xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, trgint, xtal;
422 
423 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424 
425 	if (xtal == HWTRAP_XTAL_20MHZ) {
426 		dev_err(priv->dev,
427 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 			__func__);
429 		return -EINVAL;
430 	}
431 
432 	switch (interface) {
433 	case PHY_INTERFACE_MODE_RGMII:
434 		trgint = 0;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (xtal == HWTRAP_XTAL_25MHZ)
439 			ssc_delta = 0x57;
440 		else
441 			ssc_delta = 0x87;
442 		if (priv->id == ID_MT7621) {
443 			/* PLL frequency: 125MHz: 1.0GBit */
444 			if (xtal == HWTRAP_XTAL_40MHZ)
445 				ncpo1 = 0x0640;
446 			if (xtal == HWTRAP_XTAL_25MHZ)
447 				ncpo1 = 0x0a00;
448 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449 			if (xtal == HWTRAP_XTAL_40MHZ)
450 				ncpo1 = 0x0c80;
451 			if (xtal == HWTRAP_XTAL_25MHZ)
452 				ncpo1 = 0x1400;
453 		}
454 		break;
455 	default:
456 		dev_err(priv->dev, "xMII interface %d not supported\n",
457 			interface);
458 		return -EINVAL;
459 	}
460 
461 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 		   P6_INTF_MODE(trgint));
463 
464 	if (trgint) {
465 		/* Disable the MT7530 TRGMII clocks */
466 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467 
468 		/* Setup the MT7530 TRGMII Tx Clock */
469 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 		core_write(priv, CORE_PLL_GROUP4,
474 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 			   RG_SYSPLL_BIAS_LPF_EN);
476 		core_write(priv, CORE_PLL_GROUP2,
477 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 			   RG_SYSPLL_POSDIV(1));
479 		core_write(priv, CORE_PLL_GROUP7,
480 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 
483 		/* Enable the MT7530 TRGMII clocks */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 	}
486 
487 	return 0;
488 }
489 
490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 	u32 val;
493 
494 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495 
496 	return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498 
499 static int
500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 	return 0;
503 }
504 
505 static void
506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 	u32 top_sig;
509 	u32 hwstrap;
510 	u32 xtal;
511 	u32 val;
512 
513 	if (mt7531_dual_sgmii_supported(priv))
514 		return;
515 
516 	val = mt7530_read(priv, MT7531_CREV);
517 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 	if ((val & CHIP_REV_M) > 0)
520 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 						    HWTRAP_XTAL_FSEL_25MHZ;
522 	else
523 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524 
525 	/* Step 1 : Disable MT7531 COREPLL */
526 	val = mt7530_read(priv, MT7531_PLLGP_EN);
527 	val &= ~EN_COREPLL;
528 	mt7530_write(priv, MT7531_PLLGP_EN, val);
529 
530 	/* Step 2: switch to XTAL output */
531 	val = mt7530_read(priv, MT7531_PLLGP_EN);
532 	val |= SW_CLKSW;
533 	mt7530_write(priv, MT7531_PLLGP_EN, val);
534 
535 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 	val &= ~RG_COREPLL_EN;
537 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
538 
539 	/* Step 3: disable PLLGP and enable program PLLGP */
540 	val = mt7530_read(priv, MT7531_PLLGP_EN);
541 	val |= SW_PLLGP;
542 	mt7530_write(priv, MT7531_PLLGP_EN, val);
543 
544 	/* Step 4: program COREPLL output frequency to 500MHz */
545 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 	val &= ~RG_COREPLL_POSDIV_M;
547 	val |= 2 << RG_COREPLL_POSDIV_S;
548 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 	usleep_range(25, 35);
550 
551 	switch (xtal) {
552 	case HWTRAP_XTAL_FSEL_25MHZ:
553 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 		val &= ~RG_COREPLL_SDM_PCW_M;
555 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 		break;
558 	case HWTRAP_XTAL_FSEL_40MHZ:
559 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 		val &= ~RG_COREPLL_SDM_PCW_M;
561 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 		break;
564 	}
565 
566 	/* Set feedback divide ratio update signal to high */
567 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 	val |= RG_COREPLL_SDM_PCW_CHG;
569 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 	/* Wait for at least 16 XTAL clocks */
571 	usleep_range(10, 20);
572 
573 	/* Step 5: set feedback divide ratio update signal to low */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val &= ~RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 
578 	/* Enable 325M clock for SGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580 
581 	/* Enable 250SSC clock for RGMII */
582 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583 
584 	/* Step 6: Enable MT7531 PLL */
585 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 	val |= RG_COREPLL_EN;
587 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
588 
589 	val = mt7530_read(priv, MT7531_PLLGP_EN);
590 	val |= EN_COREPLL;
591 	mt7530_write(priv, MT7531_PLLGP_EN, val);
592 	usleep_range(25, 35);
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 	return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608 
609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 				u16 val)
611 {
612 	return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614 
615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 			       int devad, int regnum)
617 {
618 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620 
621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 				int regnum, u16 val)
623 {
624 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626 
627 static int
628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 			int regnum)
630 {
631 	struct mt7530_dummy_poll p;
632 	u32 reg, val;
633 	int ret;
634 
635 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636 
637 	mt7530_mutex_lock(priv);
638 
639 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 	if (ret < 0) {
642 		dev_err(priv->dev, "poll timeout\n");
643 		goto out;
644 	}
645 
646 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649 
650 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 	if (ret < 0) {
653 		dev_err(priv->dev, "poll timeout\n");
654 		goto out;
655 	}
656 
657 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 	      MT7531_MDIO_DEV_ADDR(devad);
659 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660 
661 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 	if (ret < 0) {
664 		dev_err(priv->dev, "poll timeout\n");
665 		goto out;
666 	}
667 
668 	ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 	mt7530_mutex_unlock(priv);
671 
672 	return ret;
673 }
674 
675 static int
676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 			 int regnum, u16 data)
678 {
679 	struct mt7530_dummy_poll p;
680 	u32 val, reg;
681 	int ret;
682 
683 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684 
685 	mt7530_mutex_lock(priv);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 	      MT7531_MDIO_DEV_ADDR(devad) | data;
707 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708 
709 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 	if (ret < 0) {
712 		dev_err(priv->dev, "poll timeout\n");
713 		goto out;
714 	}
715 
716 out:
717 	mt7530_mutex_unlock(priv);
718 
719 	return ret;
720 }
721 
722 static int
723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 val;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum);
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 	ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 	mt7530_mutex_unlock(priv);
755 
756 	return ret;
757 }
758 
759 static int
760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 			 u16 data)
762 {
763 	struct mt7530_dummy_poll p;
764 	int ret;
765 	u32 reg;
766 
767 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768 
769 	mt7530_mutex_lock(priv);
770 
771 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 	if (ret < 0) {
774 		dev_err(priv->dev, "poll timeout\n");
775 		goto out;
776 	}
777 
778 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 	      MT7531_MDIO_REG_ADDR(regnum) | data;
780 
781 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782 
783 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 	if (ret < 0) {
786 		dev_err(priv->dev, "poll timeout\n");
787 		goto out;
788 	}
789 
790 out:
791 	mt7530_mutex_unlock(priv);
792 
793 	return ret;
794 }
795 
796 static int
797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 	struct mt7530_priv *priv = bus->priv;
800 
801 	return priv->info->phy_read_c22(priv, port, regnum);
802 }
803 
804 static int
805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 	struct mt7530_priv *priv = bus->priv;
808 
809 	return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811 
812 static int
813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 	struct mt7530_priv *priv = bus->priv;
816 
817 	return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819 
820 static int
821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 		     u16 val)
823 {
824 	struct mt7530_priv *priv = bus->priv;
825 
826 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 			ETH_GSTRING_LEN);
841 }
842 
843 static void
844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 			 uint64_t *data)
846 {
847 	struct mt7530_priv *priv = ds->priv;
848 	const struct mt7530_mib_desc *mib;
849 	u32 reg, i;
850 	u64 hi;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 		mib = &mt7530_mib[i];
854 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855 
856 		data[i] = mt7530_read(priv, reg);
857 		if (mib->size == 2) {
858 			hi = mt7530_read(priv, reg + 4);
859 			data[i] |= hi << 32;
860 		}
861 	}
862 }
863 
864 static int
865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 	if (sset != ETH_SS_STATS)
868 		return 0;
869 
870 	return ARRAY_SIZE(mt7530_mib);
871 }
872 
873 static int
874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 	struct mt7530_priv *priv = ds->priv;
877 	unsigned int secs = msecs / 1000;
878 	unsigned int tmp_age_count;
879 	unsigned int error = -1;
880 	unsigned int age_count;
881 	unsigned int age_unit;
882 
883 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 		return -ERANGE;
886 
887 	/* iterate through all possible age_count to find the closest pair */
888 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890 
891 		if (tmp_age_unit <= AGE_UNIT_MAX) {
892 			unsigned int tmp_error = secs -
893 				(tmp_age_count + 1) * (tmp_age_unit + 1);
894 
895 			/* found a closer pair */
896 			if (error > tmp_error) {
897 				error = tmp_error;
898 				age_count = tmp_age_count;
899 				age_unit = tmp_age_unit;
900 			}
901 
902 			/* found the exact match, so break the loop */
903 			if (!error)
904 				break;
905 		}
906 	}
907 
908 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909 
910 	return 0;
911 }
912 
913 static const char *p5_intf_modes(unsigned int p5_interface)
914 {
915 	switch (p5_interface) {
916 	case P5_DISABLED:
917 		return "DISABLED";
918 	case P5_INTF_SEL_PHY_P0:
919 		return "PHY P0";
920 	case P5_INTF_SEL_PHY_P4:
921 		return "PHY P4";
922 	case P5_INTF_SEL_GMAC5:
923 		return "GMAC5";
924 	case P5_INTF_SEL_GMAC5_SGMII:
925 		return "GMAC5_SGMII";
926 	default:
927 		return "unknown";
928 	}
929 }
930 
931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 	struct mt7530_priv *priv = ds->priv;
934 	u8 tx_delay = 0;
935 	int val;
936 
937 	mutex_lock(&priv->reg_mutex);
938 
939 	val = mt7530_read(priv, MT7530_MHWTRAP);
940 
941 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943 
944 	switch (priv->p5_intf_sel) {
945 	case P5_INTF_SEL_PHY_P0:
946 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 		val |= MHWTRAP_PHY0_SEL;
948 		fallthrough;
949 	case P5_INTF_SEL_PHY_P4:
950 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952 
953 		/* Setup the MAC by default for the cpu port */
954 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 		break;
956 	case P5_INTF_SEL_GMAC5:
957 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 		val &= ~MHWTRAP_P5_DIS;
959 		break;
960 	case P5_DISABLED:
961 		interface = PHY_INTERFACE_MODE_NA;
962 		break;
963 	default:
964 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 			priv->p5_intf_sel);
966 		goto unlock_exit;
967 	}
968 
969 	/* Setup RGMII settings */
970 	if (phy_interface_mode_is_rgmii(interface)) {
971 		val |= MHWTRAP_P5_RGMII_MODE;
972 
973 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
974 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975 
976 		/* Don't set delay in DSA mode */
977 		if (!dsa_is_dsa_port(priv->ds, 5) &&
978 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
980 			tx_delay = 4; /* n * 0.5 ns */
981 
982 		/* P5 RGMII TX Clock Control: delay x */
983 		mt7530_write(priv, MT7530_P5RGMIITXCR,
984 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985 
986 		/* reduce P5 RGMII Tx driving, 8mA */
987 		mt7530_write(priv, MT7530_IO_DRV_CR,
988 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 	}
990 
991 	mt7530_write(priv, MT7530_MHWTRAP, val);
992 
993 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995 
996 	priv->p5_interface = interface;
997 
998 unlock_exit:
999 	mutex_unlock(&priv->reg_mutex);
1000 }
1001 
1002 /* On page 205, section "8.6.3 Frame filtering" of the active standard, IEEE Std
1003  * 802.1Q™-2022, it is stated that frames with 01:80:C2:00:00:00-0F as MAC DA
1004  * must only be propagated to C-VLAN and MAC Bridge components. That means
1005  * VLAN-aware and VLAN-unaware bridges. On the switch designs with CPU ports,
1006  * these frames are supposed to be processed by the CPU (software). So we make
1007  * the switch only forward them to the CPU port. And if received from a CPU
1008  * port, forward to a single port. The software is responsible of making the
1009  * switch conform to the latter by setting a single port as destination port on
1010  * the special tag.
