xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 6a143a7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phylink.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/gpio/driver.h>
22 #include <net/dsa.h>
23 
24 #include "mt7530.h"
25 
26 /* String, offset, and register size in bytes if different from 4 bytes */
27 static const struct mt7530_mib_desc mt7530_mib[] = {
28 	MIB_DESC(1, 0x00, "TxDrop"),
29 	MIB_DESC(1, 0x04, "TxCrcErr"),
30 	MIB_DESC(1, 0x08, "TxUnicast"),
31 	MIB_DESC(1, 0x0c, "TxMulticast"),
32 	MIB_DESC(1, 0x10, "TxBroadcast"),
33 	MIB_DESC(1, 0x14, "TxCollision"),
34 	MIB_DESC(1, 0x18, "TxSingleCollision"),
35 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
36 	MIB_DESC(1, 0x20, "TxDeferred"),
37 	MIB_DESC(1, 0x24, "TxLateCollision"),
38 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
39 	MIB_DESC(1, 0x2c, "TxPause"),
40 	MIB_DESC(1, 0x30, "TxPktSz64"),
41 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
42 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
43 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
44 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
45 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
46 	MIB_DESC(2, 0x48, "TxBytes"),
47 	MIB_DESC(1, 0x60, "RxDrop"),
48 	MIB_DESC(1, 0x64, "RxFiltering"),
49 	MIB_DESC(1, 0x6c, "RxMulticast"),
50 	MIB_DESC(1, 0x70, "RxBroadcast"),
51 	MIB_DESC(1, 0x74, "RxAlignErr"),
52 	MIB_DESC(1, 0x78, "RxCrcErr"),
53 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
54 	MIB_DESC(1, 0x80, "RxFragErr"),
55 	MIB_DESC(1, 0x84, "RxOverSzErr"),
56 	MIB_DESC(1, 0x88, "RxJabberErr"),
57 	MIB_DESC(1, 0x8c, "RxPause"),
58 	MIB_DESC(1, 0x90, "RxPktSz64"),
59 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
60 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
61 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
62 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
63 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
64 	MIB_DESC(2, 0xa8, "RxBytes"),
65 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
66 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
67 	MIB_DESC(1, 0xb8, "RxArlDrop"),
68 };
69 
70 static int
71 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
72 {
73 	struct mii_bus *bus = priv->bus;
74 	int value, ret;
75 
76 	/* Write the desired MMD Devad */
77 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
78 	if (ret < 0)
79 		goto err;
80 
81 	/* Write the desired MMD register address */
82 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
83 	if (ret < 0)
84 		goto err;
85 
86 	/* Select the Function : DATA with no post increment */
87 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
88 	if (ret < 0)
89 		goto err;
90 
91 	/* Read the content of the MMD's selected register */
92 	value = bus->read(bus, 0, MII_MMD_DATA);
93 
94 	return value;
95 err:
96 	dev_err(&bus->dev,  "failed to read mmd register\n");
97 
98 	return ret;
99 }
100 
101 static int
102 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
103 			int devad, u32 data)
104 {
105 	struct mii_bus *bus = priv->bus;
106 	int ret;
107 
108 	/* Write the desired MMD Devad */
109 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
110 	if (ret < 0)
111 		goto err;
112 
113 	/* Write the desired MMD register address */
114 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
115 	if (ret < 0)
116 		goto err;
117 
118 	/* Select the Function : DATA with no post increment */
119 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
120 	if (ret < 0)
121 		goto err;
122 
123 	/* Write the data into MMD's selected register */
124 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
125 err:
126 	if (ret < 0)
127 		dev_err(&bus->dev,
128 			"failed to write mmd register\n");
129 	return ret;
130 }
131 
132 static void
133 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
134 {
135 	struct mii_bus *bus = priv->bus;
136 
137 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
138 
139 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
140 
141 	mutex_unlock(&bus->mdio_lock);
142 }
143 
144 static void
145 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
146 {
147 	struct mii_bus *bus = priv->bus;
148 	u32 val;
149 
150 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
151 
152 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
153 	val &= ~mask;
154 	val |= set;
155 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
156 
157 	mutex_unlock(&bus->mdio_lock);
158 }
159 
160 static void
161 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
162 {
163 	core_rmw(priv, reg, 0, val);
164 }
165 
166 static void
167 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
168 {
169 	core_rmw(priv, reg, val, 0);
170 }
171 
172 static int
173 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	struct mii_bus *bus = priv->bus;
176 	u16 page, r, lo, hi;
177 	int ret;
178 
179 	page = (reg >> 6) & 0x3ff;
180 	r  = (reg >> 2) & 0xf;
181 	lo = val & 0xffff;
182 	hi = val >> 16;
183 
184 	/* MT7530 uses 31 as the pseudo port */
185 	ret = bus->write(bus, 0x1f, 0x1f, page);
186 	if (ret < 0)
187 		goto err;
188 
189 	ret = bus->write(bus, 0x1f, r,  lo);
190 	if (ret < 0)
191 		goto err;
192 
193 	ret = bus->write(bus, 0x1f, 0x10, hi);
194 err:
195 	if (ret < 0)
196 		dev_err(&bus->dev,
197 			"failed to write mt7530 register\n");
198 	return ret;
199 }
200 
201 static u32
202 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
203 {
204 	struct mii_bus *bus = priv->bus;
205 	u16 page, r, lo, hi;
206 	int ret;
207 
208 	page = (reg >> 6) & 0x3ff;
209 	r = (reg >> 2) & 0xf;
210 
211 	/* MT7530 uses 31 as the pseudo port */
212 	ret = bus->write(bus, 0x1f, 0x1f, page);
213 	if (ret < 0) {
214 		dev_err(&bus->dev,
215 			"failed to read mt7530 register\n");
216 		return ret;
217 	}
218 
219 	lo = bus->read(bus, 0x1f, r);
220 	hi = bus->read(bus, 0x1f, 0x10);
221 
222 	return (hi << 16) | (lo & 0xffff);
223 }
224 
225 static void
226 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
227 {
228 	struct mii_bus *bus = priv->bus;
229 
230 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
231 
232 	mt7530_mii_write(priv, reg, val);
233 
234 	mutex_unlock(&bus->mdio_lock);
235 }
236 
237 static u32
238 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
239 {
240 	return mt7530_mii_read(p->priv, p->reg);
241 }
242 
243 static u32
244 _mt7530_read(struct mt7530_dummy_poll *p)
245 {
246 	struct mii_bus		*bus = p->priv->bus;
247 	u32 val;
248 
249 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
250 
251 	val = mt7530_mii_read(p->priv, p->reg);
252 
253 	mutex_unlock(&bus->mdio_lock);
254 
255 	return val;
256 }
257 
258 static u32
259 mt7530_read(struct mt7530_priv *priv, u32 reg)
260 {
261 	struct mt7530_dummy_poll p;
262 
263 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
264 	return _mt7530_read(&p);
265 }
266 
267 static void
268 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
269 	   u32 mask, u32 set)
270 {
271 	struct mii_bus *bus = priv->bus;
272 	u32 val;
273 
274 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
275 
276 	val = mt7530_mii_read(priv, reg);
277 	val &= ~mask;
278 	val |= set;
279 	mt7530_mii_write(priv, reg, val);
280 
281 	mutex_unlock(&bus->mdio_lock);
282 }
283 
284 static void
285 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
286 {
287 	mt7530_rmw(priv, reg, 0, val);
288 }
289 
290 static void
291 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
292 {
293 	mt7530_rmw(priv, reg, val, 0);
294 }
295 
296 static int
297 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
298 {
299 	u32 val;
300 	int ret;
301 	struct mt7530_dummy_poll p;
302 
303 	/* Set the command operating upon the MAC address entries */
304 	val = ATC_BUSY | ATC_MAT(0) | cmd;
305 	mt7530_write(priv, MT7530_ATC, val);
306 
307 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
308 	ret = readx_poll_timeout(_mt7530_read, &p, val,
309 				 !(val & ATC_BUSY), 20, 20000);
310 	if (ret < 0) {
311 		dev_err(priv->dev, "reset timeout\n");
312 		return ret;
313 	}
314 
315 	/* Additional sanity for read command if the specified
316 	 * entry is invalid
317 	 */
318 	val = mt7530_read(priv, MT7530_ATC);
319 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
320 		return -EINVAL;
321 
322 	if (rsp)
323 		*rsp = val;
324 
325 	return 0;
326 }
327 
328 static void
329 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
330 {
331 	u32 reg[3];
332 	int i;
333 
334 	/* Read from ARL table into an array */
335 	for (i = 0; i < 3; i++) {
336 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
337 
338 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
339 			__func__, __LINE__, i, reg[i]);
340 	}
341 
342 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
343 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
344 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
345 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
346 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
347 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
348 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
349 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
350 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
351 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
352 }
353 
354 static void
355 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
356 		 u8 port_mask, const u8 *mac,
357 		 u8 aging, u8 type)
358 {
359 	u32 reg[3] = { 0 };
360 	int i;
361 
362 	reg[1] |= vid & CVID_MASK;
363 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
364 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
365 	/* STATIC_ENT indicate that entry is static wouldn't
366 	 * be aged out and STATIC_EMP specified as erasing an
367 	 * entry
368 	 */
369 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
370 	reg[1] |= mac[5] << MAC_BYTE_5;
371 	reg[1] |= mac[4] << MAC_BYTE_4;
372 	reg[0] |= mac[3] << MAC_BYTE_3;
373 	reg[0] |= mac[2] << MAC_BYTE_2;
374 	reg[0] |= mac[1] << MAC_BYTE_1;
375 	reg[0] |= mac[0] << MAC_BYTE_0;
376 
377 	/* Write array into the ARL table */
378 	for (i = 0; i < 3; i++)
379 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
380 }
381 
382 /* Setup TX circuit including relevant PAD and driving */
383 static int
384 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
385 {
386 	struct mt7530_priv *priv = ds->priv;
387 	u32 ncpo1, ssc_delta, trgint, i, xtal;
388 
389 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
390 
391 	if (xtal == HWTRAP_XTAL_20MHZ) {
392 		dev_err(priv->dev,
393 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
394 			__func__);
395 		return -EINVAL;
396 	}
397 
398 	switch (interface) {
399 	case PHY_INTERFACE_MODE_RGMII:
400 		trgint = 0;
401 		/* PLL frequency: 125MHz */
402 		ncpo1 = 0x0c80;
403 		break;
404 	case PHY_INTERFACE_MODE_TRGMII:
405 		trgint = 1;
406 		if (priv->id == ID_MT7621) {
407 			/* PLL frequency: 150MHz: 1.2GBit */
408 			if (xtal == HWTRAP_XTAL_40MHZ)
409 				ncpo1 = 0x0780;
410 			if (xtal == HWTRAP_XTAL_25MHZ)
411 				ncpo1 = 0x0a00;
412 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
413 			if (xtal == HWTRAP_XTAL_40MHZ)
414 				ncpo1 = 0x0c80;
415 			if (xtal == HWTRAP_XTAL_25MHZ)
416 				ncpo1 = 0x1400;
417 		}
418 		break;
419 	default:
420 		dev_err(priv->dev, "xMII interface %d not supported\n",
421 			interface);
422 		return -EINVAL;
423 	}
424 
425 	if (xtal == HWTRAP_XTAL_25MHZ)
426 		ssc_delta = 0x57;
427 	else
428 		ssc_delta = 0x87;
429 
430 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
431 		   P6_INTF_MODE(trgint));
432 
433 	/* Lower Tx Driving for TRGMII path */
434 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
435 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
436 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
437 
438 	/* Setup core clock for MT7530 */
439 	if (!trgint) {
440 		/* Disable MT7530 core clock */
441 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
442 
443 		/* Disable PLL, since phy_device has not yet been created
444 		 * provided for phy_[read,write]_mmd_indirect is called, we
445 		 * provide our own core_write_mmd_indirect to complete this
446 		 * function.
