xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 349f631d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 /* String, offset, and register size in bytes if different from 4 bytes */
28 static const struct mt7530_mib_desc mt7530_mib[] = {
29 	MIB_DESC(1, 0x00, "TxDrop"),
30 	MIB_DESC(1, 0x04, "TxCrcErr"),
31 	MIB_DESC(1, 0x08, "TxUnicast"),
32 	MIB_DESC(1, 0x0c, "TxMulticast"),
33 	MIB_DESC(1, 0x10, "TxBroadcast"),
34 	MIB_DESC(1, 0x14, "TxCollision"),
35 	MIB_DESC(1, 0x18, "TxSingleCollision"),
36 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 	MIB_DESC(1, 0x20, "TxDeferred"),
38 	MIB_DESC(1, 0x24, "TxLateCollision"),
39 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 	MIB_DESC(1, 0x2c, "TxPause"),
41 	MIB_DESC(1, 0x30, "TxPktSz64"),
42 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 	MIB_DESC(2, 0x48, "TxBytes"),
48 	MIB_DESC(1, 0x60, "RxDrop"),
49 	MIB_DESC(1, 0x64, "RxFiltering"),
50 	MIB_DESC(1, 0x68, "RxUnicast"),
51 	MIB_DESC(1, 0x6c, "RxMulticast"),
52 	MIB_DESC(1, 0x70, "RxBroadcast"),
53 	MIB_DESC(1, 0x74, "RxAlignErr"),
54 	MIB_DESC(1, 0x78, "RxCrcErr"),
55 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
56 	MIB_DESC(1, 0x80, "RxFragErr"),
57 	MIB_DESC(1, 0x84, "RxOverSzErr"),
58 	MIB_DESC(1, 0x88, "RxJabberErr"),
59 	MIB_DESC(1, 0x8c, "RxPause"),
60 	MIB_DESC(1, 0x90, "RxPktSz64"),
61 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
62 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
63 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
64 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
65 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
66 	MIB_DESC(2, 0xa8, "RxBytes"),
67 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
68 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
69 	MIB_DESC(1, 0xb8, "RxArlDrop"),
70 };
71 
72 /* Since phy_device has not yet been created and
73  * phy_{read,write}_mmd_indirect is not available, we provide our own
74  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
75  * to complete this function.
76  */
77 static int
78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
79 {
80 	struct mii_bus *bus = priv->bus;
81 	int value, ret;
82 
83 	/* Write the desired MMD Devad */
84 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
85 	if (ret < 0)
86 		goto err;
87 
88 	/* Write the desired MMD register address */
89 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Select the Function : DATA with no post increment */
94 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Read the content of the MMD's selected register */
99 	value = bus->read(bus, 0, MII_MMD_DATA);
100 
101 	return value;
102 err:
103 	dev_err(&bus->dev,  "failed to read mmd register\n");
104 
105 	return ret;
106 }
107 
108 static int
109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
110 			int devad, u32 data)
111 {
112 	struct mii_bus *bus = priv->bus;
113 	int ret;
114 
115 	/* Write the desired MMD Devad */
116 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
117 	if (ret < 0)
118 		goto err;
119 
120 	/* Write the desired MMD register address */
121 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Select the Function : DATA with no post increment */
126 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Write the data into MMD's selected register */
131 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
132 err:
133 	if (ret < 0)
134 		dev_err(&bus->dev,
135 			"failed to write mmd register\n");
136 	return ret;
137 }
138 
139 static void
140 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
141 {
142 	struct mii_bus *bus = priv->bus;
143 
144 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
145 
146 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
147 
148 	mutex_unlock(&bus->mdio_lock);
149 }
150 
151 static void
152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
153 {
154 	struct mii_bus *bus = priv->bus;
155 	u32 val;
156 
157 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
158 
159 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
160 	val &= ~mask;
161 	val |= set;
162 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
163 
164 	mutex_unlock(&bus->mdio_lock);
165 }
166 
167 static void
168 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
169 {
170 	core_rmw(priv, reg, 0, val);
171 }
172 
173 static void
174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
175 {
176 	core_rmw(priv, reg, val, 0);
177 }
178 
179 static int
180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
181 {
182 	struct mii_bus *bus = priv->bus;
183 	u16 page, r, lo, hi;
184 	int ret;
185 
186 	page = (reg >> 6) & 0x3ff;
187 	r  = (reg >> 2) & 0xf;
188 	lo = val & 0xffff;
189 	hi = val >> 16;
190 
191 	/* MT7530 uses 31 as the pseudo port */
192 	ret = bus->write(bus, 0x1f, 0x1f, page);
193 	if (ret < 0)
194 		goto err;
195 
196 	ret = bus->write(bus, 0x1f, r,  lo);
197 	if (ret < 0)
198 		goto err;
199 
200 	ret = bus->write(bus, 0x1f, 0x10, hi);
201 err:
202 	if (ret < 0)
203 		dev_err(&bus->dev,
204 			"failed to write mt7530 register\n");
205 	return ret;
206 }
207 
208 static u32
209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
210 {
211 	struct mii_bus *bus = priv->bus;
212 	u16 page, r, lo, hi;
213 	int ret;
214 
215 	page = (reg >> 6) & 0x3ff;
216 	r = (reg >> 2) & 0xf;
217 
218 	/* MT7530 uses 31 as the pseudo port */
219 	ret = bus->write(bus, 0x1f, 0x1f, page);
220 	if (ret < 0) {
221 		dev_err(&bus->dev,
222 			"failed to read mt7530 register\n");
223 		return ret;
224 	}
225 
226 	lo = bus->read(bus, 0x1f, r);
227 	hi = bus->read(bus, 0x1f, 0x10);
228 
229 	return (hi << 16) | (lo & 0xffff);
230 }
231 
232 static void
233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 
237 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
238 
239 	mt7530_mii_write(priv, reg, val);
240 
241 	mutex_unlock(&bus->mdio_lock);
242 }
243 
244 static u32
245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
246 {
247 	return mt7530_mii_read(p->priv, p->reg);
248 }
249 
250 static u32
251 _mt7530_read(struct mt7530_dummy_poll *p)
252 {
253 	struct mii_bus		*bus = p->priv->bus;
254 	u32 val;
255 
256 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
257 
258 	val = mt7530_mii_read(p->priv, p->reg);
259 
260 	mutex_unlock(&bus->mdio_lock);
261 
262 	return val;
263 }
264 
265 static u32
266 mt7530_read(struct mt7530_priv *priv, u32 reg)
267 {
268 	struct mt7530_dummy_poll p;
269 
270 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
271 	return _mt7530_read(&p);
272 }
273 
274 static void
275 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
276 	   u32 mask, u32 set)
277 {
278 	struct mii_bus *bus = priv->bus;
279 	u32 val;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	val = mt7530_mii_read(priv, reg);
284 	val &= ~mask;
285 	val |= set;
286 	mt7530_mii_write(priv, reg, val);
287 
288 	mutex_unlock(&bus->mdio_lock);
289 }
290 
291 static void
292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
293 {
294 	mt7530_rmw(priv, reg, 0, val);
295 }
296 
297 static void
298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
299 {
300 	mt7530_rmw(priv, reg, val, 0);
301 }
302 
303 static int
304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
305 {
306 	u32 val;
307 	int ret;
308 	struct mt7530_dummy_poll p;
309 
310 	/* Set the command operating upon the MAC address entries */
311 	val = ATC_BUSY | ATC_MAT(0) | cmd;
312 	mt7530_write(priv, MT7530_ATC, val);
313 
314 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
315 	ret = readx_poll_timeout(_mt7530_read, &p, val,
316 				 !(val & ATC_BUSY), 20, 20000);
317 	if (ret < 0) {
318 		dev_err(priv->dev, "reset timeout\n");
319 		return ret;
320 	}
321 
322 	/* Additional sanity for read command if the specified
323 	 * entry is invalid
324 	 */
325 	val = mt7530_read(priv, MT7530_ATC);
326 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
327 		return -EINVAL;
328 
329 	if (rsp)
330 		*rsp = val;
331 
332 	return 0;
333 }
334 
335 static void
336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
337 {
338 	u32 reg[3];
339 	int i;
340 
341 	/* Read from ARL table into an array */
342 	for (i = 0; i < 3; i++) {
343 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
344 
345 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
346 			__func__, __LINE__, i, reg[i]);
347 	}
348 
349 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
350 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
351 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
352 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
353 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
354 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
355 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
356 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
357 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
358 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
359 }
360 
361 static void
362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
363 		 u8 port_mask, const u8 *mac,
364 		 u8 aging, u8 type)
365 {
366 	u32 reg[3] = { 0 };
367 	int i;
368 
369 	reg[1] |= vid & CVID_MASK;
370 	reg[1] |= ATA2_IVL;
371 	reg[1] |= ATA2_FID(FID_BRIDGED);
372 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
373 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
374 	/* STATIC_ENT indicate that entry is static wouldn't
375 	 * be aged out and STATIC_EMP specified as erasing an
376 	 * entry
377 	 */
378 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
379 	reg[1] |= mac[5] << MAC_BYTE_5;
380 	reg[1] |= mac[4] << MAC_BYTE_4;
381 	reg[0] |= mac[3] << MAC_BYTE_3;
382 	reg[0] |= mac[2] << MAC_BYTE_2;
383 	reg[0] |= mac[1] << MAC_BYTE_1;
384 	reg[0] |= mac[0] << MAC_BYTE_0;
385 
386 	/* Write array into the ARL table */
387 	for (i = 0; i < 3; i++)
388 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
389 }
390 
391 /* Setup TX circuit including relevant PAD and driving */
392 static int
393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
394 {
395 	struct mt7530_priv *priv = ds->priv;
396 	u32 ncpo1, ssc_delta, trgint, i, xtal;
397 
398 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
399 
400 	if (xtal == HWTRAP_XTAL_20MHZ) {
401 		dev_err(priv->dev,
402 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
403 			__func__);
404 		return -EINVAL;
405 	}
406 
407 	switch (interface) {
408 	case PHY_INTERFACE_MODE_RGMII:
409 		trgint = 0;
410 		/* PLL frequency: 125MHz */
411 		ncpo1 = 0x0c80;
412 		break;
413 	case PHY_INTERFACE_MODE_TRGMII:
414 		trgint = 1;
415 		if (priv->id == ID_MT7621) {
416 			/* PLL frequency: 150MHz: 1.2GBit */
417 			if (xtal == HWTRAP_XTAL_40MHZ)
418 				ncpo1 = 0x0780;
419 			if (xtal == HWTRAP_XTAL_25MHZ)
420 				ncpo1 = 0x0a00;
421 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0c80;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x1400;
426 		}
427 		break;
428 	default:
429 		dev_err(priv->dev, "xMII interface %d not supported\n",
430 			interface);
431 		return -EINVAL;
432 	}
433 
434 	if (xtal == HWTRAP_XTAL_25MHZ)
435 		ssc_delta = 0x57;
436 	else
437 		ssc_delta = 0x87;
438 
439 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
440 		   P6_INTF_MODE(trgint));
441 
442 	/* Lower Tx Driving for TRGMII path */
443 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
444 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
445 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
446 
447 	/* Disable MT7530 core and TRGMII Tx clocks */
448 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
449 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
450 
451 	/* Setup core clock for MT7530 */
452 	/* Disable PLL */
453 	core_write(priv, CORE_GSWPLL_GRP1, 0);
454 
455 	/* Set core clock into 500Mhz */