1011  *
1012  * This switch intellectual property cannot conform to this part of the standard
1013  * fully. Whilst the REV_UN frame tag covers the remaining :04-0D and :0F MAC
1014  * DAs, it also includes :22-FF which the scope of propagation is not supposed
1015  * to be restricted for these MAC DAs.
1016  */
1017 static void
1018 mt753x_trap_frames(struct mt7530_priv *priv)
1019 {
1020 	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1021 	 * VLAN-untagged.
1022 	 */
1023 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_EG_TAG_MASK |
1024 		   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1025 		   MT753X_BPDU_PORT_FW_MASK,
1026 		   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1027 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1028 		   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1029 		   MT753X_BPDU_CPU_ONLY);
1030 
1031 	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1032 	 * them VLAN-untagged.
1033 	 */
1034 	mt7530_rmw(priv, MT753X_RGAC1, MT753X_R02_EG_TAG_MASK |
1035 		   MT753X_R02_PORT_FW_MASK | MT753X_R01_EG_TAG_MASK |
1036 		   MT753X_R01_PORT_FW_MASK,
1037 		   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1038 		   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1039 		   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1040 		   MT753X_BPDU_CPU_ONLY);
1041 
1042 	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1043 	 * them VLAN-untagged.
1044 	 */
1045 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_EG_TAG_MASK |
1046 		   MT753X_R0E_PORT_FW_MASK | MT753X_R03_EG_TAG_MASK |
1047 		   MT753X_R03_PORT_FW_MASK,
1048 		   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1049 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1050 		   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1051 		   MT753X_BPDU_CPU_ONLY);
1052 }
1053 
1054 static int
1055 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1056 {
1057 	struct mt7530_priv *priv = ds->priv;
1058 	int ret;
1059 
1060 	/* Setup max capability of CPU port at first */
1061 	if (priv->info->cpu_port_config) {
1062 		ret = priv->info->cpu_port_config(ds, port);
1063 		if (ret)
1064 			return ret;
1065 	}
1066 
1067 	/* Enable Mediatek header mode on the cpu port */
1068 	mt7530_write(priv, MT7530_PVC_P(port),
1069 		     PORT_SPEC_TAG);
1070 
1071 	/* Enable flooding on the CPU port */
1072 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1073 		   UNU_FFP(BIT(port)));
1074 
1075 	/* Set CPU port number */
1076 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1077 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1078 
1079 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1080 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1081 	 * is affine to the inbound user port.
1082 	 */
1083 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1084 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1085 
1086 	/* CPU port gets connected to all user ports of
1087 	 * the switch.
1088 	 */
1089 	mt7530_write(priv, MT7530_PCR_P(port),
1090 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1091 
1092 	/* Set to fallback mode for independent VLAN learning */
1093 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1094 		   MT7530_PORT_FALLBACK_MODE);
1095 
1096 	return 0;
1097 }
1098 
1099 static int
1100 mt7530_port_enable(struct dsa_switch *ds, int port,
1101 		   struct phy_device *phy)
1102 {
1103 	struct dsa_port *dp = dsa_to_port(ds, port);
1104 	struct mt7530_priv *priv = ds->priv;
1105 
1106 	mutex_lock(&priv->reg_mutex);
1107 
1108 	/* Allow the user port gets connected to the cpu port and also
1109 	 * restore the port matrix if the port is the member of a certain
1110 	 * bridge.
1111 	 */
1112 	if (dsa_port_is_user(dp)) {
1113 		struct dsa_port *cpu_dp = dp->cpu_dp;
1114 
1115 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1116 	}
1117 	priv->ports[port].enable = true;
1118 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1119 		   priv->ports[port].pm);
1120 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1121 
1122 	mutex_unlock(&priv->reg_mutex);
1123 
1124 	return 0;
1125 }
1126 
1127 static void
1128 mt7530_port_disable(struct dsa_switch *ds, int port)
1129 {
1130 	struct mt7530_priv *priv = ds->priv;
1131 
1132 	mutex_lock(&priv->reg_mutex);
1133 
1134 	/* Clear up all port matrix which could be restored in the next
1135 	 * enablement for the port.
1136 	 */
1137 	priv->ports[port].enable = false;
1138 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1139 		   PCR_MATRIX_CLR);
1140 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1141 
1142 	mutex_unlock(&priv->reg_mutex);
1143 }
1144 
1145 static int
1146 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1147 {
1148 	struct mt7530_priv *priv = ds->priv;
1149 	int length;
1150 	u32 val;
1151 
1152 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1153 	 * largest MTU of the slave ports. Because the switch only has a global
1154 	 * RX length register, only allowing CPU port here is enough.
1155 	 */
1156 	if (!dsa_is_cpu_port(ds, port))
1157 		return 0;
1158 
1159 	mt7530_mutex_lock(priv);
1160 
1161 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1162 	val &= ~MAX_RX_PKT_LEN_MASK;
1163 
1164 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1165 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1166 	if (length <= 1522) {
1167 		val |= MAX_RX_PKT_LEN_1522;
1168 	} else if (length <= 1536) {
1169 		val |= MAX_RX_PKT_LEN_1536;
1170 	} else if (length <= 1552) {
1171 		val |= MAX_RX_PKT_LEN_1552;
1172 	} else {
1173 		val &= ~MAX_RX_JUMBO_MASK;
1174 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1175 		val |= MAX_RX_PKT_LEN_JUMBO;
1176 	}
1177 
1178 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1179 
1180 	mt7530_mutex_unlock(priv);
1181 
1182 	return 0;
1183 }
1184 
1185 static int
1186 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1187 {
1188 	return MT7530_MAX_MTU;
1189 }
1190 
1191 static void
1192 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1193 {
1194 	struct mt7530_priv *priv = ds->priv;
1195 	u32 stp_state;
1196 
1197 	switch (state) {
1198 	case BR_STATE_DISABLED:
1199 		stp_state = MT7530_STP_DISABLED;
1200 		break;
1201 	case BR_STATE_BLOCKING:
1202 		stp_state = MT7530_STP_BLOCKING;
1203 		break;
1204 	case BR_STATE_LISTENING:
1205 		stp_state = MT7530_STP_LISTENING;
1206 		break;
1207 	case BR_STATE_LEARNING:
1208 		stp_state = MT7530_STP_LEARNING;
1209 		break;
1210 	case BR_STATE_FORWARDING:
1211 	default:
1212 		stp_state = MT7530_STP_FORWARDING;
1213 		break;
1214 	}
1215 
1216 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1217 		   FID_PST(FID_BRIDGED, stp_state));
1218 }
1219 
1220 static int
1221 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1222 			     struct switchdev_brport_flags flags,
1223 			     struct netlink_ext_ack *extack)
1224 {
1225 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1226 			   BR_BCAST_FLOOD))
1227 		return -EINVAL;
1228 
1229 	return 0;
1230 }
1231 
1232 static int
1233 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1234 			 struct switchdev_brport_flags flags,
1235 			 struct netlink_ext_ack *extack)
1236 {
1237 	struct mt7530_priv *priv = ds->priv;
1238 
1239 	if (flags.mask & BR_LEARNING)
1240 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1241 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1242 
1243 	if (flags.mask & BR_FLOOD)
1244 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1245 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1246 
1247 	if (flags.mask & BR_MCAST_FLOOD)
1248 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1249 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1250 
1251 	if (flags.mask & BR_BCAST_FLOOD)
1252 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1253 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1254 
1255 	return 0;
1256 }
1257 
1258 static int
1259 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1260 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1261 			struct netlink_ext_ack *extack)
1262 {
1263 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1264 	struct dsa_port *cpu_dp = dp->cpu_dp;
1265 	u32 port_bitmap = BIT(cpu_dp->index);
1266 	struct mt7530_priv *priv = ds->priv;
1267 
1268 	mutex_lock(&priv->reg_mutex);
1269 
1270 	dsa_switch_for_each_user_port(other_dp, ds) {
1271 		int other_port = other_dp->index;
1272 
1273 		if (dp == other_dp)
1274 			continue;
1275 
1276 		/* Add this port to the port matrix of the other ports in the
1277 		 * same bridge. If the port is disabled, port matrix is kept
1278 		 * and not being setup until the port becomes enabled.
