xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 85d616dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 	struct mii_bus *bus = priv->bus;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152 
153 	mutex_unlock(&bus->mdio_lock);
154 }
155 
156 static void
157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158 {
159 	struct mii_bus *bus = priv->bus;
160 	u32 val;
161 
162 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163 
164 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 	val &= ~mask;
166 	val |= set;
167 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168 
169 	mutex_unlock(&bus->mdio_lock);
170 }
171 
172 static void
173 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, 0, val);
176 }
177 
178 static void
179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	core_rmw(priv, reg, val, 0);
182 }
183 
184 static int
185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186 {
187 	struct mii_bus *bus = priv->bus;
188 	u16 page, r, lo, hi;
189 	int ret;
190 
191 	page = (reg >> 6) & 0x3ff;
192 	r  = (reg >> 2) & 0xf;
193 	lo = val & 0xffff;
194 	hi = val >> 16;
195 
196 	/* MT7530 uses 31 as the pseudo port */
197 	ret = bus->write(bus, 0x1f, 0x1f, page);
198 	if (ret < 0)
199 		goto err;
200 
201 	ret = bus->write(bus, 0x1f, r,  lo);
202 	if (ret < 0)
203 		goto err;
204 
205 	ret = bus->write(bus, 0x1f, 0x10, hi);
206 err:
207 	if (ret < 0)
208 		dev_err(&bus->dev,
209 			"failed to write mt7530 register\n");
210 	return ret;
211 }
212 
213 static u32
214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215 {
216 	struct mii_bus *bus = priv->bus;
217 	u16 page, r, lo, hi;
218 	int ret;
219 
220 	page = (reg >> 6) & 0x3ff;
221 	r = (reg >> 2) & 0xf;
222 
223 	/* MT7530 uses 31 as the pseudo port */
224 	ret = bus->write(bus, 0x1f, 0x1f, page);
225 	if (ret < 0) {
226 		dev_err(&bus->dev,
227 			"failed to read mt7530 register\n");
228 		return ret;
229 	}
230 
231 	lo = bus->read(bus, 0x1f, r);
232 	hi = bus->read(bus, 0x1f, 0x10);
233 
234 	return (hi << 16) | (lo & 0xffff);
235 }
236 
237 static void
238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 	struct mii_bus *bus = priv->bus;
241 
242 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243 
244 	mt7530_mii_write(priv, reg, val);
245 
246 	mutex_unlock(&bus->mdio_lock);
247 }
248 
249 static u32
250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251 {
252 	return mt7530_mii_read(p->priv, p->reg);
253 }
254 
255 static u32
256 _mt7530_read(struct mt7530_dummy_poll *p)
257 {
258 	struct mii_bus		*bus = p->priv->bus;
259 	u32 val;
260 
261 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262 
263 	val = mt7530_mii_read(p->priv, p->reg);
264 
265 	mutex_unlock(&bus->mdio_lock);
266 
267 	return val;
268 }
269 
270 static u32
271 mt7530_read(struct mt7530_priv *priv, u32 reg)
272 {
273 	struct mt7530_dummy_poll p;
274 
275 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 	return _mt7530_read(&p);
277 }
278 
279 static void
280 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 	   u32 mask, u32 set)
282 {
283 	struct mii_bus *bus = priv->bus;
284 	u32 val;
285 
286 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287 
288 	val = mt7530_mii_read(priv, reg);
289 	val &= ~mask;
290 	val |= set;
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static void
297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, 0, val);
300 }
301 
302 static void
303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304 {
305 	mt7530_rmw(priv, reg, val, 0);
306 }
307 
308 static int
309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310 {
311 	u32 val;
312 	int ret;
313 	struct mt7530_dummy_poll p;
314 
315 	/* Set the command operating upon the MAC address entries */
316 	val = ATC_BUSY | ATC_MAT(0) | cmd;
317 	mt7530_write(priv, MT7530_ATC, val);
318 
319 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 	ret = readx_poll_timeout(_mt7530_read, &p, val,
321 				 !(val & ATC_BUSY), 20, 20000);
322 	if (ret < 0) {
323 		dev_err(priv->dev, "reset timeout\n");
324 		return ret;
325 	}
326 
327 	/* Additional sanity for read command if the specified
328 	 * entry is invalid
329 	 */
330 	val = mt7530_read(priv, MT7530_ATC);
331 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 		return -EINVAL;
333 
334 	if (rsp)
335 		*rsp = val;
336 
337 	return 0;
338 }
339 
340 static void
341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342 {
343 	u32 reg[3];
344 	int i;
345 
346 	/* Read from ARL table into an array */
347 	for (i = 0; i < 3; i++) {
348 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349 
350 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 			__func__, __LINE__, i, reg[i]);
352 	}
353 
354 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364 }
365 
366 static void
367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 		 u8 port_mask, const u8 *mac,
369 		 u8 aging, u8 type)
370 {
371 	u32 reg[3] = { 0 };
372 	int i;
373 
374 	reg[1] |= vid & CVID_MASK;
375 	reg[1] |= ATA2_IVL;
376 	reg[1] |= ATA2_FID(FID_BRIDGED);
377 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 	/* STATIC_ENT indicate that entry is static wouldn't
380 	 * be aged out and STATIC_EMP specified as erasing an
381 	 * entry
382 	 */
383 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 	reg[1] |= mac[5] << MAC_BYTE_5;
385 	reg[1] |= mac[4] << MAC_BYTE_4;
386 	reg[0] |= mac[3] << MAC_BYTE_3;
387 	reg[0] |= mac[2] << MAC_BYTE_2;
388 	reg[0] |= mac[1] << MAC_BYTE_1;
389 	reg[0] |= mac[0] << MAC_BYTE_0;
390 
391 	/* Write array into the ARL table */
392 	for (i = 0; i < 3; i++)
393 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394 }
395 
396 /* Setup TX circuit including relevant PAD and driving */
397 static int
398 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
399 {
400 	struct mt7530_priv *priv = ds->priv;
401 	u32 ncpo1, ssc_delta, trgint, i, xtal;
402 
403 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
404 
405 	if (xtal == HWTRAP_XTAL_20MHZ) {
406 		dev_err(priv->dev,
407 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
408 			__func__);
409 		return -EINVAL;
410 	}
411 
412 	switch (interface) {
413 	case PHY_INTERFACE_MODE_RGMII:
414 		trgint = 0;
415 		/* PLL frequency: 125MHz */
416 		ncpo1 = 0x0c80;
417 		break;
418 	case PHY_INTERFACE_MODE_TRGMII:
419 		trgint = 1;
420 		if (priv->id == ID_MT7621) {
421 			/* PLL frequency: 150MHz: 1.2GBit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0780;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x0a00;
426 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
427 			if (xtal == HWTRAP_XTAL_40MHZ)
428 				ncpo1 = 0x0c80;
429 			if (xtal == HWTRAP_XTAL_25MHZ)
430 				ncpo1 = 0x1400;
431 		}
432 		break;
433 	default:
434 		dev_err(priv->dev, "xMII interface %d not supported\n",
435 			interface);
436 		return -EINVAL;
437 	}
438 
439 	if (xtal == HWTRAP_XTAL_25MHZ)
440 		ssc_delta = 0x57;
441 	else
442 		ssc_delta = 0x87;
443 
444 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
445 		   P6_INTF_MODE(trgint));
446 
447 	/* Lower Tx Driving for TRGMII path */
448 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
449 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
450 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
451 
452 	/* Disable MT7530 core and TRGMII Tx clocks */
453 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
454 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
455 
456 	/* Setup core clock for MT7530 */
457 	/* Disable PLL */
458 	core_write(priv, CORE_GSWPLL_GRP1, 0);
459 
460 	/* Set core clock into 500Mhz */
461 	core_write(priv, CORE_GSWPLL_GRP2,
462 		   RG_GSWPLL_POSDIV_500M(1) |
463 		   RG_GSWPLL_FBKDIV_500M(25));
464 
465 	/* Enable PLL */
466 	core_write(priv, CORE_GSWPLL_GRP1,
467 		   RG_GSWPLL_EN_PRE |
468 		   RG_GSWPLL_POSDIV_200M(2) |
469 		   RG_GSWPLL_FBKDIV_200M(32));
470 
471 	/* Setup the MT7530 TRGMII Tx Clock */
472 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
473 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
474 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
475 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
476 	core_write(priv, CORE_PLL_GROUP4,
477 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
478 		   RG_SYSPLL_BIAS_LPF_EN);
479 	core_write(priv, CORE_PLL_GROUP2,
480 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
481 		   RG_SYSPLL_POSDIV(1));
482 	core_write(priv, CORE_PLL_GROUP7,
483 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
484 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
485 
486 	/* Enable MT7530 core and TRGMII Tx clocks */
487 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
488 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
489 
490 	if (!trgint)
491 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
492 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
493 				   RD_TAP_MASK, RD_TAP(16));
494 	return 0;
495 }
496 
497 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
498 {
499 	u32 val;
500 
501 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
502 
503 	return (val & PAD_DUAL_SGMII_EN) != 0;
504 }
505 
506 static int
507 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
508 {
509 	struct mt7530_priv *priv = ds->priv;
510 	u32 top_sig;
511 	u32 hwstrap;
512 	u32 xtal;
513 	u32 val;
514 
515 	if (mt7531_dual_sgmii_supported(priv))
516 		return 0;
517 
518 	val = mt7530_read(priv, MT7531_CREV);
519 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
520 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
521 	if ((val & CHIP_REV_M) > 0)
522 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
523 						    HWTRAP_XTAL_FSEL_25MHZ;
524 	else
525 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
526 
527 	/* Step 1 : Disable MT7531 COREPLL */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val &= ~EN_COREPLL;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	/* Step 2: switch to XTAL output */
533 	val = mt7530_read(priv, MT7531_PLLGP_EN);
534 	val |= SW_CLKSW;
535 	mt7530_write(priv, MT7531_PLLGP_EN, val);
536 
537 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
538 	val &= ~RG_COREPLL_EN;
539 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
540 
541 	/* Step 3: disable PLLGP and enable program PLLGP */
542 	val = mt7530_read(priv, MT7531_PLLGP_EN);
543 	val |= SW_PLLGP;
544 	mt7530_write(priv, MT7531_PLLGP_EN, val);
545 
546 	/* Step 4: program COREPLL output frequency to 500MHz */
547 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 	val &= ~RG_COREPLL_POSDIV_M;
549 	val |= 2 << RG_COREPLL_POSDIV_S;
550 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
551 	usleep_range(25, 35);
552 
553 	switch (xtal) {
554 	case HWTRAP_XTAL_FSEL_25MHZ:
555 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
556 		val &= ~RG_COREPLL_SDM_PCW_M;
557 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
558 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
559 		break;
560 	case HWTRAP_XTAL_FSEL_40MHZ:
561 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
562 		val &= ~RG_COREPLL_SDM_PCW_M;
563 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
564 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
565 		break;
566 	}
567 
568 	/* Set feedback divide ratio update signal to high */
569 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
570 	val |= RG_COREPLL_SDM_PCW_CHG;
571 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
572 	/* Wait for at least 16 XTAL clocks */
573 	usleep_range(10, 20);
574 
575 	/* Step 5: set feedback divide ratio update signal to low */
576 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
577 	val &= ~RG_COREPLL_SDM_PCW_CHG;
578 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
579 
580 	/* Enable 325M clock for SGMII */
581 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
582 
583 	/* Enable 250SSC clock for RGMII */
584 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
585 
586 	/* Step 6: Enable MT7531 PLL */
587 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
588 	val |= RG_COREPLL_EN;
589 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
590 
591 	val = mt7530_read(priv, MT7531_PLLGP_EN);
592 	val |= EN_COREPLL;
593 	mt7530_write(priv, MT7531_PLLGP_EN, val);
594 	usleep_range(25, 35);
595 
596 	return 0;
597 }
598 
599 static void
600 mt7530_mib_reset(struct dsa_switch *ds)
601 {
602 	struct mt7530_priv *priv = ds->priv;
