xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 64d85cc9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phy.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <net/dsa.h>
22 
23 #include "mt7530.h"
24 
25 /* String, offset, and register size in bytes if different from 4 bytes */
26 static const struct mt7530_mib_desc mt7530_mib[] = {
27 	MIB_DESC(1, 0x00, "TxDrop"),
28 	MIB_DESC(1, 0x04, "TxCrcErr"),
29 	MIB_DESC(1, 0x08, "TxUnicast"),
30 	MIB_DESC(1, 0x0c, "TxMulticast"),
31 	MIB_DESC(1, 0x10, "TxBroadcast"),
32 	MIB_DESC(1, 0x14, "TxCollision"),
33 	MIB_DESC(1, 0x18, "TxSingleCollision"),
34 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
35 	MIB_DESC(1, 0x20, "TxDeferred"),
36 	MIB_DESC(1, 0x24, "TxLateCollision"),
37 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
38 	MIB_DESC(1, 0x2c, "TxPause"),
39 	MIB_DESC(1, 0x30, "TxPktSz64"),
40 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
41 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
42 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
43 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
44 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
45 	MIB_DESC(2, 0x48, "TxBytes"),
46 	MIB_DESC(1, 0x60, "RxDrop"),
47 	MIB_DESC(1, 0x64, "RxFiltering"),
48 	MIB_DESC(1, 0x6c, "RxMulticast"),
49 	MIB_DESC(1, 0x70, "RxBroadcast"),
50 	MIB_DESC(1, 0x74, "RxAlignErr"),
51 	MIB_DESC(1, 0x78, "RxCrcErr"),
52 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
53 	MIB_DESC(1, 0x80, "RxFragErr"),
54 	MIB_DESC(1, 0x84, "RxOverSzErr"),
55 	MIB_DESC(1, 0x88, "RxJabberErr"),
56 	MIB_DESC(1, 0x8c, "RxPause"),
57 	MIB_DESC(1, 0x90, "RxPktSz64"),
58 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
59 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
60 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
61 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
62 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
63 	MIB_DESC(2, 0xa8, "RxBytes"),
64 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
65 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
66 	MIB_DESC(1, 0xb8, "RxArlDrop"),
67 };
68 
69 static int
70 mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
71 {
72 	int ret;
73 
74 	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
75 	if (ret < 0)
76 		dev_err(priv->dev,
77 			"failed to priv write register\n");
78 	return ret;
79 }
80 
81 static u32
82 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
83 {
84 	int ret;
85 	u32 val;
86 
87 	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
88 	if (ret < 0) {
89 		dev_err(priv->dev,
90 			"failed to priv read register\n");
91 		return ret;
92 	}
93 
94 	return val;
95 }
96 
97 static void
98 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
99 		  u32 mask, u32 set)
100 {
101 	u32 val;
102 
103 	val = mt7623_trgmii_read(priv, reg);
104 	val &= ~mask;
105 	val |= set;
106 	mt7623_trgmii_write(priv, reg, val);
107 }
108 
109 static void
110 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
111 {
112 	mt7623_trgmii_rmw(priv, reg, 0, val);
113 }
114 
115 static void
116 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
117 {
118 	mt7623_trgmii_rmw(priv, reg, val, 0);
119 }
120 
121 static int
122 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
123 {
124 	struct mii_bus *bus = priv->bus;
125 	int value, ret;
126 
127 	/* Write the desired MMD Devad */
128 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
129 	if (ret < 0)
130 		goto err;
131 
132 	/* Write the desired MMD register address */
133 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
134 	if (ret < 0)
135 		goto err;
136 
137 	/* Select the Function : DATA with no post increment */
138 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
139 	if (ret < 0)
140 		goto err;
141 
142 	/* Read the content of the MMD's selected register */
143 	value = bus->read(bus, 0, MII_MMD_DATA);
144 
145 	return value;
146 err:
147 	dev_err(&bus->dev,  "failed to read mmd register\n");
148 
149 	return ret;
150 }
151 
152 static int
153 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
154 			int devad, u32 data)
155 {
156 	struct mii_bus *bus = priv->bus;
157 	int ret;
158 
159 	/* Write the desired MMD Devad */
160 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
161 	if (ret < 0)
162 		goto err;
163 
164 	/* Write the desired MMD register address */
165 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
166 	if (ret < 0)
167 		goto err;
168 
169 	/* Select the Function : DATA with no post increment */
170 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
171 	if (ret < 0)
172 		goto err;
173 
174 	/* Write the data into MMD's selected register */
175 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
176 err:
177 	if (ret < 0)
178 		dev_err(&bus->dev,
179 			"failed to write mmd register\n");
180 	return ret;
181 }
182 
183 static void
184 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	struct mii_bus *bus = priv->bus;
187 
188 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
189 
190 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
191 
192 	mutex_unlock(&bus->mdio_lock);
193 }
194 
195 static void
196 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
197 {
198 	struct mii_bus *bus = priv->bus;
199 	u32 val;
200 
201 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
202 
203 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
204 	val &= ~mask;
205 	val |= set;
206 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
207 
208 	mutex_unlock(&bus->mdio_lock);
209 }
210 
211 static void
212 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
213 {
214 	core_rmw(priv, reg, 0, val);
215 }
216 
