xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * Mediatek MT7530 DSA Switch driver
3  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 #include <linux/etherdevice.h>
15 #include <linux/if_bridge.h>
16 #include <linux/iopoll.h>
17 #include <linux/mdio.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_gpio.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_net.h>
24 #include <linux/of_platform.h>
25 #include <linux/phy.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/reset.h>
29 #include <linux/gpio/consumer.h>
30 #include <net/dsa.h>
31 
32 #include "mt7530.h"
33 
34 /* String, offset, and register size in bytes if different from 4 bytes */
35 static const struct mt7530_mib_desc mt7530_mib[] = {
36 	MIB_DESC(1, 0x00, "TxDrop"),
37 	MIB_DESC(1, 0x04, "TxCrcErr"),
38 	MIB_DESC(1, 0x08, "TxUnicast"),
39 	MIB_DESC(1, 0x0c, "TxMulticast"),
40 	MIB_DESC(1, 0x10, "TxBroadcast"),
41 	MIB_DESC(1, 0x14, "TxCollision"),
42 	MIB_DESC(1, 0x18, "TxSingleCollision"),
43 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
44 	MIB_DESC(1, 0x20, "TxDeferred"),
45 	MIB_DESC(1, 0x24, "TxLateCollision"),
46 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
47 	MIB_DESC(1, 0x2c, "TxPause"),
48 	MIB_DESC(1, 0x30, "TxPktSz64"),
49 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
50 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
51 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
52 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
53 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
54 	MIB_DESC(2, 0x48, "TxBytes"),
55 	MIB_DESC(1, 0x60, "RxDrop"),
56 	MIB_DESC(1, 0x64, "RxFiltering"),
57 	MIB_DESC(1, 0x6c, "RxMulticast"),
58 	MIB_DESC(1, 0x70, "RxBroadcast"),
59 	MIB_DESC(1, 0x74, "RxAlignErr"),
60 	MIB_DESC(1, 0x78, "RxCrcErr"),
61 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
62 	MIB_DESC(1, 0x80, "RxFragErr"),
63 	MIB_DESC(1, 0x84, "RxOverSzErr"),
64 	MIB_DESC(1, 0x88, "RxJabberErr"),
65 	MIB_DESC(1, 0x8c, "RxPause"),
66 	MIB_DESC(1, 0x90, "RxPktSz64"),
67 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
68 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
69 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
70 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
71 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
72 	MIB_DESC(2, 0xa8, "RxBytes"),
73 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
74 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
75 	MIB_DESC(1, 0xb8, "RxArlDrop"),
76 };
77 
78 static int
79 mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
80 {
81 	int ret;
82 
83 	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
84 	if (ret < 0)
85 		dev_err(priv->dev,
86 			"failed to priv write register\n");
87 	return ret;
88 }
89 
90 static u32
91 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
92 {
93 	int ret;
94 	u32 val;
95 
96 	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
97 	if (ret < 0) {
98 		dev_err(priv->dev,
99 			"failed to priv read register\n");
100 		return ret;
101 	}
102 
103 	return val;
104 }
105 
106 static void
107 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
108 		  u32 mask, u32 set)
109 {
110 	u32 val;
111 
112 	val = mt7623_trgmii_read(priv, reg);
113 	val &= ~mask;
114 	val |= set;
115 	mt7623_trgmii_write(priv, reg, val);
116 }
117 
118 static void
119 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
120 {
121 	mt7623_trgmii_rmw(priv, reg, 0, val);
122 }
123 
124 static void
125 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
126 {
127 	mt7623_trgmii_rmw(priv, reg, val, 0);
128 }
129 
130 static int
131 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
132 {
133 	struct mii_bus *bus = priv->bus;
134 	int value, ret;
135 
136 	/* Write the desired MMD Devad */
137 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
138 	if (ret < 0)
139 		goto err;
140 
141 	/* Write the desired MMD register address */
142 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
143 	if (ret < 0)
144 		goto err;
145 
146 	/* Select the Function : DATA with no post increment */
147 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
148 	if (ret < 0)
149 		goto err;
150 
151 	/* Read the content of the MMD's selected register */
152 	value = bus->read(bus, 0, MII_MMD_DATA);
153 
154 	return value;
155 err:
156 	dev_err(&bus->dev,  "failed to read mmd register\n");
157 
158 	return ret;
159 }
160 
161 static int
162 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
163 			int devad, u32 data)
164 {
165 	struct mii_bus *bus = priv->bus;
166 	int ret;
167 
168 	/* Write the desired MMD Devad */
169 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
170 	if (ret < 0)
171 		goto err;
172 
173 	/* Write the desired MMD register address */
174 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
175 	if (ret < 0)
176 		goto err;
177 
178 	/* Select the Function : DATA with no post increment */
179 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
180 	if (ret < 0)
181 		goto err;
182 
183 	/* Write the data into MMD's selected register */
184 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
185 err:
186 	if (ret < 0)
187 		dev_err(&bus->dev,
188 			"failed to write mmd register\n");
189 	return ret;
190 }
191 
192 static void
193 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
194 {
195 	struct mii_bus *bus = priv->bus;
196 
197 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
198 
199 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
200 
201 	mutex_unlock(&bus->mdio_lock);
202 }
203 
204 static void
205 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
206 {
207 	struct mii_bus *bus = priv->bus;
208 	u32 val;
209 
210 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
211 
212 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