1279 		 */
1280 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1281 			continue;
1282 
1283 		if (priv->ports[other_port].enable)
1284 			mt7530_set(priv, MT7530_PCR_P(other_port),
1285 				   PCR_MATRIX(BIT(port)));
1286 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1287 
1288 		port_bitmap |= BIT(other_port);
1289 	}
1290 
1291 	/* Add the all other ports to this port matrix. */
1292 	if (priv->ports[port].enable)
1293 		mt7530_rmw(priv, MT7530_PCR_P(port),
1294 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1295 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1296 
1297 	/* Set to fallback mode for independent VLAN learning */
1298 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1299 		   MT7530_PORT_FALLBACK_MODE);
1300 
1301 	mutex_unlock(&priv->reg_mutex);
1302 
1303 	return 0;
1304 }
1305 
1306 static void
1307 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1308 {
1309 	struct mt7530_priv *priv = ds->priv;
1310 	bool all_user_ports_removed = true;
1311 	int i;
1312 
1313 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1314 	 * bridge. Don't set standalone ports to fallback mode.
1315 	 */
1316 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1317 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1318 			   MT7530_PORT_FALLBACK_MODE);
1319 
1320 	mt7530_rmw(priv, MT7530_PVC_P(port),
1321 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1322 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1323 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1324 		   MT7530_VLAN_ACC_ALL);
1325 
1326 	/* Set PVID to 0 */
1327 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1328 		   G0_PORT_VID_DEF);
1329 
1330 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1331 		if (dsa_is_user_port(ds, i) &&
1332 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1333 			all_user_ports_removed = false;
1334 			break;
1335 		}
1336 	}
1337 
1338 	/* CPU port also does the same thing until all user ports belonging to
1339 	 * the CPU port get out of VLAN filtering mode.
1340 	 */
1341 	if (all_user_ports_removed) {
1342 		struct dsa_port *dp = dsa_to_port(ds, port);
1343 		struct dsa_port *cpu_dp = dp->cpu_dp;
1344 
1345 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1346 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1347 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1348 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1349 	}
1350 }
1351 
1352 static void
1353 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1354 {
1355 	struct mt7530_priv *priv = ds->priv;
1356 
1357 	/* Trapped into security mode allows packet forwarding through VLAN
1358 	 * table lookup.
1359 	 */
1360 	if (dsa_is_user_port(ds, port)) {
1361 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1362 			   MT7530_PORT_SECURITY_MODE);
1363 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1364 			   G0_PORT_VID(priv->ports[port].pvid));
1365 
1366 		/* Only accept tagged frames if PVID is not set */
1367 		if (!priv->ports[port].pvid)
1368 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1369 				   MT7530_VLAN_ACC_TAGGED);
1370 
1371 		/* Set the port as a user port which is to be able to recognize
1372 		 * VID from incoming packets before fetching entry within the
1373 		 * VLAN table.
1374 		 */
1375 		mt7530_rmw(priv, MT7530_PVC_P(port),
1376 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1377 			   VLAN_ATTR(MT7530_VLAN_USER) |
1378 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1379 	} else {
1380 		/* Also set CPU ports to the "user" VLAN port attribute, to
1381 		 * allow VLAN classification, but keep the EG_TAG attribute as
1382 		 * "consistent" (i.o.w. don't change its value) for packets
1383 		 * received by the switch from the CPU, so that tagged packets
1384 		 * are forwarded to user ports as tagged, and untagged as
1385 		 * untagged.
1386 		 */
1387 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1388 			   VLAN_ATTR(MT7530_VLAN_USER));
1389 	}
1390 }
1391 
1392 static void
1393 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1394 			 struct dsa_bridge bridge)
1395 {
1396 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1397 	struct dsa_port *cpu_dp = dp->cpu_dp;
1398 	struct mt7530_priv *priv = ds->priv;
1399 
1400 	mutex_lock(&priv->reg_mutex);
1401 
1402 	dsa_switch_for_each_user_port(other_dp, ds) {
1403 		int other_port = other_dp->index;
1404 
1405 		if (dp == other_dp)
1406 			continue;
1407 
1408 		/* Remove this port from the port matrix of the other ports
1409 		 * in the same bridge. If the port is disabled, port matrix
1410 		 * is kept and not being setup until the port becomes enabled.
1411 		 */
1412 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1413 			continue;
1414 
1415 		if (priv->ports[other_port].enable)
1416 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1417 				     PCR_MATRIX(BIT(port)));
1418 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1419 	}
1420 
1421 	/* Set the cpu port to be the only one in the port matrix of
1422 	 * this port.
1423 	 */
1424 	if (priv->ports[port].enable)
1425 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1426 			   PCR_MATRIX(BIT(cpu_dp->index)));
1427 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1428 
1429 	/* When a port is removed from the bridge, the port would be set up
1430 	 * back to the default as is at initial boot which is a VLAN-unaware
1431 	 * port.
1432 	 */
1433 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1434 		   MT7530_PORT_MATRIX_MODE);
1435 
1436 	mutex_unlock(&priv->reg_mutex);
1437 }
1438 
1439 static int
1440 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1441 		    const unsigned char *addr, u16 vid,
1442 		    struct dsa_db db)
1443 {
1444 	struct mt7530_priv *priv = ds->priv;
1445 	int ret;
1446 	u8 port_mask = BIT(port);
1447 
1448 	mutex_lock(&priv->reg_mutex);
1449 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1450 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1451 	mutex_unlock(&priv->reg_mutex);
1452 
1453 	return ret;
1454 }
1455 
1456 static int
1457 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1458 		    const unsigned char *addr, u16 vid,
1459 		    struct dsa_db db)
1460 {
1461 	struct mt7530_priv *priv = ds->priv;
1462 	int ret;
1463 	u8 port_mask = BIT(port);
1464 
1465 	mutex_lock(&priv->reg_mutex);
1466 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1467 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1468 	mutex_unlock(&priv->reg_mutex);
1469 
1470 	return ret;
1471 }
1472 
1473 static int
1474 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1475 		     dsa_fdb_dump_cb_t *cb, void *data)
1476 {
1477 	struct mt7530_priv *priv = ds->priv;
1478 	struct mt7530_fdb _fdb = { 0 };
1479 	int cnt = MT7530_NUM_FDB_RECORDS;
1480 	int ret = 0;
1481 	u32 rsp = 0;
1482 
1483 	mutex_lock(&priv->reg_mutex);
1484 
1485 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1486 	if (ret < 0)
1487 		goto err;
1488 
1489 	do {
1490 		if (rsp & ATC_SRCH_HIT) {
1491 			mt7530_fdb_read(priv, &_fdb);
1492 			if (_fdb.port_mask & BIT(port)) {
1493 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1494 					 data);
1495 				if (ret < 0)
1496 					break;
1497 			}
1498 		}
1499 	} while (--cnt &&
1500 		 !(rsp & ATC_SRCH_END) &&
1501 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1502 err:
1503 	mutex_unlock(&priv->reg_mutex);
1504 
1505 	return 0;
1506 }
1507 
1508 static int
1509 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1510 		    const struct switchdev_obj_port_mdb *mdb,
1511 		    struct dsa_db db)
1512 {
1513 	struct mt7530_priv *priv = ds->priv;
1514 	const u8 *addr = mdb->addr;
1515 	u16 vid = mdb->vid;
1516 	u8 port_mask = 0;
1517 	int ret;
1518 
1519 	mutex_lock(&priv->reg_mutex);
1520 
1521 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1522 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1523 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1524 			    & PORT_MAP_MASK;
1525 
1526 	port_mask |= BIT(port);
1527 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1528 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1529 
1530 	mutex_unlock(&priv->reg_mutex);
1531 
1532 	return ret;
1533 }
1534 
1535 static int
1536 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1537 		    const struct switchdev_obj_port_mdb *mdb,
1538 		    struct dsa_db db)
1539 {
1540 	struct mt7530_priv *priv = ds->priv;
1541 	const u8 *addr = mdb->addr;
1542 	u16 vid = mdb->vid;
1543 	u8 port_mask = 0;
1544 	int ret;
1545 
1546 	mutex_lock(&priv->reg_mutex);
1547 
1548 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1549 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1550 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1551 			    & PORT_MAP_MASK;
1552 
1553 	port_mask &= ~BIT(port);
1554 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1555 			 port_mask ? STATIC_ENT : STATIC_EMP);
1556 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1557 
1558 	mutex_unlock(&priv->reg_mutex);
1559 
1560 	return ret;
1561 }
1562 
1563 static int
1564 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1565 {
1566 	struct mt7530_dummy_poll p;
1567 	u32 val;
1568 	int ret;
1569 
1570 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1571 	mt7530_write(priv, MT7530_VTCR, val);
1572 
1573 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1574 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1575 				 !(val & VTCR_BUSY), 20, 20000);
1576 	if (ret < 0) {
1577 		dev_err(priv->dev, "poll timeout\n");
1578 		return ret;
1579 	}
1580 
1581 	val = mt7530_read(priv, MT7530_VTCR);
1582 	if (val & VTCR_INVALID) {
1583 		dev_err(priv->dev, "read VTCR invalid\n");
1584 		return -EINVAL;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int
1591 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1592 			   struct netlink_ext_ack *extack)
1593 {
1594 	struct dsa_port *dp = dsa_to_port(ds, port);
1595 	struct dsa_port *cpu_dp = dp->cpu_dp;
1596 
1597 	if (vlan_filtering) {
1598 		/* The port is being kept as VLAN-unaware port when bridge is
1599 		 * set up with vlan_filtering not being set, Otherwise, the
1600 		 * port and the corresponding CPU port is required the setup
1601 		 * for becoming a VLAN-aware port.