217 static void
218 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
219 {
220 	core_rmw(priv, reg, val, 0);
221 }
222 
223 static int
224 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
225 {
226 	struct mii_bus *bus = priv->bus;
227 	u16 page, r, lo, hi;
228 	int ret;
229 
230 	page = (reg >> 6) & 0x3ff;
231 	r  = (reg >> 2) & 0xf;
232 	lo = val & 0xffff;
233 	hi = val >> 16;
234 
235 	/* MT7530 uses 31 as the pseudo port */
236 	ret = bus->write(bus, 0x1f, 0x1f, page);
237 	if (ret < 0)
238 		goto err;
239 
240 	ret = bus->write(bus, 0x1f, r,  lo);
241 	if (ret < 0)
242 		goto err;
243 
244 	ret = bus->write(bus, 0x1f, 0x10, hi);
245 err:
246 	if (ret < 0)
247 		dev_err(&bus->dev,
248 			"failed to write mt7530 register\n");
249 	return ret;
250 }
251 
252 static u32
253 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
254 {
255 	struct mii_bus *bus = priv->bus;
256 	u16 page, r, lo, hi;
257 	int ret;
258 
259 	page = (reg >> 6) & 0x3ff;
260 	r = (reg >> 2) & 0xf;
261 
262 	/* MT7530 uses 31 as the pseudo port */
263 	ret = bus->write(bus, 0x1f, 0x1f, page);
264 	if (ret < 0) {
265 		dev_err(&bus->dev,
266 			"failed to read mt7530 register\n");
267 		return ret;
268 	}
269 
270 	lo = bus->read(bus, 0x1f, r);
271 	hi = bus->read(bus, 0x1f, 0x10);
272 
273 	return (hi << 16) | (lo & 0xffff);
274 }
275 
276 static void
277 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	struct mii_bus *bus = priv->bus;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	mt7530_mii_write(priv, reg, val);
284 
285 	mutex_unlock(&bus->mdio_lock);
286 }
287 
288 static u32
289 _mt7530_read(struct mt7530_dummy_poll *p)
290 {
291 	struct mii_bus		*bus = p->priv->bus;
292 	u32 val;
293 
294 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
295 
296 	val = mt7530_mii_read(p->priv, p->reg);
297 
298 	mutex_unlock(&bus->mdio_lock);
299 
300 	return val;
301 }
302 
303 static u32
304 mt7530_read(struct mt7530_priv *priv, u32 reg)
305 {
306 	struct mt7530_dummy_poll p;
307 
308 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
309 	return _mt7530_read(&p);
310 }
311 
312 static void
313 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
314 	   u32 mask, u32 set)
315 {
316 	struct mii_bus *bus = priv->bus;
317 	u32 val;
318 
319 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
320 
321 	val = mt7530_mii_read(priv, reg);
322 	val &= ~mask;
323 	val |= set;
324 	mt7530_mii_write(priv, reg, val);
325 
326 	mutex_unlock(&bus->mdio_lock);
327 }
328 
329 static void
330 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
331 {
332 	mt7530_rmw(priv, reg, 0, val);
333 }
334 
335 static void
336 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
337 {
338 	mt7530_rmw(priv, reg, val, 0);
339 }
340 
341 static int
342 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
343 {
344 	u32 val;
345 	int ret;
346 	struct mt7530_dummy_poll p;
347 
348 	/* Set the command operating upon the MAC address entries */
349 	val = ATC_BUSY | ATC_MAT(0) | cmd;
350 	mt7530_write(priv, MT7530_ATC, val);
351 
352 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
353 	ret = readx_poll_timeout(_mt7530_read, &p, val,
354 				 !(val & ATC_BUSY), 20, 20000);
355 	if (ret < 0) {
356 		dev_err(priv->dev, "reset timeout\n");
357 		return ret;
358 	}
359 
360 	/* Additional sanity for read command if the specified
361 	 * entry is invalid
362 	 */
363 	val = mt7530_read(priv, MT7530_ATC);
364 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
365 		return -EINVAL;
366 
367 	if (rsp)
368 		*rsp = val;
369 
370 	return 0;
371 }
372 
373 static void
374 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
375 {
376 	u32 reg[3];
377 	int i;
378 
379 	/* Read from ARL table into an array */
380 	for (i = 0; i < 3; i++) {
381 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
382 
383 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
384 			__func__, __LINE__, i, reg[i]);
385 	}
386 
387 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
388 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
389 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
390 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
391 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
392 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
393 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
394 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
395 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
396 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
397 }
398 
399 static void
400 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
401 		 u8 port_mask, const u8 *mac,
402 		 u8 aging, u8 type)
403 {
404 	u32 reg[3] = { 0 };
405 	int i;
406 
407 	reg[1] |= vid & CVID_MASK;
408 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
409 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
410 	/* STATIC_ENT indicate that entry is static wouldn't
411 	 * be aged out and STATIC_EMP specified as erasing an
412 	 * entry
413 	 */
414 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
415 	reg[1] |= mac[5] << MAC_BYTE_5;
416 	reg[1] |= mac[4] << MAC_BYTE_4;
417 	reg[0] |= mac[3] << MAC_BYTE_3;
418 	reg[0] |= mac[2] << MAC_BYTE_2;
419 	reg[0] |= mac[1] << MAC_BYTE_1;
420 	reg[0] |= mac[0] << MAC_BYTE_0;
421 
422 	/* Write array into the ARL table */
423 	for (i = 0; i < 3; i++)
424 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
425 }
426 
427 static int
428 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
429 {
430 	struct mt7530_priv *priv = ds->priv;
431 	u32 ncpo1, ssc_delta, trgint, i;
432 
433 	switch (mode) {
434 	case PHY_INTERFACE_MODE_RGMII:
435 		trgint = 0;
436 		ncpo1 = 0x0c80;