213 	val &= ~mask;
214 	val |= set;
215 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
216 
217 	mutex_unlock(&bus->mdio_lock);
218 }
219 
220 static void
221 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
222 {
223 	core_rmw(priv, reg, 0, val);
224 }
225 
226 static void
227 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	core_rmw(priv, reg, val, 0);
230 }
231 
232 static int
233 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 	u16 page, r, lo, hi;
237 	int ret;
238 
239 	page = (reg >> 6) & 0x3ff;
240 	r  = (reg >> 2) & 0xf;
241 	lo = val & 0xffff;
242 	hi = val >> 16;
243 
244 	/* MT7530 uses 31 as the pseudo port */
245 	ret = bus->write(bus, 0x1f, 0x1f, page);
246 	if (ret < 0)
247 		goto err;
248 
249 	ret = bus->write(bus, 0x1f, r,  lo);
250 	if (ret < 0)
251 		goto err;
252 
253 	ret = bus->write(bus, 0x1f, 0x10, hi);
254 err:
255 	if (ret < 0)
256 		dev_err(&bus->dev,
257 			"failed to write mt7530 register\n");
258 	return ret;
259 }
260 
261 static u32
262 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
263 {
264 	struct mii_bus *bus = priv->bus;
265 	u16 page, r, lo, hi;
266 	int ret;
267 
268 	page = (reg >> 6) & 0x3ff;
269 	r = (reg >> 2) & 0xf;
270 
271 	/* MT7530 uses 31 as the pseudo port */
272 	ret = bus->write(bus, 0x1f, 0x1f, page);
273 	if (ret < 0) {
274 		dev_err(&bus->dev,
275 			"failed to read mt7530 register\n");
276 		return ret;
277 	}
278 
279 	lo = bus->read(bus, 0x1f, r);
280 	hi = bus->read(bus, 0x1f, 0x10);
281 
282 	return (hi << 16) | (lo & 0xffff);
283 }
284 
285 static void
286 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
287 {
288 	struct mii_bus *bus = priv->bus;
289 
290 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
291 
292 	mt7530_mii_write(priv, reg, val);
293 
294 	mutex_unlock(&bus->mdio_lock);
295 }
296 
297 static u32
298 _mt7530_read(struct mt7530_dummy_poll *p)
299 {
300 	struct mii_bus		*bus = p->priv->bus;
301 	u32 val;
302 
303 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
304 
305 	val = mt7530_mii_read(p->priv, p->reg);
306 
307 	mutex_unlock(&bus->mdio_lock);
308 
309 	return val;
310 }
311 
312 static u32
313 mt7530_read(struct mt7530_priv *priv, u32 reg)
314 {
315 	struct mt7530_dummy_poll p;
316 
317 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
318 	return _mt7530_read(&p);
319 }
320 
321 static void
322 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
323 	   u32 mask, u32 set)
324 {
325 	struct mii_bus *bus = priv->bus;
326 	u32 val;
327 
328 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
329 
330 	val = mt7530_mii_read(priv, reg);
331 	val &= ~mask;
332 	val |= set;
333 	mt7530_mii_write(priv, reg, val);
334 
335 	mutex_unlock(&bus->mdio_lock);
336 }
337 
338 static void
339 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
340 {
341 	mt7530_rmw(priv, reg, 0, val);
342 }
343 
344 static void
345 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
346 {
347 	mt7530_rmw(priv, reg, val, 0);
348 }
349 
350 static int
351 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
352 {
353 	u32 val;
354 	int ret;
355 	struct mt7530_dummy_poll p;
356 
357 	/* Set the command operating upon the MAC address entries */
358 	val = ATC_BUSY | ATC_MAT(0) | cmd;
359 	mt7530_write(priv, MT7530_ATC, val);
360 
361 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
362 	ret = readx_poll_timeout(_mt7530_read, &p, val,
363 				 !(val & ATC_BUSY), 20, 20000);
364 	if (ret < 0) {
365 		dev_err(priv->dev, "reset timeout\n");
366 		return ret;
367 	}
368 
369 	/* Additional sanity for read command if the specified
370 	 * entry is invalid
371 	 */
372 	val = mt7530_read(priv, MT7530_ATC);
373 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
374 		return -EINVAL;
375 
376 	if (rsp)
377 		*rsp = val;
378 
379 	return 0;
380 }
381 
382 static void
383 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
384 {
385 	u32 reg[3];
386 	int i;
387 
388 	/* Read from ARL table into an array */
389 	for (i = 0; i < 3; i++) {
390 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
391 
392 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
393 			__func__, __LINE__, i, reg[i]);
394 	}
395 
396 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
397 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
398 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
399 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
400 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
401 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
402 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
403 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
404 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
405 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
406 }
407 
408 static void
409 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
410 		 u8 port_mask, const u8 *mac,
411 		 u8 aging, u8 type)
412 {
413 	u32 reg[3] = { 0 };
414 	int i;
415 
416 	reg[1] |= vid & CVID_MASK;
417 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
418 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
419 	/* STATIC_ENT indicate that entry is static wouldn't
420 	 * be aged out and STATIC_EMP specified as erasing an
421 	 * entry
422 	 */
423 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
424 	reg[1] |= mac[5] << MAC_BYTE_5;
425 	reg[1] |= mac[4] << MAC_BYTE_4;
426 	reg[0] |= mac[3] << MAC_BYTE_3;
427 	reg[0] |= mac[2] << MAC_BYTE_2;
428 	reg[0] |= mac[1] << MAC_BYTE_1;
429 	reg[0] |= mac[0] << MAC_BYTE_0;
430 
431 	/* Write array into the ARL table */
432 	for (i = 0; i < 3; i++)
433 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
434 }
435 
436 static int
437 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
438 {
439 	struct mt7530_priv *priv = ds->priv;