456 	core_write(priv, CORE_GSWPLL_GRP2,
457 		   RG_GSWPLL_POSDIV_500M(1) |
458 		   RG_GSWPLL_FBKDIV_500M(25));
459 
460 	/* Enable PLL */
461 	core_write(priv, CORE_GSWPLL_GRP1,
462 		   RG_GSWPLL_EN_PRE |
463 		   RG_GSWPLL_POSDIV_200M(2) |
464 		   RG_GSWPLL_FBKDIV_200M(32));
465 
466 	/* Setup the MT7530 TRGMII Tx Clock */
467 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
468 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
469 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
470 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
471 	core_write(priv, CORE_PLL_GROUP4,
472 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
473 		   RG_SYSPLL_BIAS_LPF_EN);
474 	core_write(priv, CORE_PLL_GROUP2,
475 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
476 		   RG_SYSPLL_POSDIV(1));
477 	core_write(priv, CORE_PLL_GROUP7,
478 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
479 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
480 
481 	/* Enable MT7530 core and TRGMII Tx clocks */
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
604 {
605 	return mdiobus_read_nested(priv->bus, port, regnum);
606 }
607 
608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
609 			    u16 val)
610 {
611 	return mdiobus_write_nested(priv->bus, port, regnum, val);
612 }
613 
614 static int
615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
616 			int regnum)
617 {
618 	struct mii_bus *bus = priv->bus;
619 	struct mt7530_dummy_poll p;
620 	u32 reg, val;
621 	int ret;
622 
623 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624 
625 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
626 
627 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 	if (ret < 0) {
630 		dev_err(priv->dev, "poll timeout\n");
631 		goto out;
632 	}
633 
634 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637 
638 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 	if (ret < 0) {
641 		dev_err(priv->dev, "poll timeout\n");
642 		goto out;
643 	}
644 
645 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 	      MT7531_MDIO_DEV_ADDR(devad);
647 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	ret = val & MT7531_MDIO_RW_DATA_MASK;
657 out:
658 	mutex_unlock(&bus->mdio_lock);
659 
660 	return ret;
661 }
662 
663 static int
664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 			 int regnum, u32 data)
666 {
667 	struct mii_bus *bus = priv->bus;
668 	struct mt7530_dummy_poll p;
669 	u32 val, reg;
670 	int ret;
671 
672 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
673 
674 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
675 
676 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
677 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
678 	if (ret < 0) {
679 		dev_err(priv->dev, "poll timeout\n");
680 		goto out;
681 	}
682 
683 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
684 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
685 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | data;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 out:
706 	mutex_unlock(&bus->mdio_lock);
707 
708 	return ret;
709 }
710 
711 static int
712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
713 {
714 	struct mii_bus *bus = priv->bus;
715 	struct mt7530_dummy_poll p;
716 	int ret;
717 	u32 val;
718 
719 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
720 
721 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
722 
723 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
724 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
725 	if (ret < 0) {
726 		dev_err(priv->dev, "poll timeout\n");
727 		goto out;
728 	}
729 
730 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
731 	      MT7531_MDIO_REG_ADDR(regnum);
732 
733 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
734 
735 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
736 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
737 	if (ret < 0) {
738 		dev_err(priv->dev, "poll timeout\n");
739 		goto out;
740 	}
741 
742 	ret = val & MT7531_MDIO_RW_DATA_MASK;
743 out:
744 	mutex_unlock(&bus->mdio_lock);
745 
746 	return ret;
747 }
748 
749 static int
750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
751 			 u16 data)
752 {
753 	struct mii_bus *bus = priv->bus;
754 	struct mt7530_dummy_poll p;
755 	int ret;
756 	u32 reg;
757 
758 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
759 
760 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
761 
762 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
763 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
764 	if (ret < 0) {
765 		dev_err(priv->dev, "poll timeout\n");
766 		goto out;
767 	}
768 
769 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
770 	      MT7531_MDIO_REG_ADDR(regnum) | data;
771 
772 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
773 
774 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
775 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
776 	if (ret < 0) {
777 		dev_err(priv->dev, "poll timeout\n");
778 		goto out;
779 	}
780 
781 out:
782 	mutex_unlock(&bus->mdio_lock);
783 
784 	return ret;
785 }
786 
787 static int
788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
789 {
790 	int devad;
791 	int ret;
792 
793 	if (regnum & MII_ADDR_C45) {
794 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
795 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
796 					      regnum & MII_REGADDR_C45_MASK);
797 	} else {
798 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
799 	}
800 
801 	return ret;
802 }
803 
804 static int
805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
806 		     u16 data)
807 {
808 	int devad;
809 	int ret;
810 
811 	if (regnum & MII_ADDR_C45) {
812 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
813 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
814 					       regnum & MII_REGADDR_C45_MASK,
815 					       data);
816 	} else {
817 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
818 	}
819 
820 	return ret;
821 }
822 
823 static int
824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
825 {
826 	struct mt7530_priv *priv = bus->priv;
827 
828 	return priv->info->phy_read(priv, port, regnum);
829 }
830 
831 static int
832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_write(priv, port, regnum, val);
837 }
838 
839 static void
840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 		   uint8_t *data)
842 {
843 	int i;
844 
845 	if (stringset != ETH_SS_STATS)
846 		return;
847 
848 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 			ETH_GSTRING_LEN);
851 }
852 
853 static void
854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 			 uint64_t *data)
856 {
857 	struct mt7530_priv *priv = ds->priv;
858 	const struct mt7530_mib_desc *mib;
859 	u32 reg, i;
860 	u64 hi;
861 
862 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 		mib = &mt7530_mib[i];
864 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865 
866 		data[i] = mt7530_read(priv, reg);
867 		if (mib->size == 2) {
868 			hi = mt7530_read(priv, reg + 4);
869 			data[i] |= hi << 32;
870 		}
871 	}
872 }
873 
874 static int
875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876 {
877 	if (sset != ETH_SS_STATS)
878 		return 0;
879 
880 	return ARRAY_SIZE(mt7530_mib);
881 }
882 
883 static int
884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885 {
886 	struct mt7530_priv *priv = ds->priv;
887 	unsigned int secs = msecs / 1000;
888 	unsigned int tmp_age_count;
889 	unsigned int error = -1;
890 	unsigned int age_count;
891 	unsigned int age_unit;
892 
893 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 		return -ERANGE;
896 
897 	/* iterate through all possible age_count to find the closest pair */
898 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900 
901 		if (tmp_age_unit <= AGE_UNIT_MAX) {
902 			unsigned int tmp_error = secs -
903 				(tmp_age_count + 1) * (tmp_age_unit + 1);
904 
905 			/* found a closer pair */
906 			if (error > tmp_error) {
907 				error = tmp_error;
908 				age_count = tmp_age_count;
909 				age_unit = tmp_age_unit;
910 			}
911 
912 			/* found the exact match, so break the loop */
913 			if (!error)
914 				break;
915 		}
916 	}
917 
918 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919 
920 	return 0;
921 }
922 
923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924 {
925 	struct mt7530_priv *priv = ds->priv;
926 	u8 tx_delay = 0;
927 	int val;
928 
929 	mutex_lock(&priv->reg_mutex);
930 
931 	val = mt7530_read(priv, MT7530_MHWTRAP);
932 
933 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935 
936 	switch (priv->p5_intf_sel) {
937 	case P5_INTF_SEL_PHY_P0:
938 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 		val |= MHWTRAP_PHY0_SEL;
940 		fallthrough;
941 	case P5_INTF_SEL_PHY_P4:
942 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944 
945 		/* Setup the MAC by default for the cpu port */
946 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 		break;
948 	case P5_INTF_SEL_GMAC5:
949 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 		val &= ~MHWTRAP_P5_DIS;
951 		break;
952 	case P5_DISABLED:
953 		interface = PHY_INTERFACE_MODE_NA;
954 		break;
955 	default:
956 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 			priv->p5_intf_sel);
958 		goto unlock_exit;
959 	}
960 
961 	/* Setup RGMII settings */
962 	if (phy_interface_mode_is_rgmii(interface)) {
963 		val |= MHWTRAP_P5_RGMII_MODE;
964 
965 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
966 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967 
968 		/* Don't set delay in DSA mode */
969 		if (!dsa_is_dsa_port(priv->ds, 5) &&
970 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
972 			tx_delay = 4; /* n * 0.5 ns */
973 
974 		/* P5 RGMII TX Clock Control: delay x */
975 		mt7530_write(priv, MT7530_P5RGMIITXCR,
976 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977 
978 		/* reduce P5 RGMII Tx driving, 8mA */
979 		mt7530_write(priv, MT7530_IO_DRV_CR,
980 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 	}
982 
983 	mt7530_write(priv, MT7530_MHWTRAP, val);
984 
985 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987 
988 	priv->p5_interface = interface;
989 
990 unlock_exit:
991 	mutex_unlock(&priv->reg_mutex);
992 }
993 
994 static int
995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996 {
997 	struct mt7530_priv *priv = ds->priv;
998 	int ret;
999 
1000 	/* Setup max capability of CPU port at first */
1001 	if (priv->info->cpu_port_config) {
1002 		ret = priv->info->cpu_port_config(ds, port);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Enable Mediatek header mode on the cpu port */
1008 	mt7530_write(priv, MT7530_PVC_P(port),
1009 		     PORT_SPEC_TAG);
1010 
1011 	/* Disable flooding by default */
1012 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014 
1015 	/* Set CPU port number */
1016 	if (priv->id == ID_MT7621)
1017 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018 
1019 	/* CPU port gets connected to all user ports of
1020 	 * the switch.
1021 	 */
1022 	mt7530_write(priv, MT7530_PCR_P(port),
1023 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1024 
1025 	/* Set to fallback mode for independent VLAN learning */
1026 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1027 		   MT7530_PORT_FALLBACK_MODE);
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 mt7530_port_enable(struct dsa_switch *ds, int port,
1034 		   struct phy_device *phy)
1035 {
1036 	struct mt7530_priv *priv = ds->priv;
1037 
1038 	if (!dsa_is_user_port(ds, port))
1039 		return 0;
1040 
1041 	mutex_lock(&priv->reg_mutex);
1042 
1043 	/* Allow the user port gets connected to the cpu port and also
1044 	 * restore the port matrix if the port is the member of a certain
1045 	 * bridge.