1602 		 */
1603 		mt7530_port_set_vlan_aware(ds, port);
1604 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1605 	} else {
1606 		mt7530_port_set_vlan_unaware(ds, port);
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static void
1613 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1614 		   struct mt7530_hw_vlan_entry *entry)
1615 {
1616 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1617 	u8 new_members;
1618 	u32 val;
1619 
1620 	new_members = entry->old_members | BIT(entry->port);
1621 
1622 	/* Validate the entry with independent learning, create egress tag per
1623 	 * VLAN and joining the port as one of the port members.
1624 	 */
1625 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1626 	      VLAN_VALID;
1627 	mt7530_write(priv, MT7530_VAWD1, val);
1628 
1629 	/* Decide whether adding tag or not for those outgoing packets from the
1630 	 * port inside the VLAN.
1631 	 * CPU port is always taken as a tagged port for serving more than one
1632 	 * VLANs across and also being applied with egress type stack mode for
1633 	 * that VLAN tags would be appended after hardware special tag used as
1634 	 * DSA tag.
1635 	 */
1636 	if (dsa_port_is_cpu(dp))
1637 		val = MT7530_VLAN_EGRESS_STACK;
1638 	else if (entry->untagged)
1639 		val = MT7530_VLAN_EGRESS_UNTAG;
1640 	else
1641 		val = MT7530_VLAN_EGRESS_TAG;
1642 	mt7530_rmw(priv, MT7530_VAWD2,
1643 		   ETAG_CTRL_P_MASK(entry->port),
1644 		   ETAG_CTRL_P(entry->port, val));
1645 }
1646 
1647 static void
1648 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1649 		   struct mt7530_hw_vlan_entry *entry)
1650 {
1651 	u8 new_members;
1652 	u32 val;
1653 
1654 	new_members = entry->old_members & ~BIT(entry->port);
1655 
1656 	val = mt7530_read(priv, MT7530_VAWD1);
1657 	if (!(val & VLAN_VALID)) {
1658 		dev_err(priv->dev,
1659 			"Cannot be deleted due to invalid entry\n");
1660 		return;
1661 	}
1662 
1663 	if (new_members) {
1664 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1665 		      VLAN_VALID;
1666 		mt7530_write(priv, MT7530_VAWD1, val);
1667 	} else {
1668 		mt7530_write(priv, MT7530_VAWD1, 0);
1669 		mt7530_write(priv, MT7530_VAWD2, 0);
1670 	}
1671 }
1672 
1673 static void
1674 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1675 		      struct mt7530_hw_vlan_entry *entry,
1676 		      mt7530_vlan_op vlan_op)
1677 {
1678 	u32 val;
1679 
1680 	/* Fetch entry */
1681 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1682 
1683 	val = mt7530_read(priv, MT7530_VAWD1);
1684 
1685 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1686 
1687 	/* Manipulate entry */
1688 	vlan_op(priv, entry);
1689 
1690 	/* Flush result to hardware */
1691 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1692 }
1693 
1694 static int
1695 mt7530_setup_vlan0(struct mt7530_priv *priv)
1696 {
1697 	u32 val;
1698 
1699 	/* Validate the entry with independent learning, keep the original
1700 	 * ingress tag attribute.
1701 	 */
1702 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1703 	      VLAN_VALID;
1704 	mt7530_write(priv, MT7530_VAWD1, val);
1705 
1706 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1707 }
1708 
1709 static int
1710 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1711 		     const struct switchdev_obj_port_vlan *vlan,
1712 		     struct netlink_ext_ack *extack)
1713 {
1714 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1715 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1716 	struct mt7530_hw_vlan_entry new_entry;
1717 	struct mt7530_priv *priv = ds->priv;
1718 
1719 	mutex_lock(&priv->reg_mutex);
1720 
1721 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1722 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1723 
1724 	if (pvid) {
1725 		priv->ports[port].pvid = vlan->vid;
1726 
1727 		/* Accept all frames if PVID is set */
1728 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1729 			   MT7530_VLAN_ACC_ALL);
1730 
1731 		/* Only configure PVID if VLAN filtering is enabled */
1732 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1733 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1734 				   G0_PORT_VID_MASK,
1735 				   G0_PORT_VID(vlan->vid));
1736 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1737 		/* This VLAN is overwritten without PVID, so unset it */
1738 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1739 
1740 		/* Only accept tagged frames if the port is VLAN-aware */
1741 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1742 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1743 				   MT7530_VLAN_ACC_TAGGED);
1744 
1745 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1746 			   G0_PORT_VID_DEF);
1747 	}
1748 
1749 	mutex_unlock(&priv->reg_mutex);
1750 
1751 	return 0;
1752 }
1753 
1754 static int
1755 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1756 		     const struct switchdev_obj_port_vlan *vlan)
1757 {
1758 	struct mt7530_hw_vlan_entry target_entry;
1759 	struct mt7530_priv *priv = ds->priv;
1760 
1761 	mutex_lock(&priv->reg_mutex);
1762 
1763 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1764 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1765 			      mt7530_hw_vlan_del);
1766 
1767 	/* PVID is being restored to the default whenever the PVID port
1768 	 * is being removed from the VLAN.
1769 	 */
1770 	if (priv->ports[port].pvid == vlan->vid) {
1771 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1772 
1773 		/* Only accept tagged frames if the port is VLAN-aware */
1774 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1775 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1776 				   MT7530_VLAN_ACC_TAGGED);
1777 
1778 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1779 			   G0_PORT_VID_DEF);
1780 	}
1781 
1782 
1783 	mutex_unlock(&priv->reg_mutex);
1784 
1785 	return 0;
1786 }
1787 
1788 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1789 {
1790 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1791 				   MIRROR_PORT(val);
1792 }
1793 
1794 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1795 {
1796 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1797 				   MIRROR_PORT(val);
1798 }
1799 
1800 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1801 				  struct dsa_mall_mirror_tc_entry *mirror,
1802 				  bool ingress, struct netlink_ext_ack *extack)
1803 {
1804 	struct mt7530_priv *priv = ds->priv;
1805 	int monitor_port;
1806 	u32 val;
1807 
1808 	/* Check for existent entry */
1809 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1810 		return -EEXIST;
1811 
1812 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1813 
1814 	/* MT7530 only supports one monitor port */
1815 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1816 	if (val & MT753X_MIRROR_EN(priv->id) &&
1817 	    monitor_port != mirror->to_local_port)
1818 		return -EEXIST;
1819 
1820 	val |= MT753X_MIRROR_EN(priv->id);
1821 	val &= ~MT753X_MIRROR_MASK(priv->id);
1822 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1823 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1824 
1825 	val = mt7530_read(priv, MT7530_PCR_P(port));
1826 	if (ingress) {
1827 		val |= PORT_RX_MIR;
1828 		priv->mirror_rx |= BIT(port);
1829 	} else {
1830 		val |= PORT_TX_MIR;
1831 		priv->mirror_tx |= BIT(port);
1832 	}
1833 	mt7530_write(priv, MT7530_PCR_P(port), val);
1834 
1835 	return 0;
1836 }
1837 
1838 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1839 				   struct dsa_mall_mirror_tc_entry *mirror)
1840 {
1841 	struct mt7530_priv *priv = ds->priv;
1842 	u32 val;
1843 
1844 	val = mt7530_read(priv, MT7530_PCR_P(port));
1845 	if (mirror->ingress) {
1846 		val &= ~PORT_RX_MIR;
1847 		priv->mirror_rx &= ~BIT(port);
1848 	} else {
1849 		val &= ~PORT_TX_MIR;
1850 		priv->mirror_tx &= ~BIT(port);
1851 	}
1852 	mt7530_write(priv, MT7530_PCR_P(port), val);
1853 
1854 	if (!priv->mirror_rx && !priv->mirror_tx) {
1855 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1856 		val &= ~MT753X_MIRROR_EN(priv->id);
1857 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1858 	}
1859 }
1860 
1861 static enum dsa_tag_protocol
1862 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1863 		     enum dsa_tag_protocol mp)
1864 {
1865 	return DSA_TAG_PROTO_MTK;
1866 }
1867 
1868 #ifdef CONFIG_GPIOLIB
1869 static inline u32
1870 mt7530_gpio_to_bit(unsigned int offset)
1871 {
1872 	/* Map GPIO offset to register bit
1873 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1874 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1875 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1876 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1877 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1878 	 */
1879 	return BIT(offset + offset / 3);
1880 }
1881 
1882 static int
1883 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1884 {
1885 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1886 	u32 bit = mt7530_gpio_to_bit(offset);
1887 
1888 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1889 }
1890 
1891 static void
1892 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1893 {
1894 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1895 	u32 bit = mt7530_gpio_to_bit(offset);
1896 
1897 	if (value)
1898 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1899 	else
1900 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1901 }
1902 
