990 	if (priv->info->cpu_port_config) {
991 		ret = priv->info->cpu_port_config(ds, port);
992 		if (ret)
993 			return ret;
994 	}
995 
996 	/* Enable Mediatek header mode on the cpu port */
997 	mt7530_write(priv, MT7530_PVC_P(port),
998 		     PORT_SPEC_TAG);
999 
1000 	/* Unknown multicast frame forwarding to the cpu port */
1001 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port)));
1002 
1003 	/* Set CPU port number */
1004 	if (priv->id == ID_MT7621)
1005 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1006 
1007 	/* CPU port gets connected to all user ports of
1008 	 * the switch.
1009 	 */
1010 	mt7530_write(priv, MT7530_PCR_P(port),
1011 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1012 
1013 	return 0;
1014 }
1015 
1016 static int
1017 mt7530_port_enable(struct dsa_switch *ds, int port,
1018 		   struct phy_device *phy)
1019 {
1020 	struct mt7530_priv *priv = ds->priv;
1021 
1022 	if (!dsa_is_user_port(ds, port))
1023 		return 0;
1024 
1025 	mutex_lock(&priv->reg_mutex);
1026 
1027 	/* Allow the user port gets connected to the cpu port and also
1028 	 * restore the port matrix if the port is the member of a certain
1029 	 * bridge.
1030 	 */
1031 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1032 	priv->ports[port].enable = true;
1033 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1034 		   priv->ports[port].pm);
1035 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1036 
1037 	mutex_unlock(&priv->reg_mutex);
1038 
1039 	return 0;
1040 }
1041 
1042 static void
1043 mt7530_port_disable(struct dsa_switch *ds, int port)
1044 {
1045 	struct mt7530_priv *priv = ds->priv;
1046 
1047 	if (!dsa_is_user_port(ds, port))
1048 		return;
1049 
1050 	mutex_lock(&priv->reg_mutex);
1051 
1052 	/* Clear up all port matrix which could be restored in the next
1053 	 * enablement for the port.
1054 	 */
1055 	priv->ports[port].enable = false;
1056 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1057 		   PCR_MATRIX_CLR);
1058 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1059 
1060 	mutex_unlock(&priv->reg_mutex);
1061 }
1062 
1063 static int
1064 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1065 {
1066 	struct mt7530_priv *priv = ds->priv;
1067 	struct mii_bus *bus = priv->bus;
1068 	int length;
1069 	u32 val;
1070 
1071 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1072 	 * largest MTU of the slave ports. Because the switch only has a global
1073 	 * RX length register, only allowing CPU port here is enough.
1074 	 */
1075 	if (!dsa_is_cpu_port(ds, port))
1076 		return 0;
1077 
1078 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1079 
1080 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1081 	val &= ~MAX_RX_PKT_LEN_MASK;
1082 
1083 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1084 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1085 	if (length <= 1522) {
1086 		val |= MAX_RX_PKT_LEN_1522;
1087 	} else if (length <= 1536) {
1088 		val |= MAX_RX_PKT_LEN_1536;
1089 	} else if (length <= 1552) {
1090 		val |= MAX_RX_PKT_LEN_1552;
1091 	} else {
1092 		val &= ~MAX_RX_JUMBO_MASK;
1093 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1094 		val |= MAX_RX_PKT_LEN_JUMBO;
1095 	}
1096 
1097 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1098 
1099 	mutex_unlock(&bus->mdio_lock);
1100 
1101 	return 0;
1102 }
1103 
1104 static int
1105 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1106 {
1107 	return MT7530_MAX_MTU;
1108 }
1109 
1110 static void
1111 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1112 {
1113 	struct mt7530_priv *priv = ds->priv;
1114 	u32 stp_state;
1115 
1116 	switch (state) {
1117 	case BR_STATE_DISABLED:
1118 		stp_state = MT7530_STP_DISABLED;
1119 		break;
1120 	case BR_STATE_BLOCKING:
1121 		stp_state = MT7530_STP_BLOCKING;
1122 		break;
1123 	case BR_STATE_LISTENING:
1124 		stp_state = MT7530_STP_LISTENING;
1125 		break;
1126 	case BR_STATE_LEARNING:
1127 		stp_state = MT7530_STP_LEARNING;
1128 		break;
1129 	case BR_STATE_FORWARDING:
1130 	default:
1131 		stp_state = MT7530_STP_FORWARDING;
1132 		break;
1133 	}
1134 
1135 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1136 }
1137 
1138 static int
1139 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1140 			struct net_device *bridge)
1141 {
1142 	struct mt7530_priv *priv = ds->priv;
1143 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1144 	int i;
1145 
1146 	mutex_lock(&priv->reg_mutex);
1147 
1148 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1149 		/* Add this port to the port matrix of the other ports in the
1150 		 * same bridge. If the port is disabled, port matrix is kept
1151 		 * and not being setup until the port becomes enabled.
1152 		 */
1153 		if (dsa_is_user_port(ds, i) && i != port) {
1154 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1155 				continue;
1156 			if (priv->ports[i].enable)
1157 				mt7530_set(priv, MT7530_PCR_P(i),
1158 					   PCR_MATRIX(BIT(port)));
1159 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1160 
1161 			port_bitmap |= BIT(i);
1162 		}
1163 	}
1164 
1165 	/* Add the all other ports to this port matrix. */
1166 	if (priv->ports[port].enable)
1167 		mt7530_rmw(priv, MT7530_PCR_P(port),
1168 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1169 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1170 
1171 	mutex_unlock(&priv->reg_mutex);
1172 
1173 	return 0;
1174 }
1175 
1176 static void
1177 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1178 {
1179 	struct mt7530_priv *priv = ds->priv;
1180 	bool all_user_ports_removed = true;
1181 	int i;
1182 
1183 	/* When a port is removed from the bridge, the port would be set up
1184 	 * back to the default as is at initial boot which is a VLAN-unaware
1185 	 * port.
1186 	 */
1187 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1188 		   MT7530_PORT_MATRIX_MODE);
1189 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1190 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1191 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1192 
1193 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1194 		if (dsa_is_user_port(ds, i) &&
1195 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1196 			all_user_ports_removed = false;
1197 			break;
1198 		}
1199 	}
1200 
1201 	/* CPU port also does the same thing until all user ports belonging to
1202 	 * the CPU port get out of VLAN filtering mode.
1203 	 */
1204 	if (all_user_ports_removed) {
1205 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1206 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1207 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1208 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1209 	}
1210 }
1211 
1212 static void
1213 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1214 {
1215 	struct mt7530_priv *priv = ds->priv;
1216 
1217 	/* The real fabric path would be decided on the membership in the
1218 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
1219 	 * means potential VLAN can be consisting of certain subset of all
1220 	 * ports.
1221 	 */
1222 	mt7530_rmw(priv, MT7530_PCR_P(port),
1223 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
1224 
1225 	/* Trapped into security mode allows packet forwarding through VLAN
1226 	 * table lookup. CPU port is set to fallback mode to let untagged
1227 	 * frames pass through.