1046 	 */
1047 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1048 	priv->ports[port].enable = true;
1049 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1050 		   priv->ports[port].pm);
1051 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1052 
1053 	mutex_unlock(&priv->reg_mutex);
1054 
1055 	return 0;
1056 }
1057 
1058 static void
1059 mt7530_port_disable(struct dsa_switch *ds, int port)
1060 {
1061 	struct mt7530_priv *priv = ds->priv;
1062 
1063 	if (!dsa_is_user_port(ds, port))
1064 		return;
1065 
1066 	mutex_lock(&priv->reg_mutex);
1067 
1068 	/* Clear up all port matrix which could be restored in the next
1069 	 * enablement for the port.
1070 	 */
1071 	priv->ports[port].enable = false;
1072 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1073 		   PCR_MATRIX_CLR);
1074 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1075 
1076 	mutex_unlock(&priv->reg_mutex);
1077 }
1078 
1079 static int
1080 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1081 {
1082 	struct mt7530_priv *priv = ds->priv;
1083 	struct mii_bus *bus = priv->bus;
1084 	int length;
1085 	u32 val;
1086 
1087 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1088 	 * largest MTU of the slave ports. Because the switch only has a global
1089 	 * RX length register, only allowing CPU port here is enough.
1090 	 */
1091 	if (!dsa_is_cpu_port(ds, port))
1092 		return 0;
1093 
1094 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1095 
1096 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1097 	val &= ~MAX_RX_PKT_LEN_MASK;
1098 
1099 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1100 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1101 	if (length <= 1522) {
1102 		val |= MAX_RX_PKT_LEN_1522;
1103 	} else if (length <= 1536) {
1104 		val |= MAX_RX_PKT_LEN_1536;
1105 	} else if (length <= 1552) {
1106 		val |= MAX_RX_PKT_LEN_1552;
1107 	} else {
1108 		val &= ~MAX_RX_JUMBO_MASK;
1109 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1110 		val |= MAX_RX_PKT_LEN_JUMBO;
1111 	}
1112 
1113 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1114 
1115 	mutex_unlock(&bus->mdio_lock);
1116 
1117 	return 0;
1118 }
1119 
1120 static int
1121 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1122 {
1123 	return MT7530_MAX_MTU;
1124 }
1125 
1126 static void
1127 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1128 {
1129 	struct mt7530_priv *priv = ds->priv;
1130 	u32 stp_state;
1131 
1132 	switch (state) {
1133 	case BR_STATE_DISABLED:
1134 		stp_state = MT7530_STP_DISABLED;
1135 		break;
1136 	case BR_STATE_BLOCKING:
1137 		stp_state = MT7530_STP_BLOCKING;
1138 		break;
1139 	case BR_STATE_LISTENING:
1140 		stp_state = MT7530_STP_LISTENING;
1141 		break;
1142 	case BR_STATE_LEARNING:
1143 		stp_state = MT7530_STP_LEARNING;
1144 		break;
1145 	case BR_STATE_FORWARDING:
1146 	default:
1147 		stp_state = MT7530_STP_FORWARDING;
1148 		break;
1149 	}
1150 
1151 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1152 		   FID_PST(FID_BRIDGED, stp_state));
1153 }
1154 
1155 static int
1156 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1157 			     struct switchdev_brport_flags flags,
1158 			     struct netlink_ext_ack *extack)
1159 {
1160 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1161 			   BR_BCAST_FLOOD))
1162 		return -EINVAL;
1163 
1164 	return 0;
1165 }
1166 
1167 static int
1168 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1169 			 struct switchdev_brport_flags flags,
1170 			 struct netlink_ext_ack *extack)
1171 {
1172 	struct mt7530_priv *priv = ds->priv;
1173 
1174 	if (flags.mask & BR_LEARNING)
1175 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1176 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1177 
1178 	if (flags.mask & BR_FLOOD)
1179 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1180 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1181 
1182 	if (flags.mask & BR_MCAST_FLOOD)
1183 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1184 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1185 
1186 	if (flags.mask & BR_BCAST_FLOOD)
1187 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1188 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1189 
1190 	return 0;
1191 }
1192 
1193 static int
1194 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1195 			struct net_device *bridge)
1196 {
1197 	struct mt7530_priv *priv = ds->priv;
1198 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1199 	int i;
1200 
1201 	mutex_lock(&priv->reg_mutex);
1202 
1203 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1204 		/* Add this port to the port matrix of the other ports in the
1205 		 * same bridge. If the port is disabled, port matrix is kept
1206 		 * and not being setup until the port becomes enabled.
1207 		 */
1208 		if (dsa_is_user_port(ds, i) && i != port) {
1209 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1210 				continue;
1211 			if (priv->ports[i].enable)
1212 				mt7530_set(priv, MT7530_PCR_P(i),
1213 					   PCR_MATRIX(BIT(port)));
1214 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1215 
1216 			port_bitmap |= BIT(i);
1217 		}
1218 	}
1219 
1220 	/* Add the all other ports to this port matrix. */
1221 	if (priv->ports[port].enable)
1222 		mt7530_rmw(priv, MT7530_PCR_P(port),
1223 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1224 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1225 
1226 	/* Set to fallback mode for independent VLAN learning */
1227 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1228 		   MT7530_PORT_FALLBACK_MODE);
1229 
1230 	mutex_unlock(&priv->reg_mutex);
1231 
1232 	return 0;
1233 }
1234 
1235 static void
1236 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1237 {
1238 	struct mt7530_priv *priv = ds->priv;
1239 	bool all_user_ports_removed = true;
1240 	int i;
1241 
1242 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1243 	 * bridge. Don't set standalone ports to fallback mode.
1244 	 */
1245 	if (dsa_to_port(ds, port)->bridge_dev)
1246 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1247 			   MT7530_PORT_FALLBACK_MODE);
1248 
1249 	mt7530_rmw(priv, MT7530_PVC_P(port),
1250 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1251 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1252 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1253 		   MT7530_VLAN_ACC_ALL);
1254 
1255 	/* Set PVID to 0 */
1256 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1257 		   G0_PORT_VID_DEF);
1258 
1259 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1260 		if (dsa_is_user_port(ds, i) &&
1261 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1262 			all_user_ports_removed = false;
1263 			break;
1264 		}
1265 	}
1266 
1267 	/* CPU port also does the same thing until all user ports belonging to
1268 	 * the CPU port get out of VLAN filtering mode.
1269 	 */
1270 	if (all_user_ports_removed) {
1271 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1272 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1273 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1274 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1275 	}
1276 }
1277 
1278 static void
1279 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1280 {
1281 	struct mt7530_priv *priv = ds->priv;
1282 
1283 	/* Trapped into security mode allows packet forwarding through VLAN
1284 	 * table lookup.
1285 	 */
1286 	if (dsa_is_user_port(ds, port)) {
1287 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1288 			   MT7530_PORT_SECURITY_MODE);
1289 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1290 			   G0_PORT_VID(priv->ports[port].pvid));
1291 
1292 		/* Only accept tagged frames if PVID is not set */
1293 		if (!priv->ports[port].pvid)
1294 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1295 				   MT7530_VLAN_ACC_TAGGED);
1296 	}
1297 
1298 	/* Set the port as a user port which is to be able to recognize VID
1299 	 * from incoming packets before fetching entry within the VLAN table.
1300 	 */
1301 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1302 		   VLAN_ATTR(MT7530_VLAN_USER) |
1303 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1304 }
1305 
1306 static void
1307 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1308 			 struct net_device *bridge)
1309 {
1310 	struct mt7530_priv *priv = ds->priv;
1311 	int i;
1312 
1313 	mutex_lock(&priv->reg_mutex);
1314 
1315 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1316 		/* Remove this port from the port matrix of the other ports
1317 		 * in the same bridge. If the port is disabled, port matrix
1318 		 * is kept and not being setup until the port becomes enabled.
1319 		 */
1320 		if (dsa_is_user_port(ds, i) && i != port) {
1321 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1322 				continue;
1323 			if (priv->ports[i].enable)
1324 				mt7530_clear(priv, MT7530_PCR_P(i),
1325 					     PCR_MATRIX(BIT(port)));
1326 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1327 		}
1328 	}
1329 
1330 	/* Set the cpu port to be the only one in the port matrix of
1331 	 * this port.
1332 	 */
1333 	if (priv->ports[port].enable)
1334 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1335 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1336 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1337 
1338 	/* When a port is removed from the bridge, the port would be set up
1339 	 * back to the default as is at initial boot which is a VLAN-unaware
1340 	 * port.
1341 	 */
1342 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1343 		   MT7530_PORT_MATRIX_MODE);
1344 
1345 	mutex_unlock(&priv->reg_mutex);
1346 }
1347 
1348 static int
1349 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1350 		    const unsigned char *addr, u16 vid)
1351 {
1352 	struct mt7530_priv *priv = ds->priv;
1353 	int ret;
1354 	u8 port_mask = BIT(port);
1355 
1356 	mutex_lock(&priv->reg_mutex);
1357 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1358 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1359 	mutex_unlock(&priv->reg_mutex);
1360 
1361 	return ret;
1362 }
1363 
1364 static int
1365 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1366 		    const unsigned char *addr, u16 vid)
1367 {
1368 	struct mt7530_priv *priv = ds->priv;
1369 	int ret;
1370 	u8 port_mask = BIT(port);
1371 
1372 	mutex_lock(&priv->reg_mutex);
1373 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1374 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1375 	mutex_unlock(&priv->reg_mutex);
1376 
1377 	return ret;
1378 }
1379 
1380 static int
1381 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1382 		     dsa_fdb_dump_cb_t *cb, void *data)
1383 {
1384 	struct mt7530_priv *priv = ds->priv;
1385 	struct mt7530_fdb _fdb = { 0 };
1386 	int cnt = MT7530_NUM_FDB_RECORDS;
1387 	int ret = 0;
1388 	u32 rsp = 0;
1389 
1390 	mutex_lock(&priv->reg_mutex);
1391 
1392 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1393 	if (ret < 0)
1394 		goto err;
1395 
1396 	do {
1397 		if (rsp & ATC_SRCH_HIT) {
1398 			mt7530_fdb_read(priv, &_fdb);
1399 			if (_fdb.port_mask & BIT(port)) {
1400 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1401 					 data);
1402 				if (ret < 0)
1403 					break;
1404 			}
1405 		}
1406 	} while (--cnt &&
1407 		 !(rsp & ATC_SRCH_END) &&
1408 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1409 err:
1410 	mutex_unlock(&priv->reg_mutex);
1411 
1412 	return 0;
1413 }
1414 
1415 static int
1416 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1417 		    const struct switchdev_obj_port_mdb *mdb)
1418 {
1419 	struct mt7530_priv *priv = ds->priv;
1420 	const u8 *addr = mdb->addr;
1421 	u16 vid = mdb->vid;
1422 	u8 port_mask = 0;
1423 	int ret;
1424 
1425 	mutex_lock(&priv->reg_mutex);
1426 
1427 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1428 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1429 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1430 			    & PORT_MAP_MASK;
1431 
1432 	port_mask |= BIT(port);
1433 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1434 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1435 
1436 	mutex_unlock(&priv->reg_mutex);
1437 
1438 	return ret;
1439 }
1440 
1441 static int
1442 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1443 		    const struct switchdev_obj_port_mdb *mdb)
1444 {
1445 	struct mt7530_priv *priv = ds->priv;
1446 	const u8 *addr = mdb->addr;
1447 	u16 vid = mdb->vid;
1448 	u8 port_mask = 0;
1449 	int ret;
1450 
1451 	mutex_lock(&priv->reg_mutex);
1452 
1453 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1454 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1455 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1456 			    & PORT_MAP_MASK;
1457 
1458 	port_mask &= ~BIT(port);
1459 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1460 			 port_mask ? STATIC_ENT : STATIC_EMP);
1461 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1462 
1463 	mutex_unlock(&priv->reg_mutex);
1464 
1465 	return ret;
1466 }
1467 
1468 static int
1469 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1470 {
1471 	struct mt7530_dummy_poll p;
1472 	u32 val;
1473 	int ret;
1474 
1475 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1476 	mt7530_write(priv, MT7530_VTCR, val);
1477 
1478 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1479 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1480 				 !(val & VTCR_BUSY), 20, 20000);
1481 	if (ret < 0) {
1482 		dev_err(priv->dev, "poll timeout\n");
1483 		return ret;
1484 	}
1485 
1486 	val = mt7530_read(priv, MT7530_VTCR);
1487 	if (val & VTCR_INVALID) {
1488 		dev_err(priv->dev, "read VTCR invalid\n");
1489 		return -EINVAL;
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 static int
1496 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1497 			   struct netlink_ext_ack *extack)
1498 {
1499 	if (vlan_filtering) {
1500 		/* The port is being kept as VLAN-unaware port when bridge is
1501 		 * set up with vlan_filtering not being set, Otherwise, the
1502 		 * port and the corresponding CPU port is required the setup
1503 		 * for becoming a VLAN-aware port.