1903 static int
1904 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1905 {
1906 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1907 	u32 bit = mt7530_gpio_to_bit(offset);
1908 
1909 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1910 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1911 }
1912 
1913 static int
1914 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1915 {
1916 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1917 	u32 bit = mt7530_gpio_to_bit(offset);
1918 
1919 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1920 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1921 
1922 	return 0;
1923 }
1924 
1925 static int
1926 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1927 {
1928 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1929 	u32 bit = mt7530_gpio_to_bit(offset);
1930 
1931 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1932 
1933 	if (value)
1934 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1935 	else
1936 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1937 
1938 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1939 
1940 	return 0;
1941 }
1942 
1943 static int
1944 mt7530_setup_gpio(struct mt7530_priv *priv)
1945 {
1946 	struct device *dev = priv->dev;
1947 	struct gpio_chip *gc;
1948 
1949 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1950 	if (!gc)
1951 		return -ENOMEM;
1952 
1953 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1954 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1955 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1956 
1957 	gc->label = "mt7530";
1958 	gc->parent = dev;
1959 	gc->owner = THIS_MODULE;
1960 	gc->get_direction = mt7530_gpio_get_direction;
1961 	gc->direction_input = mt7530_gpio_direction_input;
1962 	gc->direction_output = mt7530_gpio_direction_output;
1963 	gc->get = mt7530_gpio_get;
1964 	gc->set = mt7530_gpio_set;
1965 	gc->base = -1;
1966 	gc->ngpio = 15;
1967 	gc->can_sleep = true;
1968 
1969 	return devm_gpiochip_add_data(dev, gc, priv);
1970 }
1971 #endif /* CONFIG_GPIOLIB */
1972 
1973 static irqreturn_t
1974 mt7530_irq_thread_fn(int irq, void *dev_id)
1975 {
1976 	struct mt7530_priv *priv = dev_id;
1977 	bool handled = false;
1978 	u32 val;
1979 	int p;
1980 
1981 	mt7530_mutex_lock(priv);
1982 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1983 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1984 	mt7530_mutex_unlock(priv);
1985 
1986 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1987 		if (BIT(p) & val) {
1988 			unsigned int irq;
1989 
1990 			irq = irq_find_mapping(priv->irq_domain, p);
1991 			handle_nested_irq(irq);
1992 			handled = true;
1993 		}
1994 	}
1995 
1996 	return IRQ_RETVAL(handled);
1997 }
1998 
1999 static void
2000 mt7530_irq_mask(struct irq_data *d)
2001 {
2002 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2003 
2004 	priv->irq_enable &= ~BIT(d->hwirq);
2005 }
2006 
2007 static void
2008 mt7530_irq_unmask(struct irq_data *d)
2009 {
2010 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2011 
2012 	priv->irq_enable |= BIT(d->hwirq);
2013 }
2014 
2015 static void
2016 mt7530_irq_bus_lock(struct irq_data *d)
2017 {
2018 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2019 
2020 	mt7530_mutex_lock(priv);
2021 }
2022 
2023 static void
2024 mt7530_irq_bus_sync_unlock(struct irq_data *d)
2025 {
2026 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2027 
2028 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2029 	mt7530_mutex_unlock(priv);
2030 }
2031 
2032 static struct irq_chip mt7530_irq_chip = {
2033 	.name = KBUILD_MODNAME,
2034 	.irq_mask = mt7530_irq_mask,
2035 	.irq_unmask = mt7530_irq_unmask,
2036 	.irq_bus_lock = mt7530_irq_bus_lock,
2037 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2038 };
2039 
2040 static int
2041 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2042 	       irq_hw_number_t hwirq)
2043 {
2044 	irq_set_chip_data(irq, domain->host_data);
2045 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2046 	irq_set_nested_thread(irq, true);
2047 	irq_set_noprobe(irq);
2048 
2049 	return 0;
2050 }
2051 
2052 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2053 	.map = mt7530_irq_map,
2054 	.xlate = irq_domain_xlate_onecell,
2055 };
2056 
2057 static void
2058 mt7988_irq_mask(struct irq_data *d)
2059 {
2060 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2061 
2062 	priv->irq_enable &= ~BIT(d->hwirq);
2063 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2064 }
2065 
2066 static void
2067 mt7988_irq_unmask(struct irq_data *d)
2068 {
2069 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2070 
2071 	priv->irq_enable |= BIT(d->hwirq);
2072 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2073 }
2074 
2075 static struct irq_chip mt7988_irq_chip = {
2076 	.name = KBUILD_MODNAME,
2077 	.irq_mask = mt7988_irq_mask,
2078 	.irq_unmask = mt7988_irq_unmask,
2079 };
2080 
2081 static int
2082 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2083 	       irq_hw_number_t hwirq)
2084 {
2085 	irq_set_chip_data(irq, domain->host_data);
2086 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2087 	irq_set_nested_thread(irq, true);
2088 	irq_set_noprobe(irq);
2089 
2090 	return 0;
2091 }
2092 
2093 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2094 	.map = mt7988_irq_map,
2095 	.xlate = irq_domain_xlate_onecell,
2096 };
2097 
2098 static void
2099 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2100 {
2101 	struct dsa_switch *ds = priv->ds;
2102 	int p;
2103 
2104 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2105 		if (BIT(p) & ds->phys_mii_mask) {
2106 			unsigned int irq;
2107 
2108 			irq = irq_create_mapping(priv->irq_domain, p);
2109 			ds->slave_mii_bus->irq[p] = irq;
2110 		}
2111 	}
2112 }
2113 
2114 static int
2115 mt7530_setup_irq(struct mt7530_priv *priv)
2116 {
2117 	struct device *dev = priv->dev;
2118 	struct device_node *np = dev->of_node;
2119 	int ret;
2120 
2121 	if (!of_property_read_bool(np, "interrupt-controller")) {
2122 		dev_info(dev, "no interrupt support\n");
2123 		return 0;
2124 	}
2125 
2126 	priv->irq = of_irq_get(np, 0);
2127 	if (priv->irq <= 0) {
2128 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2129 		return priv->irq ? : -EINVAL;
2130 	}
2131 
2132 	if (priv->id == ID_MT7988)
2133 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2134 							 &mt7988_irq_domain_ops,
2135 							 priv);
2136 	else
2137 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2138 							 &mt7530_irq_domain_ops,
2139 							 priv);
2140 
2141 	if (!priv->irq_domain) {
2142 		dev_err(dev, "failed to create IRQ domain\n");
2143 		return -ENOMEM;
2144 	}
2145 
2146 	/* This register must be set for MT7530 to properly fire interrupts */
2147 	if (priv->id != ID_MT7531)
2148 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2149 
2150 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2151 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2152 	if (ret) {
2153 		irq_domain_remove(priv->irq_domain);
2154 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2155 		return ret;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static void
2162 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2163 {
2164 	int p;
2165 
2166 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2167 		if (BIT(p) & priv->ds->phys_mii_mask) {
2168 			unsigned int irq;
2169 
2170 			irq = irq_find_mapping(priv->irq_domain, p);
2171 			irq_dispose_mapping(irq);
2172 		}
2173 	}
2174 }
2175 
2176 static void
2177 mt7530_free_irq_common(struct mt7530_priv *priv)
2178 {
2179 	free_irq(priv->irq, priv);
2180 	irq_domain_remove(priv->irq_domain);
2181 }
2182 
2183 static void
2184 mt7530_free_irq(struct mt7530_priv *priv)
2185 {
2186 	mt7530_free_mdio_irq(priv);
2187 	mt7530_free_irq_common(priv);
2188 }
2189 
2190 static int
2191 mt7530_setup_mdio(struct mt7530_priv *priv)
2192 {
2193 	struct dsa_switch *ds = priv->ds;
2194 	struct device *dev = priv->dev;
2195 	struct mii_bus *bus;
2196 	static int idx;
2197 	int ret;
2198 
2199 	bus = devm_mdiobus_alloc(dev);
2200 	if (!bus)
2201 		return -ENOMEM;
2202 
2203 	ds->slave_mii_bus = bus;
2204 	bus->priv = priv;
2205 	bus->name = KBUILD_MODNAME "-mii";
2206 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2207 	bus->read = mt753x_phy_read_c22;
2208 	bus->write = mt753x_phy_write_c22;
2209 	bus->read_c45 = mt753x_phy_read_c45;
2210 	bus->write_c45 = mt753x_phy_write_c45;
2211 	bus->parent = dev;
2212 	bus->phy_mask = ~ds->phys_mii_mask;
2213 
2214 	if (priv->irq)
2215 		mt7530_setup_mdio_irq(priv);
2216 
2217 	ret = devm_mdiobus_register(dev, bus);
2218 	if (ret) {
2219 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2220 		if (priv->irq)
2221 			mt7530_free_mdio_irq(priv);
2222 	}
2223 
2224 	return ret;
2225 }
2226 
2227 static int
2228 mt7530_setup(struct dsa_switch *ds)
2229 {
2230 	struct mt7530_priv *priv = ds->priv;
2231 	struct device_node *dn = NULL;
2232 	struct device_node *phy_node;
2233 	struct device_node *mac_np;
2234 	struct mt7530_dummy_poll p;
2235 	phy_interface_t interface;
2236 	struct dsa_port *cpu_dp;
2237 	u32 id, val;
2238 	int ret, i;
2239 
2240 	/* The parent node of master netdev which holds the common system
2241 	 * controller also is the container for two GMACs nodes representing
2242 	 * as two netdev instances.