437 		ssc_delta = 0x87;
438 		break;
439 	case PHY_INTERFACE_MODE_TRGMII:
440 		trgint = 1;
441 		ncpo1 = 0x1400;
442 		ssc_delta = 0x57;
443 		break;
444 	default:
445 		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
446 		return -EINVAL;
447 	}
448 
449 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
450 		   P6_INTF_MODE(trgint));
451 
452 	/* Lower Tx Driving for TRGMII path */
453 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
454 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
455 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
456 
457 	/* Setup core clock for MT7530 */
458 	if (!trgint) {
459 		/* Disable MT7530 core clock */
460 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
461 
462 		/* Disable PLL, since phy_device has not yet been created
463 		 * provided for phy_[read,write]_mmd_indirect is called, we
464 		 * provide our own core_write_mmd_indirect to complete this
465 		 * function.
466 		 */
467 		core_write_mmd_indirect(priv,
468 					CORE_GSWPLL_GRP1,
469 					MDIO_MMD_VEND2,
470 					0);
471 
472 		/* Set core clock into 500Mhz */
473 		core_write(priv, CORE_GSWPLL_GRP2,
474 			   RG_GSWPLL_POSDIV_500M(1) |
475 			   RG_GSWPLL_FBKDIV_500M(25));
476 
477 		/* Enable PLL */
478 		core_write(priv, CORE_GSWPLL_GRP1,
479 			   RG_GSWPLL_EN_PRE |
480 			   RG_GSWPLL_POSDIV_200M(2) |
481 			   RG_GSWPLL_FBKDIV_200M(32));
482 
483 		/* Enable MT7530 core clock */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
485 	}
486 
487 	/* Setup the MT7530 TRGMII Tx Clock */
488 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
489 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
490 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
491 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
492 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
493 	core_write(priv, CORE_PLL_GROUP4,
494 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
495 		   RG_SYSPLL_BIAS_LPF_EN);
496 	core_write(priv, CORE_PLL_GROUP2,
497 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
498 		   RG_SYSPLL_POSDIV(1));
499 	core_write(priv, CORE_PLL_GROUP7,
500 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
501 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
502 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
503 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
504 
505 	if (!trgint)
506 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
507 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
508 				   RD_TAP_MASK, RD_TAP(16));
509 	else
510 		mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
511 
512 	return 0;
513 }
514 
515 static int
516 mt7623_pad_clk_setup(struct dsa_switch *ds)
517 {
518 	struct mt7530_priv *priv = ds->priv;
519 	int i;
520 
521 	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
522 		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
523 				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
524 
525 	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
526 	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
527 
528 	return 0;
529 }
530 
531 static void
532 mt7530_mib_reset(struct dsa_switch *ds)
533 {
534 	struct mt7530_priv *priv = ds->priv;
535 
536 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
537 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
538 }
539 
540 static void
541 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
542 {
543 	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
544 
545 	if (enable)
546 		mt7530_set(priv, MT7530_PMCR_P(port), mask);
547 	else
548 		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
549 }
550 
551 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
552 {
553 	struct mt7530_priv *priv = ds->priv;
554 
555 	return mdiobus_read_nested(priv->bus, port, regnum);
556 }
557 
558 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
559 			    u16 val)
560 {
561 	struct mt7530_priv *priv = ds->priv;
562 
563 	return mdiobus_write_nested(priv->bus, port, regnum, val);
564 }
565 
566 static void
567 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
568 		   uint8_t *data)
569 {
570 	int i;
571 
572 	if (stringset != ETH_SS_STATS)
573 		return;
574 
575 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
576 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
577 			ETH_GSTRING_LEN);
578 }
579 
580 static void
581 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
582 			 uint64_t *data)
583 {
584 	struct mt7530_priv *priv = ds->priv;
585 	const struct mt7530_mib_desc *mib;
586 	u32 reg, i;
587 	u64 hi;
588 
589 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
590 		mib = &mt7530_mib[i];
591 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
592 
593 		data[i] = mt7530_read(priv, reg);
594 		if (mib->size == 2) {
595 			hi = mt7530_read(priv, reg + 4);
596 			data[i] |= hi << 32;
597 		}
598 	}
599 }
600 
601 static int
602 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
603 {
604 	if (sset != ETH_SS_STATS)
605 		return 0;
606 
607 	return ARRAY_SIZE(mt7530_mib);
608 }
609 
610 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
611 			       struct phy_device *phydev)
612 {
613 	struct mt7530_priv *priv = ds->priv;
614 
615 	if (phy_is_pseudo_fixed_link(phydev)) {
616 		if (priv->id == ID_MT7530) {
617 			dev_dbg(priv->dev, "phy-mode for master device = %x\n",
618 				phydev->interface);
619 
620 			/* Setup TX circuit incluing relevant PAD and driving */
621 			mt7530_pad_clk_setup(ds, phydev->interface);
622 
623 			/* Setup RX circuit, relevant PAD and driving on the
624 			 * host which must be placed after the setup on the
625 			 * device side is all finished.