1504 		 */
1505 		mt7530_port_set_vlan_aware(ds, port);
1506 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1507 	} else {
1508 		mt7530_port_set_vlan_unaware(ds, port);
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static void
1515 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1516 		   struct mt7530_hw_vlan_entry *entry)
1517 {
1518 	u8 new_members;
1519 	u32 val;
1520 
1521 	new_members = entry->old_members | BIT(entry->port) |
1522 		      BIT(MT7530_CPU_PORT);
1523 
1524 	/* Validate the entry with independent learning, create egress tag per
1525 	 * VLAN and joining the port as one of the port members.
1526 	 */
1527 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1528 	      VLAN_VALID;
1529 	mt7530_write(priv, MT7530_VAWD1, val);
1530 
1531 	/* Decide whether adding tag or not for those outgoing packets from the
1532 	 * port inside the VLAN.
1533 	 */
1534 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1535 				MT7530_VLAN_EGRESS_TAG;
1536 	mt7530_rmw(priv, MT7530_VAWD2,
1537 		   ETAG_CTRL_P_MASK(entry->port),
1538 		   ETAG_CTRL_P(entry->port, val));
1539 
1540 	/* CPU port is always taken as a tagged port for serving more than one
1541 	 * VLANs across and also being applied with egress type stack mode for
1542 	 * that VLAN tags would be appended after hardware special tag used as
1543 	 * DSA tag.
1544 	 */
1545 	mt7530_rmw(priv, MT7530_VAWD2,
1546 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1547 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1548 			       MT7530_VLAN_EGRESS_STACK));
1549 }
1550 
1551 static void
1552 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1553 		   struct mt7530_hw_vlan_entry *entry)
1554 {
1555 	u8 new_members;
1556 	u32 val;
1557 
1558 	new_members = entry->old_members & ~BIT(entry->port);
1559 
1560 	val = mt7530_read(priv, MT7530_VAWD1);
1561 	if (!(val & VLAN_VALID)) {
1562 		dev_err(priv->dev,
1563 			"Cannot be deleted due to invalid entry\n");
1564 		return;
1565 	}
1566 
1567 	/* If certain member apart from CPU port is still alive in the VLAN,
1568 	 * the entry would be kept valid. Otherwise, the entry is got to be
1569 	 * disabled.
1570 	 */
1571 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1572 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1573 		      VLAN_VALID;
1574 		mt7530_write(priv, MT7530_VAWD1, val);
1575 	} else {
1576 		mt7530_write(priv, MT7530_VAWD1, 0);
1577 		mt7530_write(priv, MT7530_VAWD2, 0);
1578 	}
1579 }
1580 
1581 static void
1582 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1583 		      struct mt7530_hw_vlan_entry *entry,
1584 		      mt7530_vlan_op vlan_op)
1585 {
1586 	u32 val;
1587 
1588 	/* Fetch entry */
1589 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1590 
1591 	val = mt7530_read(priv, MT7530_VAWD1);
1592 
1593 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1594 
1595 	/* Manipulate entry */
1596 	vlan_op(priv, entry);
1597 
1598 	/* Flush result to hardware */
1599 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1600 }
1601 
1602 static int
1603 mt7530_setup_vlan0(struct mt7530_priv *priv)
1604 {
1605 	u32 val;
1606 
1607 	/* Validate the entry with independent learning, keep the original
1608 	 * ingress tag attribute.
1609 	 */
1610 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1611 	      VLAN_VALID;
1612 	mt7530_write(priv, MT7530_VAWD1, val);
1613 
1614 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1615 }
1616 
1617 static int
1618 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1619 		     const struct switchdev_obj_port_vlan *vlan,
1620 		     struct netlink_ext_ack *extack)
1621 {
1622 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1623 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1624 	struct mt7530_hw_vlan_entry new_entry;
1625 	struct mt7530_priv *priv = ds->priv;
1626 
1627 	mutex_lock(&priv->reg_mutex);
1628 
1629 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1630 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1631 
1632 	if (pvid) {
1633 		priv->ports[port].pvid = vlan->vid;
1634 
1635 		/* Accept all frames if PVID is set */
1636 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1637 			   MT7530_VLAN_ACC_ALL);
1638 
1639 		/* Only configure PVID if VLAN filtering is enabled */
1640 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1641 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1642 				   G0_PORT_VID_MASK,
1643 				   G0_PORT_VID(vlan->vid));
1644 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1645 		/* This VLAN is overwritten without PVID, so unset it */
1646 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1647 
1648 		/* Only accept tagged frames if the port is VLAN-aware */
1649 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1650 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1651 				   MT7530_VLAN_ACC_TAGGED);
1652 
1653 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1654 			   G0_PORT_VID_DEF);
1655 	}
1656 
1657 	mutex_unlock(&priv->reg_mutex);
1658 
1659 	return 0;
1660 }
1661 
1662 static int
1663 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1664 		     const struct switchdev_obj_port_vlan *vlan)
1665 {
1666 	struct mt7530_hw_vlan_entry target_entry;
1667 	struct mt7530_priv *priv = ds->priv;
1668 
1669 	mutex_lock(&priv->reg_mutex);
1670 
1671 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1672 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1673 			      mt7530_hw_vlan_del);
1674 
1675 	/* PVID is being restored to the default whenever the PVID port
1676 	 * is being removed from the VLAN.
1677 	 */
1678 	if (priv->ports[port].pvid == vlan->vid) {
1679 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1680 
1681 		/* Only accept tagged frames if the port is VLAN-aware */
1682 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1683 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1684 				   MT7530_VLAN_ACC_TAGGED);
1685 
1686 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1687 			   G0_PORT_VID_DEF);
1688 	}
1689 
1690 
1691 	mutex_unlock(&priv->reg_mutex);
1692 
1693 	return 0;
1694 }
1695 
1696 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1697 {
1698 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1699 				   MIRROR_PORT(val);
1700 }
1701 
1702 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1703 {
1704 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1705 				   MIRROR_PORT(val);
1706 }
1707 
1708 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1709 				  struct dsa_mall_mirror_tc_entry *mirror,
1710 				  bool ingress)
1711 {
1712 	struct mt7530_priv *priv = ds->priv;
1713 	int monitor_port;
1714 	u32 val;
1715 
1716 	/* Check for existent entry */
1717 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1718 		return -EEXIST;
1719 
1720 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1721 
1722 	/* MT7530 only supports one monitor port */
1723 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1724 	if (val & MT753X_MIRROR_EN(priv->id) &&
1725 	    monitor_port != mirror->to_local_port)
1726 		return -EEXIST;
1727 
1728 	val |= MT753X_MIRROR_EN(priv->id);
1729 	val &= ~MT753X_MIRROR_MASK(priv->id);
1730 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1731 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1732 
1733 	val = mt7530_read(priv, MT7530_PCR_P(port));
1734 	if (ingress) {
1735 		val |= PORT_RX_MIR;
1736 		priv->mirror_rx |= BIT(port);
1737 	} else {
1738 		val |= PORT_TX_MIR;
1739 		priv->mirror_tx |= BIT(port);
1740 	}
1741 	mt7530_write(priv, MT7530_PCR_P(port), val);
1742 
1743 	return 0;
1744 }
1745 
1746 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1747 				   struct dsa_mall_mirror_tc_entry *mirror)
1748 {
1749 	struct mt7530_priv *priv = ds->priv;
1750 	u32 val;
1751 
1752 	val = mt7530_read(priv, MT7530_PCR_P(port));
1753 	if (mirror->ingress) {
1754 		val &= ~PORT_RX_MIR;
1755 		priv->mirror_rx &= ~BIT(port);
1756 	} else {
1757 		val &= ~PORT_TX_MIR;
1758 		priv->mirror_tx &= ~BIT(port);
1759 	}
1760 	mt7530_write(priv, MT7530_PCR_P(port), val);
1761 
1762 	if (!priv->mirror_rx && !priv->mirror_tx) {
1763 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1764 		val &= ~MT753X_MIRROR_EN(priv->id);
1765 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1766 	}
1767 }
1768 
1769 static enum dsa_tag_protocol
1770 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1771 		     enum dsa_tag_protocol mp)
1772 {
1773 	return DSA_TAG_PROTO_MTK;
1774 }
1775 
1776 #ifdef CONFIG_GPIOLIB
1777 static inline u32
1778 mt7530_gpio_to_bit(unsigned int offset)
1779 {
1780 	/* Map GPIO offset to register bit
1781 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1782 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1783 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1784 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1785 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1786 	 */
1787 	return BIT(offset + offset / 3);
1788 }
1789 
1790 static int
1791 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1792 {
1793 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1794 	u32 bit = mt7530_gpio_to_bit(offset);
1795 
1796 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1797 }
1798 
1799 static void
1800 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1801 {
1802 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1803 	u32 bit = mt7530_gpio_to_bit(offset);
1804 
1805 	if (value)
1806 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1807 	else
1808 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1809 }
1810 
1811 static int
1812 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1813 {
1814 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1815 	u32 bit = mt7530_gpio_to_bit(offset);
1816 
1817 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1818 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1819 }
1820 
1821 static int
1822 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1823 {
1824 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1825 	u32 bit = mt7530_gpio_to_bit(offset);
1826 
1827 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1828 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1829 
1830 	return 0;
1831 }
1832 
1833 static int
1834 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1835 {
1836 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1837 	u32 bit = mt7530_gpio_to_bit(offset);
1838 
1839 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1840 
1841 	if (value)
1842 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1843 	else
1844 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1845 
1846 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1847 
1848 	return 0;
1849 }
1850 
1851 static int
1852 mt7530_setup_gpio(struct mt7530_priv *priv)
1853 {
1854 	struct device *dev = priv->dev;
1855 	struct gpio_chip *gc;
1856 
1857 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1858 	if (!gc)
1859 		return -ENOMEM;
1860 