2243 	 */
2244 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2245 		dn = cpu_dp->master->dev.of_node->parent;
2246 		/* It doesn't matter which CPU port is found first,
2247 		 * their masters should share the same parent OF node
2248 		 */
2249 		break;
2250 	}
2251 
2252 	if (!dn) {
2253 		dev_err(ds->dev, "parent OF node of DSA master not found");
2254 		return -EINVAL;
2255 	}
2256 
2257 	ds->assisted_learning_on_cpu_port = true;
2258 	ds->mtu_enforcement_ingress = true;
2259 
2260 	if (priv->id == ID_MT7530) {
2261 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2262 		ret = regulator_enable(priv->core_pwr);
2263 		if (ret < 0) {
2264 			dev_err(priv->dev,
2265 				"Failed to enable core power: %d\n", ret);
2266 			return ret;
2267 		}
2268 
2269 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2270 		ret = regulator_enable(priv->io_pwr);
2271 		if (ret < 0) {
2272 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2273 				ret);
2274 			return ret;
2275 		}
2276 	}
2277 
2278 	/* Reset whole chip through gpio pin or memory-mapped registers for
2279 	 * different type of hardware
2280 	 */
2281 	if (priv->mcm) {
2282 		reset_control_assert(priv->rstc);
2283 		usleep_range(5000, 5100);
2284 		reset_control_deassert(priv->rstc);
2285 	} else {
2286 		gpiod_set_value_cansleep(priv->reset, 0);
2287 		usleep_range(5000, 5100);
2288 		gpiod_set_value_cansleep(priv->reset, 1);
2289 	}
2290 
2291 	/* Waiting for MT7530 got to stable */
2292 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2293 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2294 				 20, 1000000);
2295 	if (ret < 0) {
2296 		dev_err(priv->dev, "reset timeout\n");
2297 		return ret;
2298 	}
2299 
2300 	id = mt7530_read(priv, MT7530_CREV);
2301 	id >>= CHIP_NAME_SHIFT;
2302 	if (id != MT7530_ID) {
2303 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2304 		return -ENODEV;
2305 	}
2306 
2307 	/* Reset the switch through internal reset */
2308 	mt7530_write(priv, MT7530_SYS_CTRL,
2309 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2310 		     SYS_CTRL_REG_RST);
2311 
2312 	mt7530_pll_setup(priv);
2313 
2314 	/* Lower Tx driving for TRGMII path */
2315 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2316 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2317 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2318 
2319 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2320 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2321 			   RD_TAP_MASK, RD_TAP(16));
2322 
2323 	/* Enable port 6 */
2324 	val = mt7530_read(priv, MT7530_MHWTRAP);
2325 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2326 	val |= MHWTRAP_MANUAL;
2327 	mt7530_write(priv, MT7530_MHWTRAP, val);
2328 
2329 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2330 
2331 	mt753x_trap_frames(priv);
2332 
2333 	/* Enable and reset MIB counters */
2334 	mt7530_mib_reset(ds);
2335 
2336 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2337 		/* Disable forwarding by default on all ports */
2338 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2339 			   PCR_MATRIX_CLR);
2340 
2341 		/* Disable learning by default on all ports */
2342 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2343 
2344 		if (dsa_is_cpu_port(ds, i)) {
2345 			ret = mt753x_cpu_port_enable(ds, i);
2346 			if (ret)
2347 				return ret;
2348 		} else {
2349 			mt7530_port_disable(ds, i);
2350 
2351 			/* Set default PVID to 0 on all user ports */
2352 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2353 				   G0_PORT_VID_DEF);
2354 		}
2355 		/* Enable consistent egress tag */
2356 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2357 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2358 	}
2359 
2360 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2361 	ret = mt7530_setup_vlan0(priv);
2362 	if (ret)
2363 		return ret;
2364 
2365 	/* Setup port 5 */
2366 	priv->p5_intf_sel = P5_DISABLED;
2367 	interface = PHY_INTERFACE_MODE_NA;
2368 
2369 	if (!dsa_is_unused_port(ds, 5)) {
2370 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2371 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2372 		if (ret && ret != -ENODEV)
2373 			return ret;
2374 	} else {
2375 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2376 		for_each_child_of_node(dn, mac_np) {
2377 			if (!of_device_is_compatible(mac_np,
2378 						     "mediatek,eth-mac"))
2379 				continue;
2380 
2381 			ret = of_property_read_u32(mac_np, "reg", &id);
2382 			if (ret < 0 || id != 1)
2383 				continue;
2384 
2385 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2386 			if (!phy_node)
2387 				continue;
2388 
2389 			if (phy_node->parent == priv->dev->of_node->parent) {
2390 				ret = of_get_phy_mode(mac_np, &interface);
2391 				if (ret && ret != -ENODEV) {
2392 					of_node_put(mac_np);
2393 					of_node_put(phy_node);
2394 					return ret;
2395 				}
2396 				id = of_mdio_parse_addr(ds->dev, phy_node);
2397 				if (id == 0)
2398 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2399 				if (id == 4)
2400 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2401 			}
2402 			of_node_put(mac_np);
2403 			of_node_put(phy_node);
2404 			break;
2405 		}
2406 	}
2407 
2408 #ifdef CONFIG_GPIOLIB
2409 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2410 		ret = mt7530_setup_gpio(priv);
2411 		if (ret)
2412 			return ret;
2413 	}
2414 #endif /* CONFIG_GPIOLIB */
2415 
2416 	mt7530_setup_port5(ds, interface);
2417 
2418 	/* Flush the FDB table */
2419 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2420 	if (ret < 0)
2421 		return ret;
2422 
2423 	return 0;
2424 }
2425 
2426 static int
2427 mt7531_setup_common(struct dsa_switch *ds)
2428 {
2429 	struct mt7530_priv *priv = ds->priv;
2430 	int ret, i;
2431 
2432 	mt753x_trap_frames(priv);
2433 
2434 	/* Enable and reset MIB counters */
2435 	mt7530_mib_reset(ds);
2436 
2437 	/* Disable flooding on all ports */
2438 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2439 		     UNU_FFP_MASK);
2440 
2441 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2442 		/* Disable forwarding by default on all ports */
2443 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2444 			   PCR_MATRIX_CLR);
2445 
2446 		/* Disable learning by default on all ports */
2447 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2448 
2449 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2450 
2451 		if (dsa_is_cpu_port(ds, i)) {
2452 			ret = mt753x_cpu_port_enable(ds, i);
2453 			if (ret)
2454 				return ret;
2455 		} else {
2456 			mt7530_port_disable(ds, i);
2457 
2458 			/* Set default PVID to 0 on all user ports */
2459 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2460 				   G0_PORT_VID_DEF);
2461 		}
2462 
2463 		/* Enable consistent egress tag */
2464 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2465 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2466 	}
2467 
2468 	/* Flush the FDB table */
2469 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2470 	if (ret < 0)
2471 		return ret;
2472 
2473 	return 0;
2474 }
2475 
2476 static int
2477 mt7531_setup(struct dsa_switch *ds)
2478 {
2479 	struct mt7530_priv *priv = ds->priv;
2480 	struct mt7530_dummy_poll p;
2481 	u32 val, id;
2482 	int ret, i;
2483 
2484 	/* Reset whole chip through gpio pin or memory-mapped registers for
2485 	 * different type of hardware
2486 	 */
2487 	if (priv->mcm) {
2488 		reset_control_assert(priv->rstc);
2489 		usleep_range(5000, 5100);
2490 		reset_control_deassert(priv->rstc);
2491 	} else {
2492 		gpiod_set_value_cansleep(priv->reset, 0);
2493 		usleep_range(5000, 5100);
2494 		gpiod_set_value_cansleep(priv->reset, 1);
2495 	}
2496 
2497 	/* Waiting for MT7530 got to stable */
2498 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2499 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2500 				 20, 1000000);
2501 	if (ret < 0) {
2502 		dev_err(priv->dev, "reset timeout\n");
2503 		return ret;
2504 	}
2505 
2506 	id = mt7530_read(priv, MT7531_CREV);
2507 	id >>= CHIP_NAME_SHIFT;
2508 
2509 	if (id != MT7531_ID) {
2510 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2511 		return -ENODEV;
2512 	}
2513 
2514 	/* all MACs must be forced link-down before sw reset */
2515 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2516 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2517 
2518 	/* Reset the switch through internal reset */
2519 	mt7530_write(priv, MT7530_SYS_CTRL,
2520 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2521 		     SYS_CTRL_REG_RST);
2522 
2523 	mt7531_pll_setup(priv);
2524 
2525 	if (mt7531_dual_sgmii_supported(priv)) {
2526 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2527 
2528 		/* Let ds->slave_mii_bus be able to access external phy. */
2529 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2530 			   MT7531_EXT_P_MDC_11);
2531 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2532 			   MT7531_EXT_P_MDIO_12);
2533 	} else {
2534 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2535 	}
2536 	dev_dbg(ds->dev, "P5 support %s interface\n",
2537 		p5_intf_modes(priv->p5_intf_sel));
2538 
2539 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2540 		   MT7531_GPIO0_INTERRUPT);
2541 
2542 	/* Let phylink decide the interface later. */
2543 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2544 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2545 
2546 	/* Enable PHY core PLL, since phy_device has not yet been created
2547 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2548 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2549 	 * function.