1228 	 */
1229 	if (dsa_is_cpu_port(ds, port))
1230 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1231 			   MT7530_PORT_FALLBACK_MODE);
1232 	else
1233 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1234 			   MT7530_PORT_SECURITY_MODE);
1235 
1236 	/* Set the port as a user port which is to be able to recognize VID
1237 	 * from incoming packets before fetching entry within the VLAN table.
1238 	 */
1239 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1240 		   VLAN_ATTR(MT7530_VLAN_USER) |
1241 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1242 }
1243 
1244 static void
1245 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1246 			 struct net_device *bridge)
1247 {
1248 	struct mt7530_priv *priv = ds->priv;
1249 	int i;
1250 
1251 	mutex_lock(&priv->reg_mutex);
1252 
1253 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1254 		/* Remove this port from the port matrix of the other ports
1255 		 * in the same bridge. If the port is disabled, port matrix
1256 		 * is kept and not being setup until the port becomes enabled.
1257 		 * And the other port's port matrix cannot be broken when the
1258 		 * other port is still a VLAN-aware port.
1259 		 */
1260 		if (dsa_is_user_port(ds, i) && i != port &&
1261 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1262 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1263 				continue;
1264 			if (priv->ports[i].enable)
1265 				mt7530_clear(priv, MT7530_PCR_P(i),
1266 					     PCR_MATRIX(BIT(port)));
1267 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1268 		}
1269 	}
1270 
1271 	/* Set the cpu port to be the only one in the port matrix of
1272 	 * this port.
1273 	 */
1274 	if (priv->ports[port].enable)
1275 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1276 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1277 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1278 
1279 	mutex_unlock(&priv->reg_mutex);
1280 }
1281 
1282 static int
1283 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1284 		    const unsigned char *addr, u16 vid)
1285 {
1286 	struct mt7530_priv *priv = ds->priv;
1287 	int ret;
1288 	u8 port_mask = BIT(port);
1289 
1290 	mutex_lock(&priv->reg_mutex);
1291 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1292 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1293 	mutex_unlock(&priv->reg_mutex);
1294 
1295 	return ret;
1296 }
1297 
1298 static int
1299 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1300 		    const unsigned char *addr, u16 vid)
1301 {
1302 	struct mt7530_priv *priv = ds->priv;
1303 	int ret;
1304 	u8 port_mask = BIT(port);
1305 
1306 	mutex_lock(&priv->reg_mutex);
1307 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1308 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1309 	mutex_unlock(&priv->reg_mutex);
1310 
1311 	return ret;
1312 }
1313 
1314 static int
1315 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1316 		     dsa_fdb_dump_cb_t *cb, void *data)
1317 {
1318 	struct mt7530_priv *priv = ds->priv;
1319 	struct mt7530_fdb _fdb = { 0 };
1320 	int cnt = MT7530_NUM_FDB_RECORDS;
1321 	int ret = 0;
1322 	u32 rsp = 0;
1323 
1324 	mutex_lock(&priv->reg_mutex);
1325 
1326 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1327 	if (ret < 0)
1328 		goto err;
1329 
1330 	do {
1331 		if (rsp & ATC_SRCH_HIT) {
1332 			mt7530_fdb_read(priv, &_fdb);
1333 			if (_fdb.port_mask & BIT(port)) {
1334 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1335 					 data);
1336 				if (ret < 0)
1337 					break;
1338 			}
1339 		}
1340 	} while (--cnt &&
1341 		 !(rsp & ATC_SRCH_END) &&
1342 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1343 err:
1344 	mutex_unlock(&priv->reg_mutex);
1345 
1346 	return 0;
1347 }
1348 
1349 static int
1350 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1351 {
1352 	struct mt7530_dummy_poll p;
1353 	u32 val;
1354 	int ret;
1355 
1356 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1357 	mt7530_write(priv, MT7530_VTCR, val);
1358 
1359 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1360 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1361 				 !(val & VTCR_BUSY), 20, 20000);
1362 	if (ret < 0) {
1363 		dev_err(priv->dev, "poll timeout\n");
1364 		return ret;
1365 	}
1366 
1367 	val = mt7530_read(priv, MT7530_VTCR);
1368 	if (val & VTCR_INVALID) {
1369 		dev_err(priv->dev, "read VTCR invalid\n");
1370 		return -EINVAL;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int
1377 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1378 			   struct netlink_ext_ack *extack)
1379 {
1380 	if (vlan_filtering) {
1381 		/* The port is being kept as VLAN-unaware port when bridge is
1382 		 * set up with vlan_filtering not being set, Otherwise, the
1383 		 * port and the corresponding CPU port is required the setup
1384 		 * for becoming a VLAN-aware port.
1385 		 */
1386 		mt7530_port_set_vlan_aware(ds, port);
1387 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1388 	} else {
1389 		mt7530_port_set_vlan_unaware(ds, port);
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 static void
1396 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1397 		   struct mt7530_hw_vlan_entry *entry)
1398 {
1399 	u8 new_members;
1400 	u32 val;
1401 
1402 	new_members = entry->old_members | BIT(entry->port) |
1403 		      BIT(MT7530_CPU_PORT);
1404 
1405 	/* Validate the entry with independent learning, create egress tag per
1406 	 * VLAN and joining the port as one of the port members.
1407 	 */
1408 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1409 	mt7530_write(priv, MT7530_VAWD1, val);
1410 
1411 	/* Decide whether adding tag or not for those outgoing packets from the
1412 	 * port inside the VLAN.
1413 	 */
1414 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1415 				MT7530_VLAN_EGRESS_TAG;
1416 	mt7530_rmw(priv, MT7530_VAWD2,
1417 		   ETAG_CTRL_P_MASK(entry->port),
1418 		   ETAG_CTRL_P(entry->port, val));
1419 
1420 	/* CPU port is always taken as a tagged port for serving more than one
1421 	 * VLANs across and also being applied with egress type stack mode for
1422 	 * that VLAN tags would be appended after hardware special tag used as
1423 	 * DSA tag.
1424 	 */
1425 	mt7530_rmw(priv, MT7530_VAWD2,
1426 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1427 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1428 			       MT7530_VLAN_EGRESS_STACK));
1429 }
1430 
1431 static void
1432 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1433 		   struct mt7530_hw_vlan_entry *entry)
1434 {
1435 	u8 new_members;
1436 	u32 val;
1437 
1438 	new_members = entry->old_members & ~BIT(entry->port);
1439 
1440 	val = mt7530_read(priv, MT7530_VAWD1);
1441 	if (!(val & VLAN_VALID)) {
1442 		dev_err(priv->dev,
1443 			"Cannot be deleted due to invalid entry\n");
1444 		return;
1445 	}
1446 
1447 	/* If certain member apart from CPU port is still alive in the VLAN,
1448 	 * the entry would be kept valid. Otherwise, the entry is got to be
1449 	 * disabled.