1861 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1862 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1863 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1864 
1865 	gc->label = "mt7530";
1866 	gc->parent = dev;
1867 	gc->owner = THIS_MODULE;
1868 	gc->get_direction = mt7530_gpio_get_direction;
1869 	gc->direction_input = mt7530_gpio_direction_input;
1870 	gc->direction_output = mt7530_gpio_direction_output;
1871 	gc->get = mt7530_gpio_get;
1872 	gc->set = mt7530_gpio_set;
1873 	gc->base = -1;
1874 	gc->ngpio = 15;
1875 	gc->can_sleep = true;
1876 
1877 	return devm_gpiochip_add_data(dev, gc, priv);
1878 }
1879 #endif /* CONFIG_GPIOLIB */
1880 
1881 static irqreturn_t
1882 mt7530_irq_thread_fn(int irq, void *dev_id)
1883 {
1884 	struct mt7530_priv *priv = dev_id;
1885 	bool handled = false;
1886 	u32 val;
1887 	int p;
1888 
1889 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1890 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1891 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1892 	mutex_unlock(&priv->bus->mdio_lock);
1893 
1894 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1895 		if (BIT(p) & val) {
1896 			unsigned int irq;
1897 
1898 			irq = irq_find_mapping(priv->irq_domain, p);
1899 			handle_nested_irq(irq);
1900 			handled = true;
1901 		}
1902 	}
1903 
1904 	return IRQ_RETVAL(handled);
1905 }
1906 
1907 static void
1908 mt7530_irq_mask(struct irq_data *d)
1909 {
1910 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1911 
1912 	priv->irq_enable &= ~BIT(d->hwirq);
1913 }
1914 
1915 static void
1916 mt7530_irq_unmask(struct irq_data *d)
1917 {
1918 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1919 
1920 	priv->irq_enable |= BIT(d->hwirq);
1921 }
1922 
1923 static void
1924 mt7530_irq_bus_lock(struct irq_data *d)
1925 {
1926 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1927 
1928 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1929 }
1930 
1931 static void
1932 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1933 {
1934 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1935 
1936 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1937 	mutex_unlock(&priv->bus->mdio_lock);
1938 }
1939 
1940 static struct irq_chip mt7530_irq_chip = {
1941 	.name = KBUILD_MODNAME,
1942 	.irq_mask = mt7530_irq_mask,
1943 	.irq_unmask = mt7530_irq_unmask,
1944 	.irq_bus_lock = mt7530_irq_bus_lock,
1945 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1946 };
1947 
1948 static int
1949 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1950 	       irq_hw_number_t hwirq)
1951 {
1952 	irq_set_chip_data(irq, domain->host_data);
1953 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1954 	irq_set_nested_thread(irq, true);
1955 	irq_set_noprobe(irq);
1956 
1957 	return 0;
1958 }
1959 
1960 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1961 	.map = mt7530_irq_map,
1962 	.xlate = irq_domain_xlate_onecell,
1963 };
1964 
1965 static void
1966 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1967 {
1968 	struct dsa_switch *ds = priv->ds;
1969 	int p;
1970 
1971 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1972 		if (BIT(p) & ds->phys_mii_mask) {
1973 			unsigned int irq;
1974 
1975 			irq = irq_create_mapping(priv->irq_domain, p);
1976 			ds->slave_mii_bus->irq[p] = irq;
1977 		}
1978 	}
1979 }
1980 
1981 static int
1982 mt7530_setup_irq(struct mt7530_priv *priv)
1983 {
1984 	struct device *dev = priv->dev;
1985 	struct device_node *np = dev->of_node;
1986 	int ret;
1987 
1988 	if (!of_property_read_bool(np, "interrupt-controller")) {
1989 		dev_info(dev, "no interrupt support\n");
1990 		return 0;
1991 	}
1992 
1993 	priv->irq = of_irq_get(np, 0);
1994 	if (priv->irq <= 0) {
1995 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
1996 		return priv->irq ? : -EINVAL;
1997 	}
1998 
1999 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2000 						 &mt7530_irq_domain_ops, priv);
2001 	if (!priv->irq_domain) {
2002 		dev_err(dev, "failed to create IRQ domain\n");
2003 		return -ENOMEM;
2004 	}
2005 
2006 	/* This register must be set for MT7530 to properly fire interrupts */
2007 	if (priv->id != ID_MT7531)
2008 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2009 
2010 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2011 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2012 	if (ret) {
2013 		irq_domain_remove(priv->irq_domain);
2014 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2015 		return ret;
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static void
2022 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2023 {
2024 	int p;
2025 
2026 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2027 		if (BIT(p) & priv->ds->phys_mii_mask) {
2028 			unsigned int irq;
2029 
2030 			irq = irq_find_mapping(priv->irq_domain, p);
2031 			irq_dispose_mapping(irq);
2032 		}
2033 	}
2034 }
2035 
2036 static void
2037 mt7530_free_irq_common(struct mt7530_priv *priv)
2038 {
2039 	free_irq(priv->irq, priv);
2040 	irq_domain_remove(priv->irq_domain);
2041 }
2042 
2043 static void
2044 mt7530_free_irq(struct mt7530_priv *priv)
2045 {
2046 	mt7530_free_mdio_irq(priv);
2047 	mt7530_free_irq_common(priv);
2048 }
2049 
2050 static int
2051 mt7530_setup_mdio(struct mt7530_priv *priv)
2052 {
2053 	struct dsa_switch *ds = priv->ds;
2054 	struct device *dev = priv->dev;
2055 	struct mii_bus *bus;
2056 	static int idx;
2057 	int ret;
2058 
2059 	bus = devm_mdiobus_alloc(dev);
2060 	if (!bus)
2061 		return -ENOMEM;
2062 
2063 	ds->slave_mii_bus = bus;
2064 	bus->priv = priv;
2065 	bus->name = KBUILD_MODNAME "-mii";
2066 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2067 	bus->read = mt753x_phy_read;
2068 	bus->write = mt753x_phy_write;
2069 	bus->parent = dev;
2070 	bus->phy_mask = ~ds->phys_mii_mask;
2071 
2072 	if (priv->irq)
2073 		mt7530_setup_mdio_irq(priv);
2074 
2075 	ret = mdiobus_register(bus);
2076 	if (ret) {
2077 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2078 		if (priv->irq)
2079 			mt7530_free_mdio_irq(priv);
2080 	}
2081 
2082 	return ret;
2083 }
2084 
2085 static int
2086 mt7530_setup(struct dsa_switch *ds)
2087 {
2088 	struct mt7530_priv *priv = ds->priv;
2089 	struct device_node *phy_node;
2090 	struct device_node *mac_np;
2091 	struct mt7530_dummy_poll p;
2092 	phy_interface_t interface;
2093 	struct device_node *dn;
2094 	u32 id, val;
2095 	int ret, i;
2096 
2097 	/* The parent node of master netdev which holds the common system
2098 	 * controller also is the container for two GMACs nodes representing
2099 	 * as two netdev instances.
2100 	 */
2101 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2102 	ds->assisted_learning_on_cpu_port = true;
2103 	ds->mtu_enforcement_ingress = true;
2104 
2105 	if (priv->id == ID_MT7530) {
2106 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2107 		ret = regulator_enable(priv->core_pwr);
2108 		if (ret < 0) {
2109 			dev_err(priv->dev,
2110 				"Failed to enable core power: %d\n", ret);
2111 			return ret;
2112 		}
2113 
2114 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2115 		ret = regulator_enable(priv->io_pwr);
2116 		if (ret < 0) {
2117 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2118 				ret);
2119 			return ret;
2120 		}
2121 	}
2122 
2123 	/* Reset whole chip through gpio pin or memory-mapped registers for
2124 	 * different type of hardware
2125 	 */
2126 	if (priv->mcm) {
2127 		reset_control_assert(priv->rstc);
2128 		usleep_range(1000, 1100);
2129 		reset_control_deassert(priv->rstc);
2130 	} else {
2131 		gpiod_set_value_cansleep(priv->reset, 0);
2132 		usleep_range(1000, 1100);
2133 		gpiod_set_value_cansleep(priv->reset, 1);
2134 	}
2135 
2136 	/* Waiting for MT7530 got to stable */
2137 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2138 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2139 				 20, 1000000);
2140 	if (ret < 0) {
2141 		dev_err(priv->dev, "reset timeout\n");
2142 		return ret;
2143 	}
2144 
2145 	id = mt7530_read(priv, MT7530_CREV);
2146 	id >>= CHIP_NAME_SHIFT;
2147 	if (id != MT7530_ID) {
2148 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2149 		return -ENODEV;
2150 	}
2151 
2152 	/* Reset the switch through internal reset */
2153 	mt7530_write(priv, MT7530_SYS_CTRL,
2154 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2155 		     SYS_CTRL_REG_RST);
2156 
2157 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2158 	val = mt7530_read(priv, MT7530_MHWTRAP);
2159 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2160 	val |= MHWTRAP_MANUAL;
2161 	mt7530_write(priv, MT7530_MHWTRAP, val);
2162 
2163 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2164 
2165 	/* Enable and reset MIB counters */
2166 	mt7530_mib_reset(ds);
2167 
2168 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2169 		/* Disable forwarding by default on all ports */
2170 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2171 			   PCR_MATRIX_CLR);
2172 
2173 		/* Disable learning by default on all ports */
2174 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2175 
2176 		if (dsa_is_cpu_port(ds, i)) {
2177 			ret = mt753x_cpu_port_enable(ds, i);
2178 			if (ret)
2179 				return ret;
2180 		} else {
2181 			mt7530_port_disable(ds, i);
2182 
2183 			/* Set default PVID to 0 on all user ports */
2184 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2185 				   G0_PORT_VID_DEF);
2186 		}
2187 		/* Enable consistent egress tag */
2188 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2189 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2190 	}
2191 
2192 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2193 	ret = mt7530_setup_vlan0(priv);
2194 	if (ret)
2195 		return ret;
2196 
2197 	/* Setup port 5 */
2198 	priv->p5_intf_sel = P5_DISABLED;
2199 	interface = PHY_INTERFACE_MODE_NA;
2200 
2201 	if (!dsa_is_unused_port(ds, 5)) {
2202 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2203 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2204 		if (ret && ret != -ENODEV)
2205 			return ret;
2206 	} else {
2207 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2208 		for_each_child_of_node(dn, mac_np) {
2209 			if (!of_device_is_compatible(mac_np,
2210 						     "mediatek,eth-mac"))
2211 				continue;
2212 
2213 			ret = of_property_read_u32(mac_np, "reg", &id);
2214 			if (ret < 0 || id != 1)
2215 				continue;
2216 
2217 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2218 			if (!phy_node)
2219 				continue;
2220 
2221 			if (phy_node->parent == priv->dev->of_node->parent) {
2222 				ret = of_get_phy_mode(mac_np, &interface);
2223 				if (ret && ret != -ENODEV) {
2224 					of_node_put(mac_np);
2225 					return ret;
2226 				}
2227 				id = of_mdio_parse_addr(ds->dev, phy_node);
2228 				if (id == 0)
2229 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2230 				if (id == 4)
2231 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2232 			}
2233 			of_node_put(mac_np);
2234 			of_node_put(phy_node);
2235 			break;
2236 		}
2237 	}
2238 
2239 #ifdef CONFIG_GPIOLIB