626 			 */
627 			mt7623_pad_clk_setup(ds);
628 		}
629 	} else {
630 		u16 lcl_adv = 0, rmt_adv = 0;
631 		u8 flowctrl;
632 		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
633 
634 		switch (phydev->speed) {
635 		case SPEED_1000:
636 			mcr |= PMCR_FORCE_SPEED_1000;
637 			break;
638 		case SPEED_100:
639 			mcr |= PMCR_FORCE_SPEED_100;
640 			break;
641 		}
642 
643 		if (phydev->link)
644 			mcr |= PMCR_FORCE_LNK;
645 
646 		if (phydev->duplex) {
647 			mcr |= PMCR_FORCE_FDX;
648 
649 			if (phydev->pause)
650 				rmt_adv = LPA_PAUSE_CAP;
651 			if (phydev->asym_pause)
652 				rmt_adv |= LPA_PAUSE_ASYM;
653 
654 			lcl_adv = linkmode_adv_to_lcl_adv_t(
655 				phydev->advertising);
656 			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
657 
658 			if (flowctrl & FLOW_CTRL_TX)
659 				mcr |= PMCR_TX_FC_EN;
660 			if (flowctrl & FLOW_CTRL_RX)
661 				mcr |= PMCR_RX_FC_EN;
662 		}
663 		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
664 	}
665 }
666 
667 static int
668 mt7530_cpu_port_enable(struct mt7530_priv *priv,
669 		       int port)
670 {
671 	/* Enable Mediatek header mode on the cpu port */
672 	mt7530_write(priv, MT7530_PVC_P(port),
673 		     PORT_SPEC_TAG);
674 
675 	/* Setup the MAC by default for the cpu port */
676 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
677 
678 	/* Disable auto learning on the cpu port */
679 	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
680 
681 	/* Unknown unicast frame fordwarding to the cpu port */
682 	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
683 
684 	/* Set CPU port number */
685 	if (priv->id == ID_MT7621)
686 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
687 
688 	/* CPU port gets connected to all user ports of
689 	 * the switch
690 	 */
691 	mt7530_write(priv, MT7530_PCR_P(port),
692 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
693 
694 	return 0;
695 }
696 
697 static int
698 mt7530_port_enable(struct dsa_switch *ds, int port,
699 		   struct phy_device *phy)
700 {
701 	struct mt7530_priv *priv = ds->priv;
702 
703 	mutex_lock(&priv->reg_mutex);
704 
705 	/* Setup the MAC for the user port */
706 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
707 
708 	/* Allow the user port gets connected to the cpu port and also
709 	 * restore the port matrix if the port is the member of a certain
710 	 * bridge.
711 	 */
712 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
713 	priv->ports[port].enable = true;
714 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
715 		   priv->ports[port].pm);
716 	mt7530_port_set_status(priv, port, 1);
717 
718 	mutex_unlock(&priv->reg_mutex);
719 
720 	return 0;
721 }
722 
723 static void
724 mt7530_port_disable(struct dsa_switch *ds, int port)
725 {
726 	struct mt7530_priv *priv = ds->priv;
727 
728 	mutex_lock(&priv->reg_mutex);
729 
730 	/* Clear up all port matrix which could be restored in the next
731 	 * enablement for the port.
732 	 */
733 	priv->ports[port].enable = false;
734 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
735 		   PCR_MATRIX_CLR);
736 	mt7530_port_set_status(priv, port, 0);
737 
738 	mutex_unlock(&priv->reg_mutex);
739 }
740 
741 static void
742 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
743 {
744 	struct mt7530_priv *priv = ds->priv;
745 	u32 stp_state;
746 
747 	switch (state) {
748 	case BR_STATE_DISABLED:
749 		stp_state = MT7530_STP_DISABLED;
750 		break;
751 	case BR_STATE_BLOCKING:
752 		stp_state = MT7530_STP_BLOCKING;
753 		break;
754 	case BR_STATE_LISTENING:
755 		stp_state = MT7530_STP_LISTENING;
756 		break;
757 	case BR_STATE_LEARNING:
758 		stp_state = MT7530_STP_LEARNING;
759 		break;
760 	case BR_STATE_FORWARDING:
761 	default:
762 		stp_state = MT7530_STP_FORWARDING;
763 		break;
764 	}
765 
766 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
767 }
768 
769 static int
770 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
771 			struct net_device *bridge)
772 {
773 	struct mt7530_priv *priv = ds->priv;
774 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
775 	int i;
776 
777 	mutex_lock(&priv->reg_mutex);
778 
779 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
780 		/* Add this port to the port matrix of the other ports in the
781 		 * same bridge. If the port is disabled, port matrix is kept
782 		 * and not being setup until the port becomes enabled.