603 
604 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
605 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
606 }
607 
608 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
609 {
610 	return mdiobus_read_nested(priv->bus, port, regnum);
611 }
612 
613 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
614 			    u16 val)
615 {
616 	return mdiobus_write_nested(priv->bus, port, regnum, val);
617 }
618 
619 static int
620 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
621 			int regnum)
622 {
623 	struct mii_bus *bus = priv->bus;
624 	struct mt7530_dummy_poll p;
625 	u32 reg, val;
626 	int ret;
627 
628 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
629 
630 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
631 
632 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
633 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
634 	if (ret < 0) {
635 		dev_err(priv->dev, "poll timeout\n");
636 		goto out;
637 	}
638 
639 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
640 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
641 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
642 
643 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
644 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
645 	if (ret < 0) {
646 		dev_err(priv->dev, "poll timeout\n");
647 		goto out;
648 	}
649 
650 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
651 	      MT7531_MDIO_DEV_ADDR(devad);
652 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
653 
654 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
655 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
656 	if (ret < 0) {
657 		dev_err(priv->dev, "poll timeout\n");
658 		goto out;
659 	}
660 
661 	ret = val & MT7531_MDIO_RW_DATA_MASK;
662 out:
663 	mutex_unlock(&bus->mdio_lock);
664 
665 	return ret;
666 }
667 
668 static int
669 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
670 			 int regnum, u32 data)
671 {
672 	struct mii_bus *bus = priv->bus;
673 	struct mt7530_dummy_poll p;
674 	u32 val, reg;
675 	int ret;
676 
677 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
678 
679 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
680 
681 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
682 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
683 	if (ret < 0) {
684 		dev_err(priv->dev, "poll timeout\n");
685 		goto out;
686 	}
687 
688 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
689 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
690 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
691 
692 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
693 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
694 	if (ret < 0) {
695 		dev_err(priv->dev, "poll timeout\n");
696 		goto out;
697 	}
698 
699 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
700 	      MT7531_MDIO_DEV_ADDR(devad) | data;
701 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
702 
703 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
704 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
705 	if (ret < 0) {
706 		dev_err(priv->dev, "poll timeout\n");
707 		goto out;
708 	}
709 
710 out:
711 	mutex_unlock(&bus->mdio_lock);
712 
713 	return ret;
714 }
715 
716 static int
717 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
718 {
719 	struct mii_bus *bus = priv->bus;
720 	struct mt7530_dummy_poll p;
721 	int ret;
722 	u32 val;
723 
724 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
725 
726 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
727 
728 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
729 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
730 	if (ret < 0) {
731 		dev_err(priv->dev, "poll timeout\n");
732 		goto out;
733 	}
734 
735 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
736 	      MT7531_MDIO_REG_ADDR(regnum);
737 
738 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
739 
740 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
741 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
742 	if (ret < 0) {
743 		dev_err(priv->dev, "poll timeout\n");
744 		goto out;
745 	}
746 
747 	ret = val & MT7531_MDIO_RW_DATA_MASK;
748 out:
749 	mutex_unlock(&bus->mdio_lock);
750 
751 	return ret;
752 }
753 
754 static int
755 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
756 			 u16 data)
757 {
758 	struct mii_bus *bus = priv->bus;
759 	struct mt7530_dummy_poll p;
760 	int ret;
761 	u32 reg;
762 
763 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
764 
765 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
766 
767 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
768 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
769 	if (ret < 0) {
770 		dev_err(priv->dev, "poll timeout\n");
771 		goto out;
772 	}
773 
774 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
775 	      MT7531_MDIO_REG_ADDR(regnum) | data;
776 
777 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
778 
779 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
780 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
781 	if (ret < 0) {
782 		dev_err(priv->dev, "poll timeout\n");
783 		goto out;
784 	}
785 
786 out:
787 	mutex_unlock(&bus->mdio_lock);
788 
789 	return ret;
790 }
791 
792 static int
793 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
794 {
795 	int devad;
796 	int ret;
797 
798 	if (regnum & MII_ADDR_C45) {
799 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
800 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
801 					      regnum & MII_REGADDR_C45_MASK);
802 	} else {
803 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
804 	}
805 
806 	return ret;
807 }
808 
809 static int
810 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
811 		     u16 data)
812 {
813 	int devad;
814 	int ret;
815 
816 	if (regnum & MII_ADDR_C45) {
817 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
818 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
819 					       regnum & MII_REGADDR_C45_MASK,
820 					       data);
821 	} else {
822 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
823 	}
824 
825 	return ret;
826 }
827 
828 static int
829 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
830 {
831 	struct mt7530_priv *priv = bus->priv;
832 
833 	return priv->info->phy_read(priv, port, regnum);
834 }
835 
836 static int
837 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
838 {
839 	struct mt7530_priv *priv = bus->priv;
840 
841 	return priv->info->phy_write(priv, port, regnum, val);
842 }
843 
844 static void
845 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
846 		   uint8_t *data)
847 {
848 	int i;
849 
850 	if (stringset != ETH_SS_STATS)
851 		return;
852 
853 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
854 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
855 			ETH_GSTRING_LEN);
856 }
857 
858 static void
859 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
860 			 uint64_t *data)
861 {
862 	struct mt7530_priv *priv = ds->priv;
863 	const struct mt7530_mib_desc *mib;
864 	u32 reg, i;
865 	u64 hi;
866 
867 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
868 		mib = &mt7530_mib[i];
869 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
870 
871 		data[i] = mt7530_read(priv, reg);
872 		if (mib->size == 2) {
873 			hi = mt7530_read(priv, reg + 4);
874 			data[i] |= hi << 32;
875 		}
876 	}
877 }
878 
879 static int
880 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
881 {
882 	if (sset != ETH_SS_STATS)
883 		return 0;
884 
885 	return ARRAY_SIZE(mt7530_mib);
886 }
887 
888 static int
889 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
890 {
891 	struct mt7530_priv *priv = ds->priv;
892 	unsigned int secs = msecs / 1000;
893 	unsigned int tmp_age_count;
894 	unsigned int error = -1;
895 	unsigned int age_count;
896 	unsigned int age_unit;
897 
898 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
899 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
900 		return -ERANGE;
901 
902 	/* iterate through all possible age_count to find the closest pair */
903 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
904 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
905 
906 		if (tmp_age_unit <= AGE_UNIT_MAX) {
907 			unsigned int tmp_error = secs -
908 				(tmp_age_count + 1) * (tmp_age_unit + 1);
909 
910 			/* found a closer pair */
911 			if (error > tmp_error) {
912 				error = tmp_error;
913 				age_count = tmp_age_count;
914 				age_unit = tmp_age_unit;
915 			}
916 
917 			/* found the exact match, so break the loop */
918 			if (!error)
919 				break;
920 		}
921 	}
922 
923 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
924 
925 	return 0;
926 }
927 
928 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
929 {
930 	struct mt7530_priv *priv = ds->priv;
931 	u8 tx_delay = 0;
932 	int val;
933 
934 	mutex_lock(&priv->reg_mutex);
935 
936 	val = mt7530_read(priv, MT7530_MHWTRAP);
937 
938 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
939 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
940 
941 	switch (priv->p5_intf_sel) {
942 	case P5_INTF_SEL_PHY_P0:
943 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
944 		val |= MHWTRAP_PHY0_SEL;
945 		fallthrough;
946 	case P5_INTF_SEL_PHY_P4:
947 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
948 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
949 
950 		/* Setup the MAC by default for the cpu port */
951 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
952 		break;
953 	case P5_INTF_SEL_GMAC5:
954 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
955 		val &= ~MHWTRAP_P5_DIS;
956 		break;
957 	case P5_DISABLED:
958 		interface = PHY_INTERFACE_MODE_NA;
959 		break;
960 	default:
961 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
962 			priv->p5_intf_sel);
963 		goto unlock_exit;
964 	}
965 
966 	/* Setup RGMII settings */
967 	if (phy_interface_mode_is_rgmii(interface)) {
968 		val |= MHWTRAP_P5_RGMII_MODE;
969 
970 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
971 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
972 
973 		/* Don't set delay in DSA mode */
974 		if (!dsa_is_dsa_port(priv->ds, 5) &&
975 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
976 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
977 			tx_delay = 4; /* n * 0.5 ns */
978 
979 		/* P5 RGMII TX Clock Control: delay x */
980 		mt7530_write(priv, MT7530_P5RGMIITXCR,
981 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
982 
983 		/* reduce P5 RGMII Tx driving, 8mA */
984 		mt7530_write(priv, MT7530_IO_DRV_CR,
985 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
986 	}
987 
988 	mt7530_write(priv, MT7530_MHWTRAP, val);
989 
990 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
991 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
992 
993 	priv->p5_interface = interface;
994 
995 unlock_exit:
996 	mutex_unlock(&priv->reg_mutex);
997 }
998 
999 static int
1000 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1001 {
1002 	struct mt7530_priv *priv = ds->priv;
1003 	int ret;
1004 
1005 	/* Setup max capability of CPU port at first */
1006 	if (priv->info->cpu_port_config) {
1007 		ret = priv->info->cpu_port_config(ds, port);
1008 		if (ret)
1009 			return ret;
1010 	}
1011 
1012 	/* Enable Mediatek header mode on the cpu port */
1013 	mt7530_write(priv, MT7530_PVC_P(port),
1014 		     PORT_SPEC_TAG);
1015 
1016 	/* Disable flooding by default */
1017 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1018 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1019 
1020 	/* Set CPU port number */
1021 	if (priv->id == ID_MT7621)
1022 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1023 
1024 	/* CPU port gets connected to all user ports of
1025 	 * the switch.
1026 	 */
1027 	mt7530_write(priv, MT7530_PCR_P(port),
1028 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1029 
1030 	/* Set to fallback mode for independent VLAN learning */
1031 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1032 		   MT7530_PORT_FALLBACK_MODE);
1033 
1034 	return 0;
1035 }
1036 
1037 static int
1038 mt7530_port_enable(struct dsa_switch *ds, int port,
1039 		   struct phy_device *phy)
1040 {
1041 	struct mt7530_priv *priv = ds->priv;
1042 
1043 	mutex_lock(&priv->reg_mutex);
1044 
1045 	/* Allow the user port gets connected to the cpu port and also
1046 	 * restore the port matrix if the port is the member of a certain
1047 	 * bridge.