1450 	 */
1451 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1452 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1453 		      VLAN_VALID;
1454 		mt7530_write(priv, MT7530_VAWD1, val);
1455 	} else {
1456 		mt7530_write(priv, MT7530_VAWD1, 0);
1457 		mt7530_write(priv, MT7530_VAWD2, 0);
1458 	}
1459 }
1460 
1461 static void
1462 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1463 		      struct mt7530_hw_vlan_entry *entry,
1464 		      mt7530_vlan_op vlan_op)
1465 {
1466 	u32 val;
1467 
1468 	/* Fetch entry */
1469 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1470 
1471 	val = mt7530_read(priv, MT7530_VAWD1);
1472 
1473 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1474 
1475 	/* Manipulate entry */
1476 	vlan_op(priv, entry);
1477 
1478 	/* Flush result to hardware */
1479 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1480 }
1481 
1482 static int
1483 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1484 		     const struct switchdev_obj_port_vlan *vlan,
1485 		     struct netlink_ext_ack *extack)
1486 {
1487 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1488 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1489 	struct mt7530_hw_vlan_entry new_entry;
1490 	struct mt7530_priv *priv = ds->priv;
1491 
1492 	mutex_lock(&priv->reg_mutex);
1493 
1494 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1495 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1496 
1497 	if (pvid) {
1498 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1499 			   G0_PORT_VID(vlan->vid));
1500 		priv->ports[port].pvid = vlan->vid;
1501 	}
1502 
1503 	mutex_unlock(&priv->reg_mutex);
1504 
1505 	return 0;
1506 }
1507 
1508 static int
1509 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1510 		     const struct switchdev_obj_port_vlan *vlan)
1511 {
1512 	struct mt7530_hw_vlan_entry target_entry;
1513 	struct mt7530_priv *priv = ds->priv;
1514 	u16 pvid;
1515 
1516 	mutex_lock(&priv->reg_mutex);
1517 
1518 	pvid = priv->ports[port].pvid;
1519 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1520 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1521 			      mt7530_hw_vlan_del);
1522 
1523 	/* PVID is being restored to the default whenever the PVID port
1524 	 * is being removed from the VLAN.
1525 	 */
1526 	if (pvid == vlan->vid)
1527 		pvid = G0_PORT_VID_DEF;
1528 
1529 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1530 	priv->ports[port].pvid = pvid;
1531 
1532 	mutex_unlock(&priv->reg_mutex);
1533 
1534 	return 0;
1535 }
1536 
1537 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1538 {
1539 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1540 				   MIRROR_PORT(val);
1541 }
1542 
1543 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1544 {
1545 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1546 				   MIRROR_PORT(val);
1547 }
1548 
1549 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1550 				  struct dsa_mall_mirror_tc_entry *mirror,
1551 				  bool ingress)
1552 {
1553 	struct mt7530_priv *priv = ds->priv;
1554 	int monitor_port;
1555 	u32 val;
1556 
1557 	/* Check for existent entry */
1558 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1559 		return -EEXIST;
1560 
1561 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1562 
1563 	/* MT7530 only supports one monitor port */
1564 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1565 	if (val & MT753X_MIRROR_EN(priv->id) &&
1566 	    monitor_port != mirror->to_local_port)
1567 		return -EEXIST;
1568 
1569 	val |= MT753X_MIRROR_EN(priv->id);
1570 	val &= ~MT753X_MIRROR_MASK(priv->id);
1571 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1572 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1573 
1574 	val = mt7530_read(priv, MT7530_PCR_P(port));
1575 	if (ingress) {
1576 		val |= PORT_RX_MIR;
1577 		priv->mirror_rx |= BIT(port);
1578 	} else {
1579 		val |= PORT_TX_MIR;
1580 		priv->mirror_tx |= BIT(port);
1581 	}
1582 	mt7530_write(priv, MT7530_PCR_P(port), val);
1583 
1584 	return 0;
1585 }
1586 
1587 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1588 				   struct dsa_mall_mirror_tc_entry *mirror)
1589 {
1590 	struct mt7530_priv *priv = ds->priv;
1591 	u32 val;
1592 
1593 	val = mt7530_read(priv, MT7530_PCR_P(port));
1594 	if (mirror->ingress) {
1595 		val &= ~PORT_RX_MIR;
1596 		priv->mirror_rx &= ~BIT(port);
1597 	} else {
1598 		val &= ~PORT_TX_MIR;
1599 		priv->mirror_tx &= ~BIT(port);
1600 	}
1601 	mt7530_write(priv, MT7530_PCR_P(port), val);
1602 
1603 	if (!priv->mirror_rx && !priv->mirror_tx) {
1604 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1605 		val &= ~MT753X_MIRROR_EN(priv->id);
1606 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1607 	}
1608 }
1609 
1610 static enum dsa_tag_protocol
1611 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1612 		     enum dsa_tag_protocol mp)
1613 {
1614 	struct mt7530_priv *priv = ds->priv;
1615 
1616 	if (port != MT7530_CPU_PORT) {
1617 		dev_warn(priv->dev,
1618 			 "port not matched with tagging CPU port\n");
1619 		return DSA_TAG_PROTO_NONE;
1620 	} else {
1621 		return DSA_TAG_PROTO_MTK;
1622 	}
1623 }
1624 
1625 #ifdef CONFIG_GPIOLIB
1626 static inline u32
1627 mt7530_gpio_to_bit(unsigned int offset)
1628 {
1629 	/* Map GPIO offset to register bit
1630 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1631 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1632 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1633 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1634 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1635 	 */
1636 	return BIT(offset + offset / 3);
1637 }
1638 
1639 static int
1640 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1641 {
1642 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1643 	u32 bit = mt7530_gpio_to_bit(offset);
1644 
1645 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1646 }
1647 
1648 static void
1649 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1650 {
1651 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1652 	u32 bit = mt7530_gpio_to_bit(offset);
1653 
1654 	if (value)
1655 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1656 	else
1657 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1658 }
1659 
1660 static int
1661 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1662 {
1663 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1664 	u32 bit = mt7530_gpio_to_bit(offset);
1665 
1666 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1667 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1668 }
1669 
1670 static int
1671 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1672 {
1673 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1674 	u32 bit = mt7530_gpio_to_bit(offset);
1675 
1676 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1677 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1678 
1679 	return 0;
1680 }
1681 
1682 static int
1683 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1684 {
1685 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1686 	u32 bit = mt7530_gpio_to_bit(offset);
1687 
1688 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1689 
1690 	if (value)
1691 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1692 	else
1693 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1694 
1695 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1696 
1697 	return 0;
1698 }
1699 
1700 static int
1701 mt7530_setup_gpio(struct mt7530_priv *priv)
1702 {
1703 	struct device *dev = priv->dev;
1704 	struct gpio_chip *gc;
1705 
1706 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1707 	if (!gc)
1708 		return -ENOMEM;
1709 
1710 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1711 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1712 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1713 
1714 	gc->label = "mt7530";
1715 	gc->parent = dev;
1716 	gc->owner = THIS_MODULE;
1717 	gc->get_direction = mt7530_gpio_get_direction;
1718 	gc->direction_input = mt7530_gpio_direction_input;
1719 	gc->direction_output = mt7530_gpio_direction_output;
1720 	gc->get = mt7530_gpio_get;
1721 	gc->set = mt7530_gpio_set;
1722 	gc->base = -1;
1723 	gc->ngpio = 15;
1724 	gc->can_sleep = true;
1725 
1726 	return devm_gpiochip_add_data(dev, gc, priv);
1727 }
1728 #endif /* CONFIG_GPIOLIB */
1729 
1730 static int
1731 mt7530_setup(struct dsa_switch *ds)
1732 {
1733 	struct mt7530_priv *priv = ds->priv;
1734 	struct device_node *phy_node;
1735 	struct device_node *mac_np;
1736 	struct mt7530_dummy_poll p;
1737 	phy_interface_t interface;
1738 	struct device_node *dn;
1739 	u32 id, val;
1740 	int ret, i;
1741 
1742 	/* The parent node of master netdev which holds the common system
1743 	 * controller also is the container for two GMACs nodes representing
1744 	 * as two netdev instances.