783 		 */
784 		if (dsa_is_user_port(ds, i) && i != port) {
785 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
786 				continue;
787 			if (priv->ports[i].enable)
788 				mt7530_set(priv, MT7530_PCR_P(i),
789 					   PCR_MATRIX(BIT(port)));
790 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
791 
792 			port_bitmap |= BIT(i);
793 		}
794 	}
795 
796 	/* Add the all other ports to this port matrix. */
797 	if (priv->ports[port].enable)
798 		mt7530_rmw(priv, MT7530_PCR_P(port),
799 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
800 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
801 
802 	mutex_unlock(&priv->reg_mutex);
803 
804 	return 0;
805 }
806 
807 static void
808 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
809 {
810 	struct mt7530_priv *priv = ds->priv;
811 	bool all_user_ports_removed = true;
812 	int i;
813 
814 	/* When a port is removed from the bridge, the port would be set up
815 	 * back to the default as is at initial boot which is a VLAN-unaware
816 	 * port.
817 	 */
818 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
819 		   MT7530_PORT_MATRIX_MODE);
820 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
821 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
822 
823 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
824 		if (dsa_is_user_port(ds, i) &&
825 		    dsa_port_is_vlan_filtering(&ds->ports[i])) {
826 			all_user_ports_removed = false;
827 			break;
828 		}
829 	}
830 
831 	/* CPU port also does the same thing until all user ports belonging to
832 	 * the CPU port get out of VLAN filtering mode.
833 	 */
834 	if (all_user_ports_removed) {
835 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
836 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
837 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
838 			     PORT_SPEC_TAG);
839 	}
840 }
841 
842 static void
843 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
844 {
845 	struct mt7530_priv *priv = ds->priv;
846 
847 	/* The real fabric path would be decided on the membership in the
848 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
849 	 * means potential VLAN can be consisting of certain subset of all
850 	 * ports.
851 	 */
852 	mt7530_rmw(priv, MT7530_PCR_P(port),
853 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
854 
855 	/* Trapped into security mode allows packet forwarding through VLAN
856 	 * table lookup.
857 	 */
858 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
859 		   MT7530_PORT_SECURITY_MODE);
860 
861 	/* Set the port as a user port which is to be able to recognize VID
862 	 * from incoming packets before fetching entry within the VLAN table.
863 	 */
864 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
865 		   VLAN_ATTR(MT7530_VLAN_USER));
866 }
867 
868 static void
869 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
870 			 struct net_device *bridge)
871 {
872 	struct mt7530_priv *priv = ds->priv;
873 	int i;
874 
875 	mutex_lock(&priv->reg_mutex);
876 
877 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
878 		/* Remove this port from the port matrix of the other ports
879 		 * in the same bridge. If the port is disabled, port matrix
880 		 * is kept and not being setup until the port becomes enabled.
881 		 * And the other port's port matrix cannot be broken when the
882 		 * other port is still a VLAN-aware port.
883 		 */
884 		if (dsa_is_user_port(ds, i) && i != port &&
885 		   !dsa_port_is_vlan_filtering(&ds->ports[i])) {
886 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
887 				continue;
888 			if (priv->ports[i].enable)
889 				mt7530_clear(priv, MT7530_PCR_P(i),
890 					     PCR_MATRIX(BIT(port)));
891 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
892 		}
893 	}
894 
895 	/* Set the cpu port to be the only one in the port matrix of
896 	 * this port.
897 	 */
898 	if (priv->ports[port].enable)
899 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
900 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
901 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
902 
903 	mutex_unlock(&priv->reg_mutex);
904 }
905 
906 static int
907 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
908 		    const unsigned char *addr, u16 vid)
909 {
910 	struct mt7530_priv *priv = ds->priv;
911 	int ret;
912 	u8 port_mask = BIT(port);
913 
914 	mutex_lock(&priv->reg_mutex);
915 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
916 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
917 	mutex_unlock(&priv->reg_mutex);
918 
919 	return ret;
920 }
921 
922 static int
923 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
924 		    const unsigned char *addr, u16 vid)
925 {
926 	struct mt7530_priv *priv = ds->priv;
927 	int ret;
928 	u8 port_mask = BIT(port);
929 
930 	mutex_lock(&priv->reg_mutex);
931 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
932 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
933 	mutex_unlock(&priv->reg_mutex);
934 
935 	return ret;
936 }
937 
938 static int
939 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
940 		     dsa_fdb_dump_cb_t *cb, void *data)
941 {
942 	struct mt7530_priv *priv = ds->priv;
943 	struct mt7530_fdb _fdb = { 0 };
944 	int cnt = MT7530_NUM_FDB_RECORDS;
945 	int ret = 0;
946 	u32 rsp = 0;
947 
948 	mutex_lock(&priv->reg_mutex);
949 
950 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
951 	if (ret < 0)
952 		goto err;
953 
954 	do {
955 		if (rsp & ATC_SRCH_HIT) {
956 			mt7530_fdb_read(priv, &_fdb);
957 			if (_fdb.port_mask & BIT(port)) {
958 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
959 					 data);
960 				if (ret < 0)
961 					break;
962 			}
963 		}
964 	} while (--cnt &&
965 		 !(rsp & ATC_SRCH_END) &&
966 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
967 err:
968 	mutex_unlock(&priv->reg_mutex);
969 
970 	return 0;
971 }
972 
973 static int
974 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
975 {
976 	struct mt7530_dummy_poll p;
977 	u32 val;
978 	int ret;
979 
980 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
981 	mt7530_write(priv, MT7530_VTCR, val);
982 
983 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
984 	ret = readx_poll_timeout(_mt7530_read, &p, val,
985 				 !(val & VTCR_BUSY), 20, 20000);
986 	if (ret < 0) {
987 		dev_err(priv->dev, "poll timeout\n");
988 		return ret;
989 	}
990 
991 	val = mt7530_read(priv, MT7530_VTCR);
992 	if (val & VTCR_INVALID) {
993 		dev_err(priv->dev, "read VTCR invalid\n");
994 		return -EINVAL;
995 	}
996 
997 	return 0;
998 }
999 
1000 static int
1001 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1002 			   bool vlan_filtering)
1003 {
1004 	if (vlan_filtering) {
1005 		/* The port is being kept as VLAN-unaware port when bridge is
1006 		 * set up with vlan_filtering not being set, Otherwise, the
1007 		 * port and the corresponding CPU port is required the setup
1008 		 * for becoming a VLAN-aware port.