1048 	 */
1049 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1050 	priv->ports[port].enable = true;
1051 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1052 		   priv->ports[port].pm);
1053 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1054 
1055 	mutex_unlock(&priv->reg_mutex);
1056 
1057 	return 0;
1058 }
1059 
1060 static void
1061 mt7530_port_disable(struct dsa_switch *ds, int port)
1062 {
1063 	struct mt7530_priv *priv = ds->priv;
1064 
1065 	mutex_lock(&priv->reg_mutex);
1066 
1067 	/* Clear up all port matrix which could be restored in the next
1068 	 * enablement for the port.
1069 	 */
1070 	priv->ports[port].enable = false;
1071 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1072 		   PCR_MATRIX_CLR);
1073 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1074 
1075 	mutex_unlock(&priv->reg_mutex);
1076 }
1077 
1078 static int
1079 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1080 {
1081 	struct mt7530_priv *priv = ds->priv;
1082 	struct mii_bus *bus = priv->bus;
1083 	int length;
1084 	u32 val;
1085 
1086 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1087 	 * largest MTU of the slave ports. Because the switch only has a global
1088 	 * RX length register, only allowing CPU port here is enough.
1089 	 */
1090 	if (!dsa_is_cpu_port(ds, port))
1091 		return 0;
1092 
1093 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1094 
1095 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1096 	val &= ~MAX_RX_PKT_LEN_MASK;
1097 
1098 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1099 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1100 	if (length <= 1522) {
1101 		val |= MAX_RX_PKT_LEN_1522;
1102 	} else if (length <= 1536) {
1103 		val |= MAX_RX_PKT_LEN_1536;
1104 	} else if (length <= 1552) {
1105 		val |= MAX_RX_PKT_LEN_1552;
1106 	} else {
1107 		val &= ~MAX_RX_JUMBO_MASK;
1108 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1109 		val |= MAX_RX_PKT_LEN_JUMBO;
1110 	}
1111 
1112 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1113 
1114 	mutex_unlock(&bus->mdio_lock);
1115 
1116 	return 0;
1117 }
1118 
1119 static int
1120 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1121 {
1122 	return MT7530_MAX_MTU;
1123 }
1124 
1125 static void
1126 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1127 {
1128 	struct mt7530_priv *priv = ds->priv;
1129 	u32 stp_state;
1130 
1131 	switch (state) {
1132 	case BR_STATE_DISABLED:
1133 		stp_state = MT7530_STP_DISABLED;
1134 		break;
1135 	case BR_STATE_BLOCKING:
1136 		stp_state = MT7530_STP_BLOCKING;
1137 		break;
1138 	case BR_STATE_LISTENING:
1139 		stp_state = MT7530_STP_LISTENING;
1140 		break;
1141 	case BR_STATE_LEARNING:
1142 		stp_state = MT7530_STP_LEARNING;
1143 		break;
1144 	case BR_STATE_FORWARDING:
1145 	default:
1146 		stp_state = MT7530_STP_FORWARDING;
1147 		break;
1148 	}
1149 
1150 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1151 		   FID_PST(FID_BRIDGED, stp_state));
1152 }
1153 
1154 static int
1155 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1156 			     struct switchdev_brport_flags flags,
1157 			     struct netlink_ext_ack *extack)
1158 {
1159 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1160 			   BR_BCAST_FLOOD))
1161 		return -EINVAL;
1162 
1163 	return 0;
1164 }
1165 
1166 static int
1167 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1168 			 struct switchdev_brport_flags flags,
1169 			 struct netlink_ext_ack *extack)
1170 {
1171 	struct mt7530_priv *priv = ds->priv;
1172 
1173 	if (flags.mask & BR_LEARNING)
1174 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1175 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1176 
1177 	if (flags.mask & BR_FLOOD)
1178 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1179 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1180 
1181 	if (flags.mask & BR_MCAST_FLOOD)
1182 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1183 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1184 
1185 	if (flags.mask & BR_BCAST_FLOOD)
1186 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1187 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1188 
1189 	return 0;
1190 }
1191 
1192 static int
1193 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1194 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1195 			struct netlink_ext_ack *extack)
1196 {
1197 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1198 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1199 	struct mt7530_priv *priv = ds->priv;
1200 
1201 	mutex_lock(&priv->reg_mutex);
1202 
1203 	dsa_switch_for_each_user_port(other_dp, ds) {
1204 		int other_port = other_dp->index;
1205 
1206 		if (dp == other_dp)
1207 			continue;
1208 
1209 		/* Add this port to the port matrix of the other ports in the
1210 		 * same bridge. If the port is disabled, port matrix is kept
1211 		 * and not being setup until the port becomes enabled.
1212 		 */
1213 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1214 			continue;
1215 
1216 		if (priv->ports[other_port].enable)
1217 			mt7530_set(priv, MT7530_PCR_P(other_port),
1218 				   PCR_MATRIX(BIT(port)));
1219 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1220 
1221 		port_bitmap |= BIT(other_port);
1222 	}
1223 
1224 	/* Add the all other ports to this port matrix. */
1225 	if (priv->ports[port].enable)
1226 		mt7530_rmw(priv, MT7530_PCR_P(port),
1227 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1228 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1229 
1230 	/* Set to fallback mode for independent VLAN learning */
1231 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1232 		   MT7530_PORT_FALLBACK_MODE);
1233 
1234 	mutex_unlock(&priv->reg_mutex);
1235 
1236 	return 0;
1237 }
1238 
1239 static void
1240 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1241 {
1242 	struct mt7530_priv *priv = ds->priv;
1243 	bool all_user_ports_removed = true;
1244 	int i;
1245 
1246 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1247 	 * bridge. Don't set standalone ports to fallback mode.
1248 	 */
1249 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1250 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1251 			   MT7530_PORT_FALLBACK_MODE);
1252 
1253 	mt7530_rmw(priv, MT7530_PVC_P(port),
1254 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1255 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1256 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1257 		   MT7530_VLAN_ACC_ALL);
1258 
1259 	/* Set PVID to 0 */
1260 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1261 		   G0_PORT_VID_DEF);
1262 
1263 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1264 		if (dsa_is_user_port(ds, i) &&
1265 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1266 			all_user_ports_removed = false;
1267 			break;
1268 		}
1269 	}
1270 
1271 	/* CPU port also does the same thing until all user ports belonging to
1272 	 * the CPU port get out of VLAN filtering mode.
1273 	 */
1274 	if (all_user_ports_removed) {
1275 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1276 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1277 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1278 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1279 	}
1280 }
1281 
1282 static void
1283 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1284 {
1285 	struct mt7530_priv *priv = ds->priv;
1286 
1287 	/* Trapped into security mode allows packet forwarding through VLAN
1288 	 * table lookup.
1289 	 */
1290 	if (dsa_is_user_port(ds, port)) {
1291 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1292 			   MT7530_PORT_SECURITY_MODE);
1293 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1294 			   G0_PORT_VID(priv->ports[port].pvid));
1295 
1296 		/* Only accept tagged frames if PVID is not set */
1297 		if (!priv->ports[port].pvid)
1298 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1299 				   MT7530_VLAN_ACC_TAGGED);
1300 	}
1301 
1302 	/* Set the port as a user port which is to be able to recognize VID
1303 	 * from incoming packets before fetching entry within the VLAN table.
1304 	 */
1305 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1306 		   VLAN_ATTR(MT7530_VLAN_USER) |
1307 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1308 }
1309 
1310 static void
1311 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1312 			 struct dsa_bridge bridge)
1313 {
1314 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1315 	struct mt7530_priv *priv = ds->priv;
1316 
1317 	mutex_lock(&priv->reg_mutex);
1318 
1319 	dsa_switch_for_each_user_port(other_dp, ds) {
1320 		int other_port = other_dp->index;
1321 
1322 		if (dp == other_dp)
1323 			continue;
1324 
1325 		/* Remove this port from the port matrix of the other ports
1326 		 * in the same bridge. If the port is disabled, port matrix
1327 		 * is kept and not being setup until the port becomes enabled.
1328 		 */
1329 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1330 			continue;
1331 
1332 		if (priv->ports[other_port].enable)
1333 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1334 				     PCR_MATRIX(BIT(port)));
1335 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1336 	}
1337 
1338 	/* Set the cpu port to be the only one in the port matrix of
1339 	 * this port.
1340 	 */
1341 	if (priv->ports[port].enable)
1342 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1343 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1344 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1345 
1346 	/* When a port is removed from the bridge, the port would be set up
1347 	 * back to the default as is at initial boot which is a VLAN-unaware
1348 	 * port.