1745 	 */
1746 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1747 	ds->mtu_enforcement_ingress = true;
1748 
1749 	if (priv->id == ID_MT7530) {
1750 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1751 		ret = regulator_enable(priv->core_pwr);
1752 		if (ret < 0) {
1753 			dev_err(priv->dev,
1754 				"Failed to enable core power: %d\n", ret);
1755 			return ret;
1756 		}
1757 
1758 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1759 		ret = regulator_enable(priv->io_pwr);
1760 		if (ret < 0) {
1761 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1762 				ret);
1763 			return ret;
1764 		}
1765 	}
1766 
1767 	/* Reset whole chip through gpio pin or memory-mapped registers for
1768 	 * different type of hardware
1769 	 */
1770 	if (priv->mcm) {
1771 		reset_control_assert(priv->rstc);
1772 		usleep_range(1000, 1100);
1773 		reset_control_deassert(priv->rstc);
1774 	} else {
1775 		gpiod_set_value_cansleep(priv->reset, 0);
1776 		usleep_range(1000, 1100);
1777 		gpiod_set_value_cansleep(priv->reset, 1);
1778 	}
1779 
1780 	/* Waiting for MT7530 got to stable */
1781 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1782 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1783 				 20, 1000000);
1784 	if (ret < 0) {
1785 		dev_err(priv->dev, "reset timeout\n");
1786 		return ret;
1787 	}
1788 
1789 	id = mt7530_read(priv, MT7530_CREV);
1790 	id >>= CHIP_NAME_SHIFT;
1791 	if (id != MT7530_ID) {
1792 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1793 		return -ENODEV;
1794 	}
1795 
1796 	/* Reset the switch through internal reset */
1797 	mt7530_write(priv, MT7530_SYS_CTRL,
1798 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1799 		     SYS_CTRL_REG_RST);
1800 
1801 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1802 	val = mt7530_read(priv, MT7530_MHWTRAP);
1803 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1804 	val |= MHWTRAP_MANUAL;
1805 	mt7530_write(priv, MT7530_MHWTRAP, val);
1806 
1807 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1808 
1809 	/* Enable and reset MIB counters */
1810 	mt7530_mib_reset(ds);
1811 
1812 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1813 		/* Disable forwarding by default on all ports */
1814 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1815 			   PCR_MATRIX_CLR);
1816 
1817 		if (dsa_is_cpu_port(ds, i)) {
1818 			ret = mt753x_cpu_port_enable(ds, i);
1819 			if (ret)
1820 				return ret;
1821 		} else
1822 			mt7530_port_disable(ds, i);
1823 
1824 		/* Enable consistent egress tag */
1825 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1826 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1827 	}
1828 
1829 	/* Setup port 5 */
1830 	priv->p5_intf_sel = P5_DISABLED;
1831 	interface = PHY_INTERFACE_MODE_NA;
1832 
1833 	if (!dsa_is_unused_port(ds, 5)) {
1834 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1835 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
1836 		if (ret && ret != -ENODEV)
1837 			return ret;
1838 	} else {
1839 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
1840 		for_each_child_of_node(dn, mac_np) {
1841 			if (!of_device_is_compatible(mac_np,
1842 						     "mediatek,eth-mac"))
1843 				continue;
1844 
1845 			ret = of_property_read_u32(mac_np, "reg", &id);
1846 			if (ret < 0 || id != 1)
1847 				continue;
1848 
1849 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
1850 			if (!phy_node)
1851 				continue;
1852 
1853 			if (phy_node->parent == priv->dev->of_node->parent) {
1854 				ret = of_get_phy_mode(mac_np, &interface);
1855 				if (ret && ret != -ENODEV) {
1856 					of_node_put(mac_np);
1857 					return ret;
1858 				}
1859 				id = of_mdio_parse_addr(ds->dev, phy_node);
1860 				if (id == 0)
1861 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
1862 				if (id == 4)
1863 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
1864 			}
1865 			of_node_put(mac_np);
1866 			of_node_put(phy_node);
1867 			break;
1868 		}
1869 	}
1870 
1871 #ifdef CONFIG_GPIOLIB
1872 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
1873 		ret = mt7530_setup_gpio(priv);
1874 		if (ret)
1875 			return ret;
1876 	}
1877 #endif /* CONFIG_GPIOLIB */
1878 
1879 	mt7530_setup_port5(ds, interface);
1880 
1881 	/* Flush the FDB table */
1882 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1883 	if (ret < 0)
1884 		return ret;
1885 
1886 	return 0;
1887 }
1888 
1889 static int
1890 mt7531_setup(struct dsa_switch *ds)
1891 {
1892 	struct mt7530_priv *priv = ds->priv;
1893 	struct mt7530_dummy_poll p;
1894 	u32 val, id;
1895 	int ret, i;
1896 
1897 	/* Reset whole chip through gpio pin or memory-mapped registers for
1898 	 * different type of hardware
1899 	 */
1900 	if (priv->mcm) {
1901 		reset_control_assert(priv->rstc);
1902 		usleep_range(1000, 1100);
1903 		reset_control_deassert(priv->rstc);
1904 	} else {
1905 		gpiod_set_value_cansleep(priv->reset, 0);
1906 		usleep_range(1000, 1100);
1907 		gpiod_set_value_cansleep(priv->reset, 1);
1908 	}
1909 
1910 	/* Waiting for MT7530 got to stable */
1911 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1912 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1913 				 20, 1000000);
1914 	if (ret < 0) {
1915 		dev_err(priv->dev, "reset timeout\n");
1916 		return ret;
1917 	}
1918 
1919 	id = mt7530_read(priv, MT7531_CREV);
1920 	id >>= CHIP_NAME_SHIFT;
1921 
1922 	if (id != MT7531_ID) {
1923 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1924 		return -ENODEV;
1925 	}
1926 
1927 	/* Reset the switch through internal reset */
1928 	mt7530_write(priv, MT7530_SYS_CTRL,
1929 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1930 		     SYS_CTRL_REG_RST);
1931 
1932 	if (mt7531_dual_sgmii_supported(priv)) {
1933 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
1934 
1935 		/* Let ds->slave_mii_bus be able to access external phy. */
1936 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
1937 			   MT7531_EXT_P_MDC_11);
1938 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
1939 			   MT7531_EXT_P_MDIO_12);
1940 	} else {
1941 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1942 	}
1943 	dev_dbg(ds->dev, "P5 support %s interface\n",
1944 		p5_intf_modes(priv->p5_intf_sel));
1945 
1946 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
1947 		   MT7531_GPIO0_INTERRUPT);
1948 
1949 	/* Let phylink decide the interface later. */
1950 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
1951 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1952 
1953 	/* Enable PHY core PLL, since phy_device has not yet been created
1954 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
1955 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
1956 	 * function.