1009 		 */
1010 		mt7530_port_set_vlan_aware(ds, port);
1011 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1012 	} else {
1013 		mt7530_port_set_vlan_unaware(ds, port);
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 static int
1020 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1021 			 const struct switchdev_obj_port_vlan *vlan)
1022 {
1023 	/* nothing needed */
1024 
1025 	return 0;
1026 }
1027 
1028 static void
1029 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1030 		   struct mt7530_hw_vlan_entry *entry)
1031 {
1032 	u8 new_members;
1033 	u32 val;
1034 
1035 	new_members = entry->old_members | BIT(entry->port) |
1036 		      BIT(MT7530_CPU_PORT);
1037 
1038 	/* Validate the entry with independent learning, create egress tag per
1039 	 * VLAN and joining the port as one of the port members.
1040 	 */
1041 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1042 	mt7530_write(priv, MT7530_VAWD1, val);
1043 
1044 	/* Decide whether adding tag or not for those outgoing packets from the
1045 	 * port inside the VLAN.
1046 	 */
1047 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1048 				MT7530_VLAN_EGRESS_TAG;
1049 	mt7530_rmw(priv, MT7530_VAWD2,
1050 		   ETAG_CTRL_P_MASK(entry->port),
1051 		   ETAG_CTRL_P(entry->port, val));
1052 
1053 	/* CPU port is always taken as a tagged port for serving more than one
1054 	 * VLANs across and also being applied with egress type stack mode for
1055 	 * that VLAN tags would be appended after hardware special tag used as
1056 	 * DSA tag.
1057 	 */
1058 	mt7530_rmw(priv, MT7530_VAWD2,
1059 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1060 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1061 			       MT7530_VLAN_EGRESS_STACK));
1062 }
1063 
1064 static void
1065 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1066 		   struct mt7530_hw_vlan_entry *entry)
1067 {
1068 	u8 new_members;
1069 	u32 val;
1070 
1071 	new_members = entry->old_members & ~BIT(entry->port);
1072 
1073 	val = mt7530_read(priv, MT7530_VAWD1);
1074 	if (!(val & VLAN_VALID)) {
1075 		dev_err(priv->dev,
1076 			"Cannot be deleted due to invalid entry\n");
1077 		return;
1078 	}
1079 
1080 	/* If certain member apart from CPU port is still alive in the VLAN,
1081 	 * the entry would be kept valid. Otherwise, the entry is got to be
1082 	 * disabled.
1083 	 */
1084 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1085 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1086 		      VLAN_VALID;
1087 		mt7530_write(priv, MT7530_VAWD1, val);
1088 	} else {
1089 		mt7530_write(priv, MT7530_VAWD1, 0);
1090 		mt7530_write(priv, MT7530_VAWD2, 0);
1091 	}
1092 }
1093 
1094 static void
1095 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1096 		      struct mt7530_hw_vlan_entry *entry,
1097 		      mt7530_vlan_op vlan_op)
1098 {
1099 	u32 val;
1100 
1101 	/* Fetch entry */
1102 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1103 
1104 	val = mt7530_read(priv, MT7530_VAWD1);
1105 
1106 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1107 
1108 	/* Manipulate entry */
1109 	vlan_op(priv, entry);
1110 
1111 	/* Flush result to hardware */
1112 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1113 }
1114 
1115 static void
1116 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1117 		     const struct switchdev_obj_port_vlan *vlan)
1118 {
1119 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1120 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1121 	struct mt7530_hw_vlan_entry new_entry;
1122 	struct mt7530_priv *priv = ds->priv;
1123 	u16 vid;
1124 
1125 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1126 	 * being set.
