1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_irq.h> 14 #include <linux/of_mdio.h> 15 #include <linux/of_net.h> 16 #include <linux/of_platform.h> 17 #include <linux/phylink.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/reset.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/gpio/driver.h> 23 #include <net/dsa.h> 24 25 #include "mt7530.h" 26 27 /* String, offset, and register size in bytes if different from 4 bytes */ 28 static const struct mt7530_mib_desc mt7530_mib[] = { 29 MIB_DESC(1, 0x00, "TxDrop"), 30 MIB_DESC(1, 0x04, "TxCrcErr"), 31 MIB_DESC(1, 0x08, "TxUnicast"), 32 MIB_DESC(1, 0x0c, "TxMulticast"), 33 MIB_DESC(1, 0x10, "TxBroadcast"), 34 MIB_DESC(1, 0x14, "TxCollision"), 35 MIB_DESC(1, 0x18, "TxSingleCollision"), 36 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 37 MIB_DESC(1, 0x20, "TxDeferred"), 38 MIB_DESC(1, 0x24, "TxLateCollision"), 39 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 40 MIB_DESC(1, 0x2c, "TxPause"), 41 MIB_DESC(1, 0x30, "TxPktSz64"), 42 MIB_DESC(1, 0x34, "TxPktSz65To127"), 43 MIB_DESC(1, 0x38, "TxPktSz128To255"), 44 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 45 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 46 MIB_DESC(1, 0x44, "Tx1024ToMax"), 47 MIB_DESC(2, 0x48, "TxBytes"), 48 MIB_DESC(1, 0x60, "RxDrop"), 49 MIB_DESC(1, 0x64, "RxFiltering"), 50 MIB_DESC(1, 0x68, "RxUnicast"), 51 MIB_DESC(1, 0x6c, "RxMulticast"), 52 MIB_DESC(1, 0x70, "RxBroadcast"), 53 MIB_DESC(1, 0x74, "RxAlignErr"), 54 MIB_DESC(1, 0x78, "RxCrcErr"), 55 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 56 MIB_DESC(1, 0x80, "RxFragErr"), 57 MIB_DESC(1, 0x84, "RxOverSzErr"), 58 MIB_DESC(1, 0x88, "RxJabberErr"), 59 MIB_DESC(1, 0x8c, "RxPause"), 60 MIB_DESC(1, 0x90, "RxPktSz64"), 61 MIB_DESC(1, 0x94, "RxPktSz65To127"), 62 MIB_DESC(1, 0x98, "RxPktSz128To255"), 63 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 64 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 65 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 66 MIB_DESC(2, 0xa8, "RxBytes"), 67 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 68 MIB_DESC(1, 0xb4, "RxIngressDrop"), 69 MIB_DESC(1, 0xb8, "RxArlDrop"), 70 }; 71 72 /* Since phy_device has not yet been created and 73 * phy_{read,write}_mmd_indirect is not available, we provide our own 74 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers 75 * to complete this function. 76 */ 77 static int 78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 79 { 80 struct mii_bus *bus = priv->bus; 81 int value, ret; 82 83 /* Write the desired MMD Devad */ 84 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 85 if (ret < 0) 86 goto err; 87 88 /* Write the desired MMD register address */ 89 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 90 if (ret < 0) 91 goto err; 92 93 /* Select the Function : DATA with no post increment */ 94 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 95 if (ret < 0) 96 goto err; 97 98 /* Read the content of the MMD's selected register */ 99 value = bus->read(bus, 0, MII_MMD_DATA); 100 101 return value; 102 err: 103 dev_err(&bus->dev, "failed to read mmd register\n"); 104 105 return ret; 106 } 107 108 static int 109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 110 int devad, u32 data) 111 { 112 struct mii_bus *bus = priv->bus; 113 int ret; 114 115 /* Write the desired MMD Devad */ 116 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 117 if (ret < 0) 118 goto err; 119 120 /* Write the desired MMD register address */ 121 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 122 if (ret < 0) 123 goto err; 124 125 /* Select the Function : DATA with no post increment */ 126 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 127 if (ret < 0) 128 goto err; 129 130 /* Write the data into MMD's selected register */ 131 ret = bus->write(bus, 0, MII_MMD_DATA, data); 132 err: 133 if (ret < 0) 134 dev_err(&bus->dev, 135 "failed to write mmd register\n"); 136 return ret; 137 } 138 139 static void 140 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 141 { 142 struct mii_bus *bus = priv->bus; 143 144 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 145 146 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 147 148 mutex_unlock(&bus->mdio_lock); 149 } 150 151 static void 152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 153 { 154 struct mii_bus *bus = priv->bus; 155 u32 val; 156 157 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 158 159 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 160 val &= ~mask; 161 val |= set; 162 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 163 164 mutex_unlock(&bus->mdio_lock); 165 } 166 167 static void 168 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 169 { 170 core_rmw(priv, reg, 0, val); 171 } 172 173 static void 174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 175 { 176 core_rmw(priv, reg, val, 0); 177 } 178 179 static int 180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 181 { 182 struct mii_bus *bus = priv->bus; 183 u16 page, r, lo, hi; 184 int ret; 185 186 page = (reg >> 6) & 0x3ff; 187 r = (reg >> 2) & 0xf; 188 lo = val & 0xffff; 189 hi = val >> 16; 190 191 /* MT7530 uses 31 as the pseudo port */ 192 ret = bus->write(bus, 0x1f, 0x1f, page); 193 if (ret < 0) 194 goto err; 195 196 ret = bus->write(bus, 0x1f, r, lo); 197 if (ret < 0) 198 goto err; 199 200 ret = bus->write(bus, 0x1f, 0x10, hi); 201 err: 202 if (ret < 0) 203 dev_err(&bus->dev, 204 "failed to write mt7530 register\n"); 205 return ret; 206 } 207 208 static u32 209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 210 { 211 struct mii_bus *bus = priv->bus; 212 u16 page, r, lo, hi; 213 int ret; 214 215 page = (reg >> 6) & 0x3ff; 216 r = (reg >> 2) & 0xf; 217 218 /* MT7530 uses 31 as the pseudo port */ 219 ret = bus->write(bus, 0x1f, 0x1f, page); 220 if (ret < 0) { 221 dev_err(&bus->dev, 222 "failed to read mt7530 register\n"); 223 return ret; 224 } 225 226 lo = bus->read(bus, 0x1f, r); 227 hi = bus->read(bus, 0x1f, 0x10); 228 229 return (hi << 16) | (lo & 0xffff); 230 } 231 232 static void 233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 234 { 235 struct mii_bus *bus = priv->bus; 236 237 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 238 239 mt7530_mii_write(priv, reg, val); 240 241 mutex_unlock(&bus->mdio_lock); 242 } 243 244 static u32 245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) 246 { 247 return mt7530_mii_read(p->priv, p->reg); 248 } 249 250 static u32 251 _mt7530_read(struct mt7530_dummy_poll *p) 252 { 253 struct mii_bus *bus = p->priv->bus; 254 u32 val; 255 256 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 257 258 val = mt7530_mii_read(p->priv, p->reg); 259 260 mutex_unlock(&bus->mdio_lock); 261 262 return val; 263 } 264 265 static u32 266 mt7530_read(struct mt7530_priv *priv, u32 reg) 267 { 268 struct mt7530_dummy_poll p; 269 270 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 271 return _mt7530_read(&p); 272 } 273 274 static void 275 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 276 u32 mask, u32 set) 277 { 278 struct mii_bus *bus = priv->bus; 279 u32 val; 280 281 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 282 283 val = mt7530_mii_read(priv, reg); 284 val &= ~mask; 285 val |= set; 286 mt7530_mii_write(priv, reg, val); 287 288 mutex_unlock(&bus->mdio_lock); 289 } 290 291 static void 292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 293 { 294 mt7530_rmw(priv, reg, 0, val); 295 } 296 297 static void 298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 299 { 300 mt7530_rmw(priv, reg, val, 0); 301 } 302 303 static int 304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 305 { 306 u32 val; 307 int ret; 308 struct mt7530_dummy_poll p; 309 310 /* Set the command operating upon the MAC address entries */ 311 val = ATC_BUSY | ATC_MAT(0) | cmd; 312 mt7530_write(priv, MT7530_ATC, val); 313 314 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 315 ret = readx_poll_timeout(_mt7530_read, &p, val, 316 !(val & ATC_BUSY), 20, 20000); 317 if (ret < 0) { 318 dev_err(priv->dev, "reset timeout\n"); 319 return ret; 320 } 321 322 /* Additional sanity for read command if the specified 323 * entry is invalid 324 */ 325 val = mt7530_read(priv, MT7530_ATC); 326 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 327 return -EINVAL; 328 329 if (rsp) 330 *rsp = val; 331 332 return 0; 333 } 334 335 static void 336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 337 { 338 u32 reg[3]; 339 int i; 340 341 /* Read from ARL table into an array */ 342 for (i = 0; i < 3; i++) { 343 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 344 345 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 346 __func__, __LINE__, i, reg[i]); 347 } 348 349 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 350 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 351 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 352 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 353 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 354 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 355 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 356 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 357 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 358 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 359 } 360 361 static void 362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 363 u8 port_mask, const u8 *mac, 364 u8 aging, u8 type) 365 { 366 u32 reg[3] = { 0 }; 367 int i; 368 369 reg[1] |= vid & CVID_MASK; 370 reg[1] |= ATA2_IVL; 371 reg[1] |= ATA2_FID(FID_BRIDGED); 372 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 373 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 374 /* STATIC_ENT indicate that entry is static wouldn't 375 * be aged out and STATIC_EMP specified as erasing an 376 * entry 377 */ 378 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 379 reg[1] |= mac[5] << MAC_BYTE_5; 380 reg[1] |= mac[4] << MAC_BYTE_4; 381 reg[0] |= mac[3] << MAC_BYTE_3; 382 reg[0] |= mac[2] << MAC_BYTE_2; 383 reg[0] |= mac[1] << MAC_BYTE_1; 384 reg[0] |= mac[0] << MAC_BYTE_0; 385 386 /* Write array into the ARL table */ 387 for (i = 0; i < 3; i++) 388 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 389 } 390 391 /* Setup TX circuit including relevant PAD and driving */ 392 static int 393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) 394 { 395 struct mt7530_priv *priv = ds->priv; 396 u32 ncpo1, ssc_delta, trgint, i, xtal; 397 398 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 399 400 if (xtal == HWTRAP_XTAL_20MHZ) { 401 dev_err(priv->dev, 402 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 403 __func__); 404 return -EINVAL; 405 } 406 407 switch (interface) { 408 case PHY_INTERFACE_MODE_RGMII: 409 trgint = 0; 410 /* PLL frequency: 125MHz */ 411 ncpo1 = 0x0c80; 412 break; 413 case PHY_INTERFACE_MODE_TRGMII: 414 trgint = 1; 415 if (priv->id == ID_MT7621) { 416 /* PLL frequency: 150MHz: 1.2GBit */ 417 if (xtal == HWTRAP_XTAL_40MHZ) 418 ncpo1 = 0x0780; 419 if (xtal == HWTRAP_XTAL_25MHZ) 420 ncpo1 = 0x0a00; 421 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 422 if (xtal == HWTRAP_XTAL_40MHZ) 423 ncpo1 = 0x0c80; 424 if (xtal == HWTRAP_XTAL_25MHZ) 425 ncpo1 = 0x1400; 426 } 427 break; 428 default: 429 dev_err(priv->dev, "xMII interface %d not supported\n", 430 interface); 431 return -EINVAL; 432 } 433 434 if (xtal == HWTRAP_XTAL_25MHZ) 435 ssc_delta = 0x57; 436 else 437 ssc_delta = 0x87; 438 439 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 440 P6_INTF_MODE(trgint)); 441 442 /* Lower Tx Driving for TRGMII path */ 443 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 444 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 445 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 446 447 /* Disable MT7530 core and TRGMII Tx clocks */ 448 