447 		 */
448 		core_write_mmd_indirect(priv,
449 					CORE_GSWPLL_GRP1,
450 					MDIO_MMD_VEND2,
451 					0);
452 
453 		/* Set core clock into 500Mhz */
454 		core_write(priv, CORE_GSWPLL_GRP2,
455 			   RG_GSWPLL_POSDIV_500M(1) |
456 			   RG_GSWPLL_FBKDIV_500M(25));
457 
458 		/* Enable PLL */
459 		core_write(priv, CORE_GSWPLL_GRP1,
460 			   RG_GSWPLL_EN_PRE |
461 			   RG_GSWPLL_POSDIV_200M(2) |
462 			   RG_GSWPLL_FBKDIV_200M(32));
463 
464 		/* Enable MT7530 core clock */
465 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
466 	}
467 
468 	/* Setup the MT7530 TRGMII Tx Clock */
469 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
470 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
471 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
472 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
473 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
474 	core_write(priv, CORE_PLL_GROUP4,
475 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
476 		   RG_SYSPLL_BIAS_LPF_EN);
477 	core_write(priv, CORE_PLL_GROUP2,
478 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
479 		   RG_SYSPLL_POSDIV(1));
480 	core_write(priv, CORE_PLL_GROUP7,
481 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
482 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
483 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
484 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
485 
486 	if (!trgint)
487 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
488 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
489 				   RD_TAP_MASK, RD_TAP(16));
490 	return 0;
491 }
492 
493 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
494 {
495 	u32 val;
496 
497 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
498 
499 	return (val & PAD_DUAL_SGMII_EN) != 0;
500 }
501 
502 static int
503 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
504 {
505 	struct mt7530_priv *priv = ds->priv;
506 	u32 top_sig;
507 	u32 hwstrap;
508 	u32 xtal;
509 	u32 val;
510 
511 	if (mt7531_dual_sgmii_supported(priv))
512 		return 0;
513 
514 	val = mt7530_read(priv, MT7531_CREV);
515 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
516 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
517 	if ((val & CHIP_REV_M) > 0)
518 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
519 						    HWTRAP_XTAL_FSEL_25MHZ;
520 	else
521 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
522 
523 	/* Step 1 : Disable MT7531 COREPLL */
524 	val = mt7530_read(priv, MT7531_PLLGP_EN);
525 	val &= ~EN_COREPLL;
526 	mt7530_write(priv, MT7531_PLLGP_EN, val);
527 
528 	/* Step 2: switch to XTAL output */
529 	val = mt7530_read(priv, MT7531_PLLGP_EN);
530 	val |= SW_CLKSW;
531 	mt7530_write(priv, MT7531_PLLGP_EN, val);
532 
533 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
534 	val &= ~RG_COREPLL_EN;
535 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
536 
537 	/* Step 3: disable PLLGP and enable program PLLGP */
538 	val = mt7530_read(priv, MT7531_PLLGP_EN);
539 	val |= SW_PLLGP;
540 	mt7530_write(priv, MT7531_PLLGP_EN, val);
541 
542 	/* Step 4: program COREPLL output frequency to 500MHz */
543 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
544 	val &= ~RG_COREPLL_POSDIV_M;
545 	val |= 2 << RG_COREPLL_POSDIV_S;
546 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
547 	usleep_range(25, 35);
548 
549 	switch (xtal) {
550 	case HWTRAP_XTAL_FSEL_25MHZ:
551 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
552 		val &= ~RG_COREPLL_SDM_PCW_M;
553 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
554 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
555 		break;
556 	case HWTRAP_XTAL_FSEL_40MHZ:
557 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
558 		val &= ~RG_COREPLL_SDM_PCW_M;
559 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
560 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
561 		break;
562 	}
563 
564 	/* Set feedback divide ratio update signal to high */
565 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
566 	val |= RG_COREPLL_SDM_PCW_CHG;
567 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
568 	/* Wait for at least 16 XTAL clocks */
569 	usleep_range(10, 20);
570 
571 	/* Step 5: set feedback divide ratio update signal to low */
572 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
573 	val &= ~RG_COREPLL_SDM_PCW_CHG;
574 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
575 
576 	/* Enable 325M clock for SGMII */
577 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
578 
579 	/* Enable 250SSC clock for RGMII */
580 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
581 
582 	/* Step 6: Enable MT7531 PLL */
583 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
584 	val |= RG_COREPLL_EN;
585 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
586 
587 	val = mt7530_read(priv, MT7531_PLLGP_EN);
588 	val |= EN_COREPLL;
589 	mt7530_write(priv, MT7531_PLLGP_EN, val);
590 	usleep_range(25, 35);
591 
592 	return 0;
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
605 {
606 	struct mt7530_priv *priv = ds->priv;
607 
608 	return mdiobus_read_nested(priv->bus, port, regnum);
609 }
610 
611 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
612 			    u16 val)
613 {
614 	struct mt7530_priv *priv = ds->priv;
615 
616 	return mdiobus_write_nested(priv->bus, port, regnum, val);
617 }
618 
619 static int
620 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
621 			int regnum)
622 {
623 	struct mii_bus *bus = priv->bus;
624 	struct mt7530_dummy_poll p;
625 	u32 reg, val;
626 	int ret;
627 
628 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
629 
630 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
631 
632 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
633 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
634 	if (ret < 0) {
635 		dev_err(priv->dev, "poll timeout\n");
636 		goto out;
637 	}
638 
639 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
640 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
641 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
642 
643 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
644 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
645 	if (ret < 0) {
646 		dev_err(priv->dev, "poll timeout\n");
647 		goto out;
648 	}
649 
650 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
651 	      MT7531_MDIO_DEV_ADDR(devad);
652 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
653 
654 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
655 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
656 	if (ret < 0) {
657 		dev_err(priv->dev, "poll timeout\n");
658 		goto out;
659 	}
660 
661 	ret = val & MT7531_MDIO_RW_DATA_MASK;
662 out:
663 	mutex_unlock(&bus->mdio_lock);
664 
665 	return ret;
666 }
667 
668 static int
669 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
670 			 int regnum, u32 data)
671 {
672 	struct mii_bus *bus = priv->bus;
673 	struct mt7530_dummy_poll p;
674 	u32 val, reg;
675 	int ret;
676 
677 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
678 
679 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
680 
681 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
682 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
683 	if (ret < 0) {
684 		dev_err(priv->dev, "poll timeout\n");
685 		goto out;
686 	}
687 
688 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
689 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
690 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
691 
692 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
693 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
694 	if (ret < 0) {
695 		dev_err(priv->dev, "poll timeout\n");
696 		goto out;
697 	}
698 
699 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
700 	      MT7531_MDIO_DEV_ADDR(devad) | data;
701 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
702 
703 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
704 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
705 	if (ret < 0) {
706 		dev_err(priv->dev, "poll timeout\n");
707 		goto out;
708 	}
709 
710 out:
711 	mutex_unlock(&bus->mdio_lock);
712 
713 	return ret;
714 }
715 
716 static int
717 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
718 {
719 	struct mii_bus *bus = priv->bus;
720 	struct mt7530_dummy_poll p;
721 	int ret;
722 	u32 val;
723 
724 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
725 
726 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
727 
728 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
729 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
730 	if (ret < 0) {
731 		dev_err(priv->dev, "poll timeout\n");
732 		goto out;
733 	}
734 
735 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
736 	      MT7531_MDIO_REG_ADDR(regnum);
737 
738 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
739 
740 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
741 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
742 	if (ret < 0) {
743 		dev_err(priv->dev, "poll timeout\n");
744 		goto out;
745 	}
746 
747 	ret = val & MT7531_MDIO_RW_DATA_MASK;
748 out:
749 	mutex_unlock(&bus->mdio_lock);
750 
751 	return ret;
752 }
753 
754 static int
755 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
756 			 u16 data)
757 {
758 	struct mii_bus *bus = priv->bus;
759 	struct mt7530_dummy_poll p;
760 	int ret;
761 	u32 reg;
762 
763 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
764 
765 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
766 
767 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
768 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
769 	if (ret < 0) {
770 		dev_err(priv->dev, "poll timeout\n");
771 		goto out;
772 	}
773 
774 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
775 	      MT7531_MDIO_REG_ADDR(regnum) | data;
776 
777 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
778 
779 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
780 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
781 	if (ret < 0) {
782 		dev_err(priv->dev, "poll timeout\n");
783 		goto out;
784 	}
785 
786 out:
787 	mutex_unlock(&bus->mdio_lock);
788 
789 	return ret;
790 }
791 
792 static int
793 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum)
794 {
795 	struct mt7530_priv *priv = ds->priv;
796 	int devad;
797 	int ret;
798 
799 	if (regnum & MII_ADDR_C45) {
800 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
801 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
802 					      regnum & MII_REGADDR_C45_MASK);
803 	} else {
804 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
805 	}
806 
807 	return ret;
808 }
809 
810 static int
811 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum,
812 		     u16 data)
813 {
814 	struct mt7530_priv *priv = ds->priv;
815 	int devad;
816 	int ret;
817 
818 	if (regnum & MII_ADDR_C45) {
819 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
820 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
821 					       regnum & MII_REGADDR_C45_MASK,