1349 	 */
1350 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1351 		   MT7530_PORT_MATRIX_MODE);
1352 
1353 	mutex_unlock(&priv->reg_mutex);
1354 }
1355 
1356 static int
1357 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1358 		    const unsigned char *addr, u16 vid,
1359 		    struct dsa_db db)
1360 {
1361 	struct mt7530_priv *priv = ds->priv;
1362 	int ret;
1363 	u8 port_mask = BIT(port);
1364 
1365 	mutex_lock(&priv->reg_mutex);
1366 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1367 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1368 	mutex_unlock(&priv->reg_mutex);
1369 
1370 	return ret;
1371 }
1372 
1373 static int
1374 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1375 		    const unsigned char *addr, u16 vid,
1376 		    struct dsa_db db)
1377 {
1378 	struct mt7530_priv *priv = ds->priv;
1379 	int ret;
1380 	u8 port_mask = BIT(port);
1381 
1382 	mutex_lock(&priv->reg_mutex);
1383 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1384 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1385 	mutex_unlock(&priv->reg_mutex);
1386 
1387 	return ret;
1388 }
1389 
1390 static int
1391 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1392 		     dsa_fdb_dump_cb_t *cb, void *data)
1393 {
1394 	struct mt7530_priv *priv = ds->priv;
1395 	struct mt7530_fdb _fdb = { 0 };
1396 	int cnt = MT7530_NUM_FDB_RECORDS;
1397 	int ret = 0;
1398 	u32 rsp = 0;
1399 
1400 	mutex_lock(&priv->reg_mutex);
1401 
1402 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1403 	if (ret < 0)
1404 		goto err;
1405 
1406 	do {
1407 		if (rsp & ATC_SRCH_HIT) {
1408 			mt7530_fdb_read(priv, &_fdb);
1409 			if (_fdb.port_mask & BIT(port)) {
1410 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1411 					 data);
1412 				if (ret < 0)
1413 					break;
1414 			}
1415 		}
1416 	} while (--cnt &&
1417 		 !(rsp & ATC_SRCH_END) &&
1418 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1419 err:
1420 	mutex_unlock(&priv->reg_mutex);
1421 
1422 	return 0;
1423 }
1424 
1425 static int
1426 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1427 		    const struct switchdev_obj_port_mdb *mdb,
1428 		    struct dsa_db db)
1429 {
1430 	struct mt7530_priv *priv = ds->priv;
1431 	const u8 *addr = mdb->addr;
1432 	u16 vid = mdb->vid;
1433 	u8 port_mask = 0;
1434 	int ret;
1435 
1436 	mutex_lock(&priv->reg_mutex);
1437 
1438 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1439 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1440 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1441 			    & PORT_MAP_MASK;
1442 
1443 	port_mask |= BIT(port);
1444 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1445 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1446 
1447 	mutex_unlock(&priv->reg_mutex);
1448 
1449 	return ret;
1450 }
1451 
1452 static int
1453 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1454 		    const struct switchdev_obj_port_mdb *mdb,
1455 		    struct dsa_db db)
1456 {
1457 	struct mt7530_priv *priv = ds->priv;
1458 	const u8 *addr = mdb->addr;
1459 	u16 vid = mdb->vid;
1460 	u8 port_mask = 0;
1461 	int ret;
1462 
1463 	mutex_lock(&priv->reg_mutex);
1464 
1465 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1466 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1467 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1468 			    & PORT_MAP_MASK;
1469 
1470 	port_mask &= ~BIT(port);
1471 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1472 			 port_mask ? STATIC_ENT : STATIC_EMP);
1473 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1474 
1475 	mutex_unlock(&priv->reg_mutex);
1476 
1477 	return ret;
1478 }
1479 
1480 static int
1481 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1482 {
1483 	struct mt7530_dummy_poll p;
1484 	u32 val;
1485 	int ret;
1486 
1487 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1488 	mt7530_write(priv, MT7530_VTCR, val);
1489 
1490 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1491 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1492 				 !(val & VTCR_BUSY), 20, 20000);
1493 	if (ret < 0) {
1494 		dev_err(priv->dev, "poll timeout\n");
1495 		return ret;
1496 	}
1497 
1498 	val = mt7530_read(priv, MT7530_VTCR);
1499 	if (val & VTCR_INVALID) {
1500 		dev_err(priv->dev, "read VTCR invalid\n");
1501 		return -EINVAL;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static int
1508 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1509 			   struct netlink_ext_ack *extack)
1510 {
1511 	if (vlan_filtering) {
1512 		/* The port is being kept as VLAN-unaware port when bridge is
1513 		 * set up with vlan_filtering not being set, Otherwise, the
1514 		 * port and the corresponding CPU port is required the setup
1515 		 * for becoming a VLAN-aware port.
1516 		 */
1517 		mt7530_port_set_vlan_aware(ds, port);
1518 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1519 	} else {
1520 		mt7530_port_set_vlan_unaware(ds, port);
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static void
1527 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1528 		   struct mt7530_hw_vlan_entry *entry)
1529 {
1530 	u8 new_members;
1531 	u32 val;
1532 
1533 	new_members = entry->old_members | BIT(entry->port) |
1534 		      BIT(MT7530_CPU_PORT);
1535 
1536 	/* Validate the entry with independent learning, create egress tag per
1537 	 * VLAN and joining the port as one of the port members.
1538 	 */
1539 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1540 	      VLAN_VALID;
1541 	mt7530_write(priv, MT7530_VAWD1, val);
1542 
1543 	/* Decide whether adding tag or not for those outgoing packets from the
1544 	 * port inside the VLAN.
1545 	 */
1546 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1547 				MT7530_VLAN_EGRESS_TAG;
1548 	mt7530_rmw(priv, MT7530_VAWD2,
1549 		   ETAG_CTRL_P_MASK(entry->port),
1550 		   ETAG_CTRL_P(entry->port, val));
1551 
1552 	/* CPU port is always taken as a tagged port for serving more than one
1553 	 * VLANs across and also being applied with egress type stack mode for
1554 	 * that VLAN tags would be appended after hardware special tag used as
1555 	 * DSA tag.
1556 	 */
1557 	mt7530_rmw(priv, MT7530_VAWD2,
1558 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1559 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1560 			       MT7530_VLAN_EGRESS_STACK));
1561 }
1562 
1563 static void
1564 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1565 		   struct mt7530_hw_vlan_entry *entry)
1566 {
1567 	u8 new_members;
1568 	u32 val;
1569 
1570 	new_members = entry->old_members & ~BIT(entry->port);
1571 
1572 	val = mt7530_read(priv, MT7530_VAWD1);
1573 	if (!(val & VLAN_VALID)) {
1574 		dev_err(priv->dev,
1575 			"Cannot be deleted due to invalid entry\n");
1576 		return;
1577 	}
1578 
1579 	/* If certain member apart from CPU port is still alive in the VLAN,
1580 	 * the entry would be kept valid. Otherwise, the entry is got to be
1581 	 * disabled.
1582 	 */
1583 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1584 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1585 		      VLAN_VALID;
1586 		mt7530_write(priv, MT7530_VAWD1, val);
1587 	} else {
1588 		mt7530_write(priv, MT7530_VAWD1, 0);
1589 		mt7530_write(priv, MT7530_VAWD2, 0);
1590 	}
1591 }
1592 
1593 static void
1594 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1595 		      struct mt7530_hw_vlan_entry *entry,
1596 		      mt7530_vlan_op vlan_op)
1597 {
1598 	u32 val;
1599 
1600 	/* Fetch entry */
1601 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1602 
1603 	val = mt7530_read(priv, MT7530_VAWD1);
1604 
1605 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1606 
1607 	/* Manipulate entry */
1608 	vlan_op(priv, entry);
1609 
1610 	/* Flush result to hardware */
1611 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1612 }
1613 
1614 static int
1615 mt7530_setup_vlan0(struct mt7530_priv *priv)
1616 {
1617 	u32 val;
1618 
1619 	/* Validate the entry with independent learning, keep the original
1620 	 * ingress tag attribute.
1621 	 */
1622 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1623 	      VLAN_VALID;
1624 	mt7530_write(priv, MT7530_VAWD1, val);
1625 
1626 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1627 }
1628 
1629 static int
1630 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1631 		     const struct switchdev_obj_port_vlan *vlan,
1632 		     struct netlink_ext_ack *extack)
1633 {
1634 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1635 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1636 	struct mt7530_hw_vlan_entry new_entry;
1637 	struct mt7530_priv *priv = ds->priv;
1638 
1639 	mutex_lock(&priv->reg_mutex);
1640 
1641 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1642 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1643 
1644 	if (pvid) {
1645 		priv->ports[port].pvid = vlan->vid;
1646 
1647 		/* Accept all frames if PVID is set */
1648 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1649 			   MT7530_VLAN_ACC_ALL);
1650 
1651 		/* Only configure PVID if VLAN filtering is enabled */
1652 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1653 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1654 				   G0_PORT_VID_MASK,
1655 				   G0_PORT_VID(vlan->vid));
1656 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1657 		/* This VLAN is overwritten without PVID, so unset it */
1658 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1659 
1660 		/* Only accept tagged frames if the port is VLAN-aware */
1661 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1662 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1663 				   MT7530_VLAN_ACC_TAGGED);
1664 
1665 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1666 			   G0_PORT_VID_DEF);
1667 	}
1668 
1669 	mutex_unlock(&priv->reg_mutex);
1670 
1671 	return 0;
1672 }
1673 
1674 static int
1675 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1676 		     const struct switchdev_obj_port_vlan *vlan)
1677 {
1678 	struct mt7530_hw_vlan_entry target_entry;
1679 	struct mt7530_priv *priv = ds->priv;
1680 
1681 	mutex_lock(&priv->reg_mutex);
1682 
1683 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1684 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1685 			      mt7530_hw_vlan_del);
1686 
1687 	/* PVID is being restored to the default whenever the PVID port
1688 	 * is being removed from the VLAN.