1957 	 */
1958 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
1959 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
1960 	val |= MT7531_PHY_PLL_BYPASS_MODE;
1961 	val &= ~MT7531_PHY_PLL_OFF;
1962 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
1963 				 CORE_PLL_GROUP4, val);
1964 
1965 	/* BPDU to CPU port */
1966 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
1967 		   BIT(MT7530_CPU_PORT));
1968 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1969 		   MT753X_BPDU_CPU_ONLY);
1970 
1971 	/* Enable and reset MIB counters */
1972 	mt7530_mib_reset(ds);
1973 
1974 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1975 		/* Disable forwarding by default on all ports */
1976 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1977 			   PCR_MATRIX_CLR);
1978 
1979 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
1980 
1981 		if (dsa_is_cpu_port(ds, i)) {
1982 			ret = mt753x_cpu_port_enable(ds, i);
1983 			if (ret)
1984 				return ret;
1985 		} else
1986 			mt7530_port_disable(ds, i);
1987 
1988 		/* Enable consistent egress tag */
1989 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1990 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1991 	}
1992 
1993 	ds->mtu_enforcement_ingress = true;
1994 
1995 	/* Flush the FDB table */
1996 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1997 	if (ret < 0)
1998 		return ret;
1999 
2000 	return 0;
2001 }
2002 
2003 static bool
2004 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2005 			  const struct phylink_link_state *state)
2006 {
2007 	struct mt7530_priv *priv = ds->priv;
2008 
2009 	switch (port) {
2010 	case 0 ... 4: /* Internal phy */
2011 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2012 			return false;
2013 		break;
2014 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2015 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2016 		    state->interface != PHY_INTERFACE_MODE_MII &&
2017 		    state->interface != PHY_INTERFACE_MODE_GMII)
2018 			return false;
2019 		break;
2020 	case 6: /* 1st cpu port */
2021 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2022 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2023 			return false;
2024 		break;
2025 	default:
2026 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2027 			port);
2028 		return false;
2029 	}
2030 
2031 	return true;
2032 }
2033 
2034 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2035 {
2036 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2037 }
2038 
2039 static bool
2040 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2041 			  const struct phylink_link_state *state)
2042 {
2043 	struct mt7530_priv *priv = ds->priv;
2044 
2045 	switch (port) {
2046 	case 0 ... 4: /* Internal phy */
2047 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2048 			return false;
2049 		break;
2050 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2051 		if (mt7531_is_rgmii_port(priv, port))
2052 			return phy_interface_mode_is_rgmii(state->interface);
2053 		fallthrough;
2054 	case 6: /* 1st cpu port supports sgmii/8023z only */
2055 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2056 		    !phy_interface_mode_is_8023z(state->interface))
2057 			return false;
2058 		break;
2059 	default:
2060 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2061 			port);
2062 		return false;
2063 	}
2064 
2065 	return true;
2066 }
2067 
2068 static bool
2069 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2070 			  const struct phylink_link_state *state)
2071 {
2072 	struct mt7530_priv *priv = ds->priv;
2073 
2074 	return priv->info->phy_mode_supported(ds, port, state);
2075 }
2076 
2077 static int
2078 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2079 {
2080 	struct mt7530_priv *priv = ds->priv;
2081 
2082 	return priv->info->pad_setup(ds, state->interface);
2083 }
2084 
2085 static int
2086 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2087 		  phy_interface_t interface)
2088 {
2089 	struct mt7530_priv *priv = ds->priv;
2090 
2091 	/* Only need to setup port5. */
2092 	if (port != 5)
2093 		return 0;
2094 
2095 	mt7530_setup_port5(priv->ds, interface);
2096 
2097 	return 0;
2098 }
2099 
2100 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2101 			      phy_interface_t interface,
2102 			      struct phy_device *phydev)
2103 {
2104 	u32 val;
2105 
2106 	if (!mt7531_is_rgmii_port(priv, port)) {
2107 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2108 			port);
2109 		return -EINVAL;
2110 	}
2111 
2112 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2113 	val |= GP_CLK_EN;
2114 	val &= ~GP_MODE_MASK;
2115 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2116 	val &= ~CLK_SKEW_IN_MASK;
2117 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2118 	val &= ~CLK_SKEW_OUT_MASK;
2119 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2120 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2121 
2122 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2123 	if (!phydev || phy_driver_is_genphy(phydev)) {
2124 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2125 		switch (interface) {
2126 		case PHY_INTERFACE_MODE_RGMII:
2127 			val |= TXCLK_NO_REVERSE;
2128 			val |= RXCLK_NO_DELAY;
2129 			break;
2130 		case PHY_INTERFACE_MODE_RGMII_RXID:
2131 			val |= TXCLK_NO_REVERSE;
2132 			break;
2133 		case PHY_INTERFACE_MODE_RGMII_TXID:
2134 			val |= RXCLK_NO_DELAY;
2135 			break;
2136 		case PHY_INTERFACE_MODE_RGMII_ID:
2137 			break;
2138 		default:
2139 			return -EINVAL;
2140 		}
2141 	}
2142 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2143 
2144 	return 0;
2145 }
2146 
2147 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2148 				  unsigned long *supported)
2149 {
2150 	/* Port5 supports ethier RGMII or SGMII.
2151 	 * Port6 supports SGMII only.
2152 	 */
2153 	switch (port) {
2154 	case 5:
2155 		if (mt7531_is_rgmii_port(priv, port))
2156 			break;
2157 		fallthrough;
2158 	case 6:
2159 		phylink_set(supported, 1000baseX_Full);
2160 		phylink_set(supported, 2500baseX_Full);
2161 		phylink_set(supported, 2500baseT_Full);
2162 	}
2163 }
2164 
2165 static void
2166 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2167 			   unsigned int mode, phy_interface_t interface,
2168 			   int speed, int duplex)
2169 {
2170 	struct mt7530_priv *priv = ds->priv;
2171 	unsigned int val;
2172 
2173 	/* For adjusting speed and duplex of SGMII force mode. */
2174 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2175 	    phylink_autoneg_inband(mode))
2176 		return;
2177 
2178 	/* SGMII force mode setting */
2179 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2180 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2181 
2182 	switch (speed) {
2183 	case SPEED_10:
2184 		val |= MT7531_SGMII_FORCE_SPEED_10;
2185 		break;
2186 	case SPEED_100:
2187 		val |= MT7531_SGMII_FORCE_SPEED_100;
2188 		break;
2189 	case SPEED_1000:
2190 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2191 		break;
2192 	}
2193 
2194 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2195 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2196 	 */
2197 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2198 	    duplex != DUPLEX_FULL)
2199 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2200 
2201 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2202 }
2203 
2204 static bool mt753x_is_mac_port(u32 port)
2205 {
2206 	return (port == 5 || port == 6);
2207 }
2208 
2209 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2210 					 phy_interface_t interface)
2211 {
2212 	u32 val;
2213 
2214 	if (!mt753x_is_mac_port(port))
2215 		return -EINVAL;
2216 
2217 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2218 		   MT7531_SGMII_PHYA_PWD);
2219 
2220 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2221 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2222 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2223 	 * encoding.