822 					       data);
823 	} else {
824 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
825 	}
826 
827 	return ret;
828 }
829 
830 static void
831 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
832 		   uint8_t *data)
833 {
834 	int i;
835 
836 	if (stringset != ETH_SS_STATS)
837 		return;
838 
839 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
840 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
841 			ETH_GSTRING_LEN);
842 }
843 
844 static void
845 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
846 			 uint64_t *data)
847 {
848 	struct mt7530_priv *priv = ds->priv;
849 	const struct mt7530_mib_desc *mib;
850 	u32 reg, i;
851 	u64 hi;
852 
853 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
854 		mib = &mt7530_mib[i];
855 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
856 
857 		data[i] = mt7530_read(priv, reg);
858 		if (mib->size == 2) {
859 			hi = mt7530_read(priv, reg + 4);
860 			data[i] |= hi << 32;
861 		}
862 	}
863 }
864 
865 static int
866 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
867 {
868 	if (sset != ETH_SS_STATS)
869 		return 0;
870 
871 	return ARRAY_SIZE(mt7530_mib);
872 }
873 
874 static int
875 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
876 {
877 	struct mt7530_priv *priv = ds->priv;
878 	unsigned int secs = msecs / 1000;
879 	unsigned int tmp_age_count;
880 	unsigned int error = -1;
881 	unsigned int age_count;
882 	unsigned int age_unit;
883 
884 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
885 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
886 		return -ERANGE;
887 
888 	/* iterate through all possible age_count to find the closest pair */
889 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
890 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
891 
892 		if (tmp_age_unit <= AGE_UNIT_MAX) {
893 			unsigned int tmp_error = secs -
894 				(tmp_age_count + 1) * (tmp_age_unit + 1);
895 
896 			/* found a closer pair */
897 			if (error > tmp_error) {
898 				error = tmp_error;
899 				age_count = tmp_age_count;
900 				age_unit = tmp_age_unit;
901 			}
902 
903 			/* found the exact match, so break the loop */
904 			if (!error)
905 				break;
906 		}
907 	}
908 
909 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
910 
911 	return 0;
912 }
913 
914 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
915 {
916 	struct mt7530_priv *priv = ds->priv;
917 	u8 tx_delay = 0;
918 	int val;
919 
920 	mutex_lock(&priv->reg_mutex);
921 
922 	val = mt7530_read(priv, MT7530_MHWTRAP);
923 
924 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
925 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
926 
927 	switch (priv->p5_intf_sel) {
928 	case P5_INTF_SEL_PHY_P0:
929 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
930 		val |= MHWTRAP_PHY0_SEL;
931 		fallthrough;
932 	case P5_INTF_SEL_PHY_P4:
933 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
934 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
935 
936 		/* Setup the MAC by default for the cpu port */
937 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
938 		break;
939 	case P5_INTF_SEL_GMAC5:
940 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
941 		val &= ~MHWTRAP_P5_DIS;
942 		break;
943 	case P5_DISABLED:
944 		interface = PHY_INTERFACE_MODE_NA;
945 		break;
946 	default:
947 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
948 			priv->p5_intf_sel);
949 		goto unlock_exit;
950 	}
951 
952 	/* Setup RGMII settings */
953 	if (phy_interface_mode_is_rgmii(interface)) {
954 		val |= MHWTRAP_P5_RGMII_MODE;
955 
956 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
957 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
958 
959 		/* Don't set delay in DSA mode */
960 		if (!dsa_is_dsa_port(priv->ds, 5) &&
961 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
962 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
963 			tx_delay = 4; /* n * 0.5 ns */
964 
965 		/* P5 RGMII TX Clock Control: delay x */
966 		mt7530_write(priv, MT7530_P5RGMIITXCR,
967 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
968 
969 		/* reduce P5 RGMII Tx driving, 8mA */
970 		mt7530_write(priv, MT7530_IO_DRV_CR,
971 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
972 	}
973 
974 	mt7530_write(priv, MT7530_MHWTRAP, val);
975 
976 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
977 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
978 
979 	priv->p5_interface = interface;
980 
981 unlock_exit:
982 	mutex_unlock(&priv->reg_mutex);
983 }
984 
985 static int
986 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
987 {
988 	struct mt7530_priv *priv = ds->priv;
989 	int ret;
990 
991 	/* Setup max capability of CPU port at first */
992 	if (priv->info->cpu_port_config) {
993 		ret = priv->info->cpu_port_config(ds, port);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	/* Enable Mediatek header mode on the cpu port */
999 	mt7530_write(priv, MT7530_PVC_P(port),
1000 		     PORT_SPEC_TAG);
1001 
1002 	/* Disable flooding by default */
1003 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1004 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1005 
1006 	/* Set CPU port number */
1007 	if (priv->id == ID_MT7621)
1008 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1009 
1010 	/* CPU port gets connected to all user ports of
1011 	 * the switch.
1012 	 */
1013 	mt7530_write(priv, MT7530_PCR_P(port),
1014 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1015 
1016 	return 0;
1017 }
1018 
1019 static int
1020 mt7530_port_enable(struct dsa_switch *ds, int port,
1021 		   struct phy_device *phy)
1022 {
1023 	struct mt7530_priv *priv = ds->priv;
1024 
1025 	if (!dsa_is_user_port(ds, port))
1026 		return 0;
1027 
1028 	mutex_lock(&priv->reg_mutex);
1029 
1030 	/* Allow the user port gets connected to the cpu port and also
1031 	 * restore the port matrix if the port is the member of a certain
1032 	 * bridge.
1033 	 */
1034 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1035 	priv->ports[port].enable = true;
1036 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1037 		   priv->ports[port].pm);
1038 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1039 
1040 	mutex_unlock(&priv->reg_mutex);
1041 
1042 	return 0;
1043 }
1044 
1045 static void
1046 mt7530_port_disable(struct dsa_switch *ds, int port)
1047 {
1048 	struct mt7530_priv *priv = ds->priv;
1049 
1050 	if (!dsa_is_user_port(ds, port))
1051 		return;
1052 
1053 	mutex_lock(&priv->reg_mutex);
1054 
1055 	/* Clear up all port matrix which could be restored in the next
1056 	 * enablement for the port.
1057 	 */
1058 	priv->ports[port].enable = false;
1059 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1060 		   PCR_MATRIX_CLR);
1061 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1062 
1063 	mutex_unlock(&priv->reg_mutex);
1064 }
1065 
1066 static int
1067 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1068 {
1069 	struct mt7530_priv *priv = ds->priv;
1070 	struct mii_bus *bus = priv->bus;
1071 	int length;
1072 	u32 val;
1073 
1074 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1075 	 * largest MTU of the slave ports. Because the switch only has a global
1076 	 * RX length register, only allowing CPU port here is enough.
1077 	 */
1078 	if (!dsa_is_cpu_port(ds, port))
1079 		return 0;
1080 
1081 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1082 
1083 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1084 	val &= ~MAX_RX_PKT_LEN_MASK;
1085 
1086 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1087 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1088 	if (length <= 1522) {
1089 		val |= MAX_RX_PKT_LEN_1522;
1090 	} else if (length <= 1536) {
1091 		val |= MAX_RX_PKT_LEN_1536;
1092 	} else if (length <= 1552) {
1093 		val |= MAX_RX_PKT_LEN_1552;
1094 	} else {
1095 		val &= ~MAX_RX_JUMBO_MASK;
1096 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1097 		val |= MAX_RX_PKT_LEN_JUMBO;
1098 	}
1099 
1100 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1101 
1102 	mutex_unlock(&bus->mdio_lock);
1103 
1104 	return 0;
1105 }
1106 
1107 static int
1108 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1109 {
1110 	return MT7530_MAX_MTU;
1111 }
1112 
1113 static void
1114 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1115 {
1116 	struct mt7530_priv *priv = ds->priv;
1117 	u32 stp_state;
1118 
1119 	switch (state) {
1120 	case BR_STATE_DISABLED:
1121 		stp_state = MT7530_STP_DISABLED;
1122 		break;
1123 	case BR_STATE_BLOCKING:
1124 		stp_state = MT7530_STP_BLOCKING;
1125 		break;
1126 	case BR_STATE_LISTENING:
1127 		stp_state = MT7530_STP_LISTENING;
1128 		break;
1129 	case BR_STATE_LEARNING:
1130 		stp_state = MT7530_STP_LEARNING;
1131 		break;
1132 	case BR_STATE_FORWARDING:
1133 	default:
1134 		stp_state = MT7530_STP_FORWARDING;
1135 		break;
1136 	}
1137 
1138 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1139 }
1140 
1141 static int
1142 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1143 			     struct switchdev_brport_flags flags,
1144 			     struct netlink_ext_ack *extack)
1145 {
1146 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1147 			   BR_BCAST_FLOOD))
1148 		return -EINVAL;
1149 
1150 	return 0;
1151 }
1152 
1153 static int
1154 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1155 			 struct switchdev_brport_flags flags,
1156 			 struct netlink_ext_ack *extack)
1157 {
1158 	struct mt7530_priv *priv = ds->priv;
1159 
1160 	if (flags.mask & BR_LEARNING)
1161 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1162 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1163 
1164 	if (flags.mask & BR_FLOOD)
1165 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1166 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1167 
1168 	if (flags.mask & BR_MCAST_FLOOD)
1169 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1170 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1171 
1172 	if (flags.mask & BR_BCAST_FLOOD)
1173 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1174 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1175 
1176 	return 0;
1177 }
1178 
1179 static int
1180 mt7530_port_set_mrouter(struct dsa_switch *ds, int port, bool mrouter,
1181 			struct netlink_ext_ack *extack)
1182 {
1183 	struct mt7530_priv *priv = ds->priv;
1184 
1185 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1186 		   mrouter ? UNM_FFP(BIT(port)) : 0);
1187 
1188 	return 0;
1189 }
1190 
1191 static int
1192 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1193 			struct net_device *bridge)
1194 {
1195 	struct mt7530_priv *priv = ds->priv;
1196 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1197 	int i;
1198 
1199 	mutex_lock(&priv->reg_mutex);
1200 
1201 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1202 		/* Add this port to the port matrix of the other ports in the
1203 		 * same bridge. If the port is disabled, port matrix is kept
1204 		 * and not being setup until the port becomes enabled.