1689 	 */
1690 	if (priv->ports[port].pvid == vlan->vid) {
1691 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1692 
1693 		/* Only accept tagged frames if the port is VLAN-aware */
1694 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1695 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1696 				   MT7530_VLAN_ACC_TAGGED);
1697 
1698 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1699 			   G0_PORT_VID_DEF);
1700 	}
1701 
1702 
1703 	mutex_unlock(&priv->reg_mutex);
1704 
1705 	return 0;
1706 }
1707 
1708 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1709 {
1710 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1711 				   MIRROR_PORT(val);
1712 }
1713 
1714 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1715 {
1716 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1717 				   MIRROR_PORT(val);
1718 }
1719 
1720 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1721 				  struct dsa_mall_mirror_tc_entry *mirror,
1722 				  bool ingress, struct netlink_ext_ack *extack)
1723 {
1724 	struct mt7530_priv *priv = ds->priv;
1725 	int monitor_port;
1726 	u32 val;
1727 
1728 	/* Check for existent entry */
1729 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1730 		return -EEXIST;
1731 
1732 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1733 
1734 	/* MT7530 only supports one monitor port */
1735 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1736 	if (val & MT753X_MIRROR_EN(priv->id) &&
1737 	    monitor_port != mirror->to_local_port)
1738 		return -EEXIST;
1739 
1740 	val |= MT753X_MIRROR_EN(priv->id);
1741 	val &= ~MT753X_MIRROR_MASK(priv->id);
1742 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1743 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1744 
1745 	val = mt7530_read(priv, MT7530_PCR_P(port));
1746 	if (ingress) {
1747 		val |= PORT_RX_MIR;
1748 		priv->mirror_rx |= BIT(port);
1749 	} else {
1750 		val |= PORT_TX_MIR;
1751 		priv->mirror_tx |= BIT(port);
1752 	}
1753 	mt7530_write(priv, MT7530_PCR_P(port), val);
1754 
1755 	return 0;
1756 }
1757 
1758 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1759 				   struct dsa_mall_mirror_tc_entry *mirror)
1760 {
1761 	struct mt7530_priv *priv = ds->priv;
1762 	u32 val;
1763 
1764 	val = mt7530_read(priv, MT7530_PCR_P(port));
1765 	if (mirror->ingress) {
1766 		val &= ~PORT_RX_MIR;
1767 		priv->mirror_rx &= ~BIT(port);
1768 	} else {
1769 		val &= ~PORT_TX_MIR;
1770 		priv->mirror_tx &= ~BIT(port);
1771 	}
1772 	mt7530_write(priv, MT7530_PCR_P(port), val);
1773 
1774 	if (!priv->mirror_rx && !priv->mirror_tx) {
1775 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1776 		val &= ~MT753X_MIRROR_EN(priv->id);
1777 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1778 	}
1779 }
1780 
1781 static enum dsa_tag_protocol
1782 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1783 		     enum dsa_tag_protocol mp)
1784 {
1785 	return DSA_TAG_PROTO_MTK;
1786 }
1787 
1788 #ifdef CONFIG_GPIOLIB
1789 static inline u32
1790 mt7530_gpio_to_bit(unsigned int offset)
1791 {
1792 	/* Map GPIO offset to register bit
1793 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1794 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1795 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1796 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1797 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1798 	 */
1799 	return BIT(offset + offset / 3);
1800 }
1801 
1802 static int
1803 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1804 {
1805 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1806 	u32 bit = mt7530_gpio_to_bit(offset);
1807 
1808 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1809 }
1810 
1811 static void
1812 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1813 {
1814 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1815 	u32 bit = mt7530_gpio_to_bit(offset);
1816 
1817 	if (value)
1818 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1819 	else
1820 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1821 }
1822 
1823 static int
1824 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1825 {
1826 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1827 	u32 bit = mt7530_gpio_to_bit(offset);
1828 
1829 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1830 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1831 }
1832 
1833 static int
1834 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1835 {
1836 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1837 	u32 bit = mt7530_gpio_to_bit(offset);
1838 
1839 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1840 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1841 
1842 	return 0;
1843 }
1844 
1845 static int
1846 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1847 {
1848 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1849 	u32 bit = mt7530_gpio_to_bit(offset);
1850 
1851 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1852 
1853 	if (value)
1854 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1855 	else
1856 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1857 
1858 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1859 
1860 	return 0;
1861 }
1862 
1863 static int
1864 mt7530_setup_gpio(struct mt7530_priv *priv)
1865 {
1866 	struct device *dev = priv->dev;
1867 	struct gpio_chip *gc;
1868 
1869 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1870 	if (!gc)
1871 		return -ENOMEM;
1872 
1873 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1874 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1875 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1876 
1877 	gc->label = "mt7530";
1878 	gc->parent = dev;
1879 	gc->owner = THIS_MODULE;
1880 	gc->get_direction = mt7530_gpio_get_direction;
1881 	gc->direction_input = mt7530_gpio_direction_input;
1882 	gc->direction_output = mt7530_gpio_direction_output;
1883 	gc->get = mt7530_gpio_get;
1884 	gc->set = mt7530_gpio_set;
1885 	gc->base = -1;
1886 	gc->ngpio = 15;
1887 	gc->can_sleep = true;
1888 
1889 	return devm_gpiochip_add_data(dev, gc, priv);
1890 }
1891 #endif /* CONFIG_GPIOLIB */
1892 
1893 static irqreturn_t
1894 mt7530_irq_thread_fn(int irq, void *dev_id)
1895 {
1896 	struct mt7530_priv *priv = dev_id;
1897 	bool handled = false;
1898 	u32 val;
1899 	int p;
1900 
1901 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1902 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1903 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1904 	mutex_unlock(&priv->bus->mdio_lock);
1905 
1906 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1907 		if (BIT(p) & val) {
1908 			unsigned int irq;
1909 
1910 			irq = irq_find_mapping(priv->irq_domain, p);
1911 			handle_nested_irq(irq);
1912 			handled = true;
1913 		}
1914 	}
1915 
1916 	return IRQ_RETVAL(handled);
1917 }
1918 
1919 static void
1920 mt7530_irq_mask(struct irq_data *d)
1921 {
1922 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1923 
1924 	priv->irq_enable &= ~BIT(d->hwirq);
1925 }
1926 
1927 static void
1928 mt7530_irq_unmask(struct irq_data *d)
1929 {
1930 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1931 
1932 	priv->irq_enable |= BIT(d->hwirq);
1933 }
1934 
1935 static void
1936 mt7530_irq_bus_lock(struct irq_data *d)
1937 {
1938 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1939 
1940 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1941 }
1942 
1943 static void
1944 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1945 {
1946 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1947 
1948 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1949 	mutex_unlock(&priv->bus->mdio_lock);
1950 }
1951 
1952 static struct irq_chip mt7530_irq_chip = {
1953 	.name = KBUILD_MODNAME,
1954 	.irq_mask = mt7530_irq_mask,
1955 	.irq_unmask = mt7530_irq_unmask,
1956 	.irq_bus_lock = mt7530_irq_bus_lock,
1957 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1958 };
1959 
1960 static int
1961 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1962 	       irq_hw_number_t hwirq)
1963 {
1964 	irq_set_chip_data(irq, domain->host_data);
1965 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1966 	irq_set_nested_thread(irq, true);
1967 	irq_set_noprobe(irq);
1968 
1969 	return 0;
1970 }
1971 
1972 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1973 	.map = mt7530_irq_map,
1974 	.xlate = irq_domain_xlate_onecell,
1975 };
1976 
1977 static void
1978 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1979 {
1980 	struct dsa_switch *ds = priv->ds;
1981 	int p;
1982 
1983 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1984 		if (BIT(p) & ds->phys_mii_mask) {
1985 			unsigned int irq;
1986 
1987 			irq = irq_create_mapping(priv->irq_domain, p);
1988 			ds->slave_mii_bus->irq[p] = irq;
1989 		}
1990 	}
1991 }
1992 
1993 static int
1994 mt7530_setup_irq(struct mt7530_priv *priv)
1995 {
1996 	struct device *dev = priv->dev;
1997 	struct device_node *np = dev->of_node;
1998 	int ret;
1999 
2000 	if (!of_property_read_bool(np, "interrupt-controller")) {
2001 		dev_info(dev, "no interrupt support\n");
2002 		return 0;
2003 	}
2004 
2005 	priv->irq = of_irq_get(np, 0);
2006 	if (priv->irq <= 0) {
2007 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2008 		return priv->irq ? : -EINVAL;
2009 	}
2010 
2011 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2012 						 &mt7530_irq_domain_ops, priv);
2013 	if (!priv->irq_domain) {
2014 		dev_err(dev, "failed to create IRQ domain\n");
2015 		return -ENOMEM;
2016 	}
2017 
2018 	/* This register must be set for MT7530 to properly fire interrupts */
2019 	if (priv->id != ID_MT7531)
2020 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2021 
2022 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2023 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2024 	if (ret) {
2025 		irq_domain_remove(priv->irq_domain);
2026 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2027 		return ret;
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 static void
2034 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2035 {
2036 	int p;
2037 
2038 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2039 		if (BIT(p) & priv->ds->phys_mii_mask) {
2040 			unsigned int irq;
2041 
2042 			irq = irq_find_mapping(priv->irq_domain, p);
2043 			irq_dispose_mapping(irq);
2044 		}
2045 	}
2046 }
2047 
2048 static void
2049 mt7530_free_irq_common(struct mt7530_priv *priv)
2050 {
2051 	free_irq(priv->irq, priv);
2052 	irq_domain_remove(priv->irq_domain);
2053 }
2054 
2055 static void
2056 mt7530_free_irq(struct mt7530_priv *priv)
2057 {
2058 	mt7530_free_mdio_irq(priv);
2059 	mt7530_free_irq_common(priv);
2060 }
2061 
2062 static int
2063 mt7530_setup_mdio(struct mt7530_priv *priv)
2064 {
2065 	struct dsa_switch *ds = priv->ds;
2066 	struct device *dev = priv->dev;
2067 	struct mii_bus *bus;
2068 	static int idx;
2069 	int ret;
2070 
2071 	bus = devm_mdiobus_alloc(dev);
2072 	if (!bus)
2073 		return -ENOMEM;
2074 
2075 	ds->slave_mii_bus = bus;
2076 	bus->priv = priv;
2077 	bus->name = KBUILD_MODNAME "-mii";
2078 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2079 	bus->read = mt753x_phy_read;
2080 	bus->write = mt753x_phy_write;
2081 	bus->parent = dev;
2082 	bus->phy_mask = ~ds->phys_mii_mask;
2083 
2084 	if (priv->irq)
2085 		mt7530_setup_mdio_irq(priv);
2086 
2087 	ret = devm_mdiobus_register(dev, bus);
2088 	if (ret) {
2089 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2090 		if (priv->irq)
2091 			mt7530_free_mdio_irq(priv);
2092 	}
2093 
2094 	return ret;
2095 }
2096 
2097 static int
2098 mt7530_setup(struct dsa_switch *ds)
2099 {
2100 	struct mt7530_priv *priv = ds->priv;
2101 	struct device_node *phy_node;
2102 	struct device_node *mac_np;
2103 	struct mt7530_dummy_poll p;
2104 	phy_interface_t interface;
2105 	struct device_node *dn;
2106 	u32 id, val;
2107 	int ret, i;
2108 
2109 	/* The parent node of master netdev which holds the common system
2110 	 * controller also is the container for two GMACs nodes representing
2111 	 * as two netdev instances.