2240 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2241 		ret = mt7530_setup_gpio(priv);
2242 		if (ret)
2243 			return ret;
2244 	}
2245 #endif /* CONFIG_GPIOLIB */
2246 
2247 	mt7530_setup_port5(ds, interface);
2248 
2249 	/* Flush the FDB table */
2250 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2251 	if (ret < 0)
2252 		return ret;
2253 
2254 	return 0;
2255 }
2256 
2257 static int
2258 mt7531_setup(struct dsa_switch *ds)
2259 {
2260 	struct mt7530_priv *priv = ds->priv;
2261 	struct mt7530_dummy_poll p;
2262 	u32 val, id;
2263 	int ret, i;
2264 
2265 	/* Reset whole chip through gpio pin or memory-mapped registers for
2266 	 * different type of hardware
2267 	 */
2268 	if (priv->mcm) {
2269 		reset_control_assert(priv->rstc);
2270 		usleep_range(1000, 1100);
2271 		reset_control_deassert(priv->rstc);
2272 	} else {
2273 		gpiod_set_value_cansleep(priv->reset, 0);
2274 		usleep_range(1000, 1100);
2275 		gpiod_set_value_cansleep(priv->reset, 1);
2276 	}
2277 
2278 	/* Waiting for MT7530 got to stable */
2279 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2280 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2281 				 20, 1000000);
2282 	if (ret < 0) {
2283 		dev_err(priv->dev, "reset timeout\n");
2284 		return ret;
2285 	}
2286 
2287 	id = mt7530_read(priv, MT7531_CREV);
2288 	id >>= CHIP_NAME_SHIFT;
2289 
2290 	if (id != MT7531_ID) {
2291 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2292 		return -ENODEV;
2293 	}
2294 
2295 	/* Reset the switch through internal reset */
2296 	mt7530_write(priv, MT7530_SYS_CTRL,
2297 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2298 		     SYS_CTRL_REG_RST);
2299 
2300 	if (mt7531_dual_sgmii_supported(priv)) {
2301 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2302 
2303 		/* Let ds->slave_mii_bus be able to access external phy. */
2304 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2305 			   MT7531_EXT_P_MDC_11);
2306 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2307 			   MT7531_EXT_P_MDIO_12);
2308 	} else {
2309 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2310 	}
2311 	dev_dbg(ds->dev, "P5 support %s interface\n",
2312 		p5_intf_modes(priv->p5_intf_sel));
2313 
2314 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2315 		   MT7531_GPIO0_INTERRUPT);
2316 
2317 	/* Let phylink decide the interface later. */
2318 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2319 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2320 
2321 	/* Enable PHY core PLL, since phy_device has not yet been created
2322 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2323 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2324 	 * function.
2325 	 */
2326 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2327 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2328 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2329 	val &= ~MT7531_PHY_PLL_OFF;
2330 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2331 				 CORE_PLL_GROUP4, val);
2332 
2333 	/* BPDU to CPU port */
2334 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2335 		   BIT(MT7530_CPU_PORT));
2336 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2337 		   MT753X_BPDU_CPU_ONLY);
2338 
2339 	/* Enable and reset MIB counters */
2340 	mt7530_mib_reset(ds);
2341 
2342 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2343 		/* Disable forwarding by default on all ports */
2344 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2345 			   PCR_MATRIX_CLR);
2346 
2347 		/* Disable learning by default on all ports */
2348 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2349 
2350 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2351 
2352 		if (dsa_is_cpu_port(ds, i)) {
2353 			ret = mt753x_cpu_port_enable(ds, i);
2354 			if (ret)
2355 				return ret;
2356 		} else {
2357 			mt7530_port_disable(ds, i);
2358 
2359 			/* Set default PVID to 0 on all user ports */
2360 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2361 				   G0_PORT_VID_DEF);
2362 		}
2363 
2364 		/* Enable consistent egress tag */
2365 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2366 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2367 	}
2368 
2369 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2370 	ret = mt7530_setup_vlan0(priv);
2371 	if (ret)
2372 		return ret;
2373 
2374 	ds->assisted_learning_on_cpu_port = true;
2375 	ds->mtu_enforcement_ingress = true;
2376 
2377 	/* Flush the FDB table */
2378 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2379 	if (ret < 0)
2380 		return ret;
2381 
2382 	return 0;
2383 }
2384 
2385 static bool
2386 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2387 			  const struct phylink_link_state *state)
2388 {
2389 	struct mt7530_priv *priv = ds->priv;
2390 
2391 	switch (port) {
2392 	case 0 ... 4: /* Internal phy */
2393 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2394 			return false;
2395 		break;
2396 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2397 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2398 		    state->interface != PHY_INTERFACE_MODE_MII &&
2399 		    state->interface != PHY_INTERFACE_MODE_GMII)
2400 			return false;
2401 		break;
2402 	case 6: /* 1st cpu port */
2403 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2404 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2405 			return false;
2406 		break;
2407 	default:
2408 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2409 			port);
2410 		return false;
2411 	}
2412 
2413 	return true;
2414 }
2415 
2416 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2417 {
2418 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2419 }
2420 
2421 static bool
2422 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2423 			  const struct phylink_link_state *state)
2424 {
2425 	struct mt7530_priv *priv = ds->priv;
2426 
2427 	switch (port) {
2428 	case 0 ... 4: /* Internal phy */
2429 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2430 			return false;
2431 		break;
2432 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2433 		if (mt7531_is_rgmii_port(priv, port))
2434 			return phy_interface_mode_is_rgmii(state->interface);
2435 		fallthrough;
2436 	case 6: /* 1st cpu port supports sgmii/8023z only */
2437 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2438 		    !phy_interface_mode_is_8023z(state->interface))
2439 			return false;
2440 		break;
2441 	default:
2442 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2443 			port);
2444 		return false;
2445 	}
2446 
2447 	return true;
2448 }
2449 
2450 static bool
2451 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2452 			  const struct phylink_link_state *state)
2453 {
2454 	struct mt7530_priv *priv = ds->priv;
2455 
2456 	return priv->info->phy_mode_supported(ds, port, state);
2457 }
2458 
2459 static int
2460 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2461 {
2462 	struct mt7530_priv *priv = ds->priv;
2463 
2464 	return priv->info->pad_setup(ds, state->interface);
2465 }
2466 
2467 static int
2468 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2469 		  phy_interface_t interface)
2470 {
2471 	struct mt7530_priv *priv = ds->priv;
2472 
2473 	/* Only need to setup port5. */
2474 	if (port != 5)
2475 		return 0;
2476 
2477 	mt7530_setup_port5(priv->ds, interface);
2478 
2479 	return 0;
2480 }
2481 
2482 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2483 			      phy_interface_t interface,
2484 			      struct phy_device *phydev)
2485 {
2486 	u32 val;
2487 
2488 	if (!mt7531_is_rgmii_port(priv, port)) {
2489 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2490 			port);
2491 		return -EINVAL;
2492 	}
2493 
2494 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2495 	val |= GP_CLK_EN;
2496 	val &= ~GP_MODE_MASK;
2497 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2498 	val &= ~CLK_SKEW_IN_MASK;
2499 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2500 	val &= ~CLK_SKEW_OUT_MASK;
2501 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2502 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2503 
2504 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2505 	if (!phydev || phy_driver_is_genphy(phydev)) {
2506 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2507 		switch (interface) {
2508 		case PHY_INTERFACE_MODE_RGMII:
2509 			val |= TXCLK_NO_REVERSE;
2510 			val |= RXCLK_NO_DELAY;
2511 			break;
2512 		case PHY_INTERFACE_MODE_RGMII_RXID:
2513 			val |= TXCLK_NO_REVERSE;
2514 			break;
2515 		case PHY_INTERFACE_MODE_RGMII_TXID:
2516 			val |= RXCLK_NO_DELAY;
2517 			break;
2518 		case PHY_INTERFACE_MODE_RGMII_ID:
2519 			break;
2520 		default:
2521 			return -EINVAL;
2522 		}
2523 	}
2524 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2525 
2526 	return 0;
2527 }
2528 
2529 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2530 				  unsigned long *supported)
2531 {
2532 	/* Port5 supports ethier RGMII or SGMII.
2533 	 * Port6 supports SGMII only.
2534 	 */
2535 	switch (port) {
2536 	case 5:
2537 		if (mt7531_is_rgmii_port(priv, port))
2538 			break;
2539 		fallthrough;
2540 	case 6:
2541 		phylink_set(supported, 1000baseX_Full);
2542 		phylink_set(supported, 2500baseX_Full);
2543 		phylink_set(supported, 2500baseT_Full);
2544 	}
2545 }
2546 
2547 static void
2548 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2549 			   unsigned int mode, phy_interface_t interface,
2550 			   int speed, int duplex)
2551 {
2552 	struct mt7530_priv *priv = ds->priv;
2553 	unsigned int val;
2554 
2555 	/* For adjusting speed and duplex of SGMII force mode. */
2556 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2557 	    phylink_autoneg_inband(mode))
2558 		return;
2559 
2560 	/* SGMII force mode setting */
2561 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2562 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2563 
2564 	switch (speed) {
2565 	case SPEED_10:
2566 		val |= MT7531_SGMII_FORCE_SPEED_10;
2567 		break;
2568 	case SPEED_100:
2569 		val |= MT7531_SGMII_FORCE_SPEED_100;
2570 		break;
2571 	case SPEED_1000:
2572 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2573 		break;
2574 	}
2575 
2576 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2577 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2578 	 */
2579 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2580 	    duplex != DUPLEX_FULL)
2581 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2582 
2583 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2584 }
2585 
2586 static bool mt753x_is_mac_port(u32 port)
2587 {
2588 	return (port == 5 || port == 6);
2589 }
2590 
2591 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2592 					 phy_interface_t interface)
2593 {
2594 	u32 val;
2595 
2596 	if (!mt753x_is_mac_port(port))
2597 		return -EINVAL;
2598 
2599 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2600 		   MT7531_SGMII_PHYA_PWD);
2601 
2602 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2603 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2604 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2605 	 * encoding.