1205 		 */
1206 		if (dsa_is_user_port(ds, i) && i != port) {
1207 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1208 				continue;
1209 			if (priv->ports[i].enable)
1210 				mt7530_set(priv, MT7530_PCR_P(i),
1211 					   PCR_MATRIX(BIT(port)));
1212 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1213 
1214 			port_bitmap |= BIT(i);
1215 		}
1216 	}
1217 
1218 	/* Add the all other ports to this port matrix. */
1219 	if (priv->ports[port].enable)
1220 		mt7530_rmw(priv, MT7530_PCR_P(port),
1221 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1222 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1223 
1224 	mutex_unlock(&priv->reg_mutex);
1225 
1226 	return 0;
1227 }
1228 
1229 static void
1230 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1231 {
1232 	struct mt7530_priv *priv = ds->priv;
1233 	bool all_user_ports_removed = true;
1234 	int i;
1235 
1236 	/* When a port is removed from the bridge, the port would be set up
1237 	 * back to the default as is at initial boot which is a VLAN-unaware
1238 	 * port.
1239 	 */
1240 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1241 		   MT7530_PORT_MATRIX_MODE);
1242 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1243 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1244 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1245 
1246 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1247 		if (dsa_is_user_port(ds, i) &&
1248 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1249 			all_user_ports_removed = false;
1250 			break;
1251 		}
1252 	}
1253 
1254 	/* CPU port also does the same thing until all user ports belonging to
1255 	 * the CPU port get out of VLAN filtering mode.
1256 	 */
1257 	if (all_user_ports_removed) {
1258 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1259 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1260 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1261 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1262 	}
1263 }
1264 
1265 static void
1266 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1267 {
1268 	struct mt7530_priv *priv = ds->priv;
1269 
1270 	/* The real fabric path would be decided on the membership in the
1271 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
1272 	 * means potential VLAN can be consisting of certain subset of all
1273 	 * ports.
1274 	 */
1275 	mt7530_rmw(priv, MT7530_PCR_P(port),
1276 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
1277 
1278 	/* Trapped into security mode allows packet forwarding through VLAN
1279 	 * table lookup. CPU port is set to fallback mode to let untagged
1280 	 * frames pass through.
1281 	 */
1282 	if (dsa_is_cpu_port(ds, port))
1283 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1284 			   MT7530_PORT_FALLBACK_MODE);
1285 	else
1286 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1287 			   MT7530_PORT_SECURITY_MODE);
1288 
1289 	/* Set the port as a user port which is to be able to recognize VID
1290 	 * from incoming packets before fetching entry within the VLAN table.
1291 	 */
1292 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1293 		   VLAN_ATTR(MT7530_VLAN_USER) |
1294 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1295 }
1296 
1297 static void
1298 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1299 			 struct net_device *bridge)
1300 {
1301 	struct mt7530_priv *priv = ds->priv;
1302 	int i;
1303 
1304 	mutex_lock(&priv->reg_mutex);
1305 
1306 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1307 		/* Remove this port from the port matrix of the other ports
1308 		 * in the same bridge. If the port is disabled, port matrix
1309 		 * is kept and not being setup until the port becomes enabled.
1310 		 * And the other port's port matrix cannot be broken when the
1311 		 * other port is still a VLAN-aware port.
1312 		 */
1313 		if (dsa_is_user_port(ds, i) && i != port &&
1314 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1315 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1316 				continue;
1317 			if (priv->ports[i].enable)
1318 				mt7530_clear(priv, MT7530_PCR_P(i),
1319 					     PCR_MATRIX(BIT(port)));
1320 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1321 		}
1322 	}
1323 
1324 	/* Set the cpu port to be the only one in the port matrix of
1325 	 * this port.
1326 	 */
1327 	if (priv->ports[port].enable)
1328 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1329 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1330 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1331 
1332 	mutex_unlock(&priv->reg_mutex);
1333 }
1334 
1335 static int
1336 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1337 		    const unsigned char *addr, u16 vid)
1338 {
1339 	struct mt7530_priv *priv = ds->priv;
1340 	int ret;
1341 	u8 port_mask = BIT(port);
1342 
1343 	mutex_lock(&priv->reg_mutex);
1344 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1345 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1346 	mutex_unlock(&priv->reg_mutex);
1347 
1348 	return ret;
1349 }
1350 
1351 static int
1352 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1353 		    const unsigned char *addr, u16 vid)
1354 {
1355 	struct mt7530_priv *priv = ds->priv;
1356 	int ret;
1357 	u8 port_mask = BIT(port);
1358 
1359 	mutex_lock(&priv->reg_mutex);
1360 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1361 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1362 	mutex_unlock(&priv->reg_mutex);
1363 
1364 	return ret;
1365 }
1366 
1367 static int
1368 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1369 		     dsa_fdb_dump_cb_t *cb, void *data)
1370 {
1371 	struct mt7530_priv *priv = ds->priv;
1372 	struct mt7530_fdb _fdb = { 0 };
1373 	int cnt = MT7530_NUM_FDB_RECORDS;
1374 	int ret = 0;
1375 	u32 rsp = 0;
1376 
1377 	mutex_lock(&priv->reg_mutex);
1378 
1379 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1380 	if (ret < 0)
1381 		goto err;
1382 
1383 	do {
1384 		if (rsp & ATC_SRCH_HIT) {
1385 			mt7530_fdb_read(priv, &_fdb);
1386 			if (_fdb.port_mask & BIT(port)) {
1387 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1388 					 data);
1389 				if (ret < 0)
1390 					break;
1391 			}
1392 		}
1393 	} while (--cnt &&
1394 		 !(rsp & ATC_SRCH_END) &&
1395 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1396 err:
1397 	mutex_unlock(&priv->reg_mutex);
1398 
1399 	return 0;
1400 }
1401 
1402 static int
1403 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1404 		    const struct switchdev_obj_port_mdb *mdb)
1405 {
1406 	struct mt7530_priv *priv = ds->priv;
1407 	const u8 *addr = mdb->addr;
1408 	u16 vid = mdb->vid;
1409 	u8 port_mask = 0;
1410 	int ret;
1411 
1412 	mutex_lock(&priv->reg_mutex);
1413 
1414 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1415 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1416 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1417 			    & PORT_MAP_MASK;
1418 
1419 	port_mask |= BIT(port);
1420 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1421 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1422 
1423 	mutex_unlock(&priv->reg_mutex);
1424 
1425 	return ret;
1426 }
1427 
1428 static int
1429 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1430 		    const struct switchdev_obj_port_mdb *mdb)
1431 {
1432 	struct mt7530_priv *priv = ds->priv;
1433 	const u8 *addr = mdb->addr;
1434 	u16 vid = mdb->vid;
1435 	u8 port_mask = 0;
1436 	int ret;
1437 
1438 	mutex_lock(&priv->reg_mutex);
1439 
1440 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1441 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1442 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1443 			    & PORT_MAP_MASK;
1444 
1445 	port_mask &= ~BIT(port);
1446 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1447 			 port_mask ? STATIC_ENT : STATIC_EMP);
1448 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1449 
1450 	mutex_unlock(&priv->reg_mutex);
1451 
1452 	return ret;
1453 }
1454 
1455 static int
1456 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1457 {
1458 	struct mt7530_dummy_poll p;
1459 	u32 val;
1460 	int ret;
1461 
1462 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1463 	mt7530_write(priv, MT7530_VTCR, val);
1464 
1465 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1466 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1467 				 !(val & VTCR_BUSY), 20, 20000);
1468 	if (ret < 0) {
1469 		dev_err(priv->dev, "poll timeout\n");
1470 		return ret;
1471 	}
1472 
1473 	val = mt7530_read(priv, MT7530_VTCR);
1474 	if (val & VTCR_INVALID) {
1475 		dev_err(priv->dev, "read VTCR invalid\n");
1476 		return -EINVAL;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static int
1483 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1484 			   struct netlink_ext_ack *extack)
1485 {
1486 	if (vlan_filtering) {
1487 		/* The port is being kept as VLAN-unaware port when bridge is
1488 		 * set up with vlan_filtering not being set, Otherwise, the
1489 		 * port and the corresponding CPU port is required the setup
1490 		 * for becoming a VLAN-aware port.
1491 		 */
1492 		mt7530_port_set_vlan_aware(ds, port);
1493 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1494 	} else {
1495 		mt7530_port_set_vlan_unaware(ds, port);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static void
1502 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1503 		   struct mt7530_hw_vlan_entry *entry)
1504 {
1505 	u8 new_members;
1506 	u32 val;
1507 
1508 	new_members = entry->old_members | BIT(entry->port) |
1509 		      BIT(MT7530_CPU_PORT);
1510 
1511 	/* Validate the entry with independent learning, create egress tag per
1512 	 * VLAN and joining the port as one of the port members.
1513 	 */
1514 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1515 	mt7530_write(priv, MT7530_VAWD1, val);
1516 
1517 	/* Decide whether adding tag or not for those outgoing packets from the
1518 	 * port inside the VLAN.
1519 	 */
1520 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1521 				MT7530_VLAN_EGRESS_TAG;
1522 	mt7530_rmw(priv, MT7530_VAWD2,
1523 		   ETAG_CTRL_P_MASK(entry->port),
1524 		   ETAG_CTRL_P(entry->port, val));
1525 
1526 	/* CPU port is always taken as a tagged port for serving more than one
1527 	 * VLANs across and also being applied with egress type stack mode for
1528 	 * that VLAN tags would be appended after hardware special tag used as
1529 	 * DSA tag.
1530 	 */
1531 	mt7530_rmw(priv, MT7530_VAWD2,
1532 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1533 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1534 			       MT7530_VLAN_EGRESS_STACK));
1535 }
1536 
1537 static void
1538 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1539 		   struct mt7530_hw_vlan_entry *entry)
1540 {
1541 	u8 new_members;
1542 	u32 val;
1543 
1544 	new_members = entry->old_members & ~BIT(entry->port);
1545 
1546 	val = mt7530_read(priv, MT7530_VAWD1);
1547 	if (!(val & VLAN_VALID)) {
1548 		dev_err(priv->dev,
1549 			"Cannot be deleted due to invalid entry\n");
1550 		return;
1551 	}
1552 
1553 	/* If certain member apart from CPU port is still alive in the VLAN,
1554 	 * the entry would be kept valid. Otherwise, the entry is got to be
1555 	 * disabled.