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, 449 REG_GSWCK_EN | REG_TRGMIICK_EN); 450 451 /* Setup core clock for MT7530 */ 452 /* Disable PLL */ 453 core_write(priv, CORE_GSWPLL_GRP1, 0); 454 455 /* Set core clock into 500Mhz */ 456 core_write(priv, CORE_GSWPLL_GRP2, 457 RG_GSWPLL_POSDIV_500M(1) | 458 RG_GSWPLL_FBKDIV_500M(25)); 459 460 /* Enable PLL */ 461 core_write(priv, CORE_GSWPLL_GRP1, 462 RG_GSWPLL_EN_PRE | 463 RG_GSWPLL_POSDIV_200M(2) | 464 RG_GSWPLL_FBKDIV_200M(32)); 465 466 /* Setup the MT7530 TRGMII Tx Clock */ 467 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 468 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 469 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 470 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 471 core_write(priv, CORE_PLL_GROUP4, 472 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 473 RG_SYSPLL_BIAS_LPF_EN); 474 core_write(priv, CORE_PLL_GROUP2, 475 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 476 RG_SYSPLL_POSDIV(1)); 477 core_write(priv, CORE_PLL_GROUP7, 478 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 479 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 480 481 /* Enable MT7530 core and TRGMII Tx clocks */ 482 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 483 REG_GSWCK_EN | REG_TRGMIICK_EN); 484 485 if (!trgint) 486 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 487 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 488 RD_TAP_MASK, RD_TAP(16)); 489 return 0; 490 } 491 492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) 493 { 494 u32 val; 495 496 val = mt7530_read(priv, MT7531_TOP_SIG_SR); 497 498 return (val & PAD_DUAL_SGMII_EN) != 0; 499 } 500 501 static int 502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) 503 { 504 struct mt7530_priv *priv = ds->priv; 505 u32 top_sig; 506 u32 hwstrap; 507 u32 xtal; 508 u32 val; 509 510 if (mt7531_dual_sgmii_supported(priv)) 511 return 0; 512 513 val = mt7530_read(priv, MT7531_CREV); 514 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); 515 hwstrap = mt7530_read(priv, MT7531_HWTRAP); 516 if ((val & CHIP_REV_M) > 0) 517 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : 518 HWTRAP_XTAL_FSEL_25MHZ; 519 else 520 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; 521 522 /* Step 1 : Disable MT7531 COREPLL */ 523 val = mt7530_read(priv, MT7531_PLLGP_EN); 524 val &= ~EN_COREPLL; 525 mt7530_write(priv, MT7531_PLLGP_EN, val); 526 527 /* Step 2: switch to XTAL output */ 528 val = mt7530_read(priv, MT7531_PLLGP_EN); 529 val |= SW_CLKSW; 530 mt7530_write(priv, MT7531_PLLGP_EN, val); 531 532 val = mt7530_read(priv, MT7531_PLLGP_CR0); 533 val &= ~RG_COREPLL_EN; 534 mt7530_write(priv, MT7531_PLLGP_CR0, val); 535 536 /* Step 3: disable PLLGP and enable program PLLGP */ 537 val = mt7530_read(priv, MT7531_PLLGP_EN); 538 val |= SW_PLLGP; 539 mt7530_write(priv, MT7531_PLLGP_EN, val); 540 541 /* Step 4: program COREPLL output frequency to 500MHz */ 542 val = mt7530_read(priv, MT7531_PLLGP_CR0); 543 val &= ~RG_COREPLL_POSDIV_M; 544 val |= 2 << RG_COREPLL_POSDIV_S; 545 mt7530_write(priv, MT7531_PLLGP_CR0, val); 546 usleep_range(25, 35); 547 548 switch (xtal) { 549 case HWTRAP_XTAL_FSEL_25MHZ: 550 val = mt7530_read(priv, MT7531_PLLGP_CR0); 551 val &= ~RG_COREPLL_SDM_PCW_M; 552 val |= 0x140000 << RG_COREPLL_SDM_PCW_S; 553 mt7530_write(priv, MT7531_PLLGP_CR0, val); 554 break; 555 case HWTRAP_XTAL_FSEL_40MHZ: 556 val = mt7530_read(priv, MT7531_PLLGP_CR0); 557 val &= ~RG_COREPLL_SDM_PCW_M; 558 val |= 0x190000 << RG_COREPLL_SDM_PCW_S; 559 mt7530_write(priv, MT7531_PLLGP_CR0, val); 560 break; 561 } 562 563 /* Set feedback divide ratio update signal to high */ 564 val = mt7530_read(priv, MT7531_PLLGP_CR0); 565 val |= RG_COREPLL_SDM_PCW_CHG; 566 mt7530_write(priv, MT7531_PLLGP_CR0, val); 567 /* Wait for at least 16 XTAL clocks */ 568 usleep_range(10, 20); 569 570 /* Step 5: set feedback divide ratio update signal to low */ 571 val = mt7530_read(priv, MT7531_PLLGP_CR0); 572 val &= ~RG_COREPLL_SDM_PCW_CHG; 573 mt7530_write(priv, MT7531_PLLGP_CR0, val); 574 575 /* Enable 325M clock for SGMII */ 576 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); 577 578 /* Enable 250SSC clock for RGMII */ 579 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); 580 581 /* Step 6: Enable MT7531 PLL */ 582 val = mt7530_read(priv, MT7531_PLLGP_CR0); 583 val |= RG_COREPLL_EN; 584 mt7530_write(priv, MT7531_PLLGP_CR0, val); 585 586 val = mt7530_read(priv, MT7531_PLLGP_EN); 587 val |= EN_COREPLL; 588 mt7530_write(priv, MT7531_PLLGP_EN, val); 589 usleep_range(25, 35); 590 591 return 0; 592 } 593 594 static void 595 mt7530_mib_reset(struct dsa_switch *ds) 596 { 597 struct mt7530_priv *priv = ds->priv; 598 599 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 601 } 602 603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum) 604 { 605 return mdiobus_read_nested(priv->bus, port, regnum); 606 } 607 608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum, 609 u16 val) 610 { 611 return mdiobus_write_nested(priv->bus, port, regnum, val); 612 } 613 614 static int 615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, 616 int regnum) 617 { 618 struct mii_bus *bus = priv->bus; 619 struct mt7530_dummy_poll p; 620 u32 reg, val; 621 int ret; 622 623 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 624 625 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 626 627 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 628 !(val & MT7531_PHY_ACS_ST), 20, 100000); 629 if (ret < 0) { 630 dev_err(priv->dev, "poll timeout\n"); 631 goto out; 632 } 633 634 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 635 MT7531_MDIO_DEV_ADDR(devad) | regnum; 636 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 637 638 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 639 !(val & MT7531_PHY_ACS_ST), 20, 100000); 640 if (ret < 0) { 641 dev_err(priv->dev, "poll timeout\n"); 642 goto out; 643 } 644 645 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | 646 MT7531_MDIO_DEV_ADDR(devad); 647 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 648 649 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 650 !(val & MT7531_PHY_ACS_ST), 20, 100000); 651 if (ret < 0) { 652 dev_err(priv->dev, "poll timeout\n"); 653 goto out; 654 } 655 656 ret = val & MT7531_MDIO_RW_DATA_MASK; 657 out: 658 mutex_unlock(&bus->mdio_lock); 659 660 return ret; 661 } 662 663 static int 664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, 665 int regnum, u32 data) 666 { 667 struct mii_bus *bus = priv->bus; 668 struct mt7530_dummy_poll p; 669 u32 val, reg; 670 int ret; 671 672 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 673 674 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 675 676 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 677 !(val & MT7531_PHY_ACS_ST), 20, 100000); 678 if (ret < 0) { 679 dev_err(priv->dev, "poll timeout\n"); 680 goto out; 681 } 682 683 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 684 MT7531_MDIO_DEV_ADDR(devad) | regnum; 685 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 686 687 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 688 !(val & MT7531_PHY_ACS_ST), 20, 100000); 689 if (ret < 0) { 690 dev_err(priv->dev, "poll timeout\n"); 691 goto out; 692 } 693 694 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | 695 MT7531_MDIO_DEV_ADDR(devad) | data; 696 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 697 698 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 699 !(val & MT7531_PHY_ACS_ST), 20, 100000); 700 if (ret < 0) { 701 dev_err(priv->dev, "poll timeout\n"); 702 goto out; 703 } 704 705 out: 706 mutex_unlock(&bus->mdio_lock); 707 708 return ret; 709 } 710 711 static int 712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) 713 { 714 struct mii_bus *bus = priv->bus; 715 struct mt7530_dummy_poll p; 716 int ret; 717 u32 val; 718 719 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 720 721 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 722 723 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 724 !(val & MT7531_PHY_ACS_ST), 20, 100000); 725 if (ret < 0) { 726 dev_err(priv->dev, "poll timeout\n"); 727 goto out; 728 } 729 730 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | 731 MT7531_MDIO_REG_ADDR(regnum); 732 733 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); 734 735 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 736 !(val & MT7531_PHY_ACS_ST), 20, 100000); 737 if (ret < 0) { 738 dev_err(priv->dev, "poll timeout\n"); 739 goto out; 740 } 741 742 ret = val & MT7531_MDIO_RW_DATA_MASK; 743 out: 744 mutex_unlock(&bus->mdio_lock); 745 746 return ret; 747 } 748 749 static int 750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, 751 u16 data) 752 { 753 struct mii_bus *bus = priv->bus; 754 struct mt7530_dummy_poll p; 755 int ret; 756 u32 reg; 757 758 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 759 760 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 761 762 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 763 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 764 if (ret < 0) { 765 dev_err(priv->dev, "poll timeout\n"); 766 goto out; 767 } 768 769 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | 770 MT7531_MDIO_REG_ADDR(regnum) | data; 771 772 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 773 774 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 775 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 776 if (ret < 0) { 777 dev_err(priv->dev, "poll timeout\n"); 778 goto out; 779 } 780 781 out: 782 mutex_unlock(&bus->mdio_lock); 783 784 return ret; 785 } 786 787 static int 788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum) 789 { 790 int devad; 791 int ret; 792 793 if (regnum & MII_ADDR_C45) { 794 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 795 ret = mt7531_ind_c45_phy_read(priv, port, devad, 796 regnum & MII_REGADDR_C45_MASK); 797 } else { 798 ret = mt7531_ind_c22_phy_read(priv, port, regnum); 799 } 800 801 return ret; 802 } 803 804 static int 805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum, 806 u16 data) 807 { 808 int devad; 809 int ret; 810 811 if (regnum & MII_ADDR_C45) { 812 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 813 ret = mt7531_ind_c45_phy_write(priv, port, devad, 814 regnum & MII_REGADDR_C45_MASK, 815 data); 816 } else { 817 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); 818 } 819 820 return ret; 821 } 822 823 static int 824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum) 825 { 826 struct mt7530_priv *priv = bus->priv; 827 828 return priv->info->phy_read(priv, port, regnum); 829 } 830 831 static int 832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val) 833 { 834 struct mt7530_priv *priv = bus->priv; 835 836 return priv->info->phy_write(priv, port, regnum, val); 837 } 838 839 static void 840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 841 uint8_t *data) 842 { 843 int i; 844 845 if (stringset != ETH_SS_STATS) 846 return; 847 848 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 849 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 850 ETH_GSTRING_LEN); 851 } 852 853 static void 854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 855 uint64_t *data) 856 { 857 struct mt7530_priv *priv = ds->priv; 858 const struct mt7530_mib_desc *mib; 859 u32 reg, i; 860 u64 hi; 861 862 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 863 mib = &mt7530_mib[i]; 864 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 865 866 data[i] = mt7530_read(priv, reg); 867 if (mib->size == 2) { 868 hi = mt7530_read(priv, reg + 4); 869 data[i] |= hi << 32; 870 } 871 } 872 } 873 874 static int 875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 876 { 877 if (sset != ETH_SS_STATS) 878 return 0; 879 880 return ARRAY_SIZE(mt7530_mib); 881 } 882 883 static int 884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 