440 	u32 ncpo1, ssc_delta, trgint, i;
441 
442 	switch (mode) {
443 	case PHY_INTERFACE_MODE_RGMII:
444 		trgint = 0;
445 		ncpo1 = 0x0c80;
446 		ssc_delta = 0x87;
447 		break;
448 	case PHY_INTERFACE_MODE_TRGMII:
449 		trgint = 1;
450 		ncpo1 = 0x1400;
451 		ssc_delta = 0x57;
452 		break;
453 	default:
454 		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
455 		return -EINVAL;
456 	}
457 
458 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
459 		   P6_INTF_MODE(trgint));
460 
461 	/* Lower Tx Driving for TRGMII path */
462 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
463 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
464 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
465 
466 	/* Setup core clock for MT7530 */
467 	if (!trgint) {
468 		/* Disable MT7530 core clock */
469 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
470 
471 		/* Disable PLL, since phy_device has not yet been created
472 		 * provided for phy_[read,write]_mmd_indirect is called, we
473 		 * provide our own core_write_mmd_indirect to complete this
474 		 * function.
475 		 */
476 		core_write_mmd_indirect(priv,
477 					CORE_GSWPLL_GRP1,
478 					MDIO_MMD_VEND2,
479 					0);
480 
481 		/* Set core clock into 500Mhz */
482 		core_write(priv, CORE_GSWPLL_GRP2,
483 			   RG_GSWPLL_POSDIV_500M(1) |
484 			   RG_GSWPLL_FBKDIV_500M(25));
485 
486 		/* Enable PLL */
487 		core_write(priv, CORE_GSWPLL_GRP1,
488 			   RG_GSWPLL_EN_PRE |
489 			   RG_GSWPLL_POSDIV_200M(2) |
490 			   RG_GSWPLL_FBKDIV_200M(32));
491 
492 		/* Enable MT7530 core clock */
493 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
494 	}
495 
496 	/* Setup the MT7530 TRGMII Tx Clock */
497 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
498 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
499 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
500 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
501 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
502 	core_write(priv, CORE_PLL_GROUP4,
503 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
504 		   RG_SYSPLL_BIAS_LPF_EN);
505 	core_write(priv, CORE_PLL_GROUP2,
506 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
507 		   RG_SYSPLL_POSDIV(1));
508 	core_write(priv, CORE_PLL_GROUP7,
509 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
510 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
511 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
512 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
513 
514 	if (!trgint)
515 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
516 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
517 				   RD_TAP_MASK, RD_TAP(16));
518 	else
519 		mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
520 
521 	return 0;
522 }
523 
524 static int
525 mt7623_pad_clk_setup(struct dsa_switch *ds)
526 {
527 	struct mt7530_priv *priv = ds->priv;
528 	int i;
529 
530 	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
531 		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
532 				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
533 
534 	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
535 	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
536 
537 	return 0;
538 }
539 
540 static void
541 mt7530_mib_reset(struct dsa_switch *ds)
542 {
543 	struct mt7530_priv *priv = ds->priv;
544 
545 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
546 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
547 }
548 
549 static void
550 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
551 {
552 	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
553 
554 	if (enable)
555 		mt7530_set(priv, MT7530_PMCR_P(port), mask);
556 	else
557 		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
558 }
559 
560 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
561 {
562 	struct mt7530_priv *priv = ds->priv;
563 
564 	return mdiobus_read_nested(priv->bus, port, regnum);
565 }
566 
567 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
568 			    u16 val)
569 {
570 	struct mt7530_priv *priv = ds->priv;
571 
572 	return mdiobus_write_nested(priv->bus, port, regnum, val);
573 }
574 
575 static void
576 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
577 		   uint8_t *data)
578 {
579 	int i;
580 
581 	if (stringset != ETH_SS_STATS)
582 		return;
583 
584 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
585 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
586 			ETH_GSTRING_LEN);
587 }
588 
589 static void
590 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
591 			 uint64_t *data)
592 {
593 	struct mt7530_priv *priv = ds->priv;
594 	const struct mt7530_mib_desc *mib;
595 	u32 reg, i;
596 	u64 hi;
597 
598 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
599 		mib = &mt7530_mib[i];
600 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
601 
602 		data[i] = mt7530_read(priv, reg);
603 		if (mib->size == 2) {
604 			hi = mt7530_read(priv, reg + 4);
605 			data[i] |= hi << 32;
606 		}
607 	}
608 }
609 
610 static int
611 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
612 {
613 	if (sset != ETH_SS_STATS)
614 		return 0;
615 
616 	return ARRAY_SIZE(mt7530_mib);
617 }
618 
619 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
620 			       struct phy_device *phydev)
621 {
622 	struct mt7530_priv *priv = ds->priv;
623 
624 	if (phy_is_pseudo_fixed_link(phydev)) {
625 		dev_dbg(priv->dev, "phy-mode for master device = %x\n",
626 			phydev->interface);
627 
628 		/* Setup TX circuit incluing relevant PAD and driving */
629 		mt7530_pad_clk_setup(ds, phydev->interface);
630 
631 		/* Setup RX circuit, relevant PAD and driving on the host
632 		 * which must be placed after the setup on the device side is
633 		 * all finished.