1556 	 */
1557 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1558 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1559 		      VLAN_VALID;
1560 		mt7530_write(priv, MT7530_VAWD1, val);
1561 	} else {
1562 		mt7530_write(priv, MT7530_VAWD1, 0);
1563 		mt7530_write(priv, MT7530_VAWD2, 0);
1564 	}
1565 }
1566 
1567 static void
1568 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1569 		      struct mt7530_hw_vlan_entry *entry,
1570 		      mt7530_vlan_op vlan_op)
1571 {
1572 	u32 val;
1573 
1574 	/* Fetch entry */
1575 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1576 
1577 	val = mt7530_read(priv, MT7530_VAWD1);
1578 
1579 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1580 
1581 	/* Manipulate entry */
1582 	vlan_op(priv, entry);
1583 
1584 	/* Flush result to hardware */
1585 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1586 }
1587 
1588 static int
1589 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1590 		     const struct switchdev_obj_port_vlan *vlan,
1591 		     struct netlink_ext_ack *extack)
1592 {
1593 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1594 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1595 	struct mt7530_hw_vlan_entry new_entry;
1596 	struct mt7530_priv *priv = ds->priv;
1597 
1598 	mutex_lock(&priv->reg_mutex);
1599 
1600 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1601 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1602 
1603 	if (pvid) {
1604 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1605 			   G0_PORT_VID(vlan->vid));
1606 		priv->ports[port].pvid = vlan->vid;
1607 	}
1608 
1609 	mutex_unlock(&priv->reg_mutex);
1610 
1611 	return 0;
1612 }
1613 
1614 static int
1615 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1616 		     const struct switchdev_obj_port_vlan *vlan)
1617 {
1618 	struct mt7530_hw_vlan_entry target_entry;
1619 	struct mt7530_priv *priv = ds->priv;
1620 	u16 pvid;
1621 
1622 	mutex_lock(&priv->reg_mutex);
1623 
1624 	pvid = priv->ports[port].pvid;
1625 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1626 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1627 			      mt7530_hw_vlan_del);
1628 
1629 	/* PVID is being restored to the default whenever the PVID port
1630 	 * is being removed from the VLAN.
1631 	 */
1632 	if (pvid == vlan->vid)
1633 		pvid = G0_PORT_VID_DEF;
1634 
1635 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1636 	priv->ports[port].pvid = pvid;
1637 
1638 	mutex_unlock(&priv->reg_mutex);
1639 
1640 	return 0;
1641 }
1642 
1643 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1644 {
1645 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1646 				   MIRROR_PORT(val);
1647 }
1648 
1649 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1650 {
1651 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1652 				   MIRROR_PORT(val);
1653 }
1654 
1655 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1656 				  struct dsa_mall_mirror_tc_entry *mirror,
1657 				  bool ingress)
1658 {
1659 	struct mt7530_priv *priv = ds->priv;
1660 	int monitor_port;
1661 	u32 val;
1662 
1663 	/* Check for existent entry */
1664 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1665 		return -EEXIST;
1666 
1667 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1668 
1669 	/* MT7530 only supports one monitor port */
1670 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1671 	if (val & MT753X_MIRROR_EN(priv->id) &&
1672 	    monitor_port != mirror->to_local_port)
1673 		return -EEXIST;
1674 
1675 	val |= MT753X_MIRROR_EN(priv->id);
1676 	val &= ~MT753X_MIRROR_MASK(priv->id);
1677 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1678 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1679 
1680 	val = mt7530_read(priv, MT7530_PCR_P(port));
1681 	if (ingress) {
1682 		val |= PORT_RX_MIR;
1683 		priv->mirror_rx |= BIT(port);
1684 	} else {
1685 		val |= PORT_TX_MIR;
1686 		priv->mirror_tx |= BIT(port);
1687 	}
1688 	mt7530_write(priv, MT7530_PCR_P(port), val);
1689 
1690 	return 0;
1691 }
1692 
1693 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1694 				   struct dsa_mall_mirror_tc_entry *mirror)
1695 {
1696 	struct mt7530_priv *priv = ds->priv;
1697 	u32 val;
1698 
1699 	val = mt7530_read(priv, MT7530_PCR_P(port));
1700 	if (mirror->ingress) {
1701 		val &= ~PORT_RX_MIR;
1702 		priv->mirror_rx &= ~BIT(port);
1703 	} else {
1704 		val &= ~PORT_TX_MIR;
1705 		priv->mirror_tx &= ~BIT(port);
1706 	}
1707 	mt7530_write(priv, MT7530_PCR_P(port), val);
1708 
1709 	if (!priv->mirror_rx && !priv->mirror_tx) {
1710 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1711 		val &= ~MT753X_MIRROR_EN(priv->id);
1712 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1713 	}
1714 }
1715 
1716 static enum dsa_tag_protocol
1717 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1718 		     enum dsa_tag_protocol mp)
1719 {
1720 	struct mt7530_priv *priv = ds->priv;
1721 
1722 	if (port != MT7530_CPU_PORT) {
1723 		dev_warn(priv->dev,
1724 			 "port not matched with tagging CPU port\n");
1725 		return DSA_TAG_PROTO_NONE;
1726 	} else {
1727 		return DSA_TAG_PROTO_MTK;
1728 	}
1729 }
1730 
1731 #ifdef CONFIG_GPIOLIB
1732 static inline u32
1733 mt7530_gpio_to_bit(unsigned int offset)
1734 {
1735 	/* Map GPIO offset to register bit
1736 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1737 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1738 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1739 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1740 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1741 	 */
1742 	return BIT(offset + offset / 3);
1743 }
1744 
1745 static int
1746 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1747 {
1748 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1749 	u32 bit = mt7530_gpio_to_bit(offset);
1750 
1751 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1752 }
1753 
1754 static void
1755 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1756 {
1757 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1758 	u32 bit = mt7530_gpio_to_bit(offset);
1759 
1760 	if (value)
1761 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1762 	else
1763 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1764 }
1765 
1766 static int
1767 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1768 {
1769 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1770 	u32 bit = mt7530_gpio_to_bit(offset);
1771 
1772 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1773 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1774 }
1775 
1776 static int
1777 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1778 {
1779 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1780 	u32 bit = mt7530_gpio_to_bit(offset);
1781 
1782 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1783 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1784 
1785 	return 0;
1786 }
1787 
1788 static int
1789 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1790 {
1791 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1792 	u32 bit = mt7530_gpio_to_bit(offset);
1793 
1794 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1795 
1796 	if (value)
1797 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1798 	else
1799 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1800 
1801 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1802 
1803 	return 0;
1804 }
1805 
1806 static int
1807 mt7530_setup_gpio(struct mt7530_priv *priv)
1808 {
1809 	struct device *dev = priv->dev;
1810 	struct gpio_chip *gc;
1811 
1812 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1813 	if (!gc)
1814 		return -ENOMEM;
1815 
1816 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1817 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1818 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1819 
1820 	gc->label = "mt7530";
1821 	gc->parent = dev;
1822 	gc->owner = THIS_MODULE;
1823 	gc->get_direction = mt7530_gpio_get_direction;
1824 	gc->direction_input = mt7530_gpio_direction_input;
1825 	gc->direction_output = mt7530_gpio_direction_output;
1826 	gc->get = mt7530_gpio_get;
1827 	gc->set = mt7530_gpio_set;
1828 	gc->base = -1;
1829 	gc->ngpio = 15;
1830 	gc->can_sleep = true;
1831 
1832 	return devm_gpiochip_add_data(dev, gc, priv);
1833 }
1834 #endif /* CONFIG_GPIOLIB */
1835 
1836 static int
1837 mt7530_setup(struct dsa_switch *ds)
1838 {
1839 	struct mt7530_priv *priv = ds->priv;
1840 	struct device_node *phy_node;
1841 	struct device_node *mac_np;
1842 	struct mt7530_dummy_poll p;
1843 	phy_interface_t interface;
1844 	struct device_node *dn;
1845 	u32 id, val;
1846 	int ret, i;
1847 
1848 	/* The parent node of master netdev which holds the common system
1849 	 * controller also is the container for two GMACs nodes representing
1850 	 * as two netdev instances.