2550 	 */
2551 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2552 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2553 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2554 	val &= ~MT7531_PHY_PLL_OFF;
2555 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2556 				 CORE_PLL_GROUP4, val);
2557 
2558 	mt7531_setup_common(ds);
2559 
2560 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2561 	ret = mt7530_setup_vlan0(priv);
2562 	if (ret)
2563 		return ret;
2564 
2565 	ds->assisted_learning_on_cpu_port = true;
2566 	ds->mtu_enforcement_ingress = true;
2567 
2568 	return 0;
2569 }
2570 
2571 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2572 				     struct phylink_config *config)
2573 {
2574 	switch (port) {
2575 	case 0 ... 4: /* Internal phy */
2576 		__set_bit(PHY_INTERFACE_MODE_GMII,
2577 			  config->supported_interfaces);
2578 		break;
2579 
2580 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2581 		phy_interface_set_rgmii(config->supported_interfaces);
2582 		__set_bit(PHY_INTERFACE_MODE_MII,
2583 			  config->supported_interfaces);
2584 		__set_bit(PHY_INTERFACE_MODE_GMII,
2585 			  config->supported_interfaces);
2586 		break;
2587 
2588 	case 6: /* 1st cpu port */
2589 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2590 			  config->supported_interfaces);
2591 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2592 			  config->supported_interfaces);
2593 		break;
2594 	}
2595 }
2596 
2597 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2598 {
2599 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2600 }
2601 
2602 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2603 				     struct phylink_config *config)
2604 {
2605 	struct mt7530_priv *priv = ds->priv;
2606 
2607 	switch (port) {
2608 	case 0 ... 4: /* Internal phy */
2609 		__set_bit(PHY_INTERFACE_MODE_GMII,
2610 			  config->supported_interfaces);
2611 		break;
2612 
2613 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2614 		if (mt7531_is_rgmii_port(priv, port)) {
2615 			phy_interface_set_rgmii(config->supported_interfaces);
2616 			break;
2617 		}
2618 		fallthrough;
2619 
2620 	case 6: /* 1st cpu port supports sgmii/8023z only */
2621 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2622 			  config->supported_interfaces);
2623 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2624 			  config->supported_interfaces);
2625 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2626 			  config->supported_interfaces);
2627 
2628 		config->mac_capabilities |= MAC_2500FD;
2629 		break;
2630 	}
2631 }
2632 
2633 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2634 				     struct phylink_config *config)
2635 {
2636 	phy_interface_zero(config->supported_interfaces);
2637 
2638 	switch (port) {
2639 	case 0 ... 4: /* Internal phy */
2640 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2641 			  config->supported_interfaces);
2642 		break;
2643 
2644 	case 6:
2645 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2646 			  config->supported_interfaces);
2647 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2648 					   MAC_10000FD;
2649 	}
2650 }
2651 
2652 static int
2653 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2654 {
2655 	struct mt7530_priv *priv = ds->priv;
2656 
2657 	return priv->info->pad_setup(ds, state->interface);
2658 }
2659 
2660 static int
2661 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2662 		  phy_interface_t interface)
2663 {
2664 	struct mt7530_priv *priv = ds->priv;
2665 
2666 	/* Only need to setup port5. */
2667 	if (port != 5)
2668 		return 0;
2669 
2670 	mt7530_setup_port5(priv->ds, interface);
2671 
2672 	return 0;
2673 }
2674 
2675 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2676 			      phy_interface_t interface,
2677 			      struct phy_device *phydev)
2678 {
2679 	u32 val;
2680 
2681 	if (!mt7531_is_rgmii_port(priv, port)) {
2682 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2683 			port);
2684 		return -EINVAL;
2685 	}
2686 
2687 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2688 	val |= GP_CLK_EN;
2689 	val &= ~GP_MODE_MASK;
2690 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2691 	val &= ~CLK_SKEW_IN_MASK;
2692 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2693 	val &= ~CLK_SKEW_OUT_MASK;
2694 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2695 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2696 
2697 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2698 	if (!phydev || phy_driver_is_genphy(phydev)) {
2699 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2700 		switch (interface) {
2701 		case PHY_INTERFACE_MODE_RGMII:
2702 			val |= TXCLK_NO_REVERSE;
2703 			val |= RXCLK_NO_DELAY;
2704 			break;
2705 		case PHY_INTERFACE_MODE_RGMII_RXID:
2706 			val |= TXCLK_NO_REVERSE;
2707 			break;
2708 		case PHY_INTERFACE_MODE_RGMII_TXID:
2709 			val |= RXCLK_NO_DELAY;
2710 			break;
2711 		case PHY_INTERFACE_MODE_RGMII_ID:
2712 			break;
2713 		default:
2714 			return -EINVAL;
2715 		}
2716 	}
2717 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2718 
2719 	return 0;
2720 }
2721 
2722 static bool mt753x_is_mac_port(u32 port)
2723 {
2724 	return (port == 5 || port == 6);
2725 }
2726 
2727 static int
2728 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2729 		  phy_interface_t interface)
2730 {
2731 	if (dsa_is_cpu_port(ds, port) &&
2732 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2733 		return 0;
2734 
2735 	return -EINVAL;
2736 }
2737 
2738 static int
2739 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2740 		  phy_interface_t interface)
2741 {
2742 	struct mt7530_priv *priv = ds->priv;
2743 	struct phy_device *phydev;
2744 	struct dsa_port *dp;
2745 
2746 	if (!mt753x_is_mac_port(port)) {
2747 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2748 		return -EINVAL;
2749 	}
2750 
2751 	switch (interface) {
2752 	case PHY_INTERFACE_MODE_RGMII:
2753 	case PHY_INTERFACE_MODE_RGMII_ID:
2754 	case PHY_INTERFACE_MODE_RGMII_RXID:
2755 	case PHY_INTERFACE_MODE_RGMII_TXID:
2756 		dp = dsa_to_port(ds, port);
2757 		phydev = dp->slave->phydev;
2758 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2759 	case PHY_INTERFACE_MODE_SGMII:
2760 	case PHY_INTERFACE_MODE_NA:
2761 	case PHY_INTERFACE_MODE_1000BASEX:
2762 	case PHY_INTERFACE_MODE_2500BASEX:
2763 		/* handled in SGMII PCS driver */
2764 		return 0;
2765 	default:
2766 		return -EINVAL;
2767 	}
2768 
2769 	return -EINVAL;
2770 }
2771 
2772 static int
2773 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2774 		  const struct phylink_link_state *state)
2775 {
2776 	struct mt7530_priv *priv = ds->priv;
2777 
2778 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2779 }
2780 
2781 static struct phylink_pcs *
2782 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2783 			      phy_interface_t interface)
2784 {
2785 	struct mt7530_priv *priv = ds->priv;
2786 
2787 	switch (interface) {
2788 	case PHY_INTERFACE_MODE_TRGMII:
2789 		return &priv->pcs[port].pcs;
2790 	case PHY_INTERFACE_MODE_SGMII:
2791 	case PHY_INTERFACE_MODE_1000BASEX:
2792 	case PHY_INTERFACE_MODE_2500BASEX:
2793 		return priv->ports[port].sgmii_pcs;
2794 	default:
2795 		return NULL;
2796 	}
2797 }
2798 
2799 static void
2800 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2801 			  const struct phylink_link_state *state)
2802 {
2803 	struct mt7530_priv *priv = ds->priv;
2804 	u32 mcr_cur, mcr_new;
2805 
2806 	switch (port) {
2807 	case 0 ... 4: /* Internal phy */
2808 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2809 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2810 			goto unsupported;
2811 		break;
2812 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2813 		if (priv->p5_interface == state->interface)
2814 			break;
2815 
2816 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2817 			goto unsupported;
2818 
2819 		if (priv->p5_intf_sel != P5_DISABLED)
2820 			priv->p5_interface = state->interface;
2821 		break;
2822 	case 6: /* 1st cpu port */
2823 		if (priv->p6_interface == state->interface)
2824 			break;
2825 
2826 		mt753x_pad_setup(ds, state);
2827 
2828 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2829 			goto unsupported;
2830 
2831 		priv->p6_interface = state->interface;
2832 		break;
2833 	default:
2834 unsupported:
2835 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2836 			__func__, phy_modes(state->interface), port);
2837 		return;
2838 	}
2839 
2840 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2841 	mcr_new = mcr_cur;
2842 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2843 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2844 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2845 
2846 	/* Are we connected to external phy */
2847 	if (port == 5 && dsa_is_user_port(ds, 5))
2848 		mcr_new |= PMCR_EXT_PHY;
2849 
2850 	if (mcr_new != mcr_cur)
2851 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2852 }
2853 
2854 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2855 					 unsigned int mode,
2856 					 phy_interface_t interface)
2857 {
2858 	struct mt7530_priv *priv = ds->priv;
2859 
2860 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2861 }
2862 
2863 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2864 				       unsigned int mode,
2865 				       phy_interface_t interface,
2866 				       int speed, int duplex)
2867 {
2868 	if (pcs->ops->pcs_link_up)
2869 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2870 }
2871 
2872 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2873 				       unsigned int mode,
2874 				       phy_interface_t interface,
2875 				       struct phy_device *phydev,
2876 				       int speed, int duplex,
2877 				       bool tx_pause, bool rx_pause)
2878 {
2879 	struct mt7530_priv *priv = ds->priv;
2880 	u32 mcr;
2881 
2882 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2883 
2884 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2885 	 * variants.
2886 	 */
2887 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2888 	    (phy_interface_mode_is_8023z(interface))) {
2889 		speed = SPEED_1000;
2890 		duplex = DUPLEX_FULL;
2891 	}
2892 
2893 	switch (speed) {
2894 	case SPEED_1000:
2895 		mcr |= PMCR_FORCE_SPEED_1000;
2896 		break;
2897 	case SPEED_100:
2898 		mcr |= PMCR_FORCE_SPEED_100;
2899 		break;
2900 	}
2901 	if (duplex == DUPLEX_FULL) {
2902 		mcr |= PMCR_FORCE_FDX;
2903 		if (tx_pause)
2904 			mcr |= PMCR_TX_FC_EN;
2905 		if (rx_pause)
2906 			mcr |= PMCR_RX_FC_EN;
2907 	}
2908 
2909 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2910 		switch (speed) {
2911 		case SPEED_1000:
2912 			mcr |= PMCR_FORCE_EEE1G;
2913 			break;
2914 		case SPEED_100:
2915 			mcr |= PMCR_FORCE_EEE100;
2916 			break;
2917 		}
2918 	}
2919 
2920 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2921 }
2922 
2923 static int
2924 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2925 {
2926 	struct mt7530_priv *priv = ds->priv;
2927 	phy_interface_t interface;
2928 	int speed;
2929 	int ret;
2930 
2931 	switch (port) {
2932 	case 5:
2933 		if (mt7531_is_rgmii_port(priv, port))
2934 			interface = PHY_INTERFACE_MODE_RGMII;
2935 		else
2936 			interface = PHY_INTERFACE_MODE_2500BASEX;