885 { 886 struct mt7530_priv *priv = ds->priv; 887 unsigned int secs = msecs / 1000; 888 unsigned int tmp_age_count; 889 unsigned int error = -1; 890 unsigned int age_count; 891 unsigned int age_unit; 892 893 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ 894 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) 895 return -ERANGE; 896 897 /* iterate through all possible age_count to find the closest pair */ 898 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { 899 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; 900 901 if (tmp_age_unit <= AGE_UNIT_MAX) { 902 unsigned int tmp_error = secs - 903 (tmp_age_count + 1) * (tmp_age_unit + 1); 904 905 /* found a closer pair */ 906 if (error > tmp_error) { 907 error = tmp_error; 908 age_count = tmp_age_count; 909 age_unit = tmp_age_unit; 910 } 911 912 /* found the exact match, so break the loop */ 913 if (!error) 914 break; 915 } 916 } 917 918 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); 919 920 return 0; 921 } 922 923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 924 { 925 struct mt7530_priv *priv = ds->priv; 926 u8 tx_delay = 0; 927 int val; 928 929 mutex_lock(&priv->reg_mutex); 930 931 val = mt7530_read(priv, MT7530_MHWTRAP); 932 933 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 934 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 935 936 switch (priv->p5_intf_sel) { 937 case P5_INTF_SEL_PHY_P0: 938 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 939 val |= MHWTRAP_PHY0_SEL; 940 fallthrough; 941 case P5_INTF_SEL_PHY_P4: 942 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 943 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 944 945 /* Setup the MAC by default for the cpu port */ 946 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 947 break; 948 case P5_INTF_SEL_GMAC5: 949 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 950 val &= ~MHWTRAP_P5_DIS; 951 break; 952 case P5_DISABLED: 953 interface = PHY_INTERFACE_MODE_NA; 954 break; 955 default: 956 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 957 priv->p5_intf_sel); 958 goto unlock_exit; 959 } 960 961 /* Setup RGMII settings */ 962 if (phy_interface_mode_is_rgmii(interface)) { 963 val |= MHWTRAP_P5_RGMII_MODE; 964 965 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 966 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 967 968 /* Don't set delay in DSA mode */ 969 if (!dsa_is_dsa_port(priv->ds, 5) && 970 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 971 interface == PHY_INTERFACE_MODE_RGMII_ID)) 972 tx_delay = 4; /* n * 0.5 ns */ 973 974 /* P5 RGMII TX Clock Control: delay x */ 975 mt7530_write(priv, MT7530_P5RGMIITXCR, 976 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 977 978 /* reduce P5 RGMII Tx driving, 8mA */ 979 mt7530_write(priv, MT7530_IO_DRV_CR, 980 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 981 } 982 983 mt7530_write(priv, MT7530_MHWTRAP, val); 984 985 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 986 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 987 988 priv->p5_interface = interface; 989 990 unlock_exit: 991 mutex_unlock(&priv->reg_mutex); 992 } 993 994 static int 995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port) 996 { 997 struct mt7530_priv *priv = ds->priv; 998 int ret; 999 1000 /* Setup max capability of CPU port at first */ 1001 if (priv->info->cpu_port_config) { 1002 ret = priv->info->cpu_port_config(ds, port); 1003 if (ret) 1004 return ret; 1005 } 1006 1007 /* Enable Mediatek header mode on the cpu port */ 1008 mt7530_write(priv, MT7530_PVC_P(port), 1009 PORT_SPEC_TAG); 1010 1011 /* Disable flooding by default */ 1012 mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK, 1013 BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port))); 1014 1015 /* Set CPU port number */ 1016 if (priv->id == ID_MT7621) 1017 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 1018 1019 /* CPU port gets connected to all user ports of 1020 * the switch. 1021 */ 1022 mt7530_write(priv, MT7530_PCR_P(port), 1023 PCR_MATRIX(dsa_user_ports(priv->ds))); 1024 1025 /* Set to fallback mode for independent VLAN learning */ 1026 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1027 MT7530_PORT_FALLBACK_MODE); 1028 1029 return 0; 1030 } 1031 1032 static int 1033 mt7530_port_enable(struct dsa_switch *ds, int port, 1034 struct phy_device *phy) 1035 { 1036 struct mt7530_priv *priv = ds->priv; 1037 1038 if (!dsa_is_user_port(ds, port)) 1039 return 0; 1040 1041 mutex_lock(&priv->reg_mutex); 1042 1043 /* Allow the user port gets connected to the cpu port and also 1044 * restore the port matrix if the port is the member of a certain 1045 * bridge. 1046 */ 1047 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1048 priv->ports[port].enable = true; 1049 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1050 priv->ports[port].pm); 1051 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1052 1053 mutex_unlock(&priv->reg_mutex); 1054 1055 return 0; 1056 } 1057 1058 static void 1059 mt7530_port_disable(struct dsa_switch *ds, int port) 1060 { 1061 struct mt7530_priv *priv = ds->priv; 1062 1063 if (!dsa_is_user_port(ds, port)) 1064 return; 1065 1066 mutex_lock(&priv->reg_mutex); 1067 1068 /* Clear up all port matrix which could be restored in the next 1069 * enablement for the port. 1070 */ 1071 priv->ports[port].enable = false; 1072 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1073 PCR_MATRIX_CLR); 1074 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1075 1076 mutex_unlock(&priv->reg_mutex); 1077 } 1078 1079 static int 1080 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1081 { 1082 struct mt7530_priv *priv = ds->priv; 1083 struct mii_bus *bus = priv->bus; 1084 int length; 1085 u32 val; 1086 1087 /* When a new MTU is set, DSA always set the CPU port's MTU to the 1088 * largest MTU of the slave ports. Because the switch only has a global 1089 * RX length register, only allowing CPU port here is enough. 1090 */ 1091 if (!dsa_is_cpu_port(ds, port)) 1092 return 0; 1093 1094 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 1095 1096 val = mt7530_mii_read(priv, MT7530_GMACCR); 1097 val &= ~MAX_RX_PKT_LEN_MASK; 1098 1099 /* RX length also includes Ethernet header, MTK tag, and FCS length */ 1100 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; 1101 if (length <= 1522) { 1102 val |= MAX_RX_PKT_LEN_1522; 1103 } else if (length <= 1536) { 1104 val |= MAX_RX_PKT_LEN_1536; 1105 } else if (length <= 1552) { 1106 val |= MAX_RX_PKT_LEN_1552; 1107 } else { 1108 val &= ~MAX_RX_JUMBO_MASK; 1109 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); 1110 val |= MAX_RX_PKT_LEN_JUMBO; 1111 } 1112 1113 mt7530_mii_write(priv, MT7530_GMACCR, val); 1114 1115 mutex_unlock(&bus->mdio_lock); 1116 1117 return 0; 1118 } 1119 1120 static int 1121 mt7530_port_max_mtu(struct dsa_switch *ds, int port) 1122 { 1123 return MT7530_MAX_MTU; 1124 } 1125 1126 static void 1127 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1128 { 1129 struct mt7530_priv *priv = ds->priv; 1130 u32 stp_state; 1131 1132 switch (state) { 1133 case BR_STATE_DISABLED: 1134 stp_state = MT7530_STP_DISABLED; 1135 break; 1136 case BR_STATE_BLOCKING: 1137 stp_state = MT7530_STP_BLOCKING; 1138 break; 1139 case BR_STATE_LISTENING: 1140 stp_state = MT7530_STP_LISTENING; 1141 break; 1142 case BR_STATE_LEARNING: 1143 stp_state = MT7530_STP_LEARNING; 1144 break; 1145 case BR_STATE_FORWARDING: 1146 default: 1147 stp_state = MT7530_STP_FORWARDING; 1148 break; 1149 } 1150 1151 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED), 1152 FID_PST(FID_BRIDGED, stp_state)); 1153 } 1154 1155 static int 1156 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port, 1157 struct switchdev_brport_flags flags, 1158 struct netlink_ext_ack *extack) 1159 { 1160 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | 1161 BR_BCAST_FLOOD)) 1162 return -EINVAL; 1163 1164 return 0; 1165 } 1166 1167 static int 1168 mt7530_port_bridge_flags(struct dsa_switch *ds, int port, 1169 struct switchdev_brport_flags flags, 1170 struct netlink_ext_ack *extack) 1171 { 1172 struct mt7530_priv *priv = ds->priv; 1173 1174 if (flags.mask & BR_LEARNING) 1175 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS, 1176 flags.val & BR_LEARNING ? 0 : SA_DIS); 1177 1178 if (flags.mask & BR_FLOOD) 1179 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)), 1180 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0); 1181 1182 if (flags.mask & BR_MCAST_FLOOD) 1183 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)), 1184 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0); 1185 1186 if (flags.mask & BR_BCAST_FLOOD) 1187 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)), 1188 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0); 1189 1190 return 0; 1191 } 1192 1193 static int 1194 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 1195 struct net_device *bridge) 1196 { 1197 struct mt7530_priv *priv = ds->priv; 1198 u32 port_bitmap = BIT(MT7530_CPU_PORT); 1199 int i; 1200 1201 mutex_lock(&priv->reg_mutex); 1202 1203 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1204 /* Add this port to the port matrix of the other ports in the 1205 * same bridge. If the port is disabled, port matrix is kept 1206 * and not being setup until the port becomes enabled. 1207 */ 1208 if (dsa_is_user_port(ds, i) && i != port) { 1209 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1210 continue; 1211 if (priv->ports[i].enable) 1212 mt7530_set(priv, MT7530_PCR_P(i), 1213 PCR_MATRIX(BIT(port))); 1214 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 1215 1216 port_bitmap |= BIT(i); 1217 } 1218 } 1219 1220 /* Add the all other ports to this port matrix. */ 1221 if (priv->ports[port].enable) 1222 mt7530_rmw(priv, MT7530_PCR_P(port), 1223 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 1224 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 1225 1226 /* Set to fallback mode for independent VLAN learning */ 1227 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1228 MT7530_PORT_FALLBACK_MODE); 1229 1230 mutex_unlock(&priv->reg_mutex); 1231 1232 return 0; 1233 } 1234 1235 static void 1236 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 1237 { 1238 struct mt7530_priv *priv = ds->priv; 1239 bool all_user_ports_removed = true; 1240 int i; 1241 1242 /* This is called after .port_bridge_leave when leaving a VLAN-aware 1243 * bridge. Don't set standalone ports to fallback mode. 1244 */ 1245 if (dsa_to_port(ds, port)->bridge_dev) 1246 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1247 MT7530_PORT_FALLBACK_MODE); 1248 1249 mt7530_rmw(priv, MT7530_PVC_P(port), 1250 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK, 1251 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 1252 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) | 1253 MT7530_VLAN_ACC_ALL); 1254 1255 /* Set PVID to 0 */ 1256 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1257 G0_PORT_VID_DEF); 1258 1259 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1260 if (dsa_is_user_port(ds, i) && 1261 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1262 all_user_ports_removed = false; 1263 break; 1264 } 1265 } 1266 1267 /* CPU port also does the same thing until all user ports belonging to 1268 * the CPU port get out of VLAN filtering mode. 1269 */ 1270 if (all_user_ports_removed) { 1271 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 1272 PCR_MATRIX(dsa_user_ports(priv->ds))); 1273 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG 1274 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1275 } 1276 } 1277 1278 static void 1279 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 1280 { 1281 struct mt7530_priv *priv = ds->priv; 1282 1283 /* Trapped into security mode allows packet forwarding through VLAN 1284 * table lookup. 