1127 	 */
1128 	if (!dsa_port_is_vlan_filtering(&ds->ports[port]))
1129 		return;
1130 
1131 	mutex_lock(&priv->reg_mutex);
1132 
1133 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1134 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1135 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1136 				      mt7530_hw_vlan_add);
1137 	}
1138 
1139 	if (pvid) {
1140 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1141 			   G0_PORT_VID(vlan->vid_end));
1142 		priv->ports[port].pvid = vlan->vid_end;
1143 	}
1144 
1145 	mutex_unlock(&priv->reg_mutex);
1146 }
1147 
1148 static int
1149 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1150 		     const struct switchdev_obj_port_vlan *vlan)
1151 {
1152 	struct mt7530_hw_vlan_entry target_entry;
1153 	struct mt7530_priv *priv = ds->priv;
1154 	u16 vid, pvid;
1155 
1156 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1157 	 * being set.
1158 	 */
1159 	if (!dsa_port_is_vlan_filtering(&ds->ports[port]))
1160 		return 0;
1161 
1162 	mutex_lock(&priv->reg_mutex);
1163 
1164 	pvid = priv->ports[port].pvid;
1165 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1166 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1167 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1168 				      mt7530_hw_vlan_del);
1169 
1170 		/* PVID is being restored to the default whenever the PVID port
1171 		 * is being removed from the VLAN.
1172 		 */
1173 		if (pvid == vid)
1174 			pvid = G0_PORT_VID_DEF;
1175 	}
1176 
1177 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1178 	priv->ports[port].pvid = pvid;
1179 
1180 	mutex_unlock(&priv->reg_mutex);
1181 
1182 	return 0;
1183 }
1184 
1185 static enum dsa_tag_protocol
1186 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1187 {
1188 	struct mt7530_priv *priv = ds->priv;
1189 
1190 	if (port != MT7530_CPU_PORT) {
1191 		dev_warn(priv->dev,
1192 			 "port not matched with tagging CPU port\n");
1193 		return DSA_TAG_PROTO_NONE;
1194 	} else {
1195 		return DSA_TAG_PROTO_MTK;
1196 	}
1197 }
1198 
1199 static int
1200 mt7530_setup(struct dsa_switch *ds)
1201 {
1202 	struct mt7530_priv *priv = ds->priv;
1203 	int ret, i;
1204 	u32 id, val;
1205 	struct device_node *dn;
1206 	struct mt7530_dummy_poll p;
1207 
1208 	/* The parent node of master netdev which holds the common system
1209 	 * controller also is the container for two GMACs nodes representing
1210 	 * as two netdev instances.
1211 	 */
1212 	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1213 
1214 	if (priv->id == ID_MT7530) {
1215 		priv->ethernet = syscon_node_to_regmap(dn);
1216 		if (IS_ERR(priv->ethernet))
1217 			return PTR_ERR(priv->ethernet);
1218 
1219 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1220 		ret = regulator_enable(priv->core_pwr);
1221 		if (ret < 0) {
1222 			dev_err(priv->dev,
1223 				"Failed to enable core power: %d\n", ret);
1224 			return ret;
1225 		}
1226 
1227 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1228 		ret = regulator_enable(priv->io_pwr);
1229 		if (ret < 0) {
1230 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1231 				ret);
1232 			return ret;
1233 		}
1234 	}
1235 
1236 	/* Reset whole chip through gpio pin or memory-mapped registers for
1237 	 * different type of hardware
1238 	 */
1239 	if (priv->mcm) {
1240 		reset_control_assert(priv->rstc);
1241 		usleep_range(1000, 1100);
1242 		reset_control_deassert(priv->rstc);
1243 	} else {
1244 		gpiod_set_value_cansleep(priv->reset, 0);
1245 		usleep_range(1000, 1100);
1246 		gpiod_set_value_cansleep(priv->reset, 1);
1247 	}
1248 
1249 	/* Waiting for MT7530 got to stable */
1250 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1251 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1252 				 20, 1000000);
1253 	if (ret < 0) {
1254 		dev_err(priv->dev, "reset timeout\n");
1255 		return ret;
1256 	}
1257 
1258 	id = mt7530_read(priv, MT7530_CREV);
1259 	id >>= CHIP_NAME_SHIFT;
1260 	if (id != MT7530_ID) {
1261 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1262 		return -ENODEV;
1263 	}
1264 
1265 	/* Reset the switch through internal reset */
1266 	mt7530_write(priv, MT7530_SYS_CTRL,
1267 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1268 		     SYS_CTRL_REG_RST);
1269 
1270 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1271 	val = mt7530_read(priv, MT7530_MHWTRAP);
1272 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1273 	val |= MHWTRAP_MANUAL;
1274 	mt7530_write(priv, MT7530_MHWTRAP, val);
1275 
1276 	/* Enable and reset MIB counters */
1277 	mt7530_mib_reset(ds);
1278 
1279 	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1280 
1281 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1282 		/* Disable forwarding by default on all ports */
1283 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1284 			   PCR_MATRIX_CLR);
1285 