2112 	 */
2113 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2114 	ds->assisted_learning_on_cpu_port = true;
2115 	ds->mtu_enforcement_ingress = true;
2116 
2117 	if (priv->id == ID_MT7530) {
2118 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2119 		ret = regulator_enable(priv->core_pwr);
2120 		if (ret < 0) {
2121 			dev_err(priv->dev,
2122 				"Failed to enable core power: %d\n", ret);
2123 			return ret;
2124 		}
2125 
2126 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2127 		ret = regulator_enable(priv->io_pwr);
2128 		if (ret < 0) {
2129 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2130 				ret);
2131 			return ret;
2132 		}
2133 	}
2134 
2135 	/* Reset whole chip through gpio pin or memory-mapped registers for
2136 	 * different type of hardware
2137 	 */
2138 	if (priv->mcm) {
2139 		reset_control_assert(priv->rstc);
2140 		usleep_range(1000, 1100);
2141 		reset_control_deassert(priv->rstc);
2142 	} else {
2143 		gpiod_set_value_cansleep(priv->reset, 0);
2144 		usleep_range(1000, 1100);
2145 		gpiod_set_value_cansleep(priv->reset, 1);
2146 	}
2147 
2148 	/* Waiting for MT7530 got to stable */
2149 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2150 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2151 				 20, 1000000);
2152 	if (ret < 0) {
2153 		dev_err(priv->dev, "reset timeout\n");
2154 		return ret;
2155 	}
2156 
2157 	id = mt7530_read(priv, MT7530_CREV);
2158 	id >>= CHIP_NAME_SHIFT;
2159 	if (id != MT7530_ID) {
2160 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2161 		return -ENODEV;
2162 	}
2163 
2164 	/* Reset the switch through internal reset */
2165 	mt7530_write(priv, MT7530_SYS_CTRL,
2166 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2167 		     SYS_CTRL_REG_RST);
2168 
2169 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2170 	val = mt7530_read(priv, MT7530_MHWTRAP);
2171 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2172 	val |= MHWTRAP_MANUAL;
2173 	mt7530_write(priv, MT7530_MHWTRAP, val);
2174 
2175 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2176 
2177 	/* Enable and reset MIB counters */
2178 	mt7530_mib_reset(ds);
2179 
2180 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2181 		/* Disable forwarding by default on all ports */
2182 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2183 			   PCR_MATRIX_CLR);
2184 
2185 		/* Disable learning by default on all ports */
2186 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2187 
2188 		if (dsa_is_cpu_port(ds, i)) {
2189 			ret = mt753x_cpu_port_enable(ds, i);
2190 			if (ret)
2191 				return ret;
2192 		} else {
2193 			mt7530_port_disable(ds, i);
2194 
2195 			/* Set default PVID to 0 on all user ports */
2196 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2197 				   G0_PORT_VID_DEF);
2198 		}
2199 		/* Enable consistent egress tag */
2200 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2201 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2202 	}
2203 
2204 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2205 	ret = mt7530_setup_vlan0(priv);
2206 	if (ret)
2207 		return ret;
2208 
2209 	/* Setup port 5 */
2210 	priv->p5_intf_sel = P5_DISABLED;
2211 	interface = PHY_INTERFACE_MODE_NA;
2212 
2213 	if (!dsa_is_unused_port(ds, 5)) {
2214 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2215 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2216 		if (ret && ret != -ENODEV)
2217 			return ret;
2218 	} else {
2219 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2220 		for_each_child_of_node(dn, mac_np) {
2221 			if (!of_device_is_compatible(mac_np,
2222 						     "mediatek,eth-mac"))
2223 				continue;
2224 
2225 			ret = of_property_read_u32(mac_np, "reg", &id);
2226 			if (ret < 0 || id != 1)
2227 				continue;
2228 
2229 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2230 			if (!phy_node)
2231 				continue;
2232 
2233 			if (phy_node->parent == priv->dev->of_node->parent) {
2234 				ret = of_get_phy_mode(mac_np, &interface);
2235 				if (ret && ret != -ENODEV) {
2236 					of_node_put(mac_np);
2237 					of_node_put(phy_node);
2238 					return ret;
2239 				}
2240 				id = of_mdio_parse_addr(ds->dev, phy_node);
2241 				if (id == 0)
2242 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2243 				if (id == 4)
2244 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2245 			}
2246 			of_node_put(mac_np);
2247 			of_node_put(phy_node);
2248 			break;
2249 		}
2250 	}
2251 
2252 #ifdef CONFIG_GPIOLIB
2253 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2254 		ret = mt7530_setup_gpio(priv);
2255 		if (ret)
2256 			return ret;
2257 	}
2258 #endif /* CONFIG_GPIOLIB */
2259 
2260 	mt7530_setup_port5(ds, interface);
2261 
2262 	/* Flush the FDB table */
2263 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2264 	if (ret < 0)
2265 		return ret;
2266 
2267 	return 0;
2268 }
2269 
2270 static int
2271 mt7531_setup(struct dsa_switch *ds)
2272 {
2273 	struct mt7530_priv *priv = ds->priv;
2274 	struct mt7530_dummy_poll p;
2275 	u32 val, id;
2276 	int ret, i;
2277 
2278 	/* Reset whole chip through gpio pin or memory-mapped registers for
2279 	 * different type of hardware
2280 	 */
2281 	if (priv->mcm) {
2282 		reset_control_assert(priv->rstc);
2283 		usleep_range(1000, 1100);
2284 		reset_control_deassert(priv->rstc);
2285 	} else {
2286 		gpiod_set_value_cansleep(priv->reset, 0);
2287 		usleep_range(1000, 1100);
2288 		gpiod_set_value_cansleep(priv->reset, 1);
2289 	}
2290 
2291 	/* Waiting for MT7530 got to stable */
2292 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2293 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2294 				 20, 1000000);
2295 	if (ret < 0) {
2296 		dev_err(priv->dev, "reset timeout\n");
2297 		return ret;
2298 	}
2299 
2300 	id = mt7530_read(priv, MT7531_CREV);
2301 	id >>= CHIP_NAME_SHIFT;
2302 
2303 	if (id != MT7531_ID) {
2304 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2305 		return -ENODEV;
2306 	}
2307 
2308 	/* Reset the switch through internal reset */
2309 	mt7530_write(priv, MT7530_SYS_CTRL,
2310 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2311 		     SYS_CTRL_REG_RST);
2312 
2313 	if (mt7531_dual_sgmii_supported(priv)) {
2314 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2315 
2316 		/* Let ds->slave_mii_bus be able to access external phy. */
2317 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2318 			   MT7531_EXT_P_MDC_11);
2319 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2320 			   MT7531_EXT_P_MDIO_12);
2321 	} else {
2322 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2323 	}
2324 	dev_dbg(ds->dev, "P5 support %s interface\n",
2325 		p5_intf_modes(priv->p5_intf_sel));
2326 
2327 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2328 		   MT7531_GPIO0_INTERRUPT);
2329 
2330 	/* Let phylink decide the interface later. */
2331 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2332 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2333 
2334 	/* Enable PHY core PLL, since phy_device has not yet been created
2335 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2336 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2337 	 * function.
2338 	 */
2339 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2340 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2341 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2342 	val &= ~MT7531_PHY_PLL_OFF;
2343 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2344 				 CORE_PLL_GROUP4, val);
2345 
2346 	/* BPDU to CPU port */
2347 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2348 		   BIT(MT7530_CPU_PORT));
2349 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2350 		   MT753X_BPDU_CPU_ONLY);
2351 
2352 	/* Enable and reset MIB counters */
2353 	mt7530_mib_reset(ds);
2354 
2355 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2356 		/* Disable forwarding by default on all ports */
2357 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2358 			   PCR_MATRIX_CLR);
2359 
2360 		/* Disable learning by default on all ports */
2361 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2362 
2363 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2364 
2365 		if (dsa_is_cpu_port(ds, i)) {
2366 			ret = mt753x_cpu_port_enable(ds, i);
2367 			if (ret)
2368 				return ret;
2369 		} else {
2370 			mt7530_port_disable(ds, i);
2371 
2372 			/* Set default PVID to 0 on all user ports */
2373 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2374 				   G0_PORT_VID_DEF);
2375 		}
2376 
2377 		/* Enable consistent egress tag */
2378 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2379 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2380 	}
2381 
2382 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2383 	ret = mt7530_setup_vlan0(priv);
2384 	if (ret)
2385 		return ret;
2386 
2387 	ds->assisted_learning_on_cpu_port = true;
2388 	ds->mtu_enforcement_ingress = true;
2389 
2390 	/* Flush the FDB table */
2391 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2392 	if (ret < 0)
2393 		return ret;
2394 
2395 	return 0;
2396 }
2397 
2398 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2399 				     struct phylink_config *config)
2400 {
2401 	switch (port) {
2402 	case 0 ... 4: /* Internal phy */
2403 		__set_bit(PHY_INTERFACE_MODE_GMII,
2404 			  config->supported_interfaces);
2405 		break;
2406 
2407 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2408 		phy_interface_set_rgmii(config->supported_interfaces);
2409 		__set_bit(PHY_INTERFACE_MODE_MII,
2410 			  config->supported_interfaces);
2411 		__set_bit(PHY_INTERFACE_MODE_GMII,
2412 			  config->supported_interfaces);
2413 		break;
2414 
2415 	case 6: /* 1st cpu port */
2416 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2417 			  config->supported_interfaces);
2418 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2419 			  config->supported_interfaces);
2420 		break;
2421 	}
2422 }
2423 
2424 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2425 {
2426 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2427 }
2428 
2429 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2430 				     struct phylink_config *config)
2431 {
2432 	struct mt7530_priv *priv = ds->priv;
2433 
2434 	switch (port) {
2435 	case 0 ... 4: /* Internal phy */
2436 		__set_bit(PHY_INTERFACE_MODE_GMII,
2437 			  config->supported_interfaces);
2438 		break;
2439 
2440 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2441 		if (mt7531_is_rgmii_port(priv, port)) {
2442 			phy_interface_set_rgmii(config->supported_interfaces);
2443 			break;
2444 		}
2445 		fallthrough;
2446 
2447 	case 6: /* 1st cpu port supports sgmii/8023z only */
2448 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2449 			  config->supported_interfaces);
2450 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2451 			  config->supported_interfaces);
2452 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2453 			  config->supported_interfaces);
2454 
2455 		config->mac_capabilities |= MAC_2500FD;
2456 		break;
2457 	}
2458 }
2459 
2460 static int
2461 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2462 {
2463 	struct mt7530_priv *priv = ds->priv;
2464 
2465 	return priv->info->pad_setup(ds, state->interface);
2466 }
2467 
2468 static int
2469 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2470 		  phy_interface_t interface)
2471 {
2472 	struct mt7530_priv *priv = ds->priv;
2473 
2474 	/* Only need to setup port5. */
2475 	if (port != 5)
2476 		return 0;
2477 
2478 	mt7530_setup_port5(priv->ds, interface);
2479 
2480 	return 0;
2481 }
2482 
2483 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2484 			      phy_interface_t interface,
2485 			      struct phy_device *phydev)
2486 {
2487 	u32 val;
2488 
2489 	if (!mt7531_is_rgmii_port(priv, port)) {
2490 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2491 			port);
2492 		return -EINVAL;
2493 	}
2494 
2495 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2496 	val |= GP_CLK_EN;
2497 	val &= ~GP_MODE_MASK;
2498 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2499 	val &= ~CLK_SKEW_IN_MASK;
2500 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2501 	val &= ~CLK_SKEW_OUT_MASK;
2502 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2503 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2504 
2505 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2506 	if (!phydev || phy_driver_is_genphy(phydev)) {
2507 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2508 		switch (interface) {
2509 		case PHY_INTERFACE_MODE_RGMII:
2510 			val |= TXCLK_NO_REVERSE;
2511 			val |= RXCLK_NO_DELAY;
2512 			break;
2513 		case PHY_INTERFACE_MODE_RGMII_RXID:
2514 			val |= TXCLK_NO_REVERSE;
2515 			break;
2516 		case PHY_INTERFACE_MODE_RGMII_TXID:
2517 			val |= RXCLK_NO_DELAY;
2518 			break;
2519 		case PHY_INTERFACE_MODE_RGMII_ID:
2520 			break;
2521 		default:
2522 			return -EINVAL;
2523 		}
2524 	}
2525 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2526 
2527 	return 0;
2528 }
2529 
2530 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2531 			       phy_interface_t interface, int speed, int duplex)
2532 {
2533 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2534 	int port = pcs_to_mt753x_pcs(pcs)->port;
2535 	unsigned int val;
2536 
2537 	/* For adjusting speed and duplex of SGMII force mode. */
2538 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2539 	    phylink_autoneg_inband(mode))
2540 		return;
2541 
2542 	/* SGMII force mode setting */
2543 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2544 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2545 
2546 	switch (speed) {
2547 	case SPEED_10:
2548 		val |= MT7531_SGMII_FORCE_SPEED_10;
2549 		break;
2550 	case SPEED_100:
2551 		val |= MT7531_SGMII_FORCE_SPEED_100;
2552 		break;
2553 	case SPEED_1000:
2554 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2555 		break;
2556 	}
2557 
2558 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2559 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2560 	 *
2561 	 * The speed check is unnecessary as the MAC capabilities apply
2562 	 * this restriction. --rmk
2563 	 */
2564 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2565 	    duplex != DUPLEX_FULL)
2566 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2567 
2568 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2569 }
2570 
2571 static bool mt753x_is_mac_port(u32 port)
2572 {
2573 	return (port == 5 || port == 6);
2574 }
2575 
2576 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2577 					 phy_interface_t interface)
2578 {
2579 	u32 val;
2580 
2581 	if (!mt753x_is_mac_port(port))
2582 		return -EINVAL;
2583 
2584 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2585 		   MT7531_SGMII_PHYA_PWD);
2586 
2587 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2588 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2589 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2590 	 * encoding.