1285 */ 1286 if (dsa_is_user_port(ds, port)) { 1287 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1288 MT7530_PORT_SECURITY_MODE); 1289 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1290 G0_PORT_VID(priv->ports[port].pvid)); 1291 1292 /* Only accept tagged frames if PVID is not set */ 1293 if (!priv->ports[port].pvid) 1294 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1295 MT7530_VLAN_ACC_TAGGED); 1296 } 1297 1298 /* Set the port as a user port which is to be able to recognize VID 1299 * from incoming packets before fetching entry within the VLAN table. 1300 */ 1301 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1302 VLAN_ATTR(MT7530_VLAN_USER) | 1303 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 1304 } 1305 1306 static void 1307 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 1308 struct net_device *bridge) 1309 { 1310 struct mt7530_priv *priv = ds->priv; 1311 int i; 1312 1313 mutex_lock(&priv->reg_mutex); 1314 1315 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1316 /* Remove this port from the port matrix of the other ports 1317 * in the same bridge. If the port is disabled, port matrix 1318 * is kept and not being setup until the port becomes enabled. 1319 */ 1320 if (dsa_is_user_port(ds, i) && i != port) { 1321 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1322 continue; 1323 if (priv->ports[i].enable) 1324 mt7530_clear(priv, MT7530_PCR_P(i), 1325 PCR_MATRIX(BIT(port))); 1326 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 1327 } 1328 } 1329 1330 /* Set the cpu port to be the only one in the port matrix of 1331 * this port. 1332 */ 1333 if (priv->ports[port].enable) 1334 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1335 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 1336 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1337 1338 /* When a port is removed from the bridge, the port would be set up 1339 * back to the default as is at initial boot which is a VLAN-unaware 1340 * port. 1341 */ 1342 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1343 MT7530_PORT_MATRIX_MODE); 1344 1345 mutex_unlock(&priv->reg_mutex); 1346 } 1347 1348 static int 1349 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 1350 const unsigned char *addr, u16 vid) 1351 { 1352 struct mt7530_priv *priv = ds->priv; 1353 int ret; 1354 u8 port_mask = BIT(port); 1355 1356 mutex_lock(&priv->reg_mutex); 1357 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1358 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1359 mutex_unlock(&priv->reg_mutex); 1360 1361 return ret; 1362 } 1363 1364 static int 1365 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 1366 const unsigned char *addr, u16 vid) 1367 { 1368 struct mt7530_priv *priv = ds->priv; 1369 int ret; 1370 u8 port_mask = BIT(port); 1371 1372 mutex_lock(&priv->reg_mutex); 1373 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 1374 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1375 mutex_unlock(&priv->reg_mutex); 1376 1377 return ret; 1378 } 1379 1380 static int 1381 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 1382 dsa_fdb_dump_cb_t *cb, void *data) 1383 { 1384 struct mt7530_priv *priv = ds->priv; 1385 struct mt7530_fdb _fdb = { 0 }; 1386 int cnt = MT7530_NUM_FDB_RECORDS; 1387 int ret = 0; 1388 u32 rsp = 0; 1389 1390 mutex_lock(&priv->reg_mutex); 1391 1392 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 1393 if (ret < 0) 1394 goto err; 1395 1396 do { 1397 if (rsp & ATC_SRCH_HIT) { 1398 mt7530_fdb_read(priv, &_fdb); 1399 if (_fdb.port_mask & BIT(port)) { 1400 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 1401 data); 1402 if (ret < 0) 1403 break; 1404 } 1405 } 1406 } while (--cnt && 1407 !(rsp & ATC_SRCH_END) && 1408 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 1409 err: 1410 mutex_unlock(&priv->reg_mutex); 1411 1412 return 0; 1413 } 1414 1415 static int 1416 mt7530_port_mdb_add(struct dsa_switch *ds, int port, 1417 const struct switchdev_obj_port_mdb *mdb) 1418 { 1419 struct mt7530_priv *priv = ds->priv; 1420 const u8 *addr = mdb->addr; 1421 u16 vid = mdb->vid; 1422 u8 port_mask = 0; 1423 int ret; 1424 1425 mutex_lock(&priv->reg_mutex); 1426 1427 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); 1428 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) 1429 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) 1430 & PORT_MAP_MASK; 1431 1432 port_mask |= BIT(port); 1433 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1434 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1435 1436 mutex_unlock(&priv->reg_mutex); 1437 1438 return ret; 1439 } 1440 1441 static int 1442 mt7530_port_mdb_del(struct dsa_switch *ds, int port, 1443 const struct switchdev_obj_port_mdb *mdb) 1444 { 1445 struct mt7530_priv *priv = ds->priv; 1446 const u8 *addr = mdb->addr; 1447 u16 vid = mdb->vid; 1448 u8 port_mask = 0; 1449 int ret; 1450 1451 mutex_lock(&priv->reg_mutex); 1452 1453 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); 1454 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) 1455 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) 1456 & PORT_MAP_MASK; 1457 1458 port_mask &= ~BIT(port); 1459 mt7530_fdb_write(priv, vid, port_mask, addr, -1, 1460 port_mask ? STATIC_ENT : STATIC_EMP); 1461 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1462 1463 mutex_unlock(&priv->reg_mutex); 1464 1465 return ret; 1466 } 1467 1468 static int 1469 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 1470 { 1471 struct mt7530_dummy_poll p; 1472 u32 val; 1473 int ret; 1474 1475 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 1476 mt7530_write(priv, MT7530_VTCR, val); 1477 1478 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 1479 ret = readx_poll_timeout(_mt7530_read, &p, val, 1480 !(val & VTCR_BUSY), 20, 20000); 1481 if (ret < 0) { 1482 dev_err(priv->dev, "poll timeout\n"); 1483 return ret; 1484 } 1485 1486 val = mt7530_read(priv, MT7530_VTCR); 1487 if (val & VTCR_INVALID) { 1488 dev_err(priv->dev, "read VTCR invalid\n"); 1489 return -EINVAL; 1490 } 1491 1492 return 0; 1493 } 1494 1495 static int 1496 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, 1497 struct netlink_ext_ack *extack) 1498 { 1499 if (vlan_filtering) { 1500 /* The port is being kept as VLAN-unaware port when bridge is 1501 * set up with vlan_filtering not being set, Otherwise, the 1502 * port and the corresponding CPU port is required the setup 1503 * for becoming a VLAN-aware port. 1504 */ 1505 mt7530_port_set_vlan_aware(ds, port); 1506 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 1507 } else { 1508 mt7530_port_set_vlan_unaware(ds, port); 1509 } 1510 1511 return 0; 1512 } 1513 1514 static void 1515 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1516 struct mt7530_hw_vlan_entry *entry) 1517 { 1518 u8 new_members; 1519 u32 val; 1520 1521 new_members = entry->old_members | BIT(entry->port) | 1522 BIT(MT7530_CPU_PORT); 1523 1524 /* Validate the entry with independent learning, create egress tag per 1525 * VLAN and joining the port as one of the port members. 1526 */ 1527 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) | 1528 VLAN_VALID; 1529 mt7530_write(priv, MT7530_VAWD1, val); 1530 1531 /* Decide whether adding tag or not for those outgoing packets from the 1532 * port inside the VLAN. 1533 */ 1534 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1535 MT7530_VLAN_EGRESS_TAG; 1536 mt7530_rmw(priv, MT7530_VAWD2, 1537 ETAG_CTRL_P_MASK(entry->port), 1538 ETAG_CTRL_P(entry->port, val)); 1539 1540 /* CPU port is always taken as a tagged port for serving more than one 1541 * VLANs across and also being applied with egress type stack mode for 1542 * that VLAN tags would be appended after hardware special tag used as 1543 * DSA tag. 1544 */ 1545 mt7530_rmw(priv, MT7530_VAWD2, 1546 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1547 ETAG_CTRL_P(MT7530_CPU_PORT, 1548 MT7530_VLAN_EGRESS_STACK)); 1549 } 1550 1551 static void 1552 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1553 struct mt7530_hw_vlan_entry *entry) 1554 { 1555 u8 new_members; 1556 u32 val; 1557 1558 new_members = entry->old_members & ~BIT(entry->port); 1559 1560 val = mt7530_read(priv, MT7530_VAWD1); 1561 if (!(val & VLAN_VALID)) { 1562 dev_err(priv->dev, 1563 "Cannot be deleted due to invalid entry\n"); 1564 return; 1565 } 1566 1567 /* If certain member apart from CPU port is still alive in the VLAN, 1568 * the entry would be kept valid. Otherwise, the entry is got to be 1569 * disabled. 1570 */ 1571 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1572 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1573 VLAN_VALID; 1574 mt7530_write(priv, MT7530_VAWD1, val); 1575 } else { 1576 mt7530_write(priv, MT7530_VAWD1, 0); 1577 mt7530_write(priv, MT7530_VAWD2, 0); 1578 } 1579 } 1580 1581 static void 1582 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1583 struct mt7530_hw_vlan_entry *entry, 1584 mt7530_vlan_op vlan_op) 1585 { 1586 u32 val; 1587 1588 /* Fetch entry */ 1589 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1590 1591 val = mt7530_read(priv, MT7530_VAWD1); 1592 1593 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1594 1595 /* Manipulate entry */ 1596 vlan_op(priv, entry); 1597 1598 /* Flush result to hardware */ 1599 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1600 } 1601 1602 static int 1603 mt7530_setup_vlan0(struct mt7530_priv *priv) 1604 { 1605 u32 val; 1606 1607 /* Validate the entry with independent learning, keep the original 1608 * ingress tag attribute. 1609 */ 1610 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) | 1611 VLAN_VALID; 1612 mt7530_write(priv, MT7530_VAWD1, val); 1613 1614 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0); 1615 } 1616 1617 static int 1618 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1619 const struct switchdev_obj_port_vlan *vlan, 1620 struct netlink_ext_ack *extack) 1621 { 1622 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1623 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1624 struct mt7530_hw_vlan_entry new_entry; 1625 struct mt7530_priv *priv = ds->priv; 1626 1627 mutex_lock(&priv->reg_mutex); 1628 1629 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1630 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); 1631 1632 if (pvid) { 1633 priv->ports[port].pvid = vlan->vid; 1634 1635 /* Accept all frames if PVID is set */ 1636 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1637 MT7530_VLAN_ACC_ALL); 1638 1639 /* Only configure PVID if VLAN filtering is enabled */ 1640 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1641 mt7530_rmw(priv, MT7530_PPBV1_P(port), 1642 G0_PORT_VID_MASK, 1643 G0_PORT_VID(vlan->vid)); 1644 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) { 1645 /* This VLAN is overwritten without PVID, so unset it */ 1646 priv->ports[port].pvid = G0_PORT_VID_DEF; 1647 1648 /* Only accept tagged frames if the port is VLAN-aware */ 1649 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1650 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1651 MT7530_VLAN_ACC_TAGGED); 1652 1653 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1654 G0_PORT_VID_DEF); 1655 } 1656 1657 mutex_unlock(&priv->reg_mutex); 1658 1659 return 0; 1660 } 1661 1662 static int 1663 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1664 const struct switchdev_obj_port_vlan *vlan) 1665 { 1666 struct mt7530_hw_vlan_entry target_entry; 1667 struct mt7530_priv *priv = ds->priv; 1668 1669 mutex_lock(&priv->reg_mutex); 1670 1671 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1672 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, 1673 mt7530_hw_vlan_del); 1674 1675 /* PVID is being restored to the default whenever the PVID port 1676 * is being removed from the VLAN. 1677 */ 1678 if (priv->ports[port].pvid == vlan->vid) { 1679 priv->ports[port].pvid = G0_PORT_VID_DEF; 1680 1681 /* Only accept tagged frames if the port is