2937 
2938 		priv->p5_interface = interface;
2939 		break;
2940 	case 6:
2941 		interface = PHY_INTERFACE_MODE_2500BASEX;
2942 
2943 		priv->p6_interface = interface;
2944 		break;
2945 	default:
2946 		return -EINVAL;
2947 	}
2948 
2949 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2950 		speed = SPEED_2500;
2951 	else
2952 		speed = SPEED_1000;
2953 
2954 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2955 	if (ret)
2956 		return ret;
2957 	mt7530_write(priv, MT7530_PMCR_P(port),
2958 		     PMCR_CPU_PORT_SETTING(priv->id));
2959 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2960 				   interface, speed, DUPLEX_FULL);
2961 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2962 				   speed, DUPLEX_FULL, true, true);
2963 
2964 	return 0;
2965 }
2966 
2967 static int
2968 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2969 {
2970 	struct mt7530_priv *priv = ds->priv;
2971 
2972 	mt7530_write(priv, MT7530_PMCR_P(port),
2973 		     PMCR_CPU_PORT_SETTING(priv->id));
2974 
2975 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2976 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2977 				   SPEED_10000, DUPLEX_FULL, true, true);
2978 
2979 	return 0;
2980 }
2981 
2982 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2983 				    struct phylink_config *config)
2984 {
2985 	struct mt7530_priv *priv = ds->priv;
2986 
2987 	/* This switch only supports full-duplex at 1Gbps */
2988 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2989 				   MAC_10 | MAC_100 | MAC_1000FD;
2990 
2991 	priv->info->mac_port_get_caps(ds, port, config);
2992 }
2993 
2994 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2995 			       unsigned long *supported,
2996 			       const struct phylink_link_state *state)
2997 {
2998 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2999 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
3000 	    phy_interface_mode_is_8023z(state->interface))
3001 		phylink_clear(supported, Autoneg);
3002 
3003 	return 0;
3004 }
3005 
3006 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
3007 				 struct phylink_link_state *state)
3008 {
3009 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3010 	int port = pcs_to_mt753x_pcs(pcs)->port;
3011 	u32 pmsr;
3012 
3013 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3014 
3015 	state->link = (pmsr & PMSR_LINK);
3016 	state->an_complete = state->link;
3017 	state->duplex = !!(pmsr & PMSR_DPX);
3018 
3019 	switch (pmsr & PMSR_SPEED_MASK) {
3020 	case PMSR_SPEED_10:
3021 		state->speed = SPEED_10;
3022 		break;
3023 	case PMSR_SPEED_100:
3024 		state->speed = SPEED_100;
3025 		break;
3026 	case PMSR_SPEED_1000:
3027 		state->speed = SPEED_1000;
3028 		break;
3029 	default:
3030 		state->speed = SPEED_UNKNOWN;
3031 		break;
3032 	}
3033 
3034 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3035 	if (pmsr & PMSR_RX_FC)
3036 		state->pause |= MLO_PAUSE_RX;
3037 	if (pmsr & PMSR_TX_FC)
3038 		state->pause |= MLO_PAUSE_TX;
3039 }
3040 
3041 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3042 			     phy_interface_t interface,
3043 			     const unsigned long *advertising,
3044 			     bool permit_pause_to_mac)
3045 {
3046 	return 0;
3047 }
3048 
3049 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3050 {
3051 }
3052 
3053 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3054 	.pcs_validate = mt753x_pcs_validate,
3055 	.pcs_get_state = mt7530_pcs_get_state,
3056 	.pcs_config = mt753x_pcs_config,
3057 	.pcs_an_restart = mt7530_pcs_an_restart,
3058 };
3059 
3060 static int
3061 mt753x_setup(struct dsa_switch *ds)
3062 {
3063 	struct mt7530_priv *priv = ds->priv;
3064 	int i, ret;
3065 
3066 	/* Initialise the PCS devices */
3067 	for (i = 0; i < priv->ds->num_ports; i++) {
3068 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3069 		priv->pcs[i].pcs.neg_mode = true;
3070 		priv->pcs[i].priv = priv;
3071 		priv->pcs[i].port = i;
3072 	}
3073 
3074 	ret = priv->info->sw_setup(ds);
3075 	if (ret)
3076 		return ret;
3077 
3078 	ret = mt7530_setup_irq(priv);
3079 	if (ret)
3080 		return ret;
3081 
3082 	ret = mt7530_setup_mdio(priv);
3083 	if (ret && priv->irq)
3084 		mt7530_free_irq_common(priv);
3085 
3086 	if (priv->create_sgmii) {
3087 		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3088 		if (ret && priv->irq)
3089 			mt7530_free_irq(priv);
3090 	}
3091 
3092 	return ret;
3093 }
3094 
3095 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3096 			      struct ethtool_eee *e)
3097 {
3098 	struct mt7530_priv *priv = ds->priv;
3099 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3100 
3101 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3102 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3103 
3104 	return 0;
3105 }
3106 
3107 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3108 			      struct ethtool_eee *e)
3109 {
3110 	struct mt7530_priv *priv = ds->priv;
3111 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3112 
3113 	if (e->tx_lpi_timer > 0xFFF)
3114 		return -EINVAL;
3115 
3116 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3117 	if (!e->tx_lpi_enabled)
3118 		/* Force LPI Mode without a delay */
3119 		set |= LPI_MODE_EN;
3120 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3121 
3122 	return 0;
3123 }
3124 
3125 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3126 {
3127 	return 0;
3128 }
3129 
3130 static int mt7988_setup(struct dsa_switch *ds)
3131 {
3132 	struct mt7530_priv *priv = ds->priv;
3133 
3134 	/* Reset the switch */
3135 	reset_control_assert(priv->rstc);
3136 	usleep_range(20, 50);
3137 	reset_control_deassert(priv->rstc);
3138 	usleep_range(20, 50);
3139 
3140 	/* Reset the switch PHYs */
3141 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3142 
3143 	return mt7531_setup_common(ds);
3144 }
3145 
3146 const struct dsa_switch_ops mt7530_switch_ops = {
3147 	.get_tag_protocol	= mtk_get_tag_protocol,
3148 	.setup			= mt753x_setup,
3149 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3150 	.get_strings		= mt7530_get_strings,
3151 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3152 	.get_sset_count		= mt7530_get_sset_count,
3153 	.set_ageing_time	= mt7530_set_ageing_time,
3154 	.port_enable		= mt7530_port_enable,
3155 	.port_disable		= mt7530_port_disable,
3156 	.port_change_mtu	= mt7530_port_change_mtu,
3157 	.port_max_mtu		= mt7530_port_max_mtu,
3158 	.port_stp_state_set	= mt7530_stp_state_set,
3159 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3160 	.port_bridge_flags	= mt7530_port_bridge_flags,
3161 	.port_bridge_join	= mt7530_port_bridge_join,
3162 	.port_bridge_leave	= mt7530_port_bridge_leave,
3163 	.port_fdb_add		= mt7530_port_fdb_add,
3164 	.port_fdb_del		= mt7530_port_fdb_del,
3165 	.port_fdb_dump		= mt7530_port_fdb_dump,
3166 	.port_mdb_add		= mt7530_port_mdb_add,
3167 	.port_mdb_del		= mt7530_port_mdb_del,
3168 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3169 	.port_vlan_add		= mt7530_port_vlan_add,
3170 	.port_vlan_del		= mt7530_port_vlan_del,
3171 	.port_mirror_add	= mt753x_port_mirror_add,
3172 	.port_mirror_del	= mt753x_port_mirror_del,
3173 	.phylink_get_caps	= mt753x_phylink_get_caps,
3174 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3175 	.phylink_mac_config	= mt753x_phylink_mac_config,
3176 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3177 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3178 	.get_mac_eee		= mt753x_get_mac_eee,
3179 	.set_mac_eee		= mt753x_set_mac_eee,
3180 };
3181 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3182 
3183 const struct mt753x_info mt753x_table[] = {
3184 	[ID_MT7621] = {
3185 		.id = ID_MT7621,
3186 		.pcs_ops = &mt7530_pcs_ops,
3187 		.sw_setup = mt7530_setup,
3188 		.phy_read_c22 = mt7530_phy_read_c22,
3189 		.phy_write_c22 = mt7530_phy_write_c22,
3190 		.phy_read_c45 = mt7530_phy_read_c45,
3191 		.phy_write_c45 = mt7530_phy_write_c45,
3192 		.pad_setup = mt7530_pad_clk_setup,
3193 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3194 		.mac_port_config = mt7530_mac_config,
3195 	},
3196 	[ID_MT7530] = {
3197 		.id = ID_MT7530,
3198 		.pcs_ops = &mt7530_pcs_ops,
3199 		.sw_setup = mt7530_setup,
3200 		.phy_read_c22 = mt7530_phy_read_c22,
3201 		.phy_write_c22 = mt7530_phy_write_c22,
3202 		.phy_read_c45 = mt7530_phy_read_c45,
3203 		.phy_write_c45 = mt7530_phy_write_c45,
3204 		.pad_setup = mt7530_pad_clk_setup,
3205 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3206 		.mac_port_config = mt7530_mac_config,
3207 	},
3208 	[ID_MT7531] = {
3209 		.id = ID_MT7531,
3210 		.pcs_ops = &mt7530_pcs_ops,
3211 		.sw_setup = mt7531_setup,
3212 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3213 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3214 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3215 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3216 		.pad_setup = mt7531_pad_setup,
3217 		.cpu_port_config = mt7531_cpu_port_config,
3218 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3219 		.mac_port_config = mt7531_mac_config,
3220 	},
3221 	[ID_MT7988] = {
3222 		.id = ID_MT7988,
3223 		.pcs_ops = &mt7530_pcs_ops,
3224 		.sw_setup = mt7988_setup,
3225 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3226 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3227 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3228 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3229 		.pad_setup = mt7988_pad_setup,
3230 		.cpu_port_config = mt7988_cpu_port_config,
3231 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3232 		.mac_port_config = mt7988_mac_config,
3233 	},
3234 };
3235 EXPORT_SYMBOL_GPL(mt753x_table);
3236 
3237 int
3238 mt7530_probe_common(struct mt7530_priv *priv)
3239 {
3240 	struct device *dev = priv->dev;
3241 
3242 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3243 	if (!priv->ds)
3244 		return -ENOMEM;
3245 
3246 	priv->ds->dev = dev;
3247 	priv->ds->num_ports = MT7530_NUM_PORTS;
3248 
3249 	/* Get the hardware identifier from the devicetree node.
3250 	 * We will need it for some of the clock and regulator setup.
3251 	 */
3252 	priv->info = of_device_get_match_data(dev);
3253 	if (!priv->info)
3254 		return -EINVAL;
3255 
3256 	/* Sanity check if these required device operations are filled
3257 	 * properly.
3258 	 */
3259 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3260 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3261 	    !priv->info->mac_port_get_caps ||
3262 	    !priv->info->mac_port_config)
3263 		return -EINVAL;
3264 
3265 	priv->id = priv->info->id;
3266 	priv->dev = dev;
3267 	priv->ds->priv = priv;
3268 	priv->ds->ops = &mt7530_switch_ops;
3269 	mutex_init(&priv->reg_mutex);
3270 	dev_set_drvdata(dev, priv);
3271 
3272 	return 0;
3273 }
3274 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3275 
3276 void
3277 mt7530_remove_common(struct mt7530_priv *priv)
3278 {
3279 	if (priv->irq)
3280 		mt7530_free_irq(priv);
3281 
3282 	dsa_unregister_switch(priv->ds);
3283 
3284 	mutex_destroy(&priv->reg_mutex);
3285 }
3286 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3287 
3288 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3289 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3290 MODULE_LICENSE("GPL");
3291