2591 	 */
2592 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2593 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2594 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2595 
2596 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2597 
2598 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2599 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2600 	 */
2601 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2602 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2603 		   MT7531_SGMII_FORCE_SPEED_1000);
2604 
2605 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2606 
2607 	return 0;
2608 }
2609 
2610 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2611 				      phy_interface_t interface)
2612 {
2613 	if (!mt753x_is_mac_port(port))
2614 		return -EINVAL;
2615 
2616 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2617 		   MT7531_SGMII_PHYA_PWD);
2618 
2619 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2620 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2621 
2622 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2623 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2624 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2625 
2626 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2627 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2628 
2629 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2630 
2631 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2632 
2633 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2634 
2635 	return 0;
2636 }
2637 
2638 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2639 {
2640 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2641 	int port = pcs_to_mt753x_pcs(pcs)->port;
2642 	u32 val;
2643 
2644 	/* Only restart AN when AN is enabled */
2645 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2646 	if (val & MT7531_SGMII_AN_ENABLE) {
2647 		val |= MT7531_SGMII_AN_RESTART;
2648 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2649 	}
2650 }
2651 
2652 static int
2653 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2654 		  phy_interface_t interface)
2655 {
2656 	struct mt7530_priv *priv = ds->priv;
2657 	struct phy_device *phydev;
2658 	struct dsa_port *dp;
2659 
2660 	if (!mt753x_is_mac_port(port)) {
2661 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2662 		return -EINVAL;
2663 	}
2664 
2665 	switch (interface) {
2666 	case PHY_INTERFACE_MODE_RGMII:
2667 	case PHY_INTERFACE_MODE_RGMII_ID:
2668 	case PHY_INTERFACE_MODE_RGMII_RXID:
2669 	case PHY_INTERFACE_MODE_RGMII_TXID:
2670 		dp = dsa_to_port(ds, port);
2671 		phydev = dp->slave->phydev;
2672 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2673 	case PHY_INTERFACE_MODE_SGMII:
2674 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2675 	case PHY_INTERFACE_MODE_NA:
2676 	case PHY_INTERFACE_MODE_1000BASEX:
2677 	case PHY_INTERFACE_MODE_2500BASEX:
2678 		if (phylink_autoneg_inband(mode))
2679 			return -EINVAL;
2680 
2681 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2682 	default:
2683 		return -EINVAL;
2684 	}
2685 
2686 	return -EINVAL;
2687 }
2688 
2689 static int
2690 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2691 		  const struct phylink_link_state *state)
2692 {
2693 	struct mt7530_priv *priv = ds->priv;
2694 
2695 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2696 }
2697 
2698 static struct phylink_pcs *
2699 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2700 			      phy_interface_t interface)
2701 {
2702 	struct mt7530_priv *priv = ds->priv;
2703 
2704 	switch (interface) {
2705 	case PHY_INTERFACE_MODE_TRGMII:
2706 	case PHY_INTERFACE_MODE_SGMII:
2707 	case PHY_INTERFACE_MODE_1000BASEX:
2708 	case PHY_INTERFACE_MODE_2500BASEX:
2709 		return &priv->pcs[port].pcs;
2710 
2711 	default:
2712 		return NULL;
2713 	}
2714 }
2715 
2716 static void
2717 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2718 			  const struct phylink_link_state *state)
2719 {
2720 	struct mt7530_priv *priv = ds->priv;
2721 	u32 mcr_cur, mcr_new;
2722 
2723 	switch (port) {
2724 	case 0 ... 4: /* Internal phy */
2725 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2726 			goto unsupported;
2727 		break;
2728 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2729 		if (priv->p5_interface == state->interface)
2730 			break;
2731 
2732 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2733 			goto unsupported;
2734 
2735 		if (priv->p5_intf_sel != P5_DISABLED)
2736 			priv->p5_interface = state->interface;
2737 		break;
2738 	case 6: /* 1st cpu port */
2739 		if (priv->p6_interface == state->interface)
2740 			break;
2741 
2742 		mt753x_pad_setup(ds, state);
2743 
2744 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2745 			goto unsupported;
2746 
2747 		priv->p6_interface = state->interface;
2748 		break;
2749 	default:
2750 unsupported:
2751 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2752 			__func__, phy_modes(state->interface), port);
2753 		return;
2754 	}
2755 
2756 	if (phylink_autoneg_inband(mode) &&
2757 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2758 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2759 			__func__);
2760 		return;
2761 	}
2762 
2763 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2764 	mcr_new = mcr_cur;
2765 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2766 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2767 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2768 
2769 	/* Are we connected to external phy */
2770 	if (port == 5 && dsa_is_user_port(ds, 5))
2771 		mcr_new |= PMCR_EXT_PHY;
2772 
2773 	if (mcr_new != mcr_cur)
2774 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2775 }
2776 
2777 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2778 					 unsigned int mode,
2779 					 phy_interface_t interface)
2780 {
2781 	struct mt7530_priv *priv = ds->priv;
2782 
2783 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2784 }
2785 
2786 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2787 				       unsigned int mode,
2788 				       phy_interface_t interface,
2789 				       int speed, int duplex)
2790 {
2791 	if (pcs->ops->pcs_link_up)
2792 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2793 }
2794 
2795 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2796 				       unsigned int mode,
2797 				       phy_interface_t interface,
2798 				       struct phy_device *phydev,
2799 				       int speed, int duplex,
2800 				       bool tx_pause, bool rx_pause)
2801 {
2802 	struct mt7530_priv *priv = ds->priv;
2803 	u32 mcr;
2804 
2805 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2806 
2807 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2808 	 * variants.
2809 	 */
2810 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2811 	    (phy_interface_mode_is_8023z(interface))) {
2812 		speed = SPEED_1000;
2813 		duplex = DUPLEX_FULL;
2814 	}
2815 
2816 	switch (speed) {
2817 	case SPEED_1000:
2818 		mcr |= PMCR_FORCE_SPEED_1000;
2819 		break;
2820 	case SPEED_100:
2821 		mcr |= PMCR_FORCE_SPEED_100;
2822 		break;
2823 	}
2824 	if (duplex == DUPLEX_FULL) {
2825 		mcr |= PMCR_FORCE_FDX;
2826 		if (tx_pause)
2827 			mcr |= PMCR_TX_FC_EN;
2828 		if (rx_pause)
2829 			mcr |= PMCR_RX_FC_EN;
2830 	}
2831 
2832 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2833 		switch (speed) {
2834 		case SPEED_1000:
2835 			mcr |= PMCR_FORCE_EEE1G;
2836 			break;
2837 		case SPEED_100:
2838 			mcr |= PMCR_FORCE_EEE100;
2839 			break;
2840 		}
2841 	}
2842 
2843 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2844 }
2845 
2846 static int
2847 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2848 {
2849 	struct mt7530_priv *priv = ds->priv;
2850 	phy_interface_t interface;
2851 	int speed;
2852 	int ret;
2853 
2854 	switch (port) {
2855 	case 5:
2856 		if (mt7531_is_rgmii_port(priv, port))
2857 			interface = PHY_INTERFACE_MODE_RGMII;
2858 		else
2859 			interface = PHY_INTERFACE_MODE_2500BASEX;
2860 
2861 		priv->p5_interface = interface;
2862 		break;
2863 	case 6:
2864 		interface = PHY_INTERFACE_MODE_2500BASEX;
2865 
2866 		mt7531_pad_setup(ds, interface);
2867 
2868 		priv->p6_interface = interface;
2869 		break;
2870 	default:
2871 		return -EINVAL;
2872 	}
2873 
2874 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2875 		speed = SPEED_2500;
2876 	else
2877 		speed = SPEED_1000;
2878 
2879 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2880 	if (ret)
2881 		return ret;
2882 	mt7530_write(priv, MT7530_PMCR_P(port),
2883 		     PMCR_CPU_PORT_SETTING(priv->id));
2884 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2885 				   interface, speed, DUPLEX_FULL);
2886 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2887 				   speed, DUPLEX_FULL, true, true);
2888 
2889 	return 0;
2890 }
2891 
2892 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2893 				    struct phylink_config *config)
2894 {
2895 	struct mt7530_priv *priv = ds->priv;
2896 
2897 	/* This switch only supports full-duplex at 1Gbps */
2898 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2899 				   MAC_10 | MAC_100 | MAC_1000FD;
2900 
2901 	/* This driver does not make use of the speed, duplex, pause or the
2902 	 * advertisement in its mac_config, so it is safe to mark this driver
2903 	 * as non-legacy.