VLAN-aware */ 1682 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1683 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1684 MT7530_VLAN_ACC_TAGGED); 1685 1686 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1687 G0_PORT_VID_DEF); 1688 } 1689 1690 1691 mutex_unlock(&priv->reg_mutex); 1692 1693 return 0; 1694 } 1695 1696 static int mt753x_mirror_port_get(unsigned int id, u32 val) 1697 { 1698 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : 1699 MIRROR_PORT(val); 1700 } 1701 1702 static int mt753x_mirror_port_set(unsigned int id, u32 val) 1703 { 1704 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : 1705 MIRROR_PORT(val); 1706 } 1707 1708 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, 1709 struct dsa_mall_mirror_tc_entry *mirror, 1710 bool ingress) 1711 { 1712 struct mt7530_priv *priv = ds->priv; 1713 int monitor_port; 1714 u32 val; 1715 1716 /* Check for existent entry */ 1717 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1718 return -EEXIST; 1719 1720 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1721 1722 /* MT7530 only supports one monitor port */ 1723 monitor_port = mt753x_mirror_port_get(priv->id, val); 1724 if (val & MT753X_MIRROR_EN(priv->id) && 1725 monitor_port != mirror->to_local_port) 1726 return -EEXIST; 1727 1728 val |= MT753X_MIRROR_EN(priv->id); 1729 val &= ~MT753X_MIRROR_MASK(priv->id); 1730 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); 1731 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1732 1733 val = mt7530_read(priv, MT7530_PCR_P(port)); 1734 if (ingress) { 1735 val |= PORT_RX_MIR; 1736 priv->mirror_rx |= BIT(port); 1737 } else { 1738 val |= PORT_TX_MIR; 1739 priv->mirror_tx |= BIT(port); 1740 } 1741 mt7530_write(priv, MT7530_PCR_P(port), val); 1742 1743 return 0; 1744 } 1745 1746 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, 1747 struct dsa_mall_mirror_tc_entry *mirror) 1748 { 1749 struct mt7530_priv *priv = ds->priv; 1750 u32 val; 1751 1752 val = mt7530_read(priv, MT7530_PCR_P(port)); 1753 if (mirror->ingress) { 1754 val &= ~PORT_RX_MIR; 1755 priv->mirror_rx &= ~BIT(port); 1756 } else { 1757 val &= ~PORT_TX_MIR; 1758 priv->mirror_tx &= ~BIT(port); 1759 } 1760 mt7530_write(priv, MT7530_PCR_P(port), val); 1761 1762 if (!priv->mirror_rx && !priv->mirror_tx) { 1763 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1764 val &= ~MT753X_MIRROR_EN(priv->id); 1765 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1766 } 1767 } 1768 1769 static enum dsa_tag_protocol 1770 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1771 enum dsa_tag_protocol mp) 1772 { 1773 return DSA_TAG_PROTO_MTK; 1774 } 1775 1776 #ifdef CONFIG_GPIOLIB 1777 static inline u32 1778 mt7530_gpio_to_bit(unsigned int offset) 1779 { 1780 /* Map GPIO offset to register bit 1781 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 1782 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 1783 * [10: 8] port 2 LED 0..2 as GPIO 6..8 1784 * [14:12] port 3 LED 0..2 as GPIO 9..11 1785 * [18:16] port 4 LED 0..2 as GPIO 12..14 1786 */ 1787 return BIT(offset + offset / 3); 1788 } 1789 1790 static int 1791 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) 1792 { 1793 struct mt7530_priv *priv = gpiochip_get_data(gc); 1794 u32 bit = mt7530_gpio_to_bit(offset); 1795 1796 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); 1797 } 1798 1799 static void 1800 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) 1801 { 1802 struct mt7530_priv *priv = gpiochip_get_data(gc); 1803 u32 bit = mt7530_gpio_to_bit(offset); 1804 1805 if (value) 1806 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1807 else 1808 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1809 } 1810 1811 static int 1812 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) 1813 { 1814 struct mt7530_priv *priv = gpiochip_get_data(gc); 1815 u32 bit = mt7530_gpio_to_bit(offset); 1816 1817 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? 1818 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1819 } 1820 1821 static int 1822 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) 1823 { 1824 struct mt7530_priv *priv = gpiochip_get_data(gc); 1825 u32 bit = mt7530_gpio_to_bit(offset); 1826 1827 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); 1828 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); 1829 1830 return 0; 1831 } 1832 1833 static int 1834 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) 1835 { 1836 struct mt7530_priv *priv = gpiochip_get_data(gc); 1837 u32 bit = mt7530_gpio_to_bit(offset); 1838 1839 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); 1840 1841 if (value) 1842 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1843 else 1844 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1845 1846 mt7530_set(priv, MT7530_LED_GPIO_OE, bit); 1847 1848 return 0; 1849 } 1850 1851 static int 1852 mt7530_setup_gpio(struct mt7530_priv *priv) 1853 { 1854 struct device *dev = priv->dev; 1855 struct gpio_chip *gc; 1856 1857 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); 1858 if (!gc) 1859 return -ENOMEM; 1860 1861 mt7530_write(priv, MT7530_LED_GPIO_OE, 0); 1862 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); 1863 mt7530_write(priv, MT7530_LED_IO_MODE, 0); 1864 1865 gc->label = "mt7530"; 1866 gc->parent = dev; 1867 gc->owner = THIS_MODULE; 1868 gc->get_direction = mt7530_gpio_get_direction; 1869 gc->direction_input = mt7530_gpio_direction_input; 1870 gc->direction_output = mt7530_gpio_direction_output; 1871 gc->get = mt7530_gpio_get; 1872 gc->set = mt7530_gpio_set; 1873 gc->base = -1; 1874 gc->ngpio = 15; 1875 gc->can_sleep = true; 1876 1877 return devm_gpiochip_add_data(dev, gc, priv); 1878 } 1879 #endif /* CONFIG_GPIOLIB */ 1880 1881 static irqreturn_t 1882 mt7530_irq_thread_fn(int irq, void *dev_id) 1883 { 1884 struct mt7530_priv *priv = dev_id; 1885 bool handled = false; 1886 u32 val; 1887 int p; 1888 1889 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); 1890 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS); 1891 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val); 1892 mutex_unlock(&priv->bus->mdio_lock); 1893 1894 for (p = 0; p < MT7530_NUM_PHYS; p++) { 1895 if (BIT(p) & val) { 1896 unsigned int irq; 1897 1898 irq = irq_find_mapping(priv->irq_domain, p); 1899 handle_nested_irq(irq); 1900 handled = true; 1901 } 1902 } 1903 1904 return IRQ_RETVAL(handled); 1905 } 1906 1907 static void 1908 mt7530_irq_mask(struct irq_data *d) 1909 { 1910 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1911 1912 priv->irq_enable &= ~BIT(d->hwirq); 1913 } 1914 1915 static void 1916 mt7530_irq_unmask(struct irq_data *d) 1917 { 1918 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1919 1920 priv->irq_enable |= BIT(d->hwirq); 1921 } 1922 1923 static void 1924 mt7530_irq_bus_lock(struct irq_data *d) 1925 { 1926 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1927 1928 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); 1929 } 1930 1931 static void 1932 mt7530_irq_bus_sync_unlock(struct irq_data *d) 1933 { 1934 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1935 1936 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); 1937 mutex_unlock(&priv->bus->mdio_lock); 1938 } 1939 1940 static struct irq_chip mt7530_irq_chip = { 1941 .name = KBUILD_MODNAME, 1942 .irq_mask = mt7530_irq_mask, 1943 .irq_unmask = mt7530_irq_unmask, 1944 .irq_bus_lock = mt7530_irq_bus_lock, 1945 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock, 1946 }; 1947 1948 static int 1949 mt7530_irq_map(struct irq_domain *domain, unsigned int irq, 1950 irq_hw_number_t hwirq) 1951 { 1952 irq_set_chip_data(irq, domain->host_data); 1953 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq); 1954 irq_set_nested_thread(irq, true); 1955 irq_set_noprobe(irq); 1956 1957 return 0; 1958 } 1959 1960 static const struct irq_domain_ops mt7530_irq_domain_ops = { 1961 .map = mt7530_irq_map, 1962 .xlate = irq_domain_xlate_onecell, 1963 }; 1964 1965 static void 1966 mt7530_setup_mdio_irq(struct mt7530_priv *priv) 1967 { 1968 struct dsa_switch *ds = priv->ds; 1969 int p; 1970 1971 for (p = 0; p < MT7530_NUM_PHYS; p++) { 1972 if (BIT(p) & ds->phys_mii_mask) { 1973 unsigned int irq; 1974 1975 irq = irq_create_mapping(priv->irq_domain, p); 1976 ds->slave_mii_bus->irq[p] = irq; 1977 } 1978 } 1979 } 1980 1981 static int 1982 mt7530_setup_irq(struct mt7530_priv *priv) 1983 { 1984 struct device *dev = priv->dev; 1985 struct device_node *np = dev->of_node; 1986 int ret; 1987 1988 if (!of_property_read_bool(np, "interrupt-controller")) { 1989 dev_info(dev, "no interrupt support\n"); 1990 return 0; 1991 } 1992 1993 priv->irq = of_irq_get(np, 0); 1994 if (priv->irq <= 0) { 1995 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq); 1996 return priv->irq ? : -EINVAL; 1997 } 1998 1999 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, 2000 &mt7530_irq_domain_ops, priv); 2001 if (!priv->irq_domain) { 2002 dev_err(dev, "failed to create IRQ domain\n"); 2003 return -ENOMEM; 2004 } 2005 2006 /* This register must be set for MT7530 to properly fire interrupts */ 2007 if (priv->id != ID_MT7531) 2008 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL); 2009 2010 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn, 2011 IRQF_ONESHOT, KBUILD_MODNAME, priv); 2012 if (ret) { 2013 irq_domain_remove(priv->irq_domain); 2014 dev_err(dev, "failed to request IRQ: %d\n", ret); 2015 return ret; 2016 } 2017 2018 return 0; 2019 } 2020 2021 static void 2022 mt7530_free_mdio_irq(struct mt7530_priv *priv) 2023 { 2024 int p; 2025 2026 for (p = 0; p < MT7530_NUM_PHYS; p++) { 2027 if (BIT(p) & priv->ds->phys_mii_mask) { 2028 unsigned int irq; 2029 2030 irq = irq_find_mapping(priv->irq_domain, p); 2031 irq_dispose_mapping(irq); 2032 } 2033 } 2034 } 2035 2036 static void 2037 mt7530_free_irq_common(struct mt7530_priv *priv) 2038 { 2039 free_irq(priv->irq, priv); 2040 irq_domain_remove(priv->irq_domain); 2041 } 2042 2043 static void 2044 mt7530_free_irq(struct mt7530_priv *priv) 2045 { 2046 mt7530_free_mdio_irq(priv); 2047 mt7530_free_irq_common(priv); 2048 } 2049 2050 static int 2051 mt7530_setup_mdio(struct mt7530_priv *priv) 2052 { 2053 struct dsa_switch *ds = priv->ds; 2054 struct device *dev = priv->dev; 2055 struct mii_bus *bus; 2056 static int idx; 2057 int ret; 2058 2059 bus = devm_mdiobus_alloc(dev); 2060 if (!bus) 2061 return -ENOMEM; 2062 2063 ds->slave_mii_bus = bus; 2064 bus->priv = priv; 2065 bus->name = KBUILD_MODNAME "-mii"; 2066 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++); 2067 bus->read = mt753x_phy_read; 2068 bus->write = mt753x_phy_write; 2069 bus->parent = dev; 2070 bus->phy_mask = ~ds->phys_mii_mask; 2071 2072 if (priv->irq) 2073 mt7530_setup_mdio_irq(priv); 2074 2075 ret = mdiobus_register(bus); 2076 if (ret) { 2077 dev_err(dev, "failed to register MDIO bus: %d\n", ret); 2078 if (priv->irq) 2079 mt7530_free_mdio_irq(priv); 2080 } 2081 2082 return ret; 2083 } 2084 2085 static int 2086 mt7530_setup(struct dsa_switch *ds) 2087 { 2088 struct mt7530_priv *priv = ds->priv; 2089 struct device_node *phy_node; 2090 struct device_node *mac_np; 2091 struct mt7530_dummy_poll p; 2092 phy_interface_t interface; 2093 struct device_node *dn; 2094 u32 id, val; 2095 int ret, i; 2096 2097 /* The parent node of master netdev which holds the common system 2098 * controller also is the container for two GMACs nodes representing 2099 * as two netdev instances. 