634 		 */
635 		mt7623_pad_clk_setup(ds);
636 	} else {
637 		u16 lcl_adv = 0, rmt_adv = 0;
638 		u8 flowctrl;
639 		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
640 
641 		switch (phydev->speed) {
642 		case SPEED_1000:
643 			mcr |= PMCR_FORCE_SPEED_1000;
644 			break;
645 		case SPEED_100:
646 			mcr |= PMCR_FORCE_SPEED_100;
647 			break;
648 		};
649 
650 		if (phydev->link)
651 			mcr |= PMCR_FORCE_LNK;
652 
653 		if (phydev->duplex) {
654 			mcr |= PMCR_FORCE_FDX;
655 
656 			if (phydev->pause)
657 				rmt_adv = LPA_PAUSE_CAP;
658 			if (phydev->asym_pause)
659 				rmt_adv |= LPA_PAUSE_ASYM;
660 
661 			if (phydev->advertising & ADVERTISED_Pause)
662 				lcl_adv |= ADVERTISE_PAUSE_CAP;
663 			if (phydev->advertising & ADVERTISED_Asym_Pause)
664 				lcl_adv |= ADVERTISE_PAUSE_ASYM;
665 
666 			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
667 
668 			if (flowctrl & FLOW_CTRL_TX)
669 				mcr |= PMCR_TX_FC_EN;
670 			if (flowctrl & FLOW_CTRL_RX)
671 				mcr |= PMCR_RX_FC_EN;
672 		}
673 		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
674 	}
675 }
676 
677 static int
678 mt7530_cpu_port_enable(struct mt7530_priv *priv,
679 		       int port)
680 {
681 	/* Enable Mediatek header mode on the cpu port */
682 	mt7530_write(priv, MT7530_PVC_P(port),
683 		     PORT_SPEC_TAG);
684 
685 	/* Setup the MAC by default for the cpu port */
686 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
687 
688 	/* Disable auto learning on the cpu port */
689 	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
690 
691 	/* Unknown unicast frame fordwarding to the cpu port */
692 	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
693 
694 	/* CPU port gets connected to all user ports of
695 	 * the switch
696 	 */
697 	mt7530_write(priv, MT7530_PCR_P(port),
698 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
699 
700 	return 0;
701 }
702 
703 static int
704 mt7530_port_enable(struct dsa_switch *ds, int port,
705 		   struct phy_device *phy)
706 {
707 	struct mt7530_priv *priv = ds->priv;
708 
709 	mutex_lock(&priv->reg_mutex);
710 
711 	/* Setup the MAC for the user port */
712 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
713 
714 	/* Allow the user port gets connected to the cpu port and also
715 	 * restore the port matrix if the port is the member of a certain
716 	 * bridge.
717 	 */
718 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
719 	priv->ports[port].enable = true;
720 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
721 		   priv->ports[port].pm);
722 	mt7530_port_set_status(priv, port, 1);
723 
724 	mutex_unlock(&priv->reg_mutex);
725 
726 	return 0;
727 }
728 
729 static void
730 mt7530_port_disable(struct dsa_switch *ds, int port,
731 		    struct phy_device *phy)
732 {
733 	struct mt7530_priv *priv = ds->priv;
734 
735 	mutex_lock(&priv->reg_mutex);
736 
737 	/* Clear up all port matrix which could be restored in the next
738 	 * enablement for the port.
739 	 */
740 	priv->ports[port].enable = false;
741 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
742 		   PCR_MATRIX_CLR);
743 	mt7530_port_set_status(priv, port, 0);
744 
745 	mutex_unlock(&priv->reg_mutex);
746 }
747 
748 static void
749 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
750 {
751 	struct mt7530_priv *priv = ds->priv;
752 	u32 stp_state;
753 
754 	switch (state) {
755 	case BR_STATE_DISABLED:
756 		stp_state = MT7530_STP_DISABLED;
757 		break;
758 	case BR_STATE_BLOCKING:
759 		stp_state = MT7530_STP_BLOCKING;
760 		break;
761 	case BR_STATE_LISTENING:
762 		stp_state = MT7530_STP_LISTENING;
763 		break;
764 	case BR_STATE_LEARNING:
765 		stp_state = MT7530_STP_LEARNING;
766 		break;
767 	case BR_STATE_FORWARDING:
768 	default:
769 		stp_state = MT7530_STP_FORWARDING;
770 		break;
771 	}
772 
773 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
774 }
775 
776 static int
777 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
778 			struct net_device *bridge)
779 {
780 	struct mt7530_priv *priv = ds->priv;
781 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
782 	int i;
783 
784 	mutex_lock(&priv->reg_mutex);
785 
786 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
787 		/* Add this port to the port matrix of the other ports in the
788 		 * same bridge. If the port is disabled, port matrix is kept
789 		 * and not being setup until the port becomes enabled.