2224 	 */
2225 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2226 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2227 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2228 
2229 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2230 
2231 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2232 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2233 	 */
2234 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2235 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2236 		   MT7531_SGMII_FORCE_SPEED_1000);
2237 
2238 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2239 
2240 	return 0;
2241 }
2242 
2243 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2244 				      phy_interface_t interface)
2245 {
2246 	if (!mt753x_is_mac_port(port))
2247 		return -EINVAL;
2248 
2249 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2250 		   MT7531_SGMII_PHYA_PWD);
2251 
2252 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2253 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2254 
2255 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2256 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2257 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2258 
2259 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2260 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2261 
2262 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2263 
2264 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2265 
2266 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2267 
2268 	return 0;
2269 }
2270 
2271 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2272 {
2273 	struct mt7530_priv *priv = ds->priv;
2274 	u32 val;
2275 
2276 	/* Only restart AN when AN is enabled */
2277 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2278 	if (val & MT7531_SGMII_AN_ENABLE) {
2279 		val |= MT7531_SGMII_AN_RESTART;
2280 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2281 	}
2282 }
2283 
2284 static int
2285 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2286 		  phy_interface_t interface)
2287 {
2288 	struct mt7530_priv *priv = ds->priv;
2289 	struct phy_device *phydev;
2290 	struct dsa_port *dp;
2291 
2292 	if (!mt753x_is_mac_port(port)) {
2293 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2294 		return -EINVAL;
2295 	}
2296 
2297 	switch (interface) {
2298 	case PHY_INTERFACE_MODE_RGMII:
2299 	case PHY_INTERFACE_MODE_RGMII_ID:
2300 	case PHY_INTERFACE_MODE_RGMII_RXID:
2301 	case PHY_INTERFACE_MODE_RGMII_TXID:
2302 		dp = dsa_to_port(ds, port);
2303 		phydev = dp->slave->phydev;
2304 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2305 	case PHY_INTERFACE_MODE_SGMII:
2306 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2307 	case PHY_INTERFACE_MODE_NA:
2308 	case PHY_INTERFACE_MODE_1000BASEX:
2309 	case PHY_INTERFACE_MODE_2500BASEX:
2310 		if (phylink_autoneg_inband(mode))
2311 			return -EINVAL;
2312 
2313 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2314 	default:
2315 		return -EINVAL;
2316 	}
2317 
2318 	return -EINVAL;
2319 }
2320 
2321 static int
2322 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2323 		  const struct phylink_link_state *state)
2324 {
2325 	struct mt7530_priv *priv = ds->priv;
2326 
2327 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2328 }
2329 
2330 static void
2331 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2332 			  const struct phylink_link_state *state)
2333 {
2334 	struct mt7530_priv *priv = ds->priv;
2335 	u32 mcr_cur, mcr_new;
2336 
2337 	if (!mt753x_phy_mode_supported(ds, port, state))
2338 		goto unsupported;
2339 
2340 	switch (port) {
2341 	case 0 ... 4: /* Internal phy */
2342 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2343 			goto unsupported;
2344 		break;
2345 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2346 		if (priv->p5_interface == state->interface)
2347 			break;
2348 
2349 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2350 			goto unsupported;
2351 
2352 		if (priv->p5_intf_sel != P5_DISABLED)
2353 			priv->p5_interface = state->interface;
2354 		break;
2355 	case 6: /* 1st cpu port */
2356 		if (priv->p6_interface == state->interface)
2357 			break;
2358 
2359 		mt753x_pad_setup(ds, state);
2360 
2361 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2362 			goto unsupported;
2363 
2364 		priv->p6_interface = state->interface;
2365 		break;
2366 	default:
2367 unsupported:
2368 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2369 			__func__, phy_modes(state->interface), port);
2370 		return;
2371 	}
2372 
2373 	if (phylink_autoneg_inband(mode) &&
2374 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2375 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2376 			__func__);
2377 		return;
2378 	}
2379 
2380 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2381 	mcr_new = mcr_cur;
2382 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2383 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2384 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2385 
2386 	/* Are we connected to external phy */
2387 	if (port == 5 && dsa_is_user_port(ds, 5))
2388 		mcr_new |= PMCR_EXT_PHY;
2389 
2390 	if (mcr_new != mcr_cur)
2391 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2392 }
2393 
2394 static void
2395 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2396 {
2397 	struct mt7530_priv *priv = ds->priv;
2398 
2399 	if (!priv->info->mac_pcs_an_restart)
2400 		return;
2401 
2402 	priv->info->mac_pcs_an_restart(ds, port);
2403 }
2404 
2405 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2406 					 unsigned int mode,
2407 					 phy_interface_t interface)
2408 {
2409 	struct mt7530_priv *priv = ds->priv;
2410 
2411 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2412 }
2413 
2414 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2415 				   unsigned int mode, phy_interface_t interface,
2416 				   int speed, int duplex)
2417 {
2418 	struct mt7530_priv *priv = ds->priv;
2419 
2420 	if (!priv->info->mac_pcs_link_up)
2421 		return;
2422 
2423 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2424 }
2425 
2426 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2427 				       unsigned int mode,
2428 				       phy_interface_t interface,
2429 				       struct phy_device *phydev,
2430 				       int speed, int duplex,
2431 				       bool tx_pause, bool rx_pause)
2432 {
2433 	struct mt7530_priv *priv = ds->priv;
2434 	u32 mcr;
2435 
2436 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2437 
2438 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2439 
2440 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2441 	 * variants.