2100 */ 2101 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; 2102 ds->assisted_learning_on_cpu_port = true; 2103 ds->mtu_enforcement_ingress = true; 2104 2105 if (priv->id == ID_MT7530) { 2106 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 2107 ret = regulator_enable(priv->core_pwr); 2108 if (ret < 0) { 2109 dev_err(priv->dev, 2110 "Failed to enable core power: %d\n", ret); 2111 return ret; 2112 } 2113 2114 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 2115 ret = regulator_enable(priv->io_pwr); 2116 if (ret < 0) { 2117 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 2118 ret); 2119 return ret; 2120 } 2121 } 2122 2123 /* Reset whole chip through gpio pin or memory-mapped registers for 2124 * different type of hardware 2125 */ 2126 if (priv->mcm) { 2127 reset_control_assert(priv->rstc); 2128 usleep_range(1000, 1100); 2129 reset_control_deassert(priv->rstc); 2130 } else { 2131 gpiod_set_value_cansleep(priv->reset, 0); 2132 usleep_range(1000, 1100); 2133 gpiod_set_value_cansleep(priv->reset, 1); 2134 } 2135 2136 /* Waiting for MT7530 got to stable */ 2137 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 2138 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 2139 20, 1000000); 2140 if (ret < 0) { 2141 dev_err(priv->dev, "reset timeout\n"); 2142 return ret; 2143 } 2144 2145 id = mt7530_read(priv, MT7530_CREV); 2146 id >>= CHIP_NAME_SHIFT; 2147 if (id != MT7530_ID) { 2148 dev_err(priv->dev, "chip %x can't be supported\n", id); 2149 return -ENODEV; 2150 } 2151 2152 /* Reset the switch through internal reset */ 2153 mt7530_write(priv, MT7530_SYS_CTRL, 2154 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 2155 SYS_CTRL_REG_RST); 2156 2157 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 2158 val = mt7530_read(priv, MT7530_MHWTRAP); 2159 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 2160 val |= MHWTRAP_MANUAL; 2161 mt7530_write(priv, MT7530_MHWTRAP, val); 2162 2163 priv->p6_interface = PHY_INTERFACE_MODE_NA; 2164 2165 /* Enable and reset MIB counters */ 2166 mt7530_mib_reset(ds); 2167 2168 for (i = 0; i < MT7530_NUM_PORTS; i++) { 2169 /* Disable forwarding by default on all ports */ 2170 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 2171 PCR_MATRIX_CLR); 2172 2173 /* Disable learning by default on all ports */ 2174 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); 2175 2176 if (dsa_is_cpu_port(ds, i)) { 2177 ret = mt753x_cpu_port_enable(ds, i); 2178 if (ret) 2179 return ret; 2180 } else { 2181 mt7530_port_disable(ds, i); 2182 2183 /* Set default PVID to 0 on all user ports */ 2184 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, 2185 G0_PORT_VID_DEF); 2186 } 2187 /* Enable consistent egress tag */ 2188 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 2189 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 2190 } 2191 2192 /* Setup VLAN ID 0 for VLAN-unaware bridges */ 2193 ret = mt7530_setup_vlan0(priv); 2194 if (ret) 2195 return ret; 2196 2197 /* Setup port 5 */ 2198 priv->p5_intf_sel = P5_DISABLED; 2199 interface = PHY_INTERFACE_MODE_NA; 2200 2201 if (!dsa_is_unused_port(ds, 5)) { 2202 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 2203 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 2204 if (ret && ret != -ENODEV) 2205 return ret; 2206 } else { 2207 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 2208 for_each_child_of_node(dn, mac_np) { 2209 if (!of_device_is_compatible(mac_np, 2210 "mediatek,eth-mac")) 2211 continue; 2212 2213 ret = of_property_read_u32(mac_np, "reg", &id); 2214 if (ret < 0 || id != 1) 2215 continue; 2216 2217 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 2218 if (!phy_node) 2219 continue; 2220 2221 if (phy_node->parent == priv->dev->of_node->parent) { 2222 ret = of_get_phy_mode(mac_np, &interface); 2223 if (ret && ret != -ENODEV) { 2224 of_node_put(mac_np); 2225 return ret; 2226 } 2227 id = of_mdio_parse_addr(ds->dev, phy_node); 2228 if (id == 0) 2229 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 2230 if (id == 4) 2231 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 2232 } 2233 of_node_put(mac_np); 2234 of_node_put(phy_node); 2235 break; 2236 } 2237 } 2238 2239 #ifdef CONFIG_GPIOLIB 2240 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { 2241 ret = mt7530_setup_gpio(priv); 2242 if (ret) 2243 return ret; 2244 } 2245 #endif /* CONFIG_GPIOLIB */ 2246 2247 mt7530_setup_port5(ds, interface); 2248 2249 /* Flush the FDB table */ 2250 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 2251 if (ret < 0) 2252 return ret; 2253 2254 return 0; 2255 } 2256 2257 static int 2258 mt7531_setup(struct dsa_switch *ds) 2259 { 2260 struct mt7530_priv *priv = ds->priv; 2261 struct mt7530_dummy_poll p; 2262 u32 val, id; 2263 int ret, i; 2264 2265 /* Reset whole chip through gpio pin or memory-mapped registers for 2266 * different type of hardware 2267 */ 2268 if (priv->mcm) { 2269 reset_control_assert(priv->rstc); 2270 usleep_range(1000, 1100); 2271 reset_control_deassert(priv->rstc); 2272 } else { 2273 gpiod_set_value_cansleep(priv->reset, 0); 2274 usleep_range(1000, 1100); 2275 gpiod_set_value_cansleep(priv->reset, 1); 2276 } 2277 2278 /* Waiting for MT7530 got to stable */ 2279 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 2280 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 2281 20, 1000000); 2282 if (ret < 0) { 2283 dev_err(priv->dev, "reset timeout\n"); 2284 return ret; 2285 } 2286 2287 id = mt7530_read(priv, MT7531_CREV); 2288 id >>= CHIP_NAME_SHIFT; 2289 2290 if (id != MT7531_ID) { 2291 dev_err(priv->dev, "chip %x can't be supported\n", id); 2292 return -ENODEV; 2293 } 2294 2295 /* Reset the switch through internal reset */ 2296 mt7530_write(priv, MT7530_SYS_CTRL, 2297 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 2298 SYS_CTRL_REG_RST); 2299 2300 if (mt7531_dual_sgmii_supported(priv)) { 2301 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; 2302 2303 /* Let ds->slave_mii_bus be able to access external phy. */ 2304 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, 2305 MT7531_EXT_P_MDC_11); 2306 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, 2307 MT7531_EXT_P_MDIO_12); 2308 } else { 2309 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 2310 } 2311 dev_dbg(ds->dev, "P5 support %s interface\n", 2312 p5_intf_modes(priv->p5_intf_sel)); 2313 2314 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, 2315 MT7531_GPIO0_INTERRUPT); 2316 2317 /* Let phylink decide the interface later. */ 2318 priv->p5_interface = PHY_INTERFACE_MODE_NA; 2319 priv->p6_interface = PHY_INTERFACE_MODE_NA; 2320 2321 /* Enable PHY core PLL, since phy_device has not yet been created 2322 * provided for phy_[read,write]_mmd_indirect is called, we provide 2323 * our own mt7531_ind_mmd_phy_[read,write] to complete this 2324 * function. 2325 */ 2326 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, 2327 MDIO_MMD_VEND2, CORE_PLL_GROUP4); 2328 val |= MT7531_PHY_PLL_BYPASS_MODE; 2329 val &= ~MT7531_PHY_PLL_OFF; 2330 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, 2331 CORE_PLL_GROUP4, val); 2332 2333 /* BPDU to CPU port */ 2334 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, 2335 BIT(MT7530_CPU_PORT)); 2336 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, 2337 MT753X_BPDU_CPU_ONLY); 2338 2339 /* Enable and reset MIB counters */ 2340 mt7530_mib_reset(ds); 2341 2342 for (i = 0; i < MT7530_NUM_PORTS; i++) { 2343 /* Disable forwarding by default on all ports */ 2344 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 2345 PCR_MATRIX_CLR); 2346 2347 /* Disable learning by default on all ports */ 2348 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); 2349 2350 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); 2351 2352 if (dsa_is_cpu_port(ds, i)) { 2353 ret = mt753x_cpu_port_enable(ds, i); 2354 if (ret) 2355 return ret; 2356 } else { 2357 mt7530_port_disable(ds, i); 2358 2359 /* Set default PVID to 0 on all user ports */ 2360 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, 2361 G0_PORT_VID_DEF); 2362 } 2363 2364 /* Enable consistent egress tag */ 2365 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 2366 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 2367 } 2368 2369 /* Setup VLAN ID 0 for VLAN-unaware bridges */ 2370 ret = mt7530_setup_vlan0(priv); 2371 if (ret) 2372 return ret; 2373 2374 ds->assisted_learning_on_cpu_port = true; 2375 ds->mtu_enforcement_ingress = true; 2376 2377 /* Flush the FDB table */ 2378 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 2379 if (ret < 0) 2380 return ret; 2381 2382 return 0; 2383 } 2384 2385 static bool 2386 mt7530_phy_mode_supported(struct dsa_switch *ds, int port, 2387 const struct phylink_link_state *state) 2388 { 2389 struct mt7530_priv *priv = ds->priv; 2390 2391 switch (port) { 2392 case 0 ... 4: /* Internal phy */ 2393 if (state->interface != PHY_INTERFACE_MODE_GMII) 2394 return false; 2395 break; 2396 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2397 if (!phy_interface_mode_is_rgmii(state->interface) && 2398 state->interface != PHY_INTERFACE_MODE_MII && 2399 state->interface != PHY_INTERFACE_MODE_GMII) 2400 return false; 2401 break; 2402 case 6: /* 1st cpu port */ 2403 if (state->interface != PHY_INTERFACE_MODE_RGMII && 2404 state->interface != PHY_INTERFACE_MODE_TRGMII) 2405 return false; 2406 break; 2407 default: 2408 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 2409 port); 2410 return false; 2411 } 2412 2413 return true; 2414 } 2415 2416 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) 2417 { 2418 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); 2419 } 2420 2421 static bool 2422 mt7531_phy_mode_supported(struct dsa_switch *ds, int port, 2423 const struct phylink_link_state *state) 2424 { 2425 struct mt7530_priv *priv = ds->priv; 2426 2427 switch (port) { 2428 case 0 ... 4: /* Internal phy */ 2429 if (state->interface != PHY_INTERFACE_MODE_GMII) 2430 return false; 2431 break; 2432 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ 2433 if (mt7531_is_rgmii_port(priv, port)) 2434 return phy_interface_mode_is_rgmii(state->interface); 2435 fallthrough; 2436 case 6: /* 1st cpu port supports sgmii/8023z only */ 2437 if (state->interface != PHY_INTERFACE_MODE_SGMII && 2438 !phy_interface_mode_is_8023z(state->interface)) 2439 return false; 2440 break; 2441 default: 2442 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 2443 port); 2444 return false; 2445 } 2446 2447 return true; 2448 } 2449 2450 static bool 2451 mt753x_phy_mode_supported(struct dsa_switch *ds, int port, 2452 const struct phylink_link_state *state) 2453 { 2454 struct mt7530_priv *priv = ds->priv; 2455 2456 return priv->info->phy_mode_supported(ds, port, state); 2457 } 2458 2459 static int 2460 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) 2461 { 2462 struct mt7530_priv *priv = ds->priv; 2463 2464 return priv->info->pad_setup(ds, state->interface); 2465 } 2466 2467 static int 2468 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2469 phy_interface_t interface) 2470 { 2471 struct mt7530_priv *priv = ds->priv; 2472 2473 /* Only need to setup port5. */ 2474 if (port != 5) 2475 return 0; 2476 2477 mt7530_setup_port5(priv->ds, interface); 2478 2479 return 0; 2480 } 2481 2482 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, 2483 phy_interface_t interface, 2484 struct phy_device *phydev) 2485 { 2486 u32 val; 2487 2488 if (!mt7531_is_rgmii_port(priv, port)) { 2489 dev_err(priv->dev, "RGMII mode is not available for port %d\n", 2490 port); 2491 return -EINVAL; 2492 } 2493 2494 val = mt7530_read(priv, MT7531_CLKGEN_CTRL); 2495 val |= GP_CLK_EN; 2496 val &= ~GP_MODE_MASK; 2497 val |= GP_MODE(MT7531_GP_MODE_RGMII); 2498 val &= ~CLK_SKEW_IN_MASK; 2499 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); 2500 val &= ~CLK_SKEW_OUT_MASK; 2501 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); 2502 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; 2503 2504 /* Do not adjust rgmii delay when vendor phy driver presents. */ 2505 if (!phydev || phy_driver_is_genphy(phydev)) { 2506 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); 2507 switch (interface) { 2508 case PHY_INTERFACE_MODE_RGMII: 2509 val |= TXCLK_NO_REVERSE; 2510 val |= RXCLK_NO_DELAY; 2511 break; 2512 case PHY_INTERFACE_MODE_RGMII_RXID: 2513 val |= TXCLK_NO_REVERSE; 2514 break; 2515 case PHY_INTERFACE_MODE_RGMII_TXID: 2516 val |= RXCLK_NO_DELAY; 2517 break; 2518 case PHY_INTERFACE_MODE_RGMII_ID: 2519 break; 2520 default: 2521 return -EINVAL; 2522 } 2523 } 2524 mt7530_write(priv, MT7531_CLKGEN_CTRL, val); 2525 2526 return 0; 2527 } 2528 2529 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port, 2530 unsigned long *supported) 2531 { 2532 /* Port5 supports ethier RGMII or SGMII. 