790 		 */
791 		if (dsa_is_user_port(ds, i) && i != port) {
792 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
793 				continue;
794 			if (priv->ports[i].enable)
795 				mt7530_set(priv, MT7530_PCR_P(i),
796 					   PCR_MATRIX(BIT(port)));
797 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
798 
799 			port_bitmap |= BIT(i);
800 		}
801 	}
802 
803 	/* Add the all other ports to this port matrix. */
804 	if (priv->ports[port].enable)
805 		mt7530_rmw(priv, MT7530_PCR_P(port),
806 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
807 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
808 
809 	mutex_unlock(&priv->reg_mutex);
810 
811 	return 0;
812 }
813 
814 static void
815 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
816 {
817 	struct mt7530_priv *priv = ds->priv;
818 	bool all_user_ports_removed = true;
819 	int i;
820 
821 	/* When a port is removed from the bridge, the port would be set up
822 	 * back to the default as is at initial boot which is a VLAN-unaware
823 	 * port.
824 	 */
825 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
826 		   MT7530_PORT_MATRIX_MODE);
827 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
828 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
829 
830 	priv->ports[port].vlan_filtering = false;
831 
832 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
833 		if (dsa_is_user_port(ds, i) &&
834 		    priv->ports[i].vlan_filtering) {
835 			all_user_ports_removed = false;
836 			break;
837 		}
838 	}
839 
840 	/* CPU port also does the same thing until all user ports belonging to
841 	 * the CPU port get out of VLAN filtering mode.
842 	 */
843 	if (all_user_ports_removed) {
844 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
845 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
846 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
847 			     PORT_SPEC_TAG);
848 	}
849 }
850 
851 static void
852 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
853 {
854 	struct mt7530_priv *priv = ds->priv;
855 
856 	/* The real fabric path would be decided on the membership in the
857 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
858 	 * means potential VLAN can be consisting of certain subset of all
859 	 * ports.
860 	 */
861 	mt7530_rmw(priv, MT7530_PCR_P(port),
862 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
863 
864 	/* Trapped into security mode allows packet forwarding through VLAN
865 	 * table lookup.
866 	 */
867 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
868 		   MT7530_PORT_SECURITY_MODE);
869 
870 	/* Set the port as a user port which is to be able to recognize VID
871 	 * from incoming packets before fetching entry within the VLAN table.
872 	 */
873 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
874 		   VLAN_ATTR(MT7530_VLAN_USER));
875 }
876 
877 static void
878 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
879 			 struct net_device *bridge)
880 {
881 	struct mt7530_priv *priv = ds->priv;
882 	int i;
883 
884 	mutex_lock(&priv->reg_mutex);
885 
886 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
887 		/* Remove this port from the port matrix of the other ports
888 		 * in the same bridge. If the port is disabled, port matrix
889 		 * is kept and not being setup until the port becomes enabled.
890 		 * And the other port's port matrix cannot be broken when the
891 		 * other port is still a VLAN-aware port.
892 		 */
893 		if (!priv->ports[i].vlan_filtering &&
894 		    dsa_is_user_port(ds, i) && i != port) {
895 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
896 				continue;
897 			if (priv->ports[i].enable)
898 				mt7530_clear(priv, MT7530_PCR_P(i),
899 					     PCR_MATRIX(BIT(port)));
900 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
901 		}
902 	}
903 
904 	/* Set the cpu port to be the only one in the port matrix of
905 	 * this port.