1851 	 */
1852 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1853 	ds->mtu_enforcement_ingress = true;
1854 
1855 	if (priv->id == ID_MT7530) {
1856 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1857 		ret = regulator_enable(priv->core_pwr);
1858 		if (ret < 0) {
1859 			dev_err(priv->dev,
1860 				"Failed to enable core power: %d\n", ret);
1861 			return ret;
1862 		}
1863 
1864 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1865 		ret = regulator_enable(priv->io_pwr);
1866 		if (ret < 0) {
1867 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1868 				ret);
1869 			return ret;
1870 		}
1871 	}
1872 
1873 	/* Reset whole chip through gpio pin or memory-mapped registers for
1874 	 * different type of hardware
1875 	 */
1876 	if (priv->mcm) {
1877 		reset_control_assert(priv->rstc);
1878 		usleep_range(1000, 1100);
1879 		reset_control_deassert(priv->rstc);
1880 	} else {
1881 		gpiod_set_value_cansleep(priv->reset, 0);
1882 		usleep_range(1000, 1100);
1883 		gpiod_set_value_cansleep(priv->reset, 1);
1884 	}
1885 
1886 	/* Waiting for MT7530 got to stable */
1887 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1888 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1889 				 20, 1000000);
1890 	if (ret < 0) {
1891 		dev_err(priv->dev, "reset timeout\n");
1892 		return ret;
1893 	}
1894 
1895 	id = mt7530_read(priv, MT7530_CREV);
1896 	id >>= CHIP_NAME_SHIFT;
1897 	if (id != MT7530_ID) {
1898 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1899 		return -ENODEV;
1900 	}
1901 
1902 	/* Reset the switch through internal reset */
1903 	mt7530_write(priv, MT7530_SYS_CTRL,
1904 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1905 		     SYS_CTRL_REG_RST);
1906 
1907 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1908 	val = mt7530_read(priv, MT7530_MHWTRAP);
1909 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1910 	val |= MHWTRAP_MANUAL;
1911 	mt7530_write(priv, MT7530_MHWTRAP, val);
1912 
1913 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1914 
1915 	/* Enable and reset MIB counters */
1916 	mt7530_mib_reset(ds);
1917 
1918 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1919 		/* Disable forwarding by default on all ports */
1920 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1921 			   PCR_MATRIX_CLR);
1922 
1923 		if (dsa_is_cpu_port(ds, i)) {
1924 			ret = mt753x_cpu_port_enable(ds, i);
1925 			if (ret)
1926 				return ret;
1927 		} else {
1928 			mt7530_port_disable(ds, i);
1929 
1930 			/* Disable learning by default on all user ports */
1931 			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
1932 		}
1933 		/* Enable consistent egress tag */
1934 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1935 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1936 	}
1937 
1938 	/* Setup port 5 */
1939 	priv->p5_intf_sel = P5_DISABLED;
1940 	interface = PHY_INTERFACE_MODE_NA;
1941 
1942 	if (!dsa_is_unused_port(ds, 5)) {
1943 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1944 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
1945 		if (ret && ret != -ENODEV)
1946 			return ret;
1947 	} else {
1948 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
1949 		for_each_child_of_node(dn, mac_np) {
1950 			if (!of_device_is_compatible(mac_np,
1951 						     "mediatek,eth-mac"))
1952 				continue;
1953 
1954 			ret = of_property_read_u32(mac_np, "reg", &id);
1955 			if (ret < 0 || id != 1)
1956 				continue;
1957 
1958 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
1959 			if (!phy_node)
1960 				continue;
1961 
1962 			if (phy_node->parent == priv->dev->of_node->parent) {
1963 				ret = of_get_phy_mode(mac_np, &interface);
1964 				if (ret && ret != -ENODEV) {
1965 					of_node_put(mac_np);
1966 					return ret;
1967 				}
1968 				id = of_mdio_parse_addr(ds->dev, phy_node);
1969 				if (id == 0)
1970 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
1971 				if (id == 4)
1972 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
1973 			}
1974 			of_node_put(mac_np);
1975 			of_node_put(phy_node);
1976 			break;
1977 		}
1978 	}
1979 
1980 #ifdef CONFIG_GPIOLIB
1981 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
1982 		ret = mt7530_setup_gpio(priv);
1983 		if (ret)
1984 			return ret;
1985 	}
1986 #endif /* CONFIG_GPIOLIB */
1987 
1988 	mt7530_setup_port5(ds, interface);
1989 
1990 	/* Flush the FDB table */
1991 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1992 	if (ret < 0)
1993 		return ret;
1994 
1995 	return 0;
1996 }
1997 
1998 static int
1999 mt7531_setup(struct dsa_switch *ds)
2000 {
2001 	struct mt7530_priv *priv = ds->priv;
2002 	struct mt7530_dummy_poll p;
2003 	u32 val, id;
2004 	int ret, i;
2005 
2006 	/* Reset whole chip through gpio pin or memory-mapped registers for
2007 	 * different type of hardware
2008 	 */
2009 	if (priv->mcm) {
2010 		reset_control_assert(priv->rstc);
2011 		usleep_range(1000, 1100);
2012 		reset_control_deassert(priv->rstc);
2013 	} else {
2014 		gpiod_set_value_cansleep(priv->reset, 0);
2015 		usleep_range(1000, 1100);
2016 		gpiod_set_value_cansleep(priv->reset, 1);
2017 	}
2018 
2019 	/* Waiting for MT7530 got to stable */
2020 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2021 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2022 				 20, 1000000);
2023 	if (ret < 0) {
2024 		dev_err(priv->dev, "reset timeout\n");
2025 		return ret;
2026 	}
2027 
2028 	id = mt7530_read(priv, MT7531_CREV);
2029 	id >>= CHIP_NAME_SHIFT;
2030 
2031 	if (id != MT7531_ID) {
2032 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2033 		return -ENODEV;
2034 	}
2035 
2036 	/* Reset the switch through internal reset */
2037 	mt7530_write(priv, MT7530_SYS_CTRL,
2038 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2039 		     SYS_CTRL_REG_RST);
2040 
2041 	if (mt7531_dual_sgmii_supported(priv)) {
2042 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2043 
2044 		/* Let ds->slave_mii_bus be able to access external phy. */
2045 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2046 			   MT7531_EXT_P_MDC_11);
2047 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2048 			   MT7531_EXT_P_MDIO_12);
2049 	} else {
2050 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2051 	}
2052 	dev_dbg(ds->dev, "P5 support %s interface\n",
2053 		p5_intf_modes(priv->p5_intf_sel));
2054 
2055 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2056 		   MT7531_GPIO0_INTERRUPT);
2057 
2058 	/* Let phylink decide the interface later. */
2059 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2060 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2061 
2062 	/* Enable PHY core PLL, since phy_device has not yet been created
2063 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2064 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2065 	 * function.
2066 	 */
2067 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2068 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2069 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2070 	val &= ~MT7531_PHY_PLL_OFF;
2071 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2072 				 CORE_PLL_GROUP4, val);
2073 
2074 	/* BPDU to CPU port */
2075 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2076 		   BIT(MT7530_CPU_PORT));
2077 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2078 		   MT753X_BPDU_CPU_ONLY);
2079 
2080 	/* Enable and reset MIB counters */
2081 	mt7530_mib_reset(ds);
2082 
2083 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2084 		/* Disable forwarding by default on all ports */
2085 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2086 			   PCR_MATRIX_CLR);
2087 
2088 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2089 
2090 		if (dsa_is_cpu_port(ds, i)) {
2091 			ret = mt753x_cpu_port_enable(ds, i);
2092 			if (ret)
2093 				return ret;
2094 		} else {
2095 			mt7530_port_disable(ds, i);
2096 
2097 			/* Disable learning by default on all user ports */
2098 			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2099 		}
2100 
2101 		/* Enable consistent egress tag */
2102 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2103 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2104 	}
2105 
2106 	ds->mtu_enforcement_ingress = true;
2107 
2108 	/* Flush the FDB table */
2109 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2110 	if (ret < 0)
2111 		return ret;
2112 
2113 	return 0;
2114 }
2115 
2116 static bool
2117 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2118 			  const struct phylink_link_state *state)
2119 {
2120 	struct mt7530_priv *priv = ds->priv;
2121 
2122 	switch (port) {
2123 	case 0 ... 4: /* Internal phy */
2124 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2125 			return false;
2126 		break;
2127 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2128 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2129 		    state->interface != PHY_INTERFACE_MODE_MII &&
2130 		    state->interface != PHY_INTERFACE_MODE_GMII)
2131 			return false;
2132 		break;
2133 	case 6: /* 1st cpu port */
2134 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2135 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2136 			return false;
2137 		break;
2138 	default:
2139 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2140 			port);
2141 		return false;
2142 	}
2143 
2144 	return true;
2145 }
2146 
2147 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2148 {
2149 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2150 }
2151 
2152 static bool
2153 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2154 			  const struct phylink_link_state *state)
2155 {
2156 	struct mt7530_priv *priv = ds->priv;
2157 
2158 	switch (port) {
2159 	case 0 ... 4: /* Internal phy */
2160 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2161 			return false;
2162 		break;
2163 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2164 		if (mt7531_is_rgmii_port(priv, port))
2165 			return phy_interface_mode_is_rgmii(state->interface);
2166 		fallthrough;
2167 	case 6: /* 1st cpu port supports sgmii/8023z only */
2168 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2169 		    !phy_interface_mode_is_8023z(state->interface))
2170 			return false;
2171 		break;
2172 	default:
2173 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2174 			port);
2175 		return false;
2176 	}
2177 
2178 	return true;
2179 }
2180 
2181 static bool
2182 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2183 			  const struct phylink_link_state *state)
2184 {
2185 	struct mt7530_priv *priv = ds->priv;
2186 
2187 	return priv->info->phy_mode_supported(ds, port, state);
2188 }
2189 
2190 static int
2191 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2192 {
2193 	struct mt7530_priv *priv = ds->priv;
2194 
2195 	return priv->info->pad_setup(ds, state->interface);
2196 }
2197 
2198 static int
2199 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2200 		  phy_interface_t interface)
2201 {
2202 	struct mt7530_priv *priv = ds->priv;
2203 
2204 	/* Only need to setup port5. */
2205 	if (port != 5)
2206 		return 0;
2207 
2208 	mt7530_setup_port5(priv->ds, interface);
2209 
2210 	return 0;
2211 }
2212 
2213 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2214 			      phy_interface_t interface,
2215 			      struct phy_device *phydev)
2216 {
2217 	u32 val;
2218 
2219 	if (!mt7531_is_rgmii_port(priv, port)) {
2220 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2221 			port);
2222 		return -EINVAL;
2223 	}
2224 
2225 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2226 	val |= GP_CLK_EN;
2227 	val &= ~GP_MODE_MASK;
2228 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2229 	val &= ~CLK_SKEW_IN_MASK;
2230 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2231 	val &= ~CLK_SKEW_OUT_MASK;
2232 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2233 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2234 
2235 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2236 	if (!phydev || phy_driver_is_genphy(phydev)) {
2237 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2238 		switch (interface) {
2239 		case PHY_INTERFACE_MODE_RGMII:
2240 			val |= TXCLK_NO_REVERSE;
2241 			val |= RXCLK_NO_DELAY;
2242 			break;
2243 		case PHY_INTERFACE_MODE_RGMII_RXID:
2244 			val |= TXCLK_NO_REVERSE;
2245 			break;
2246 		case PHY_INTERFACE_MODE_RGMII_TXID:
2247 			val |= RXCLK_NO_DELAY;
2248 			break;
2249 		case PHY_INTERFACE_MODE_RGMII_ID:
2250 			break;
2251 		default:
2252 			return -EINVAL;
2253 		}
2254 	}
2255 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2256 
2257 	return 0;
2258 }
2259 
2260 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2261 				  unsigned long *supported)
2262 {
2263 	/* Port5 supports ethier RGMII or SGMII.
2264 	 * Port6 supports SGMII only.
2265 	 */
2266 	switch (port) {
2267 	case 5:
2268 		if (mt7531_is_rgmii_port(priv, port))
2269 			break;
2270 		fallthrough;
2271 	case 6:
2272 		phylink_set(supported, 1000baseX_Full);
2273 		phylink_set(supported, 2500baseX_Full);
2274 		phylink_set(supported, 2500baseT_Full);
2275 	}
2276 }
2277 
2278 static void
2279 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2280 			   unsigned int mode, phy_interface_t interface,
2281 			   int speed, int duplex)
2282 {
2283 	struct mt7530_priv *priv = ds->priv;
2284 	unsigned int val;
2285 
2286 	/* For adjusting speed and duplex of SGMII force mode. */
2287 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2288 	    phylink_autoneg_inband(mode))
2289 		return;
2290 
2291 	/* SGMII force mode setting */
2292 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2293 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2294 
2295 	switch (speed) {
2296 	case SPEED_10:
2297 		val |= MT7531_SGMII_FORCE_SPEED_10;
2298 		break;
2299 	case SPEED_100:
2300 		val |= MT7531_SGMII_FORCE_SPEED_100;
2301 		break;
2302 	case SPEED_1000:
2303 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2304 		break;
2305 	}
2306 
2307 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2308 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2309 	 */
2310 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2311 	    duplex != DUPLEX_FULL)
2312 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2313 
2314 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2315 }
2316 
2317 static bool mt753x_is_mac_port(u32 port)
2318 {
2319 	return (port == 5 || port == 6);
2320 }
2321 
2322 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2323 					 phy_interface_t interface)
2324 {
2325 	u32 val;
2326 
2327 	if (!mt753x_is_mac_port(port))
2328 		return -EINVAL;
2329 
2330 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2331 		   MT7531_SGMII_PHYA_PWD);
2332 
2333 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2334 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2335 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2336 	 * encoding.