2533 * Port6 supports SGMII only. 2534 */ 2535 switch (port) { 2536 case 5: 2537 if (mt7531_is_rgmii_port(priv, port)) 2538 break; 2539 fallthrough; 2540 case 6: 2541 phylink_set(supported, 1000baseX_Full); 2542 phylink_set(supported, 2500baseX_Full); 2543 phylink_set(supported, 2500baseT_Full); 2544 } 2545 } 2546 2547 static void 2548 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port, 2549 unsigned int mode, phy_interface_t interface, 2550 int speed, int duplex) 2551 { 2552 struct mt7530_priv *priv = ds->priv; 2553 unsigned int val; 2554 2555 /* For adjusting speed and duplex of SGMII force mode. */ 2556 if (interface != PHY_INTERFACE_MODE_SGMII || 2557 phylink_autoneg_inband(mode)) 2558 return; 2559 2560 /* SGMII force mode setting */ 2561 val = mt7530_read(priv, MT7531_SGMII_MODE(port)); 2562 val &= ~MT7531_SGMII_IF_MODE_MASK; 2563 2564 switch (speed) { 2565 case SPEED_10: 2566 val |= MT7531_SGMII_FORCE_SPEED_10; 2567 break; 2568 case SPEED_100: 2569 val |= MT7531_SGMII_FORCE_SPEED_100; 2570 break; 2571 case SPEED_1000: 2572 val |= MT7531_SGMII_FORCE_SPEED_1000; 2573 break; 2574 } 2575 2576 /* MT7531 SGMII 1G force mode can only work in full duplex mode, 2577 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2578 */ 2579 if ((speed == SPEED_10 || speed == SPEED_100) && 2580 duplex != DUPLEX_FULL) 2581 val |= MT7531_SGMII_FORCE_HALF_DUPLEX; 2582 2583 mt7530_write(priv, MT7531_SGMII_MODE(port), val); 2584 } 2585 2586 static bool mt753x_is_mac_port(u32 port) 2587 { 2588 return (port == 5 || port == 6); 2589 } 2590 2591 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, 2592 phy_interface_t interface) 2593 { 2594 u32 val; 2595 2596 if (!mt753x_is_mac_port(port)) 2597 return -EINVAL; 2598 2599 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2600 MT7531_SGMII_PHYA_PWD); 2601 2602 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); 2603 val &= ~MT7531_RG_TPHY_SPEED_MASK; 2604 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B 2605 * encoding. 2606 */ 2607 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? 2608 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; 2609 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); 2610 2611 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2612 2613 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex 2614 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2615 */ 2616 mt7530_rmw(priv, MT7531_SGMII_MODE(port), 2617 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, 2618 MT7531_SGMII_FORCE_SPEED_1000); 2619 2620 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2621 2622 return 0; 2623 } 2624 2625 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, 2626 phy_interface_t interface) 2627 { 2628 if (!mt753x_is_mac_port(port)) 2629 return -EINVAL; 2630 2631 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2632 MT7531_SGMII_PHYA_PWD); 2633 2634 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), 2635 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); 2636 2637 mt7530_set(priv, MT7531_SGMII_MODE(port), 2638 MT7531_SGMII_REMOTE_FAULT_DIS | 2639 MT7531_SGMII_SPEED_DUPLEX_AN); 2640 2641 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), 2642 MT7531_SGMII_TX_CONFIG_MASK, 1); 2643 2644 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2645 2646 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); 2647 2648 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2649 2650 return 0; 2651 } 2652 2653 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port) 2654 { 2655 struct mt7530_priv *priv = ds->priv; 2656 u32 val; 2657 2658 /* Only restart AN when AN is enabled */ 2659 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2660 if (val & MT7531_SGMII_AN_ENABLE) { 2661 val |= MT7531_SGMII_AN_RESTART; 2662 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); 2663 } 2664 } 2665 2666 static int 2667 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2668 phy_interface_t interface) 2669 { 2670 struct mt7530_priv *priv = ds->priv; 2671 struct phy_device *phydev; 2672 struct dsa_port *dp; 2673 2674 if (!mt753x_is_mac_port(port)) { 2675 dev_err(priv->dev, "port %d is not a MAC port\n", port); 2676 return -EINVAL; 2677 } 2678 2679 switch (interface) { 2680 case PHY_INTERFACE_MODE_RGMII: 2681 case PHY_INTERFACE_MODE_RGMII_ID: 2682 case PHY_INTERFACE_MODE_RGMII_RXID: 2683 case PHY_INTERFACE_MODE_RGMII_TXID: 2684 dp = dsa_to_port(ds, port); 2685 phydev = dp->slave->phydev; 2686 return mt7531_rgmii_setup(priv, port, interface, phydev); 2687 case PHY_INTERFACE_MODE_SGMII: 2688 return mt7531_sgmii_setup_mode_an(priv, port, interface); 2689 case PHY_INTERFACE_MODE_NA: 2690 case PHY_INTERFACE_MODE_1000BASEX: 2691 case PHY_INTERFACE_MODE_2500BASEX: 2692 if (phylink_autoneg_inband(mode)) 2693 return -EINVAL; 2694 2695 return mt7531_sgmii_setup_mode_force(priv, port, interface); 2696 default: 2697 return -EINVAL; 2698 } 2699 2700 return -EINVAL; 2701 } 2702 2703 static int 2704 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2705 const struct phylink_link_state *state) 2706 { 2707 struct mt7530_priv *priv = ds->priv; 2708 2709 return priv->info->mac_port_config(ds, port, mode, state->interface); 2710 } 2711 2712 static void 2713 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2714 const struct phylink_link_state *state) 2715 { 2716 struct mt7530_priv *priv = ds->priv; 2717 u32 mcr_cur, mcr_new; 2718 2719 if (!mt753x_phy_mode_supported(ds, port, state)) 2720 goto unsupported; 2721 2722 switch (port) { 2723 case 0 ... 4: /* Internal phy */ 2724 if (state->interface != PHY_INTERFACE_MODE_GMII) 2725 goto unsupported; 2726 break; 2727 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2728 if (priv->p5_interface == state->interface) 2729 break; 2730 2731 if (mt753x_mac_config(ds, port, mode, state) < 0) 2732 goto unsupported; 2733 2734 if (priv->p5_intf_sel != P5_DISABLED) 2735 priv->p5_interface = state->interface; 2736 break; 2737 case 6: /* 1st cpu port */ 2738 if (priv->p6_interface == state->interface) 2739 break; 2740 2741 mt753x_pad_setup(ds, state); 2742 2743 if (mt753x_mac_config(ds, port, mode, state) < 0) 2744 goto unsupported; 2745 2746 priv->p6_interface = state->interface; 2747 break; 2748 default: 2749 unsupported: 2750 dev_err(ds->dev, "%s: unsupported %s port: %i\n", 2751 __func__, phy_modes(state->interface), port); 2752 return; 2753 } 2754 2755 if (phylink_autoneg_inband(mode) && 2756 state->interface != PHY_INTERFACE_MODE_SGMII) { 2757 dev_err(ds->dev, "%s: in-band negotiation unsupported\n", 2758 __func__); 2759 return; 2760 } 2761 2762 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 2763 mcr_new = mcr_cur; 2764 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 2765 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 2766 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); 2767 2768 /* Are we connected to external phy */ 2769 if (port == 5 && dsa_is_user_port(ds, 5)) 2770 mcr_new |= PMCR_EXT_PHY; 2771 2772 if (mcr_new != mcr_cur) 2773 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 2774 } 2775 2776 static void 2777 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port) 2778 { 2779 struct mt7530_priv *priv = ds->priv; 2780 2781 if (!priv->info->mac_pcs_an_restart) 2782 return; 2783 2784 priv->info->mac_pcs_an_restart(ds, port); 2785 } 2786 2787 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, 2788 unsigned int mode, 2789 phy_interface_t interface) 2790 { 2791 struct mt7530_priv *priv = ds->priv; 2792 2793 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 2794 } 2795 2796 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port, 2797 unsigned int mode, phy_interface_t interface, 2798 int speed, int duplex) 2799 { 2800 struct mt7530_priv *priv = ds->priv; 2801 2802 if (!priv->info->mac_pcs_link_up) 2803 return; 2804 2805 priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2806 } 2807 2808 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, 2809 unsigned int mode, 2810 phy_interface_t interface, 2811 struct phy_device *phydev, 2812 int speed, int duplex, 2813 bool tx_pause, bool rx_pause) 2814 { 2815 struct mt7530_priv *priv = ds->priv; 2816 u32 mcr; 2817 2818 mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2819 2820 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 2821 2822 /* MT753x MAC works in 1G full duplex mode for all up-clocked 2823 * variants. 2824 */ 2825 if (interface == PHY_INTERFACE_MODE_TRGMII || 2826 (phy_interface_mode_is_8023z(interface))) { 2827 speed = SPEED_1000; 2828 duplex = DUPLEX_FULL; 2829 } 2830 2831 switch (speed) { 2832 case SPEED_1000: 2833 mcr |= PMCR_FORCE_SPEED_1000; 2834 break; 2835 case SPEED_100: 2836 mcr |= PMCR_FORCE_SPEED_100; 2837 break; 2838 } 2839 if (duplex == DUPLEX_FULL) { 2840 mcr |= PMCR_FORCE_FDX; 2841 if (tx_pause) 2842 mcr |= PMCR_TX_FC_EN; 2843 if (rx_pause) 2844 mcr |= PMCR_RX_FC_EN; 2845 } 2846 2847 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) { 2848 switch (speed) { 2849 case SPEED_1000: 2850 mcr |= PMCR_FORCE_EEE1G; 2851 break; 2852 case SPEED_100: 2853 mcr |= PMCR_FORCE_EEE100; 2854 break; 2855 } 2856 } 2857 2858 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 2859 } 2860 2861 static int 2862 mt7531_cpu_port_config(struct dsa_switch *ds, int port) 2863 { 2864 struct mt7530_priv *priv = ds->priv; 2865 phy_interface_t interface; 2866 int speed; 2867 int ret; 2868 2869 switch (port) { 2870 case 5: 2871 if (mt7531_is_rgmii_port(priv, port)) 2872 interface = PHY_INTERFACE_MODE_RGMII; 2873 else 2874 interface = PHY_INTERFACE_MODE_2500BASEX; 2875 2876 priv->p5_interface = interface; 2877 break; 2878 case 6: 2879 interface = PHY_INTERFACE_MODE_2500BASEX; 2880 2881 mt7531_pad_setup(ds, interface); 2882 2883 priv->p6_interface = interface; 2884 break; 2885 default: 2886 return -EINVAL; 2887 } 2888 2889 if (interface == PHY_INTERFACE_MODE_2500BASEX) 2890 speed = SPEED_2500; 2891 else 2892 speed = SPEED_1000; 2893 2894 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); 2895 if (ret) 2896 return ret; 2897 mt7530_write(priv, MT7530_PMCR_P(port), 2898 PMCR_CPU_PORT_SETTING(priv->id)); 2899 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, 2900 speed, DUPLEX_FULL, true, true); 2901 2902 return 0; 2903 } 2904 2905 static void 2906 mt7530_mac_port_validate(struct dsa_switch *ds, int port, 2907 unsigned long *supported) 2908 { 2909 if (port == 5) 2910 phylink_set(supported, 1000baseX_Full); 2911 } 2912 2913 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port, 2914 unsigned long *supported) 2915 { 2916 struct mt7530_priv *priv = ds->priv; 2917 2918 mt7531_sgmii_validate(priv, port, supported); 2919 } 2920 2921 static void 2922 mt753x_phylink_validate(struct dsa_switch *ds, int port, 2923 unsigned long *supported, 2924 struct phylink_link_state *state) 2925 { 2926 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2927 struct mt7530_priv *priv = ds->priv; 2928 2929 if (state->interface != PHY_INTERFACE_MODE_NA && 2930 !mt753x_phy_mode_supported(ds, port, state)) { 2931 linkmode_zero(supported); 2932 return; 2933 } 2934 2935 phylink_set_port_modes(mask); 2936 2937 if (state->interface != PHY_INTERFACE_MODE_TRGMII || 2938 !phy_interface_mode_is_8023z(state->interface)) { 2939 phylink_set(mask, 10baseT_Half); 2940 phylink_set(mask, 10baseT_Full); 2941 phylink_set(mask, 100baseT_Half); 2942 phylink_set(mask, 100baseT_Full); 2943 phylink_set(mask, Autoneg); 2944 } 2945 2946 /* This switch only supports 1G full-duplex. */ 2947 if (state->interface != PHY_INTERFACE_MODE_MII) 2948 phylink_set(mask, 1000baseT_Full); 2949 2950 priv->info->mac_port_validate(ds, port, mask); 2951 2952 phylink_set(mask, Pause); 2953 phylink_set(mask, Asym_Pause); 2954 2955 linkmode_and(supported, supported, mask); 2956 linkmode_and(state->advertising, state->advertising, mask); 2957 2958 /* We can only operate at 2500BaseX or 1000BaseX. If requested 2959 * to advertise both, only report advertising at 2500BaseX. 