2442 	 */
2443 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2444 	    (phy_interface_mode_is_8023z(interface))) {
2445 		speed = SPEED_1000;
2446 		duplex = DUPLEX_FULL;
2447 	}
2448 
2449 	switch (speed) {
2450 	case SPEED_1000:
2451 		mcr |= PMCR_FORCE_SPEED_1000;
2452 		break;
2453 	case SPEED_100:
2454 		mcr |= PMCR_FORCE_SPEED_100;
2455 		break;
2456 	}
2457 	if (duplex == DUPLEX_FULL) {
2458 		mcr |= PMCR_FORCE_FDX;
2459 		if (tx_pause)
2460 			mcr |= PMCR_TX_FC_EN;
2461 		if (rx_pause)
2462 			mcr |= PMCR_RX_FC_EN;
2463 	}
2464 
2465 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2466 }
2467 
2468 static int
2469 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2470 {
2471 	struct mt7530_priv *priv = ds->priv;
2472 	phy_interface_t interface;
2473 	int speed;
2474 	int ret;
2475 
2476 	switch (port) {
2477 	case 5:
2478 		if (mt7531_is_rgmii_port(priv, port))
2479 			interface = PHY_INTERFACE_MODE_RGMII;
2480 		else
2481 			interface = PHY_INTERFACE_MODE_2500BASEX;
2482 
2483 		priv->p5_interface = interface;
2484 		break;
2485 	case 6:
2486 		interface = PHY_INTERFACE_MODE_2500BASEX;
2487 
2488 		mt7531_pad_setup(ds, interface);
2489 
2490 		priv->p6_interface = interface;
2491 		break;
2492 	default:
2493 		return -EINVAL;
2494 	}
2495 
2496 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2497 		speed = SPEED_2500;
2498 	else
2499 		speed = SPEED_1000;
2500 
2501 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2502 	if (ret)
2503 		return ret;
2504 	mt7530_write(priv, MT7530_PMCR_P(port),
2505 		     PMCR_CPU_PORT_SETTING(priv->id));
2506 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2507 				   speed, DUPLEX_FULL, true, true);
2508 
2509 	return 0;
2510 }
2511 
2512 static void
2513 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2514 			 unsigned long *supported)
2515 {
2516 	if (port == 5)
2517 		phylink_set(supported, 1000baseX_Full);
2518 }
2519 
2520 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2521 				     unsigned long *supported)
2522 {
2523 	struct mt7530_priv *priv = ds->priv;
2524 
2525 	mt7531_sgmii_validate(priv, port, supported);
2526 }
2527 
2528 static void
2529 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2530 			unsigned long *supported,
2531 			struct phylink_link_state *state)
2532 {
2533 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2534 	struct mt7530_priv *priv = ds->priv;
2535 
2536 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2537 	    !mt753x_phy_mode_supported(ds, port, state)) {
2538 		linkmode_zero(supported);
2539 		return;
2540 	}
2541 
2542 	phylink_set_port_modes(mask);
2543 
2544 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2545 	    !phy_interface_mode_is_8023z(state->interface)) {
2546 		phylink_set(mask, 10baseT_Half);
2547 		phylink_set(mask, 10baseT_Full);
2548 		phylink_set(mask, 100baseT_Half);
2549 		phylink_set(mask, 100baseT_Full);
2550 		phylink_set(mask, Autoneg);
2551 	}
2552 
2553 	/* This switch only supports 1G full-duplex. */
2554 	if (state->interface != PHY_INTERFACE_MODE_MII)
2555 		phylink_set(mask, 1000baseT_Full);
2556 
2557 	priv->info->mac_port_validate(ds, port, mask);
2558 
2559 	phylink_set(mask, Pause);
2560 	phylink_set(mask, Asym_Pause);
2561 
2562 	linkmode_and(supported, supported, mask);
2563 	linkmode_and(state->advertising, state->advertising, mask);
2564 
2565 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2566 	 * to advertise both, only report advertising at 2500BaseX.
2567 	 */
2568 	phylink_helper_basex_speed(state);
2569 }
2570 
2571 static int
2572 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2573 			      struct phylink_link_state *state)
2574 {
2575 	struct mt7530_priv *priv = ds->priv;
2576 	u32 pmsr;
2577 
2578 	if (port < 0 || port >= MT7530_NUM_PORTS)
2579 		return -EINVAL;
2580 
2581 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2582 
2583 	state->link = (pmsr & PMSR_LINK);
2584 	state->an_complete = state->link;
2585 	state->duplex = !!(pmsr & PMSR_DPX);
2586 
2587 	switch (pmsr & PMSR_SPEED_MASK) {
2588 	case PMSR_SPEED_10:
2589 		state->speed = SPEED_10;
2590 		break;
2591 	case PMSR_SPEED_100:
2592 		state->speed = SPEED_100;
2593 		break;
2594 	case PMSR_SPEED_1000:
2595 		state->speed = SPEED_1000;
2596 		break;
2597 	default:
2598 		state->speed = SPEED_UNKNOWN;
2599 		break;
2600 	}
2601 
2602 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2603 	if (pmsr & PMSR_RX_FC)
2604 		state->pause |= MLO_PAUSE_RX;
2605 	if (pmsr & PMSR_TX_FC)
2606 		state->pause |= MLO_PAUSE_TX;
2607 
2608 	return 1;
2609 }
2610 
2611 static int
2612 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2613 			      struct phylink_link_state *state)
2614 {
2615 	u32 status, val;
2616 	u16 config_reg;
2617 
2618 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2619 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2620 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2621 	    (status & MT7531_SGMII_AN_ENABLE)) {
2622 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2623 		config_reg = val >> 16;
2624 
2625 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2626 		case LPA_SGMII_1000:
2627 			state->speed = SPEED_1000;
2628 			break;
2629 		case LPA_SGMII_100:
2630 			state->speed = SPEED_100;
2631 			break;
2632 		case LPA_SGMII_10:
2633 			state->speed = SPEED_10;
2634 			break;
2635 		default:
2636 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2637 			state->link = false;
2638 			return -EINVAL;
2639 		}
2640 
2641 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2642 			state->duplex = DUPLEX_FULL;
2643 		else
2644 			state->duplex = DUPLEX_HALF;
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static int
2651 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2652 			      struct phylink_link_state *state)
2653 {
2654 	struct mt7530_priv *priv = ds->priv;
2655 
2656 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2657 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2658 
2659 	return -EOPNOTSUPP;
2660 }
2661 
2662 static int
2663 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2664 			      struct phylink_link_state *state)
2665 {
2666 	struct mt7530_priv *priv = ds->priv;
2667 
2668 	return priv->info->mac_port_get_state(ds, port, state);
2669 }
2670 
2671 static int
2672 mt753x_setup(struct dsa_switch *ds)
2673 {
2674 	struct mt7530_priv *priv = ds->priv;
2675 
2676 	return priv->info->sw_setup(ds);
2677 }
2678 
2679 static int
2680 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum)
2681 {
2682 	struct mt7530_priv *priv = ds->priv;
2683 
2684 	return priv->info->phy_read(ds, port, regnum);
2685 }
2686 
2687 static int
2688 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2689 {
2690 	struct mt7530_priv *priv = ds->priv;
2691 
2692 	return priv->info->phy_write(ds, port, regnum, val);
2693 }
2694 
2695 static const struct dsa_switch_ops mt7530_switch_ops = {
2696 	.get_tag_protocol	= mtk_get_tag_protocol,