1286 		if (dsa_is_cpu_port(ds, i))
1287 			mt7530_cpu_port_enable(priv, i);
1288 		else
1289 			mt7530_port_disable(ds, i);
1290 	}
1291 
1292 	/* Flush the FDB table */
1293 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1294 	if (ret < 0)
1295 		return ret;
1296 
1297 	return 0;
1298 }
1299 
1300 static const struct dsa_switch_ops mt7530_switch_ops = {
1301 	.get_tag_protocol	= mtk_get_tag_protocol,
1302 	.setup			= mt7530_setup,
1303 	.get_strings		= mt7530_get_strings,
1304 	.phy_read		= mt7530_phy_read,
1305 	.phy_write		= mt7530_phy_write,
1306 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1307 	.get_sset_count		= mt7530_get_sset_count,
1308 	.adjust_link		= mt7530_adjust_link,
1309 	.port_enable		= mt7530_port_enable,
1310 	.port_disable		= mt7530_port_disable,
1311 	.port_stp_state_set	= mt7530_stp_state_set,
1312 	.port_bridge_join	= mt7530_port_bridge_join,
1313 	.port_bridge_leave	= mt7530_port_bridge_leave,
1314 	.port_fdb_add		= mt7530_port_fdb_add,
1315 	.port_fdb_del		= mt7530_port_fdb_del,
1316 	.port_fdb_dump		= mt7530_port_fdb_dump,
1317 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1318 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1319 	.port_vlan_add		= mt7530_port_vlan_add,
1320 	.port_vlan_del		= mt7530_port_vlan_del,
1321 };
1322 
1323 static const struct of_device_id mt7530_of_match[] = {
1324 	{ .compatible = "mediatek,mt7621", .data = (void *)ID_MT7621, },
1325 	{ .compatible = "mediatek,mt7530", .data = (void *)ID_MT7530, },
1326 	{ /* sentinel */ },
1327 };
1328 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1329 
1330 static int
1331 mt7530_probe(struct mdio_device *mdiodev)
1332 {
1333 	struct mt7530_priv *priv;
1334 	struct device_node *dn;
1335 
1336 	dn = mdiodev->dev.of_node;
1337 
1338 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1339 	if (!priv)
1340 		return -ENOMEM;
1341 
1342 	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1343 	if (!priv->ds)
1344 		return -ENOMEM;
1345 
1346 	/* Use medatek,mcm property to distinguish hardware type that would
1347 	 * casues a little bit differences on power-on sequence.
1348 	 */
1349 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1350 	if (priv->mcm) {
1351 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1352 
1353 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1354 		if (IS_ERR(priv->rstc)) {
1355 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1356 			return PTR_ERR(priv->rstc);
1357 		}
1358 	}
1359 
1360 	/* Get the hardware identifier from the devicetree node.
1361 	 * We will need it for some of the clock and regulator setup.
1362 	 */
1363 	priv->id = (unsigned int)(unsigned long)
1364 		of_device_get_match_data(&mdiodev->dev);
1365 
1366 	if (priv->id == ID_MT7530) {
1367 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1368 		if (IS_ERR(priv->core_pwr))
1369 			return PTR_ERR(priv->core_pwr);
1370 
1371 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1372 		if (IS_ERR(priv->io_pwr))
1373 			return PTR_ERR(priv->io_pwr);
1374 	}
1375 
1376 	/* Not MCM that indicates switch works as the remote standalone
1377 	 * integrated circuit so the GPIO pin would be used to complete
1378 	 * the reset, otherwise memory-mapped register accessing used
1379 	 * through syscon provides in the case of MCM.
1380 	 */
1381 	if (!priv->mcm) {
1382 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1383 						      GPIOD_OUT_LOW);
1384 		if (IS_ERR(priv->reset)) {
1385 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1386 			return PTR_ERR(priv->reset);
1387 		}
1388 	}
1389 
1390 	priv->bus = mdiodev->bus;
1391 	priv->dev = &mdiodev->dev;
1392 	priv->ds->priv = priv;
1393 	priv->ds->ops = &mt7530_switch_ops;
1394 	mutex_init(&priv->reg_mutex);
1395 	dev_set_drvdata(&mdiodev->dev, priv);
1396 
1397 	return dsa_register_switch(priv->ds);
1398 }
1399 
1400 static void
1401 mt7530_remove(struct mdio_device *mdiodev)
1402 {
1403 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1404 	int ret = 0;
1405 
1406 	ret = regulator_disable(priv->core_pwr);
1407 	if (ret < 0)
1408 		dev_err(priv->dev,
1409 			"Failed to disable core power: %d\n", ret);
1410 
1411 	ret = regulator_disable(priv->io_pwr);
1412 	if (ret < 0)
1413 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1414 			ret);
1415 
1416 	dsa_unregister_switch(priv->ds);
1417 	mutex_destroy(&priv->reg_mutex);
1418 }
1419 
1420 static struct mdio_driver mt7530_mdio_driver = {
1421 	.probe  = mt7530_probe,
1422 	.remove = mt7530_remove,
1423 	.mdiodrv.driver = {
1424 		.name = "mt7530",
1425 		.of_match_table = mt7530_of_match,
1426 	},
1427 };
1428 
1429 mdio_module_driver(mt7530_mdio_driver);
1430 
1431 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1432 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1433 MODULE_LICENSE("GPL");
1434