2960 */ 2961 phylink_helper_basex_speed(state); 2962 } 2963 2964 static int 2965 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, 2966 struct phylink_link_state *state) 2967 { 2968 struct mt7530_priv *priv = ds->priv; 2969 u32 pmsr; 2970 2971 if (port < 0 || port >= MT7530_NUM_PORTS) 2972 return -EINVAL; 2973 2974 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 2975 2976 state->link = (pmsr & PMSR_LINK); 2977 state->an_complete = state->link; 2978 state->duplex = !!(pmsr & PMSR_DPX); 2979 2980 switch (pmsr & PMSR_SPEED_MASK) { 2981 case PMSR_SPEED_10: 2982 state->speed = SPEED_10; 2983 break; 2984 case PMSR_SPEED_100: 2985 state->speed = SPEED_100; 2986 break; 2987 case PMSR_SPEED_1000: 2988 state->speed = SPEED_1000; 2989 break; 2990 default: 2991 state->speed = SPEED_UNKNOWN; 2992 break; 2993 } 2994 2995 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 2996 if (pmsr & PMSR_RX_FC) 2997 state->pause |= MLO_PAUSE_RX; 2998 if (pmsr & PMSR_TX_FC) 2999 state->pause |= MLO_PAUSE_TX; 3000 3001 return 1; 3002 } 3003 3004 static int 3005 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, 3006 struct phylink_link_state *state) 3007 { 3008 u32 status, val; 3009 u16 config_reg; 3010 3011 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 3012 state->link = !!(status & MT7531_SGMII_LINK_STATUS); 3013 if (state->interface == PHY_INTERFACE_MODE_SGMII && 3014 (status & MT7531_SGMII_AN_ENABLE)) { 3015 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); 3016 config_reg = val >> 16; 3017 3018 switch (config_reg & LPA_SGMII_SPD_MASK) { 3019 case LPA_SGMII_1000: 3020 state->speed = SPEED_1000; 3021 break; 3022 case LPA_SGMII_100: 3023 state->speed = SPEED_100; 3024 break; 3025 case LPA_SGMII_10: 3026 state->speed = SPEED_10; 3027 break; 3028 default: 3029 dev_err(priv->dev, "invalid sgmii PHY speed\n"); 3030 state->link = false; 3031 return -EINVAL; 3032 } 3033 3034 if (config_reg & LPA_SGMII_FULL_DUPLEX) 3035 state->duplex = DUPLEX_FULL; 3036 else 3037 state->duplex = DUPLEX_HALF; 3038 } 3039 3040 return 0; 3041 } 3042 3043 static int 3044 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port, 3045 struct phylink_link_state *state) 3046 { 3047 struct mt7530_priv *priv = ds->priv; 3048 3049 if (state->interface == PHY_INTERFACE_MODE_SGMII) 3050 return mt7531_sgmii_pcs_get_state_an(priv, port, state); 3051 3052 return -EOPNOTSUPP; 3053 } 3054 3055 static int 3056 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port, 3057 struct phylink_link_state *state) 3058 { 3059 struct mt7530_priv *priv = ds->priv; 3060 3061 return priv->info->mac_port_get_state(ds, port, state); 3062 } 3063 3064 static int 3065 mt753x_setup(struct dsa_switch *ds) 3066 { 3067 struct mt7530_priv *priv = ds->priv; 3068 int ret = priv->info->sw_setup(ds); 3069 3070 if (ret) 3071 return ret; 3072 3073 ret = mt7530_setup_irq(priv); 3074 if (ret) 3075 return ret; 3076 3077 ret = mt7530_setup_mdio(priv); 3078 if (ret && priv->irq) 3079 mt7530_free_irq_common(priv); 3080 3081 return ret; 3082 } 3083 3084 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port, 3085 struct ethtool_eee *e) 3086 { 3087 struct mt7530_priv *priv = ds->priv; 3088 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port)); 3089 3090 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN); 3091 e->tx_lpi_timer = GET_LPI_THRESH(eeecr); 3092 3093 return 0; 3094 } 3095 3096 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port, 3097 struct ethtool_eee *e) 3098 { 3099 struct mt7530_priv *priv = ds->priv; 3100 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN; 3101 3102 if (e->tx_lpi_timer > 0xFFF) 3103 return -EINVAL; 3104 3105 set = SET_LPI_THRESH(e->tx_lpi_timer); 3106 if (!e->tx_lpi_enabled) 3107 /* Force LPI Mode without a delay */ 3108 set |= LPI_MODE_EN; 3109 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set); 3110 3111 return 0; 3112 } 3113 3114 static const struct dsa_switch_ops mt7530_switch_ops = { 3115 .get_tag_protocol = mtk_get_tag_protocol, 3116 .setup = mt753x_setup, 3117 .get_strings = mt7530_get_strings, 3118 .get_ethtool_stats = mt7530_get_ethtool_stats, 3119 .get_sset_count = mt7530_get_sset_count, 3120 .set_ageing_time = mt7530_set_ageing_time, 3121 .port_enable = mt7530_port_enable, 3122 .port_disable = mt7530_port_disable, 3123 .port_change_mtu = mt7530_port_change_mtu, 3124 .port_max_mtu = mt7530_port_max_mtu, 3125 .port_stp_state_set = mt7530_stp_state_set, 3126 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags, 3127 .port_bridge_flags = mt7530_port_bridge_flags, 3128 .port_bridge_join = mt7530_port_bridge_join, 3129 .port_bridge_leave = mt7530_port_bridge_leave, 3130 .port_fdb_add = mt7530_port_fdb_add, 3131 .port_fdb_del = mt7530_port_fdb_del, 3132 .port_fdb_dump = mt7530_port_fdb_dump, 3133 .port_mdb_add = mt7530_port_mdb_add, 3134 .port_mdb_del = mt7530_port_mdb_del, 3135 .port_vlan_filtering = mt7530_port_vlan_filtering, 3136 .port_vlan_add = mt7530_port_vlan_add, 3137 .port_vlan_del = mt7530_port_vlan_del, 3138 .port_mirror_add = mt753x_port_mirror_add, 3139 .port_mirror_del = mt753x_port_mirror_del, 3140 .phylink_validate = mt753x_phylink_validate, 3141 .phylink_mac_link_state = mt753x_phylink_mac_link_state, 3142 .phylink_mac_config = mt753x_phylink_mac_config, 3143 .phylink_mac_an_restart = mt753x_phylink_mac_an_restart, 3144 .phylink_mac_link_down = mt753x_phylink_mac_link_down, 3145 .phylink_mac_link_up = mt753x_phylink_mac_link_up, 3146 .get_mac_eee = mt753x_get_mac_eee, 3147 .set_mac_eee = mt753x_set_mac_eee, 3148 }; 3149 3150 static const struct mt753x_info mt753x_table[] = { 3151 [ID_MT7621] = { 3152 .id = ID_MT7621, 3153 .sw_setup = mt7530_setup, 3154 .phy_read = mt7530_phy_read, 3155 .phy_write = mt7530_phy_write, 3156 .pad_setup = mt7530_pad_clk_setup, 3157 .phy_mode_supported = mt7530_phy_mode_supported, 3158 .mac_port_validate = mt7530_mac_port_validate, 3159 .mac_port_get_state = mt7530_phylink_mac_link_state, 3160 .mac_port_config = mt7530_mac_config, 3161 }, 3162 [ID_MT7530] = { 3163 .id = ID_MT7530, 3164 .sw_setup = mt7530_setup, 3165 .phy_read = mt7530_phy_read, 3166 .phy_write = mt7530_phy_write, 3167 .pad_setup = mt7530_pad_clk_setup, 3168 .phy_mode_supported = mt7530_phy_mode_supported, 3169 .mac_port_validate = mt7530_mac_port_validate, 3170 .mac_port_get_state = mt7530_phylink_mac_link_state, 3171 .mac_port_config = mt7530_mac_config, 3172 }, 3173 [ID_MT7531] = { 3174 .id = ID_MT7531, 3175 .sw_setup = mt7531_setup, 3176 .phy_read = mt7531_ind_phy_read, 3177 .phy_write = mt7531_ind_phy_write, 3178 .pad_setup = mt7531_pad_setup, 3179 .cpu_port_config = mt7531_cpu_port_config, 3180 .phy_mode_supported = mt7531_phy_mode_supported, 3181 .mac_port_validate = mt7531_mac_port_validate, 3182 .mac_port_get_state = mt7531_phylink_mac_link_state, 3183 .mac_port_config = mt7531_mac_config, 3184 .mac_pcs_an_restart = mt7531_sgmii_restart_an, 3185 .mac_pcs_link_up = mt7531_sgmii_link_up_force, 3186 }, 3187 }; 3188 3189 static const struct of_device_id mt7530_of_match[] = { 3190 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, 3191 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, 3192 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, 3193 { /* sentinel */ }, 3194 }; 3195 MODULE_DEVICE_TABLE(of, mt7530_of_match); 3196 3197 static int 3198 mt7530_probe(struct mdio_device *mdiodev) 3199 { 3200 struct mt7530_priv *priv; 3201 struct device_node *dn; 3202 3203 dn = mdiodev->dev.of_node; 3204 3205 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 3206 if (!priv) 3207 return -ENOMEM; 3208 3209 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 3210 if (!priv->ds) 3211 return -ENOMEM; 3212 3213 priv->ds->dev = &mdiodev->dev; 3214 priv->ds->num_ports = DSA_MAX_PORTS; 3215 3216 /* Use medatek,mcm property to distinguish hardware type that would 3217 * casues a little bit differences on power-on sequence. 3218 */ 3219 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 3220 if (priv->mcm) { 3221 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 3222 3223 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 3224 if (IS_ERR(priv->rstc)) { 3225 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 3226 return PTR_ERR(priv->rstc); 3227 } 3228 } 3229 3230 /* Get the hardware identifier from the devicetree node. 3231 * We will need it for some of the clock and regulator setup. 3232 */ 3233 priv->info = of_device_get_match_data(&mdiodev->dev); 3234 if (!priv->info) 3235 return -EINVAL; 3236 3237 /* Sanity check if these required device operations are filled 3238 * properly. 3239 */ 3240 if (!priv->info->sw_setup || !priv->info->pad_setup || 3241 !priv->info->phy_read || !priv->info->phy_write || 3242 !priv->info->phy_mode_supported || 3243 !priv->info->mac_port_validate || 3244 !priv->info->mac_port_get_state || !priv->info->mac_port_config) 3245 return -EINVAL; 3246 3247 priv->id = priv->info->id; 3248 3249 if (priv->id == ID_MT7530) { 3250 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 3251 if (IS_ERR(priv->core_pwr)) 3252 return PTR_ERR(priv->core_pwr); 3253 3254 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 3255 if (IS_ERR(priv->io_pwr)) 3256 return PTR_ERR(priv->io_pwr); 3257 } 3258 3259 /* Not MCM that indicates switch works as the remote standalone 3260 * integrated circuit so the GPIO pin would be used to complete 3261 * the reset, otherwise memory-mapped register accessing used 3262 * through syscon provides in the case of MCM. 3263 */ 3264 if (!priv->mcm) { 3265 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 3266 GPIOD_OUT_LOW); 3267 if (IS_ERR(priv->reset)) { 3268 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 3269 return PTR_ERR(priv->reset); 3270 } 3271 } 3272 3273 priv->bus = mdiodev->bus; 3274 priv->dev = &mdiodev->dev; 3275 priv->ds->priv = priv; 3276 priv->ds->ops = &mt7530_switch_ops; 3277 mutex_init(&priv->reg_mutex); 3278 dev_set_drvdata(&mdiodev->dev, priv); 3279 3280 return dsa_register_switch(priv->ds); 3281 } 3282 3283 static void 3284 mt7530_remove(struct mdio_device *mdiodev) 3285 { 3286 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 3287 int ret = 0; 3288 3289 if (!priv) 3290 return; 3291 3292 ret = regulator_disable(priv->core_pwr); 3293 if (ret < 0) 3294 dev_err(priv->dev, 3295 "Failed to disable core power: %d\n", ret); 3296 3297 ret = regulator_disable(priv->io_pwr); 3298 if (ret < 0) 3299 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 3300 ret); 3301 3302 if (priv->irq) 3303 mt7530_free_irq(priv); 3304 3305 dsa_unregister_switch(priv->ds); 3306 mutex_destroy(&priv->reg_mutex); 3307 3308 dev_set_drvdata(&mdiodev->dev, NULL); 3309 } 3310 3311 static void mt7530_shutdown(struct mdio_device *mdiodev) 3312 { 3313 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 3314 3315 if (!priv) 3316 return; 3317 3318 dsa_switch_shutdown(priv->ds); 3319 3320 dev_set_drvdata(&mdiodev->dev, NULL); 3321 } 3322 3323 static struct mdio_driver mt7530_mdio_driver = { 3324 .probe = mt7530_probe, 3325 .remove = mt7530_remove, 3326 .shutdown = mt7530_shutdown, 3327 .mdiodrv.driver = { 3328 .name = "mt7530", 3329 .of_match_table = mt7530_of_match, 3330 }, 3331 }; 3332 3333 mdio_module_driver(mt7530_mdio_driver); 3334 3335 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 3336 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 3337 MODULE_LICENSE("GPL"); 3338