2337 	 */
2338 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2339 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2340 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2341 
2342 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2343 
2344 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2345 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2346 	 */
2347 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2348 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2349 		   MT7531_SGMII_FORCE_SPEED_1000);
2350 
2351 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2352 
2353 	return 0;
2354 }
2355 
2356 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2357 				      phy_interface_t interface)
2358 {
2359 	if (!mt753x_is_mac_port(port))
2360 		return -EINVAL;
2361 
2362 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2363 		   MT7531_SGMII_PHYA_PWD);
2364 
2365 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2366 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2367 
2368 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2369 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2370 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2371 
2372 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2373 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2374 
2375 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2376 
2377 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2378 
2379 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2380 
2381 	return 0;
2382 }
2383 
2384 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2385 {
2386 	struct mt7530_priv *priv = ds->priv;
2387 	u32 val;
2388 
2389 	/* Only restart AN when AN is enabled */
2390 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2391 	if (val & MT7531_SGMII_AN_ENABLE) {
2392 		val |= MT7531_SGMII_AN_RESTART;
2393 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2394 	}
2395 }
2396 
2397 static int
2398 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2399 		  phy_interface_t interface)
2400 {
2401 	struct mt7530_priv *priv = ds->priv;
2402 	struct phy_device *phydev;
2403 	struct dsa_port *dp;
2404 
2405 	if (!mt753x_is_mac_port(port)) {
2406 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2407 		return -EINVAL;
2408 	}
2409 
2410 	switch (interface) {
2411 	case PHY_INTERFACE_MODE_RGMII:
2412 	case PHY_INTERFACE_MODE_RGMII_ID:
2413 	case PHY_INTERFACE_MODE_RGMII_RXID:
2414 	case PHY_INTERFACE_MODE_RGMII_TXID:
2415 		dp = dsa_to_port(ds, port);
2416 		phydev = dp->slave->phydev;
2417 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2418 	case PHY_INTERFACE_MODE_SGMII:
2419 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2420 	case PHY_INTERFACE_MODE_NA:
2421 	case PHY_INTERFACE_MODE_1000BASEX:
2422 	case PHY_INTERFACE_MODE_2500BASEX:
2423 		if (phylink_autoneg_inband(mode))
2424 			return -EINVAL;
2425 
2426 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2427 	default:
2428 		return -EINVAL;
2429 	}
2430 
2431 	return -EINVAL;
2432 }
2433 
2434 static int
2435 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2436 		  const struct phylink_link_state *state)
2437 {
2438 	struct mt7530_priv *priv = ds->priv;
2439 
2440 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2441 }
2442 
2443 static void
2444 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2445 			  const struct phylink_link_state *state)
2446 {
2447 	struct mt7530_priv *priv = ds->priv;
2448 	u32 mcr_cur, mcr_new;
2449 
2450 	if (!mt753x_phy_mode_supported(ds, port, state))
2451 		goto unsupported;
2452 
2453 	switch (port) {
2454 	case 0 ... 4: /* Internal phy */
2455 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2456 			goto unsupported;
2457 		break;
2458 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2459 		if (priv->p5_interface == state->interface)
2460 			break;
2461 
2462 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2463 			goto unsupported;
2464 
2465 		if (priv->p5_intf_sel != P5_DISABLED)
2466 			priv->p5_interface = state->interface;
2467 		break;
2468 	case 6: /* 1st cpu port */
2469 		if (priv->p6_interface == state->interface)
2470 			break;
2471 
2472 		mt753x_pad_setup(ds, state);
2473 
2474 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2475 			goto unsupported;
2476 
2477 		priv->p6_interface = state->interface;
2478 		break;
2479 	default:
2480 unsupported:
2481 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2482 			__func__, phy_modes(state->interface), port);
2483 		return;
2484 	}
2485 
2486 	if (phylink_autoneg_inband(mode) &&
2487 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2488 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2489 			__func__);
2490 		return;
2491 	}
2492 
2493 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2494 	mcr_new = mcr_cur;
2495 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2496 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2497 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2498 
2499 	/* Are we connected to external phy */
2500 	if (port == 5 && dsa_is_user_port(ds, 5))
2501 		mcr_new |= PMCR_EXT_PHY;
2502 
2503 	if (mcr_new != mcr_cur)
2504 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2505 }
2506 
2507 static void
2508 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2509 {
2510 	struct mt7530_priv *priv = ds->priv;
2511 
2512 	if (!priv->info->mac_pcs_an_restart)
2513 		return;
2514 
2515 	priv->info->mac_pcs_an_restart(ds, port);
2516 }
2517 
2518 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2519 					 unsigned int mode,
2520 					 phy_interface_t interface)
2521 {
2522 	struct mt7530_priv *priv = ds->priv;
2523 
2524 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2525 }
2526 
2527 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2528 				   unsigned int mode, phy_interface_t interface,
2529 				   int speed, int duplex)
2530 {
2531 	struct mt7530_priv *priv = ds->priv;
2532 
2533 	if (!priv->info->mac_pcs_link_up)
2534 		return;
2535 
2536 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2537 }
2538 
2539 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2540 				       unsigned int mode,
2541 				       phy_interface_t interface,
2542 				       struct phy_device *phydev,
2543 				       int speed, int duplex,
2544 				       bool tx_pause, bool rx_pause)
2545 {
2546 	struct mt7530_priv *priv = ds->priv;
2547 	u32 mcr;
2548 
2549 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2550 
2551 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2552 
2553 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2554 	 * variants.
2555 	 */
2556 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2557 	    (phy_interface_mode_is_8023z(interface))) {
2558 		speed = SPEED_1000;
2559 		duplex = DUPLEX_FULL;
2560 	}
2561 
2562 	switch (speed) {
2563 	case SPEED_1000:
2564 		mcr |= PMCR_FORCE_SPEED_1000;
2565 		break;
2566 	case SPEED_100:
2567 		mcr |= PMCR_FORCE_SPEED_100;
2568 		break;
2569 	}
2570 	if (duplex == DUPLEX_FULL) {
2571 		mcr |= PMCR_FORCE_FDX;
2572 		if (tx_pause)
2573 			mcr |= PMCR_TX_FC_EN;
2574 		if (rx_pause)
2575 			mcr |= PMCR_RX_FC_EN;
2576 	}
2577 
2578 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2579 }
2580 
2581 static int
2582 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2583 {
2584 	struct mt7530_priv *priv = ds->priv;
2585 	phy_interface_t interface;
2586 	int speed;
2587 	int ret;
2588 
2589 	switch (port) {
2590 	case 5:
2591 		if (mt7531_is_rgmii_port(priv, port))
2592 			interface = PHY_INTERFACE_MODE_RGMII;
2593 		else
2594 			interface = PHY_INTERFACE_MODE_2500BASEX;
2595 
2596 		priv->p5_interface = interface;
2597 		break;
2598 	case 6:
2599 		interface = PHY_INTERFACE_MODE_2500BASEX;
2600 
2601 		mt7531_pad_setup(ds, interface);
2602 
2603 		priv->p6_interface = interface;
2604 		break;
2605 	default:
2606 		return -EINVAL;
2607 	}
2608 
2609 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2610 		speed = SPEED_2500;
2611 	else
2612 		speed = SPEED_1000;
2613 
2614 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2615 	if (ret)
2616 		return ret;
2617 	mt7530_write(priv, MT7530_PMCR_P(port),
2618 		     PMCR_CPU_PORT_SETTING(priv->id));
2619 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2620 				   speed, DUPLEX_FULL, true, true);
2621 
2622 	return 0;
2623 }
2624 
2625 static void
2626 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2627 			 unsigned long *supported)
2628 {
2629 	if (port == 5)
2630 		phylink_set(supported, 1000baseX_Full);
2631 }
2632 
2633 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2634 				     unsigned long *supported)
2635 {
2636 	struct mt7530_priv *priv = ds->priv;
2637 
2638 	mt7531_sgmii_validate(priv, port, supported);
2639 }
2640 
2641 static void
2642 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2643 			unsigned long *supported,
2644 			struct phylink_link_state *state)
2645 {
2646 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2647 	struct mt7530_priv *priv = ds->priv;
2648 
2649 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2650 	    !mt753x_phy_mode_supported(ds, port, state)) {
2651 		linkmode_zero(supported);
2652 		return;
2653 	}
2654 
2655 	phylink_set_port_modes(mask);
2656 
2657 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2658 	    !phy_interface_mode_is_8023z(state->interface)) {
2659 		phylink_set(mask, 10baseT_Half);
2660 		phylink_set(mask, 10baseT_Full);
2661 		phylink_set(mask, 100baseT_Half);
2662 		phylink_set(mask, 100baseT_Full);
2663 		phylink_set(mask, Autoneg);
2664 	}
2665 
2666 	/* This switch only supports 1G full-duplex. */
2667 	if (state->interface != PHY_INTERFACE_MODE_MII)
2668 		phylink_set(mask, 1000baseT_Full);
2669 
2670 	priv->info->mac_port_validate(ds, port, mask);
2671 
2672 	phylink_set(mask, Pause);
2673 	phylink_set(mask, Asym_Pause);
2674 
2675 	linkmode_and(supported, supported, mask);
2676 	linkmode_and(state->advertising, state->advertising, mask);
2677 
2678 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2679 	 * to advertise both, only report advertising at 2500BaseX.