2606 	 */
2607 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2608 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2609 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2610 
2611 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2612 
2613 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2614 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2615 	 */
2616 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2617 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2618 		   MT7531_SGMII_FORCE_SPEED_1000);
2619 
2620 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2621 
2622 	return 0;
2623 }
2624 
2625 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2626 				      phy_interface_t interface)
2627 {
2628 	if (!mt753x_is_mac_port(port))
2629 		return -EINVAL;
2630 
2631 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2632 		   MT7531_SGMII_PHYA_PWD);
2633 
2634 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2635 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2636 
2637 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2638 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2639 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2640 
2641 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2642 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2643 
2644 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2645 
2646 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2647 
2648 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2649 
2650 	return 0;
2651 }
2652 
2653 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2654 {
2655 	struct mt7530_priv *priv = ds->priv;
2656 	u32 val;
2657 
2658 	/* Only restart AN when AN is enabled */
2659 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2660 	if (val & MT7531_SGMII_AN_ENABLE) {
2661 		val |= MT7531_SGMII_AN_RESTART;
2662 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2663 	}
2664 }
2665 
2666 static int
2667 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2668 		  phy_interface_t interface)
2669 {
2670 	struct mt7530_priv *priv = ds->priv;
2671 	struct phy_device *phydev;
2672 	struct dsa_port *dp;
2673 
2674 	if (!mt753x_is_mac_port(port)) {
2675 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2676 		return -EINVAL;
2677 	}
2678 
2679 	switch (interface) {
2680 	case PHY_INTERFACE_MODE_RGMII:
2681 	case PHY_INTERFACE_MODE_RGMII_ID:
2682 	case PHY_INTERFACE_MODE_RGMII_RXID:
2683 	case PHY_INTERFACE_MODE_RGMII_TXID:
2684 		dp = dsa_to_port(ds, port);
2685 		phydev = dp->slave->phydev;
2686 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2687 	case PHY_INTERFACE_MODE_SGMII:
2688 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2689 	case PHY_INTERFACE_MODE_NA:
2690 	case PHY_INTERFACE_MODE_1000BASEX:
2691 	case PHY_INTERFACE_MODE_2500BASEX:
2692 		if (phylink_autoneg_inband(mode))
2693 			return -EINVAL;
2694 
2695 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2696 	default:
2697 		return -EINVAL;
2698 	}
2699 
2700 	return -EINVAL;
2701 }
2702 
2703 static int
2704 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2705 		  const struct phylink_link_state *state)
2706 {
2707 	struct mt7530_priv *priv = ds->priv;
2708 
2709 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2710 }
2711 
2712 static void
2713 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2714 			  const struct phylink_link_state *state)
2715 {
2716 	struct mt7530_priv *priv = ds->priv;
2717 	u32 mcr_cur, mcr_new;
2718 
2719 	if (!mt753x_phy_mode_supported(ds, port, state))
2720 		goto unsupported;
2721 
2722 	switch (port) {
2723 	case 0 ... 4: /* Internal phy */
2724 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2725 			goto unsupported;
2726 		break;
2727 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2728 		if (priv->p5_interface == state->interface)
2729 			break;
2730 
2731 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2732 			goto unsupported;
2733 
2734 		if (priv->p5_intf_sel != P5_DISABLED)
2735 			priv->p5_interface = state->interface;
2736 		break;
2737 	case 6: /* 1st cpu port */
2738 		if (priv->p6_interface == state->interface)
2739 			break;
2740 
2741 		mt753x_pad_setup(ds, state);
2742 
2743 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2744 			goto unsupported;
2745 
2746 		priv->p6_interface = state->interface;
2747 		break;
2748 	default:
2749 unsupported:
2750 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2751 			__func__, phy_modes(state->interface), port);
2752 		return;
2753 	}
2754 
2755 	if (phylink_autoneg_inband(mode) &&
2756 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2757 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2758 			__func__);
2759 		return;
2760 	}
2761 
2762 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2763 	mcr_new = mcr_cur;
2764 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2765 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2766 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2767 
2768 	/* Are we connected to external phy */
2769 	if (port == 5 && dsa_is_user_port(ds, 5))
2770 		mcr_new |= PMCR_EXT_PHY;
2771 
2772 	if (mcr_new != mcr_cur)
2773 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2774 }
2775 
2776 static void
2777 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2778 {
2779 	struct mt7530_priv *priv = ds->priv;
2780 
2781 	if (!priv->info->mac_pcs_an_restart)
2782 		return;
2783 
2784 	priv->info->mac_pcs_an_restart(ds, port);
2785 }
2786 
2787 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2788 					 unsigned int mode,
2789 					 phy_interface_t interface)
2790 {
2791 	struct mt7530_priv *priv = ds->priv;
2792 
2793 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2794 }
2795 
2796 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2797 				   unsigned int mode, phy_interface_t interface,
2798 				   int speed, int duplex)
2799 {
2800 	struct mt7530_priv *priv = ds->priv;
2801 
2802 	if (!priv->info->mac_pcs_link_up)
2803 		return;
2804 
2805 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2806 }
2807 
2808 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2809 				       unsigned int mode,
2810 				       phy_interface_t interface,
2811 				       struct phy_device *phydev,
2812 				       int speed, int duplex,
2813 				       bool tx_pause, bool rx_pause)
2814 {
2815 	struct mt7530_priv *priv = ds->priv;
2816 	u32 mcr;
2817 
2818 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2819 
2820 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2821 
2822 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2823 	 * variants.
2824 	 */
2825 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2826 	    (phy_interface_mode_is_8023z(interface))) {
2827 		speed = SPEED_1000;
2828 		duplex = DUPLEX_FULL;
2829 	}
2830 
2831 	switch (speed) {
2832 	case SPEED_1000:
2833 		mcr |= PMCR_FORCE_SPEED_1000;
2834 		break;
2835 	case SPEED_100:
2836 		mcr |= PMCR_FORCE_SPEED_100;
2837 		break;
2838 	}
2839 	if (duplex == DUPLEX_FULL) {
2840 		mcr |= PMCR_FORCE_FDX;
2841 		if (tx_pause)
2842 			mcr |= PMCR_TX_FC_EN;
2843 		if (rx_pause)
2844 			mcr |= PMCR_RX_FC_EN;
2845 	}
2846 
2847 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
2848 		switch (speed) {
2849 		case SPEED_1000:
2850 			mcr |= PMCR_FORCE_EEE1G;
2851 			break;
2852 		case SPEED_100:
2853 			mcr |= PMCR_FORCE_EEE100;
2854 			break;
2855 		}
2856 	}
2857 
2858 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2859 }
2860 
2861 static int
2862 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2863 {
2864 	struct mt7530_priv *priv = ds->priv;
2865 	phy_interface_t interface;
2866 	int speed;
2867 	int ret;
2868 
2869 	switch (port) {
2870 	case 5:
2871 		if (mt7531_is_rgmii_port(priv, port))
2872 			interface = PHY_INTERFACE_MODE_RGMII;
2873 		else
2874 			interface = PHY_INTERFACE_MODE_2500BASEX;
2875 
2876 		priv->p5_interface = interface;
2877 		break;
2878 	case 6:
2879 		interface = PHY_INTERFACE_MODE_2500BASEX;
2880 
2881 		mt7531_pad_setup(ds, interface);
2882 
2883 		priv->p6_interface = interface;
2884 		break;
2885 	default:
2886 		return -EINVAL;
2887 	}
2888 
2889 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2890 		speed = SPEED_2500;
2891 	else
2892 		speed = SPEED_1000;
2893 
2894 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2895 	if (ret)
2896 		return ret;
2897 	mt7530_write(priv, MT7530_PMCR_P(port),
2898 		     PMCR_CPU_PORT_SETTING(priv->id));
2899 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2900 				   speed, DUPLEX_FULL, true, true);
2901 
2902 	return 0;
2903 }
2904 
2905 static void
2906 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2907 			 unsigned long *supported)
2908 {
2909 	if (port == 5)
2910 		phylink_set(supported, 1000baseX_Full);
2911 }
2912 
2913 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2914 				     unsigned long *supported)
2915 {
2916 	struct mt7530_priv *priv = ds->priv;
2917 
2918 	mt7531_sgmii_validate(priv, port, supported);
2919 }
2920 
2921 static void
2922 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2923 			unsigned long *supported,
2924 			struct phylink_link_state *state)
2925 {
2926 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2927 	struct mt7530_priv *priv = ds->priv;
2928 
2929 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2930 	    !mt753x_phy_mode_supported(ds, port, state)) {
2931 		linkmode_zero(supported);
2932 		return;
2933 	}
2934 
2935 	phylink_set_port_modes(mask);
2936 
2937 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2938 	    !phy_interface_mode_is_8023z(state->interface)) {
2939 		phylink_set(mask, 10baseT_Half);
2940 		phylink_set(mask, 10baseT_Full);
2941 		phylink_set(mask, 100baseT_Half);
2942 		phylink_set(mask, 100baseT_Full);
2943 		phylink_set(mask, Autoneg);
2944 	}
2945 
2946 	/* This switch only supports 1G full-duplex. */
2947 	if (state->interface != PHY_INTERFACE_MODE_MII)
2948 		phylink_set(mask, 1000baseT_Full);
2949 
2950 	priv->info->mac_port_validate(ds, port, mask);
2951 
2952 	phylink_set(mask, Pause);
2953 	phylink_set(mask, Asym_Pause);
2954 
2955 	linkmode_and(supported, supported, mask);
2956 	linkmode_and(state->advertising, state->advertising, mask);
2957 
2958 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2959 	 * to advertise both, only report advertising at 2500BaseX.