2697 	.setup			= mt753x_setup,
2698 	.get_strings		= mt7530_get_strings,
2699 	.phy_read		= mt753x_phy_read,
2700 	.phy_write		= mt753x_phy_write,
2701 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2702 	.get_sset_count		= mt7530_get_sset_count,
2703 	.set_ageing_time	= mt7530_set_ageing_time,
2704 	.port_enable		= mt7530_port_enable,
2705 	.port_disable		= mt7530_port_disable,
2706 	.port_change_mtu	= mt7530_port_change_mtu,
2707 	.port_max_mtu		= mt7530_port_max_mtu,
2708 	.port_stp_state_set	= mt7530_stp_state_set,
2709 	.port_bridge_join	= mt7530_port_bridge_join,
2710 	.port_bridge_leave	= mt7530_port_bridge_leave,
2711 	.port_fdb_add		= mt7530_port_fdb_add,
2712 	.port_fdb_del		= mt7530_port_fdb_del,
2713 	.port_fdb_dump		= mt7530_port_fdb_dump,
2714 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2715 	.port_vlan_add		= mt7530_port_vlan_add,
2716 	.port_vlan_del		= mt7530_port_vlan_del,
2717 	.port_mirror_add	= mt753x_port_mirror_add,
2718 	.port_mirror_del	= mt753x_port_mirror_del,
2719 	.phylink_validate	= mt753x_phylink_validate,
2720 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
2721 	.phylink_mac_config	= mt753x_phylink_mac_config,
2722 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
2723 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2724 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2725 };
2726 
2727 static const struct mt753x_info mt753x_table[] = {
2728 	[ID_MT7621] = {
2729 		.id = ID_MT7621,
2730 		.sw_setup = mt7530_setup,
2731 		.phy_read = mt7530_phy_read,
2732 		.phy_write = mt7530_phy_write,
2733 		.pad_setup = mt7530_pad_clk_setup,
2734 		.phy_mode_supported = mt7530_phy_mode_supported,
2735 		.mac_port_validate = mt7530_mac_port_validate,
2736 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2737 		.mac_port_config = mt7530_mac_config,
2738 	},
2739 	[ID_MT7530] = {
2740 		.id = ID_MT7530,
2741 		.sw_setup = mt7530_setup,
2742 		.phy_read = mt7530_phy_read,
2743 		.phy_write = mt7530_phy_write,
2744 		.pad_setup = mt7530_pad_clk_setup,
2745 		.phy_mode_supported = mt7530_phy_mode_supported,
2746 		.mac_port_validate = mt7530_mac_port_validate,
2747 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2748 		.mac_port_config = mt7530_mac_config,
2749 	},
2750 	[ID_MT7531] = {
2751 		.id = ID_MT7531,
2752 		.sw_setup = mt7531_setup,
2753 		.phy_read = mt7531_ind_phy_read,
2754 		.phy_write = mt7531_ind_phy_write,
2755 		.pad_setup = mt7531_pad_setup,
2756 		.cpu_port_config = mt7531_cpu_port_config,
2757 		.phy_mode_supported = mt7531_phy_mode_supported,
2758 		.mac_port_validate = mt7531_mac_port_validate,
2759 		.mac_port_get_state = mt7531_phylink_mac_link_state,
2760 		.mac_port_config = mt7531_mac_config,
2761 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
2762 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
2763 	},
2764 };
2765 
2766 static const struct of_device_id mt7530_of_match[] = {
2767 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
2768 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
2769 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
2770 	{ /* sentinel */ },
2771 };
2772 MODULE_DEVICE_TABLE(of, mt7530_of_match);
2773 
2774 static int
2775 mt7530_probe(struct mdio_device *mdiodev)
2776 {
2777 	struct mt7530_priv *priv;
2778 	struct device_node *dn;
2779 
2780 	dn = mdiodev->dev.of_node;
2781 
2782 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
2783 	if (!priv)
2784 		return -ENOMEM;
2785 
2786 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
2787 	if (!priv->ds)
2788 		return -ENOMEM;
2789 
2790 	priv->ds->dev = &mdiodev->dev;
2791 	priv->ds->num_ports = DSA_MAX_PORTS;
2792 
2793 	/* Use medatek,mcm property to distinguish hardware type that would
2794 	 * casues a little bit differences on power-on sequence.
2795 	 */
2796 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
2797 	if (priv->mcm) {
2798 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
2799 
2800 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
2801 		if (IS_ERR(priv->rstc)) {
2802 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2803 			return PTR_ERR(priv->rstc);
2804 		}
2805 	}
2806 
2807 	/* Get the hardware identifier from the devicetree node.
2808 	 * We will need it for some of the clock and regulator setup.
2809 	 */
2810 	priv->info = of_device_get_match_data(&mdiodev->dev);
2811 	if (!priv->info)
2812 		return -EINVAL;
2813 
2814 	/* Sanity check if these required device operations are filled
2815 	 * properly.
2816 	 */
2817 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
2818 	    !priv->info->phy_read || !priv->info->phy_write ||
2819 	    !priv->info->phy_mode_supported ||
2820 	    !priv->info->mac_port_validate ||
2821 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
2822 		return -EINVAL;
2823 
2824 	priv->id = priv->info->id;
2825 
2826 	if (priv->id == ID_MT7530) {
2827 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
2828 		if (IS_ERR(priv->core_pwr))
2829 			return PTR_ERR(priv->core_pwr);
2830 
2831 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
2832 		if (IS_ERR(priv->io_pwr))
2833 			return PTR_ERR(priv->io_pwr);
2834 	}
2835 
2836 	/* Not MCM that indicates switch works as the remote standalone
2837 	 * integrated circuit so the GPIO pin would be used to complete
2838 	 * the reset, otherwise memory-mapped register accessing used
2839 	 * through syscon provides in the case of MCM.
2840 	 */
2841 	if (!priv->mcm) {
2842 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
2843 						      GPIOD_OUT_LOW);
2844 		if (IS_ERR(priv->reset)) {
2845 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2846 			return PTR_ERR(priv->reset);
2847 		}
2848 	}
2849 
2850 	priv->bus = mdiodev->bus;
2851 	priv->dev = &mdiodev->dev;
2852 	priv->ds->priv = priv;
2853 	priv->ds->ops = &mt7530_switch_ops;
2854 	mutex_init(&priv->reg_mutex);
2855 	dev_set_drvdata(&mdiodev->dev, priv);
2856 
2857 	return dsa_register_switch(priv->ds);
2858 }
2859 
2860 static void
2861 mt7530_remove(struct mdio_device *mdiodev)
2862 {
2863 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
2864 	int ret = 0;
2865 
2866 	ret = regulator_disable(priv->core_pwr);
2867 	if (ret < 0)
2868 		dev_err(priv->dev,
2869 			"Failed to disable core power: %d\n", ret);
2870 
2871 	ret = regulator_disable(priv->io_pwr);
2872 	if (ret < 0)
2873 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
2874 			ret);
2875 
2876 	dsa_unregister_switch(priv->ds);
2877 	mutex_destroy(&priv->reg_mutex);
2878 }
2879 
2880 static struct mdio_driver mt7530_mdio_driver = {
2881 	.probe  = mt7530_probe,
2882 	.remove = mt7530_remove,
2883 	.mdiodrv.driver = {
2884 		.name = "mt7530",
2885 		.of_match_table = mt7530_of_match,
2886 	},
2887 };
2888 
2889 mdio_module_driver(mt7530_mdio_driver);
2890 
2891 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
2892 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
2893 MODULE_LICENSE("GPL");
2894