2680 	 */
2681 	phylink_helper_basex_speed(state);
2682 }
2683 
2684 static int
2685 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2686 			      struct phylink_link_state *state)
2687 {
2688 	struct mt7530_priv *priv = ds->priv;
2689 	u32 pmsr;
2690 
2691 	if (port < 0 || port >= MT7530_NUM_PORTS)
2692 		return -EINVAL;
2693 
2694 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2695 
2696 	state->link = (pmsr & PMSR_LINK);
2697 	state->an_complete = state->link;
2698 	state->duplex = !!(pmsr & PMSR_DPX);
2699 
2700 	switch (pmsr & PMSR_SPEED_MASK) {
2701 	case PMSR_SPEED_10:
2702 		state->speed = SPEED_10;
2703 		break;
2704 	case PMSR_SPEED_100:
2705 		state->speed = SPEED_100;
2706 		break;
2707 	case PMSR_SPEED_1000:
2708 		state->speed = SPEED_1000;
2709 		break;
2710 	default:
2711 		state->speed = SPEED_UNKNOWN;
2712 		break;
2713 	}
2714 
2715 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2716 	if (pmsr & PMSR_RX_FC)
2717 		state->pause |= MLO_PAUSE_RX;
2718 	if (pmsr & PMSR_TX_FC)
2719 		state->pause |= MLO_PAUSE_TX;
2720 
2721 	return 1;
2722 }
2723 
2724 static int
2725 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2726 			      struct phylink_link_state *state)
2727 {
2728 	u32 status, val;
2729 	u16 config_reg;
2730 
2731 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2732 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2733 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2734 	    (status & MT7531_SGMII_AN_ENABLE)) {
2735 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2736 		config_reg = val >> 16;
2737 
2738 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2739 		case LPA_SGMII_1000:
2740 			state->speed = SPEED_1000;
2741 			break;
2742 		case LPA_SGMII_100:
2743 			state->speed = SPEED_100;
2744 			break;
2745 		case LPA_SGMII_10:
2746 			state->speed = SPEED_10;
2747 			break;
2748 		default:
2749 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2750 			state->link = false;
2751 			return -EINVAL;
2752 		}
2753 
2754 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2755 			state->duplex = DUPLEX_FULL;
2756 		else
2757 			state->duplex = DUPLEX_HALF;
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 static int
2764 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2765 			      struct phylink_link_state *state)
2766 {
2767 	struct mt7530_priv *priv = ds->priv;
2768 
2769 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2770 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2771 
2772 	return -EOPNOTSUPP;
2773 }
2774 
2775 static int
2776 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2777 			      struct phylink_link_state *state)
2778 {
2779 	struct mt7530_priv *priv = ds->priv;
2780 
2781 	return priv->info->mac_port_get_state(ds, port, state);
2782 }
2783 
2784 static int
2785 mt753x_setup(struct dsa_switch *ds)
2786 {
2787 	struct mt7530_priv *priv = ds->priv;
2788 
2789 	return priv->info->sw_setup(ds);
2790 }
2791 
2792 static int
2793 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum)
2794 {
2795 	struct mt7530_priv *priv = ds->priv;
2796 
2797 	return priv->info->phy_read(ds, port, regnum);
2798 }
2799 
2800 static int
2801 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2802 {
2803 	struct mt7530_priv *priv = ds->priv;
2804 
2805 	return priv->info->phy_write(ds, port, regnum, val);
2806 }
2807 
2808 static const struct dsa_switch_ops mt7530_switch_ops = {
2809 	.get_tag_protocol	= mtk_get_tag_protocol,
2810 	.setup			= mt753x_setup,
2811 	.get_strings		= mt7530_get_strings,
2812 	.phy_read		= mt753x_phy_read,
2813 	.phy_write		= mt753x_phy_write,
2814 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2815 	.get_sset_count		= mt7530_get_sset_count,
2816 	.set_ageing_time	= mt7530_set_ageing_time,
2817 	.port_enable		= mt7530_port_enable,
2818 	.port_disable		= mt7530_port_disable,
2819 	.port_change_mtu	= mt7530_port_change_mtu,
2820 	.port_max_mtu		= mt7530_port_max_mtu,
2821 	.port_stp_state_set	= mt7530_stp_state_set,
2822 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
2823 	.port_bridge_flags	= mt7530_port_bridge_flags,
2824 	.port_set_mrouter	= mt7530_port_set_mrouter,
2825 	.port_bridge_join	= mt7530_port_bridge_join,
2826 	.port_bridge_leave	= mt7530_port_bridge_leave,
2827 	.port_fdb_add		= mt7530_port_fdb_add,
2828 	.port_fdb_del		= mt7530_port_fdb_del,
2829 	.port_fdb_dump		= mt7530_port_fdb_dump,
2830 	.port_mdb_add		= mt7530_port_mdb_add,
2831 	.port_mdb_del		= mt7530_port_mdb_del,
2832 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2833 	.port_vlan_add		= mt7530_port_vlan_add,
2834 	.port_vlan_del		= mt7530_port_vlan_del,
2835 	.port_mirror_add	= mt753x_port_mirror_add,
2836 	.port_mirror_del	= mt753x_port_mirror_del,
2837 	.phylink_validate	= mt753x_phylink_validate,
2838 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
2839 	.phylink_mac_config	= mt753x_phylink_mac_config,
2840 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
2841 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2842 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2843 };
2844 
2845 static const struct mt753x_info mt753x_table[] = {
2846 	[ID_MT7621] = {
2847 		.id = ID_MT7621,
2848 		.sw_setup = mt7530_setup,
2849 		.phy_read = mt7530_phy_read,
2850 		.phy_write = mt7530_phy_write,
2851 		.pad_setup = mt7530_pad_clk_setup,
2852 		.phy_mode_supported = mt7530_phy_mode_supported,
2853 		.mac_port_validate = mt7530_mac_port_validate,
2854 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2855 		.mac_port_config = mt7530_mac_config,
2856 	},
2857 	[ID_MT7530] = {
2858 		.id = ID_MT7530,
2859 		.sw_setup = mt7530_setup,
2860 		.phy_read = mt7530_phy_read,
2861 		.phy_write = mt7530_phy_write,
2862 		.pad_setup = mt7530_pad_clk_setup,
2863 		.phy_mode_supported = mt7530_phy_mode_supported,
2864 		.mac_port_validate = mt7530_mac_port_validate,
2865 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2866 		.mac_port_config = mt7530_mac_config,
2867 	},
2868 	[ID_MT7531] = {
2869 		.id = ID_MT7531,
2870 		.sw_setup = mt7531_setup,
2871 		.phy_read = mt7531_ind_phy_read,
2872 		.phy_write = mt7531_ind_phy_write,
2873 		.pad_setup = mt7531_pad_setup,
2874 		.cpu_port_config = mt7531_cpu_port_config,
2875 		.phy_mode_supported = mt7531_phy_mode_supported,
2876 		.mac_port_validate = mt7531_mac_port_validate,
2877 		.mac_port_get_state = mt7531_phylink_mac_link_state,
2878 		.mac_port_config = mt7531_mac_config,
2879 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
2880 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
2881 	},
2882 };
2883 
2884 static const struct of_device_id mt7530_of_match[] = {
2885 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
2886 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
2887 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
2888 	{ /* sentinel */ },
2889 };
2890 MODULE_DEVICE_TABLE(of, mt7530_of_match);
2891 
2892 static int
2893 mt7530_probe(struct mdio_device *mdiodev)
2894 {
2895 	struct mt7530_priv *priv;
2896 	struct device_node *dn;
2897 
2898 	dn = mdiodev->dev.of_node;
2899 
2900 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
2901 	if (!priv)
2902 		return -ENOMEM;
2903 
2904 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
2905 	if (!priv->ds)
2906 		return -ENOMEM;
2907 
2908 	priv->ds->dev = &mdiodev->dev;
2909 	priv->ds->num_ports = DSA_MAX_PORTS;
2910 
2911 	/* Use medatek,mcm property to distinguish hardware type that would
2912 	 * casues a little bit differences on power-on sequence.
2913 	 */
2914 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
2915 	if (priv->mcm) {
2916 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
2917 
2918 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
2919 		if (IS_ERR(priv->rstc)) {
2920 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2921 			return PTR_ERR(priv->rstc);
2922 		}
2923 	}
2924 
2925 	/* Get the hardware identifier from the devicetree node.
2926 	 * We will need it for some of the clock and regulator setup.
2927 	 */
2928 	priv->info = of_device_get_match_data(&mdiodev->dev);
2929 	if (!priv->info)
2930 		return -EINVAL;
2931 
2932 	/* Sanity check if these required device operations are filled
2933 	 * properly.
2934 	 */
2935 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
2936 	    !priv->info->phy_read || !priv->info->phy_write ||
2937 	    !priv->info->phy_mode_supported ||
2938 	    !priv->info->mac_port_validate ||
2939 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
2940 		return -EINVAL;
2941 
2942 	priv->id = priv->info->id;
2943 
2944 	if (priv->id == ID_MT7530) {
2945 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
2946 		if (IS_ERR(priv->core_pwr))
2947 			return PTR_ERR(priv->core_pwr);
2948 
2949 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
2950 		if (IS_ERR(priv->io_pwr))
2951 			return PTR_ERR(priv->io_pwr);
2952 	}
2953 
2954 	/* Not MCM that indicates switch works as the remote standalone
2955 	 * integrated circuit so the GPIO pin would be used to complete
2956 	 * the reset, otherwise memory-mapped register accessing used
2957 	 * through syscon provides in the case of MCM.
2958 	 */
2959 	if (!priv->mcm) {
2960 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
2961 						      GPIOD_OUT_LOW);
2962 		if (IS_ERR(priv->reset)) {
2963 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2964 			return PTR_ERR(priv->reset);
2965 		}
2966 	}
2967 
2968 	priv->bus = mdiodev->bus;
2969 	priv->dev = &mdiodev->dev;
2970 	priv->ds->priv = priv;
2971 	priv->ds->ops = &mt7530_switch_ops;
2972 	mutex_init(&priv->reg_mutex);
2973 	dev_set_drvdata(&mdiodev->dev, priv);
2974 
2975 	return dsa_register_switch(priv->ds);
2976 }
2977 
2978 static void
2979 mt7530_remove(struct mdio_device *mdiodev)
2980 {
2981 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
2982 	int ret = 0;
2983 
2984 	ret = regulator_disable(priv->core_pwr);
2985 	if (ret < 0)
2986 		dev_err(priv->dev,
2987 			"Failed to disable core power: %d\n", ret);
2988 
2989 	ret = regulator_disable(priv->io_pwr);
2990 	if (ret < 0)
2991 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
2992 			ret);
2993 
2994 	dsa_unregister_switch(priv->ds);
2995 	mutex_destroy(&priv->reg_mutex);
2996 }
2997 
2998 static struct mdio_driver mt7530_mdio_driver = {
2999 	.probe  = mt7530_probe,
3000 	.remove = mt7530_remove,
3001 	.mdiodrv.driver = {
3002 		.name = "mt7530",
3003 		.of_match_table = mt7530_of_match,
3004 	},
3005 };
3006 
3007 mdio_module_driver(mt7530_mdio_driver);
3008 
3009 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3010 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3011 MODULE_LICENSE("GPL");
3012