2960 	 */
2961 	phylink_helper_basex_speed(state);
2962 }
2963 
2964 static int
2965 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2966 			      struct phylink_link_state *state)
2967 {
2968 	struct mt7530_priv *priv = ds->priv;
2969 	u32 pmsr;
2970 
2971 	if (port < 0 || port >= MT7530_NUM_PORTS)
2972 		return -EINVAL;
2973 
2974 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2975 
2976 	state->link = (pmsr & PMSR_LINK);
2977 	state->an_complete = state->link;
2978 	state->duplex = !!(pmsr & PMSR_DPX);
2979 
2980 	switch (pmsr & PMSR_SPEED_MASK) {
2981 	case PMSR_SPEED_10:
2982 		state->speed = SPEED_10;
2983 		break;
2984 	case PMSR_SPEED_100:
2985 		state->speed = SPEED_100;
2986 		break;
2987 	case PMSR_SPEED_1000:
2988 		state->speed = SPEED_1000;
2989 		break;
2990 	default:
2991 		state->speed = SPEED_UNKNOWN;
2992 		break;
2993 	}
2994 
2995 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2996 	if (pmsr & PMSR_RX_FC)
2997 		state->pause |= MLO_PAUSE_RX;
2998 	if (pmsr & PMSR_TX_FC)
2999 		state->pause |= MLO_PAUSE_TX;
3000 
3001 	return 1;
3002 }
3003 
3004 static int
3005 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
3006 			      struct phylink_link_state *state)
3007 {
3008 	u32 status, val;
3009 	u16 config_reg;
3010 
3011 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3012 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
3013 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3014 	    (status & MT7531_SGMII_AN_ENABLE)) {
3015 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3016 		config_reg = val >> 16;
3017 
3018 		switch (config_reg & LPA_SGMII_SPD_MASK) {
3019 		case LPA_SGMII_1000:
3020 			state->speed = SPEED_1000;
3021 			break;
3022 		case LPA_SGMII_100:
3023 			state->speed = SPEED_100;
3024 			break;
3025 		case LPA_SGMII_10:
3026 			state->speed = SPEED_10;
3027 			break;
3028 		default:
3029 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3030 			state->link = false;
3031 			return -EINVAL;
3032 		}
3033 
3034 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3035 			state->duplex = DUPLEX_FULL;
3036 		else
3037 			state->duplex = DUPLEX_HALF;
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 static int
3044 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
3045 			      struct phylink_link_state *state)
3046 {
3047 	struct mt7530_priv *priv = ds->priv;
3048 
3049 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
3050 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
3051 
3052 	return -EOPNOTSUPP;
3053 }
3054 
3055 static int
3056 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
3057 			      struct phylink_link_state *state)
3058 {
3059 	struct mt7530_priv *priv = ds->priv;
3060 
3061 	return priv->info->mac_port_get_state(ds, port, state);
3062 }
3063 
3064 static int
3065 mt753x_setup(struct dsa_switch *ds)
3066 {
3067 	struct mt7530_priv *priv = ds->priv;
3068 	int ret = priv->info->sw_setup(ds);
3069 
3070 	if (ret)
3071 		return ret;
3072 
3073 	ret = mt7530_setup_irq(priv);
3074 	if (ret)
3075 		return ret;
3076 
3077 	ret = mt7530_setup_mdio(priv);
3078 	if (ret && priv->irq)
3079 		mt7530_free_irq_common(priv);
3080 
3081 	return ret;
3082 }
3083 
3084 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3085 			      struct ethtool_eee *e)
3086 {
3087 	struct mt7530_priv *priv = ds->priv;
3088 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3089 
3090 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3091 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3092 
3093 	return 0;
3094 }
3095 
3096 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3097 			      struct ethtool_eee *e)
3098 {
3099 	struct mt7530_priv *priv = ds->priv;
3100 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3101 
3102 	if (e->tx_lpi_timer > 0xFFF)
3103 		return -EINVAL;
3104 
3105 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3106 	if (!e->tx_lpi_enabled)
3107 		/* Force LPI Mode without a delay */
3108 		set |= LPI_MODE_EN;
3109 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3110 
3111 	return 0;
3112 }
3113 
3114 static const struct dsa_switch_ops mt7530_switch_ops = {
3115 	.get_tag_protocol	= mtk_get_tag_protocol,
3116 	.setup			= mt753x_setup,
3117 	.get_strings		= mt7530_get_strings,
3118 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3119 	.get_sset_count		= mt7530_get_sset_count,
3120 	.set_ageing_time	= mt7530_set_ageing_time,
3121 	.port_enable		= mt7530_port_enable,
3122 	.port_disable		= mt7530_port_disable,
3123 	.port_change_mtu	= mt7530_port_change_mtu,
3124 	.port_max_mtu		= mt7530_port_max_mtu,
3125 	.port_stp_state_set	= mt7530_stp_state_set,
3126 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3127 	.port_bridge_flags	= mt7530_port_bridge_flags,
3128 	.port_bridge_join	= mt7530_port_bridge_join,
3129 	.port_bridge_leave	= mt7530_port_bridge_leave,
3130 	.port_fdb_add		= mt7530_port_fdb_add,
3131 	.port_fdb_del		= mt7530_port_fdb_del,
3132 	.port_fdb_dump		= mt7530_port_fdb_dump,
3133 	.port_mdb_add		= mt7530_port_mdb_add,
3134 	.port_mdb_del		= mt7530_port_mdb_del,
3135 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3136 	.port_vlan_add		= mt7530_port_vlan_add,
3137 	.port_vlan_del		= mt7530_port_vlan_del,
3138 	.port_mirror_add	= mt753x_port_mirror_add,
3139 	.port_mirror_del	= mt753x_port_mirror_del,
3140 	.phylink_validate	= mt753x_phylink_validate,
3141 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
3142 	.phylink_mac_config	= mt753x_phylink_mac_config,
3143 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
3144 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3145 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3146 	.get_mac_eee		= mt753x_get_mac_eee,
3147 	.set_mac_eee		= mt753x_set_mac_eee,
3148 };
3149 
3150 static const struct mt753x_info mt753x_table[] = {
3151 	[ID_MT7621] = {
3152 		.id = ID_MT7621,
3153 		.sw_setup = mt7530_setup,
3154 		.phy_read = mt7530_phy_read,
3155 		.phy_write = mt7530_phy_write,
3156 		.pad_setup = mt7530_pad_clk_setup,
3157 		.phy_mode_supported = mt7530_phy_mode_supported,
3158 		.mac_port_validate = mt7530_mac_port_validate,
3159 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3160 		.mac_port_config = mt7530_mac_config,
3161 	},
3162 	[ID_MT7530] = {
3163 		.id = ID_MT7530,
3164 		.sw_setup = mt7530_setup,
3165 		.phy_read = mt7530_phy_read,
3166 		.phy_write = mt7530_phy_write,
3167 		.pad_setup = mt7530_pad_clk_setup,
3168 		.phy_mode_supported = mt7530_phy_mode_supported,
3169 		.mac_port_validate = mt7530_mac_port_validate,
3170 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3171 		.mac_port_config = mt7530_mac_config,
3172 	},
3173 	[ID_MT7531] = {
3174 		.id = ID_MT7531,
3175 		.sw_setup = mt7531_setup,
3176 		.phy_read = mt7531_ind_phy_read,
3177 		.phy_write = mt7531_ind_phy_write,
3178 		.pad_setup = mt7531_pad_setup,
3179 		.cpu_port_config = mt7531_cpu_port_config,
3180 		.phy_mode_supported = mt7531_phy_mode_supported,
3181 		.mac_port_validate = mt7531_mac_port_validate,
3182 		.mac_port_get_state = mt7531_phylink_mac_link_state,
3183 		.mac_port_config = mt7531_mac_config,
3184 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
3185 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
3186 	},
3187 };
3188 
3189 static const struct of_device_id mt7530_of_match[] = {
3190 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3191 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3192 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3193 	{ /* sentinel */ },
3194 };
3195 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3196 
3197 static int
3198 mt7530_probe(struct mdio_device *mdiodev)
3199 {
3200 	struct mt7530_priv *priv;
3201 	struct device_node *dn;
3202 
3203 	dn = mdiodev->dev.of_node;
3204 
3205 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3206 	if (!priv)
3207 		return -ENOMEM;
3208 
3209 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3210 	if (!priv->ds)
3211 		return -ENOMEM;
3212 
3213 	priv->ds->dev = &mdiodev->dev;
3214 	priv->ds->num_ports = DSA_MAX_PORTS;
3215 
3216 	/* Use medatek,mcm property to distinguish hardware type that would
3217 	 * casues a little bit differences on power-on sequence.
3218 	 */
3219 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3220 	if (priv->mcm) {
3221 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3222 
3223 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3224 		if (IS_ERR(priv->rstc)) {
3225 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3226 			return PTR_ERR(priv->rstc);
3227 		}
3228 	}
3229 
3230 	/* Get the hardware identifier from the devicetree node.
3231 	 * We will need it for some of the clock and regulator setup.
3232 	 */
3233 	priv->info = of_device_get_match_data(&mdiodev->dev);
3234 	if (!priv->info)
3235 		return -EINVAL;
3236 
3237 	/* Sanity check if these required device operations are filled
3238 	 * properly.
3239 	 */
3240 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3241 	    !priv->info->phy_read || !priv->info->phy_write ||
3242 	    !priv->info->phy_mode_supported ||
3243 	    !priv->info->mac_port_validate ||
3244 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3245 		return -EINVAL;
3246 
3247 	priv->id = priv->info->id;
3248 
3249 	if (priv->id == ID_MT7530) {
3250 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3251 		if (IS_ERR(priv->core_pwr))
3252 			return PTR_ERR(priv->core_pwr);
3253 
3254 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3255 		if (IS_ERR(priv->io_pwr))
3256 			return PTR_ERR(priv->io_pwr);
3257 	}
3258 
3259 	/* Not MCM that indicates switch works as the remote standalone
3260 	 * integrated circuit so the GPIO pin would be used to complete
3261 	 * the reset, otherwise memory-mapped register accessing used
3262 	 * through syscon provides in the case of MCM.
3263 	 */
3264 	if (!priv->mcm) {
3265 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3266 						      GPIOD_OUT_LOW);
3267 		if (IS_ERR(priv->reset)) {
3268 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3269 			return PTR_ERR(priv->reset);
3270 		}
3271 	}
3272 
3273 	priv->bus = mdiodev->bus;
3274 	priv->dev = &mdiodev->dev;
3275 	priv->ds->priv = priv;
3276 	priv->ds->ops = &mt7530_switch_ops;
3277 	mutex_init(&priv->reg_mutex);
3278 	dev_set_drvdata(&mdiodev->dev, priv);
3279 
3280 	return dsa_register_switch(priv->ds);
3281 }
3282 
3283 static void
3284 mt7530_remove(struct mdio_device *mdiodev)
3285 {
3286 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3287 	int ret = 0;
3288 
3289 	if (!priv)
3290 		return;
3291 
3292 	ret = regulator_disable(priv->core_pwr);
3293 	if (ret < 0)
3294 		dev_err(priv->dev,
3295 			"Failed to disable core power: %d\n", ret);
3296 
3297 	ret = regulator_disable(priv->io_pwr);
3298 	if (ret < 0)
3299 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3300 			ret);
3301 
3302 	if (priv->irq)
3303 		mt7530_free_irq(priv);
3304 
3305 	dsa_unregister_switch(priv->ds);
3306 	mutex_destroy(&priv->reg_mutex);
3307 
3308 	dev_set_drvdata(&mdiodev->dev, NULL);
3309 }
3310 
3311 static void mt7530_shutdown(struct mdio_device *mdiodev)
3312 {
3313 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3314 
3315 	if (!priv)
3316 		return;
3317 
3318 	dsa_switch_shutdown(priv->ds);
3319 
3320 	dev_set_drvdata(&mdiodev->dev, NULL);
3321 }
3322 
3323 static struct mdio_driver mt7530_mdio_driver = {
3324 	.probe  = mt7530_probe,
3325 	.remove = mt7530_remove,
3326 	.shutdown = mt7530_shutdown,
3327 	.mdiodrv.driver = {
3328 		.name = "mt7530",
3329 		.of_match_table = mt7530_of_match,
3330 	},
3331 };
3332 
3333 mdio_module_driver(mt7530_mdio_driver);
3334 
3335 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3336 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3337 MODULE_LICENSE("GPL");
3338