906 	 */
907 	if (priv->ports[port].enable)
908 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
909 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
910 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
911 
912 	mt7530_port_set_vlan_unaware(ds, port);
913 
914 	mutex_unlock(&priv->reg_mutex);
915 }
916 
917 static int
918 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
919 		    const unsigned char *addr, u16 vid)
920 {
921 	struct mt7530_priv *priv = ds->priv;
922 	int ret;
923 	u8 port_mask = BIT(port);
924 
925 	mutex_lock(&priv->reg_mutex);
926 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
927 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
928 	mutex_unlock(&priv->reg_mutex);
929 
930 	return ret;
931 }
932 
933 static int
934 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
935 		    const unsigned char *addr, u16 vid)
936 {
937 	struct mt7530_priv *priv = ds->priv;
938 	int ret;
939 	u8 port_mask = BIT(port);
940 
941 	mutex_lock(&priv->reg_mutex);
942 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
943 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
944 	mutex_unlock(&priv->reg_mutex);
945 
946 	return ret;
947 }
948 
949 static int
950 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
951 		     dsa_fdb_dump_cb_t *cb, void *data)
952 {
953 	struct mt7530_priv *priv = ds->priv;
954 	struct mt7530_fdb _fdb = { 0 };
955 	int cnt = MT7530_NUM_FDB_RECORDS;
956 	int ret = 0;
957 	u32 rsp = 0;
958 
959 	mutex_lock(&priv->reg_mutex);
960 
961 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
962 	if (ret < 0)
963 		goto err;
964 
965 	do {
966 		if (rsp & ATC_SRCH_HIT) {
967 			mt7530_fdb_read(priv, &_fdb);
968 			if (_fdb.port_mask & BIT(port)) {
969 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
970 					 data);
971 				if (ret < 0)
972 					break;
973 			}
974 		}
975 	} while (--cnt &&
976 		 !(rsp & ATC_SRCH_END) &&
977 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
978 err:
979 	mutex_unlock(&priv->reg_mutex);
980 
981 	return 0;
982 }
983 
984 static int
985 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
986 {
987 	struct mt7530_dummy_poll p;
988 	u32 val;
989 	int ret;
990 
991 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
992 	mt7530_write(priv, MT7530_VTCR, val);
993 
994 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
995 	ret = readx_poll_timeout(_mt7530_read, &p, val,
996 				 !(val & VTCR_BUSY), 20, 20000);
997 	if (ret < 0) {
998 		dev_err(priv->dev, "poll timeout\n");
999 		return ret;
1000 	}
1001 
1002 	val = mt7530_read(priv, MT7530_VTCR);
1003 	if (val & VTCR_INVALID) {
1004 		dev_err(priv->dev, "read VTCR invalid\n");
1005 		return -EINVAL;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 static int
1012 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1013 			   bool vlan_filtering)
1014 {
1015 	struct mt7530_priv *priv = ds->priv;
1016 
1017 	priv->ports[port].vlan_filtering = vlan_filtering;
1018 
1019 	if (vlan_filtering) {
1020 		/* The port is being kept as VLAN-unaware port when bridge is
1021 		 * set up with vlan_filtering not being set, Otherwise, the
1022 		 * port and the corresponding CPU port is required the setup
1023 		 * for becoming a VLAN-aware port.
1024 		 */
1025 		mt7530_port_set_vlan_aware(ds, port);
1026 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1034 			 const struct switchdev_obj_port_vlan *vlan)
1035 {
1036 	/* nothing needed */
1037 
1038 	return 0;
1039 }
1040 
1041 static void
1042 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1043 		   struct mt7530_hw_vlan_entry *entry)
1044 {
1045 	u8 new_members;
1046 	u32 val;
1047 
1048 	new_members = entry->old_members | BIT(entry->port) |
1049 		      BIT(MT7530_CPU_PORT);
1050 
1051 	/* Validate the entry with independent learning, create egress tag per
1052 	 * VLAN and joining the port as one of the port members.
1053 	 */
1054 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1055 	mt7530_write(priv, MT7530_VAWD1, val);
1056 
1057 	/* Decide whether adding tag or not for those outgoing packets from the
1058 	 * port inside the VLAN.
1059 	 */
1060 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1061 				MT7530_VLAN_EGRESS_TAG;
1062 	mt7530_rmw(priv, MT7530_VAWD2,
1063 		   ETAG_CTRL_P_MASK(entry->port),
1064 		   ETAG_CTRL_P(entry->port, val));
1065 
1066 	/* CPU port is always taken as a tagged port for serving more than one
1067 	 * VLANs across and also being applied with egress type stack mode for
1068 	 * that VLAN tags would be appended after hardware special tag used as
1069 	 * DSA tag.
1070 	 */
1071 	mt7530_rmw(priv, MT7530_VAWD2,
1072 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1073 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1074 			       MT7530_VLAN_EGRESS_STACK));
1075 }
1076 
1077 static void
1078 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1079 		   struct mt7530_hw_vlan_entry *entry)
1080 {
1081 	u8 new_members;
1082 	u32 val;
1083 
1084 	new_members = entry->old_members & ~BIT(entry->port);
1085 
1086 	val = mt7530_read(priv, MT7530_VAWD1);
1087 	if (!(val & VLAN_VALID)) {
1088 		dev_err(priv->dev,
1089 			"Cannot be deleted due to invalid entry\n");
1090 		return;
1091 	}
1092 
1093 	/* If certain member apart from CPU port is still alive in the VLAN,
1094 	 * the entry would be kept valid. Otherwise, the entry is got to be
1095 	 * disabled.
1096 	 */
1097 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1098 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1099 		      VLAN_VALID;
1100 		mt7530_write(priv, MT7530_VAWD1, val);
1101 	} else {
1102 		mt7530_write(priv, MT7530_VAWD1, 0);
1103 		mt7530_write(priv, MT7530_VAWD2, 0);
1104 	}
1105 }
1106 
1107 static void
1108 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1109 		      struct mt7530_hw_vlan_entry *entry,
1110 		      mt7530_vlan_op vlan_op)
1111 {
1112 	u32 val;
1113 
1114 	/* Fetch entry */
1115 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1116 
1117 	val = mt7530_read(priv, MT7530_VAWD1);
1118 
1119 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1120 
1121 	/* Manipulate entry */
1122 	vlan_op(priv, entry);
1123 
1124 	/* Flush result to hardware */
1125 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1126 }
1127 
1128 static void
1129 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1130 		     const struct switchdev_obj_port_vlan *vlan)
1131 {
1132 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1133 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1134 	struct mt7530_hw_vlan_entry new_entry;
1135 	struct mt7530_priv *priv = ds->priv;
1136 	u16 vid;
1137 
1138 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1139 	 * being set.