2904 	 */
2905 	config->legacy_pre_march2020 = false;
2906 
2907 	priv->info->mac_port_get_caps(ds, port, config);
2908 }
2909 
2910 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2911 			       unsigned long *supported,
2912 			       const struct phylink_link_state *state)
2913 {
2914 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2915 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2916 	    phy_interface_mode_is_8023z(state->interface))
2917 		phylink_clear(supported, Autoneg);
2918 
2919 	return 0;
2920 }
2921 
2922 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2923 				 struct phylink_link_state *state)
2924 {
2925 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2926 	int port = pcs_to_mt753x_pcs(pcs)->port;
2927 	u32 pmsr;
2928 
2929 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2930 
2931 	state->link = (pmsr & PMSR_LINK);
2932 	state->an_complete = state->link;
2933 	state->duplex = !!(pmsr & PMSR_DPX);
2934 
2935 	switch (pmsr & PMSR_SPEED_MASK) {
2936 	case PMSR_SPEED_10:
2937 		state->speed = SPEED_10;
2938 		break;
2939 	case PMSR_SPEED_100:
2940 		state->speed = SPEED_100;
2941 		break;
2942 	case PMSR_SPEED_1000:
2943 		state->speed = SPEED_1000;
2944 		break;
2945 	default:
2946 		state->speed = SPEED_UNKNOWN;
2947 		break;
2948 	}
2949 
2950 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2951 	if (pmsr & PMSR_RX_FC)
2952 		state->pause |= MLO_PAUSE_RX;
2953 	if (pmsr & PMSR_TX_FC)
2954 		state->pause |= MLO_PAUSE_TX;
2955 }
2956 
2957 static int
2958 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2959 			      struct phylink_link_state *state)
2960 {
2961 	u32 status, val;
2962 	u16 config_reg;
2963 
2964 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2965 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2966 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2967 	    (status & MT7531_SGMII_AN_ENABLE)) {
2968 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2969 		config_reg = val >> 16;
2970 
2971 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2972 		case LPA_SGMII_1000:
2973 			state->speed = SPEED_1000;
2974 			break;
2975 		case LPA_SGMII_100:
2976 			state->speed = SPEED_100;
2977 			break;
2978 		case LPA_SGMII_10:
2979 			state->speed = SPEED_10;
2980 			break;
2981 		default:
2982 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2983 			state->link = false;
2984 			return -EINVAL;
2985 		}
2986 
2987 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2988 			state->duplex = DUPLEX_FULL;
2989 		else
2990 			state->duplex = DUPLEX_HALF;
2991 	}
2992 
2993 	return 0;
2994 }
2995 
2996 static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
2997 				 struct phylink_link_state *state)
2998 {
2999 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3000 	int port = pcs_to_mt753x_pcs(pcs)->port;
3001 
3002 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
3003 		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3004 	else
3005 		state->link = false;
3006 }
3007 
3008 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3009 			     phy_interface_t interface,
3010 			     const unsigned long *advertising,
3011 			     bool permit_pause_to_mac)
3012 {
3013 	return 0;
3014 }
3015 
3016 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3017 {
3018 }
3019 
3020 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3021 	.pcs_validate = mt753x_pcs_validate,
3022 	.pcs_get_state = mt7530_pcs_get_state,
3023 	.pcs_config = mt753x_pcs_config,
3024 	.pcs_an_restart = mt7530_pcs_an_restart,
3025 };
3026 
3027 static const struct phylink_pcs_ops mt7531_pcs_ops = {
3028 	.pcs_validate = mt753x_pcs_validate,
3029 	.pcs_get_state = mt7531_pcs_get_state,
3030 	.pcs_config = mt753x_pcs_config,
3031 	.pcs_an_restart = mt7531_pcs_an_restart,
3032 	.pcs_link_up = mt7531_pcs_link_up,
3033 };
3034 
3035 static int
3036 mt753x_setup(struct dsa_switch *ds)
3037 {
3038 	struct mt7530_priv *priv = ds->priv;
3039 	int i, ret;
3040 
3041 	/* Initialise the PCS devices */
3042 	for (i = 0; i < priv->ds->num_ports; i++) {
3043 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3044 		priv->pcs[i].priv = priv;
3045 		priv->pcs[i].port = i;
3046 	}
3047 
3048 	ret = priv->info->sw_setup(ds);
3049 	if (ret)
3050 		return ret;
3051 
3052 	ret = mt7530_setup_irq(priv);
3053 	if (ret)
3054 		return ret;
3055 
3056 	ret = mt7530_setup_mdio(priv);
3057 	if (ret && priv->irq)
3058 		mt7530_free_irq_common(priv);
3059 
3060 	return ret;
3061 }
3062 
3063 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3064 			      struct ethtool_eee *e)
3065 {
3066 	struct mt7530_priv *priv = ds->priv;
3067 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3068 
3069 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3070 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3071 
3072 	return 0;
3073 }
3074 
3075 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3076 			      struct ethtool_eee *e)
3077 {
3078 	struct mt7530_priv *priv = ds->priv;
3079 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3080 
3081 	if (e->tx_lpi_timer > 0xFFF)
3082 		return -EINVAL;
3083 
3084 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3085 	if (!e->tx_lpi_enabled)
3086 		/* Force LPI Mode without a delay */
3087 		set |= LPI_MODE_EN;
3088 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3089 
3090 	return 0;
3091 }
3092 
3093 static const struct dsa_switch_ops mt7530_switch_ops = {
3094 	.get_tag_protocol	= mtk_get_tag_protocol,
3095 	.setup			= mt753x_setup,
3096 	.get_strings		= mt7530_get_strings,
3097 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3098 	.get_sset_count		= mt7530_get_sset_count,
3099 	.set_ageing_time	= mt7530_set_ageing_time,
3100 	.port_enable		= mt7530_port_enable,
3101 	.port_disable		= mt7530_port_disable,
3102 	.port_change_mtu	= mt7530_port_change_mtu,
3103 	.port_max_mtu		= mt7530_port_max_mtu,
3104 	.port_stp_state_set	= mt7530_stp_state_set,
3105 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3106 	.port_bridge_flags	= mt7530_port_bridge_flags,
3107 	.port_bridge_join	= mt7530_port_bridge_join,
3108 	.port_bridge_leave	= mt7530_port_bridge_leave,
3109 	.port_fdb_add		= mt7530_port_fdb_add,
3110 	.port_fdb_del		= mt7530_port_fdb_del,
3111 	.port_fdb_dump		= mt7530_port_fdb_dump,
3112 	.port_mdb_add		= mt7530_port_mdb_add,
3113 	.port_mdb_del		= mt7530_port_mdb_del,
3114 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3115 	.port_vlan_add		= mt7530_port_vlan_add,
3116 	.port_vlan_del		= mt7530_port_vlan_del,
3117 	.port_mirror_add	= mt753x_port_mirror_add,
3118 	.port_mirror_del	= mt753x_port_mirror_del,
3119 	.phylink_get_caps	= mt753x_phylink_get_caps,
3120 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3121 	.phylink_mac_config	= mt753x_phylink_mac_config,
3122 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3123 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3124 	.get_mac_eee		= mt753x_get_mac_eee,
3125 	.set_mac_eee		= mt753x_set_mac_eee,
3126 };
3127 
3128 static const struct mt753x_info mt753x_table[] = {
3129 	[ID_MT7621] = {
3130 		.id = ID_MT7621,
3131 		.pcs_ops = &mt7530_pcs_ops,
3132 		.sw_setup = mt7530_setup,
3133 		.phy_read = mt7530_phy_read,
3134 		.phy_write = mt7530_phy_write,
3135 		.pad_setup = mt7530_pad_clk_setup,
3136 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3137 		.mac_port_config = mt7530_mac_config,
3138 	},
3139 	[ID_MT7530] = {
3140 		.id = ID_MT7530,
3141 		.pcs_ops = &mt7530_pcs_ops,
3142 		.sw_setup = mt7530_setup,
3143 		.phy_read = mt7530_phy_read,
3144 		.phy_write = mt7530_phy_write,
3145 		.pad_setup = mt7530_pad_clk_setup,
3146 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3147 		.mac_port_config = mt7530_mac_config,
3148 	},
3149 	[ID_MT7531] = {
3150 		.id = ID_MT7531,
3151 		.pcs_ops = &mt7531_pcs_ops,
3152 		.sw_setup = mt7531_setup,
3153 		.phy_read = mt7531_ind_phy_read,
3154 		.phy_write = mt7531_ind_phy_write,
3155 		.pad_setup = mt7531_pad_setup,
3156 		.cpu_port_config = mt7531_cpu_port_config,
3157 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3158 		.mac_port_config = mt7531_mac_config,
3159 	},
3160 };
3161 
3162 static const struct of_device_id mt7530_of_match[] = {
3163 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3164 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3165 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3166 	{ /* sentinel */ },
3167 };
3168 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3169 
3170 static int
3171 mt7530_probe(struct mdio_device *mdiodev)
3172 {
3173 	struct mt7530_priv *priv;
3174 	struct device_node *dn;
3175 
3176 	dn = mdiodev->dev.of_node;
3177 
3178 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3179 	if (!priv)
3180 		return -ENOMEM;
3181 
3182 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3183 	if (!priv->ds)
3184 		return -ENOMEM;
3185 
3186 	priv->ds->dev = &mdiodev->dev;
3187 	priv->ds->num_ports = MT7530_NUM_PORTS;
3188 
3189 	/* Use medatek,mcm property to distinguish hardware type that would
3190 	 * casues a little bit differences on power-on sequence.
3191 	 */
3192 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3193 	if (priv->mcm) {
3194 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3195 
3196 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3197 		if (IS_ERR(priv->rstc)) {
3198 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3199 			return PTR_ERR(priv->rstc);
3200 		}
3201 	}
3202 
3203 	/* Get the hardware identifier from the devicetree node.
3204 	 * We will need it for some of the clock and regulator setup.
3205 	 */
3206 	priv->info = of_device_get_match_data(&mdiodev->dev);
3207 	if (!priv->info)
3208 		return -EINVAL;
3209 
3210 	/* Sanity check if these required device operations are filled
3211 	 * properly.
3212 	 */
3213 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3214 	    !priv->info->phy_read || !priv->info->phy_write ||
3215 	    !priv->info->mac_port_get_caps ||
3216 	    !priv->info->mac_port_config)
3217 		return -EINVAL;
3218 
3219 	priv->id = priv->info->id;
3220 
3221 	if (priv->id == ID_MT7530) {
3222 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3223 		if (IS_ERR(priv->core_pwr))
3224 			return PTR_ERR(priv->core_pwr);
3225 
3226 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3227 		if (IS_ERR(priv->io_pwr))
3228 			return PTR_ERR(priv->io_pwr);
3229 	}
3230 
3231 	/* Not MCM that indicates switch works as the remote standalone
3232 	 * integrated circuit so the GPIO pin would be used to complete
3233 	 * the reset, otherwise memory-mapped register accessing used
3234 	 * through syscon provides in the case of MCM.
3235 	 */
3236 	if (!priv->mcm) {
3237 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3238 						      GPIOD_OUT_LOW);
3239 		if (IS_ERR(priv->reset)) {
3240 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3241 			return PTR_ERR(priv->reset);
3242 		}
3243 	}
3244 
3245 	priv->bus = mdiodev->bus;
3246 	priv->dev = &mdiodev->dev;
3247 	priv->ds->priv = priv;
3248 	priv->ds->ops = &mt7530_switch_ops;
3249 	mutex_init(&priv->reg_mutex);
3250 	dev_set_drvdata(&mdiodev->dev, priv);
3251 
3252 	return dsa_register_switch(priv->ds);
3253 }
3254 
3255 static void
3256 mt7530_remove(struct mdio_device *mdiodev)
3257 {
3258 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3259 	int ret = 0;
3260 
3261 	if (!priv)
3262 		return;
3263 
3264 	ret = regulator_disable(priv->core_pwr);
3265 	if (ret < 0)
3266 		dev_err(priv->dev,
3267 			"Failed to disable core power: %d\n", ret);
3268 
3269 	ret = regulator_disable(priv->io_pwr);
3270 	if (ret < 0)
3271 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3272 			ret);
3273 
3274 	if (priv->irq)
3275 		mt7530_free_irq(priv);
3276 
3277 	dsa_unregister_switch(priv->ds);
3278 	mutex_destroy(&priv->reg_mutex);
3279 
3280 	dev_set_drvdata(&mdiodev->dev, NULL);
3281 }
3282 
3283 static void mt7530_shutdown(struct mdio_device *mdiodev)
3284 {
3285 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3286 
3287 	if (!priv)
3288 		return;
3289 
3290 	dsa_switch_shutdown(priv->ds);
3291 
3292 	dev_set_drvdata(&mdiodev->dev, NULL);
3293 }
3294 
3295 static struct mdio_driver mt7530_mdio_driver = {
3296 	.probe  = mt7530_probe,
3297 	.remove = mt7530_remove,
3298 	.shutdown = mt7530_shutdown,
3299 	.mdiodrv.driver = {
3300 		.name = "mt7530",
3301 		.of_match_table = mt7530_of_match,
3302 	},
3303 };
3304 
3305 mdio_module_driver(mt7530_mdio_driver);
3306 
3307 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3308 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3309 MODULE_LICENSE("GPL");
3310