1140 	 */
1141 	if (!priv->ports[port].vlan_filtering)
1142 		return;
1143 
1144 	mutex_lock(&priv->reg_mutex);
1145 
1146 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1147 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1148 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1149 				      mt7530_hw_vlan_add);
1150 	}
1151 
1152 	if (pvid) {
1153 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1154 			   G0_PORT_VID(vlan->vid_end));
1155 		priv->ports[port].pvid = vlan->vid_end;
1156 	}
1157 
1158 	mutex_unlock(&priv->reg_mutex);
1159 }
1160 
1161 static int
1162 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1163 		     const struct switchdev_obj_port_vlan *vlan)
1164 {
1165 	struct mt7530_hw_vlan_entry target_entry;
1166 	struct mt7530_priv *priv = ds->priv;
1167 	u16 vid, pvid;
1168 
1169 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1170 	 * being set.
1171 	 */
1172 	if (!priv->ports[port].vlan_filtering)
1173 		return 0;
1174 
1175 	mutex_lock(&priv->reg_mutex);
1176 
1177 	pvid = priv->ports[port].pvid;
1178 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1179 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1180 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1181 				      mt7530_hw_vlan_del);
1182 
1183 		/* PVID is being restored to the default whenever the PVID port
1184 		 * is being removed from the VLAN.
1185 		 */
1186 		if (pvid == vid)
1187 			pvid = G0_PORT_VID_DEF;
1188 	}
1189 
1190 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1191 	priv->ports[port].pvid = pvid;
1192 
1193 	mutex_unlock(&priv->reg_mutex);
1194 
1195 	return 0;
1196 }
1197 
1198 static enum dsa_tag_protocol
1199 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1200 {
1201 	struct mt7530_priv *priv = ds->priv;
1202 
1203 	if (port != MT7530_CPU_PORT) {
1204 		dev_warn(priv->dev,
1205 			 "port not matched with tagging CPU port\n");
1206 		return DSA_TAG_PROTO_NONE;
1207 	} else {
1208 		return DSA_TAG_PROTO_MTK;
1209 	}
1210 }
1211 
1212 static int
1213 mt7530_setup(struct dsa_switch *ds)
1214 {
1215 	struct mt7530_priv *priv = ds->priv;
1216 	int ret, i;
1217 	u32 id, val;
1218 	struct device_node *dn;
1219 	struct mt7530_dummy_poll p;
1220 
1221 	/* The parent node of master netdev which holds the common system
1222 	 * controller also is the container for two GMACs nodes representing
1223 	 * as two netdev instances.
1224 	 */
1225 	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1226 	priv->ethernet = syscon_node_to_regmap(dn);
1227 	if (IS_ERR(priv->ethernet))
1228 		return PTR_ERR(priv->ethernet);
1229 
1230 	regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1231 	ret = regulator_enable(priv->core_pwr);
1232 	if (ret < 0) {
1233 		dev_err(priv->dev,
1234 			"Failed to enable core power: %d\n", ret);
1235 		return ret;
1236 	}
1237 
1238 	regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1239 	ret = regulator_enable(priv->io_pwr);
1240 	if (ret < 0) {
1241 		dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1242 			ret);
1243 		return ret;
1244 	}
1245 
1246 	/* Reset whole chip through gpio pin or memory-mapped registers for
1247 	 * different type of hardware
1248 	 */
1249 	if (priv->mcm) {
1250 		reset_control_assert(priv->rstc);
1251 		usleep_range(1000, 1100);
1252 		reset_control_deassert(priv->rstc);
1253 	} else {
1254 		gpiod_set_value_cansleep(priv->reset, 0);
1255 		usleep_range(1000, 1100);
1256 		gpiod_set_value_cansleep(priv->reset, 1);
1257 	}
1258 
1259 	/* Waiting for MT7530 got to stable */
1260 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1261 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1262 				 20, 1000000);
1263 	if (ret < 0) {
1264 		dev_err(priv->dev, "reset timeout\n");
1265 		return ret;
1266 	}
1267 
1268 	id = mt7530_read(priv, MT7530_CREV);
1269 	id >>= CHIP_NAME_SHIFT;
1270 	if (id != MT7530_ID) {
1271 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1272 		return -ENODEV;
1273 	}
1274 
1275 	/* Reset the switch through internal reset */
1276 	mt7530_write(priv, MT7530_SYS_CTRL,
1277 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1278 		     SYS_CTRL_REG_RST);
1279 
1280 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1281 	val = mt7530_read(priv, MT7530_MHWTRAP);
1282 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1283 	val |= MHWTRAP_MANUAL;
1284 	mt7530_write(priv, MT7530_MHWTRAP, val);
1285 
1286 	/* Enable and reset MIB counters */
1287 	mt7530_mib_reset(ds);
1288 
1289 	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1290 
1291 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1292 		/* Disable forwarding by default on all ports */
1293 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1294 			   PCR_MATRIX_CLR);
1295 
1296 		if (dsa_is_cpu_port(ds, i))
1297 			mt7530_cpu_port_enable(priv, i);
1298 		else
1299 			mt7530_port_disable(ds, i, NULL);
1300 	}
1301 
1302 	/* Flush the FDB table */
1303 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1304 	if (ret < 0)
1305 		return ret;
1306 
1307 	return 0;
1308 }
1309 
1310 static const struct dsa_switch_ops mt7530_switch_ops = {
1311 	.get_tag_protocol	= mtk_get_tag_protocol,
1312 	.setup			= mt7530_setup,
1313 	.get_strings		= mt7530_get_strings,
1314 	.phy_read		= mt7530_phy_read,
1315 	.phy_write		= mt7530_phy_write,
1316 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1317 	.get_sset_count		= mt7530_get_sset_count,
1318 	.adjust_link		= mt7530_adjust_link,
1319 	.port_enable		= mt7530_port_enable,
1320 	.port_disable		= mt7530_port_disable,
1321 	.port_stp_state_set	= mt7530_stp_state_set,
1322 	.port_bridge_join	= mt7530_port_bridge_join,
1323 	.port_bridge_leave	= mt7530_port_bridge_leave,
1324 	.port_fdb_add		= mt7530_port_fdb_add,
1325 	.port_fdb_del		= mt7530_port_fdb_del,
1326 	.port_fdb_dump		= mt7530_port_fdb_dump,
1327 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1328 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1329 	.port_vlan_add		= mt7530_port_vlan_add,
1330 	.port_vlan_del		= mt7530_port_vlan_del,
1331 };
1332 
1333 static int
1334 mt7530_probe(struct mdio_device *mdiodev)
1335 {
1336 	struct mt7530_priv *priv;
1337 	struct device_node *dn;
1338 
1339 	dn = mdiodev->dev.of_node;
1340 
1341 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1342 	if (!priv)
1343 		return -ENOMEM;
1344 
1345 	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1346 	if (!priv->ds)
1347 		return -ENOMEM;
1348 
1349 	/* Use medatek,mcm property to distinguish hardware type that would
1350 	 * casues a little bit differences on power-on sequence.
1351 	 */
1352 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1353 	if (priv->mcm) {
1354 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1355 
1356 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1357 		if (IS_ERR(priv->rstc)) {
1358 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1359 			return PTR_ERR(priv->rstc);
1360 		}
1361 	}
1362 
1363 	priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1364 	if (IS_ERR(priv->core_pwr))
1365 		return PTR_ERR(priv->core_pwr);
1366 
1367 	priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1368 	if (IS_ERR(priv->io_pwr))
1369 		return PTR_ERR(priv->io_pwr);
1370 
1371 	/* Not MCM that indicates switch works as the remote standalone
1372 	 * integrated circuit so the GPIO pin would be used to complete
1373 	 * the reset, otherwise memory-mapped register accessing used
1374 	 * through syscon provides in the case of MCM.
1375 	 */
1376 	if (!priv->mcm) {
1377 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1378 						      GPIOD_OUT_LOW);
1379 		if (IS_ERR(priv->reset)) {
1380 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1381 			return PTR_ERR(priv->reset);
1382 		}
1383 	}
1384 
1385 	priv->bus = mdiodev->bus;
1386 	priv->dev = &mdiodev->dev;
1387 	priv->ds->priv = priv;
1388 	priv->ds->ops = &mt7530_switch_ops;
1389 	mutex_init(&priv->reg_mutex);
1390 	dev_set_drvdata(&mdiodev->dev, priv);
1391 
1392 	return dsa_register_switch(priv->ds);
1393 }
1394 
1395 static void
1396 mt7530_remove(struct mdio_device *mdiodev)
1397 {
1398 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1399 	int ret = 0;
1400 
1401 	ret = regulator_disable(priv->core_pwr);
1402 	if (ret < 0)
1403 		dev_err(priv->dev,
1404 			"Failed to disable core power: %d\n", ret);
1405 
1406 	ret = regulator_disable(priv->io_pwr);
1407 	if (ret < 0)
1408 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1409 			ret);
1410 
1411 	dsa_unregister_switch(priv->ds);
1412 	mutex_destroy(&priv->reg_mutex);
1413 }
1414 
1415 static const struct of_device_id mt7530_of_match[] = {
1416 	{ .compatible = "mediatek,mt7530" },
1417 	{ /* sentinel */ },
1418 };
1419 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1420 
1421 static struct mdio_driver mt7530_mdio_driver = {
1422 	.probe  = mt7530_probe,
1423 	.remove = mt7530_remove,
1424 	.mdiodrv.driver = {
1425 		.name = "mt7530",
1426 		.of_match_table = mt7530_of_match,
1427 	},
1428 };
1429 
1430 mdio_module_driver(mt7530_mdio_driver);
1431 
1432 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1433 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1434 MODULE_LICENSE("GPL");
1435