1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_irq.h> 14 #include <linux/of_mdio.h> 15 #include <linux/of_net.h> 16 #include <linux/of_platform.h> 17 #include <linux/phylink.h> 18 #include <linux/regmap.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/reset.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/gpio/driver.h> 23 #include <net/dsa.h> 24 25 #include "mt7530.h" 26 27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs) 28 { 29 return container_of(pcs, struct mt753x_pcs, pcs); 30 } 31 32 /* String, offset, and register size in bytes if different from 4 bytes */ 33 static const struct mt7530_mib_desc mt7530_mib[] = { 34 MIB_DESC(1, 0x00, "TxDrop"), 35 MIB_DESC(1, 0x04, "TxCrcErr"), 36 MIB_DESC(1, 0x08, "TxUnicast"), 37 MIB_DESC(1, 0x0c, "TxMulticast"), 38 MIB_DESC(1, 0x10, "TxBroadcast"), 39 MIB_DESC(1, 0x14, "TxCollision"), 40 MIB_DESC(1, 0x18, "TxSingleCollision"), 41 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 42 MIB_DESC(1, 0x20, "TxDeferred"), 43 MIB_DESC(1, 0x24, "TxLateCollision"), 44 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 45 MIB_DESC(1, 0x2c, "TxPause"), 46 MIB_DESC(1, 0x30, "TxPktSz64"), 47 MIB_DESC(1, 0x34, "TxPktSz65To127"), 48 MIB_DESC(1, 0x38, "TxPktSz128To255"), 49 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 50 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 51 MIB_DESC(1, 0x44, "Tx1024ToMax"), 52 MIB_DESC(2, 0x48, "TxBytes"), 53 MIB_DESC(1, 0x60, "RxDrop"), 54 MIB_DESC(1, 0x64, "RxFiltering"), 55 MIB_DESC(1, 0x68, "RxUnicast"), 56 MIB_DESC(1, 0x6c, "RxMulticast"), 57 MIB_DESC(1, 0x70, "RxBroadcast"), 58 MIB_DESC(1, 0x74, "RxAlignErr"), 59 MIB_DESC(1, 0x78, "RxCrcErr"), 60 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 61 MIB_DESC(1, 0x80, "RxFragErr"), 62 MIB_DESC(1, 0x84, "RxOverSzErr"), 63 MIB_DESC(1, 0x88, "RxJabberErr"), 64 MIB_DESC(1, 0x8c, "RxPause"), 65 MIB_DESC(1, 0x90, "RxPktSz64"), 66 MIB_DESC(1, 0x94, "RxPktSz65To127"), 67 MIB_DESC(1, 0x98, "RxPktSz128To255"), 68 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 69 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 70 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 71 MIB_DESC(2, 0xa8, "RxBytes"), 72 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 73 MIB_DESC(1, 0xb4, "RxIngressDrop"), 74 MIB_DESC(1, 0xb8, "RxArlDrop"), 75 }; 76 77 /* Since phy_device has not yet been created and 78 * phy_{read,write}_mmd_indirect is not available, we provide our own 79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers 80 * to complete this function. 81 */ 82 static int 83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 84 { 85 struct mii_bus *bus = priv->bus; 86 int value, ret; 87 88 /* Write the desired MMD Devad */ 89 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 90 if (ret < 0) 91 goto err; 92 93 /* Write the desired MMD register address */ 94 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 95 if (ret < 0) 96 goto err; 97 98 /* Select the Function : DATA with no post increment */ 99 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 100 if (ret < 0) 101 goto err; 102 103 /* Read the content of the MMD's selected register */ 104 value = bus->read(bus, 0, MII_MMD_DATA); 105 106 return value; 107 err: 108 dev_err(&bus->dev, "failed to read mmd register\n"); 109 110 return ret; 111 } 112 113 static int 114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 115 int devad, u32 data) 116 { 117 struct mii_bus *bus = priv->bus; 118 int ret; 119 120 /* Write the desired MMD Devad */ 121 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 122 if (ret < 0) 123 goto err; 124 125 /* Write the desired MMD register address */ 126 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 127 if (ret < 0) 128 goto err; 129 130 /* Select the Function : DATA with no post increment */ 131 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 132 if (ret < 0) 133 goto err; 134 135 /* Write the data into MMD's selected register */ 136 ret = bus->write(bus, 0, MII_MMD_DATA, data); 137 err: 138 if (ret < 0) 139 dev_err(&bus->dev, 140 "failed to write mmd register\n"); 141 return ret; 142 } 143 144 static void 145 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 146 { 147 struct mii_bus *bus = priv->bus; 148 149 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 150 151 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 152 153 mutex_unlock(&bus->mdio_lock); 154 } 155 156 static void 157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 158 { 159 struct mii_bus *bus = priv->bus; 160 u32 val; 161 162 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 163 164 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 165 val &= ~mask; 166 val |= set; 167 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 168 169 mutex_unlock(&bus->mdio_lock); 170 } 171 172 static void 173 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 174 { 175 core_rmw(priv, reg, 0, val); 176 } 177 178 static void 179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 180 { 181 core_rmw(priv, reg, val, 0); 182 } 183 184 static int 185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 186 { 187 struct mii_bus *bus = priv->bus; 188 u16 page, r, lo, hi; 189 int ret; 190 191 page = (reg >> 6) & 0x3ff; 192 r = (reg >> 2) & 0xf; 193 lo = val & 0xffff; 194 hi = val >> 16; 195 196 /* MT7530 uses 31 as the pseudo port */ 197 ret = bus->write(bus, 0x1f, 0x1f, page); 198 if (ret < 0) 199 goto err; 200 201 ret = bus->write(bus, 0x1f, r, lo); 202 if (ret < 0) 203 goto err; 204 205 ret = bus->write(bus, 0x1f, 0x10, hi); 206 err: 207 if (ret < 0) 208 dev_err(&bus->dev, 209 "failed to write mt7530 register\n"); 210 return ret; 211 } 212 213 static u32 214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 215 { 216 struct mii_bus *bus = priv->bus; 217 u16 page, r, lo, hi; 218 int ret; 219 220 page = (reg >> 6) & 0x3ff; 221 r = (reg >> 2) & 0xf; 222 223 /* MT7530 uses 31 as the pseudo port */ 224 ret = bus->write(bus, 0x1f, 0x1f, page); 225 if (ret < 0) { 226 dev_err(&bus->dev, 227 "failed to read mt7530 register\n"); 228 return ret; 229 } 230 231 lo = bus->read(bus, 0x1f, r); 232 hi = bus->read(bus, 0x1f, 0x10); 233 234 return (hi << 16) | (lo & 0xffff); 235 } 236 237 static void 238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 239 { 240 struct mii_bus *bus = priv->bus; 241 242 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 243 244 mt7530_mii_write(priv, reg, val); 245 246 mutex_unlock(&bus->mdio_lock); 247 } 248 249 static u32 250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) 251 { 252 return mt7530_mii_read(p->priv, p->reg); 253 } 254 255 static u32 256 _mt7530_read(struct mt7530_dummy_poll *p) 257 { 258 struct mii_bus *bus = p->priv->bus; 259 u32 val; 260 261 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 262 263 val = mt7530_mii_read(p->priv, p->reg); 264 265 mutex_unlock(&bus->mdio_lock); 266 267 return val; 268 } 269 270 static u32 271 mt7530_read(struct mt7530_priv *priv, u32 reg) 272 { 273 struct mt7530_dummy_poll p; 274 275 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 276 return _mt7530_read(&p); 277 } 278 279 static void 280 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 281 u32 mask, u32 set) 282 { 283 struct mii_bus *bus = priv->bus; 284 u32 val; 285 286 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 287 288 val = mt7530_mii_read(priv, reg); 289 val &= ~mask; 290 val |= set; 291 mt7530_mii_write(priv, reg, val); 292 293 mutex_unlock(&bus->mdio_lock); 294 } 295 296 static void 297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 298 { 299 mt7530_rmw(priv, reg, 0, val); 300 } 301 302 static void 303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 304 { 305 mt7530_rmw(priv, reg, val, 0); 306 } 307 308 static int 309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 310 { 311 u32 val; 312 int ret; 313 struct mt7530_dummy_poll p; 314 315 /* Set the command operating upon the MAC address entries */ 316 val = ATC_BUSY | ATC_MAT(0) | cmd; 317 mt7530_write(priv, MT7530_ATC, val); 318 319 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 320 ret = readx_poll_timeout(_mt7530_read, &p, val, 321 !(val & ATC_BUSY), 20, 20000); 322 if (ret < 0) { 323 dev_err(priv->dev, "reset timeout\n"); 324 return ret; 325 } 326 327 /* Additional sanity for read command if the specified 328 * entry is invalid 329 */ 330 val = mt7530_read(priv, MT7530_ATC); 331 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 332 return -EINVAL; 333 334 if (rsp) 335 *rsp = val; 336 337 return 0; 338 } 339 340 static void 341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 342 { 343 u32 reg[3]; 344 int i; 345 346 /* Read from ARL table into an array */ 347 for (i = 0; i < 3; i++) { 348 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 349 350 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 351 __func__, __LINE__, i, reg[i]); 352 } 353 354 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 355 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 356 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 357 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 358 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 359 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 360 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 361 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 362 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 363 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 364 } 365 366 static void 367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 368 u8 port_mask, const u8 *mac, 369 u8 aging, u8 type) 370 { 371 u32 reg[3] = { 0 }; 372 int i; 373 374 reg[1] |= vid & CVID_MASK; 375 reg[1] |= ATA2_IVL; 376 reg[1] |= ATA2_FID(FID_BRIDGED); 377 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 378 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 379 /* STATIC_ENT indicate that entry is static wouldn't 380 * be aged out and STATIC_EMP specified as erasing an 381 * entry 382 */ 383 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 384 reg[1] |= mac[5] << MAC_BYTE_5; 385 reg[1] |= mac[4] << MAC_BYTE_4; 386 reg[0] |= mac[3] << MAC_BYTE_3; 387 reg[0] |= mac[2] << MAC_BYTE_2; 388 reg[0] |= mac[1] << MAC_BYTE_1; 389 reg[0] |= mac[0] << MAC_BYTE_0; 390 391 /* Write array into the ARL table */ 392 for (i = 0; i < 3; i++) 393 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 394 } 395 396 /* Setup TX circuit including relevant PAD and driving */ 397 static int 398 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) 399 { 400 struct mt7530_priv *priv = ds->priv; 401 u32 ncpo1, ssc_delta, trgint, i, xtal; 402 403 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 404 405 if (xtal == HWTRAP_XTAL_20MHZ) { 406 dev_err(priv->dev, 407 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 408 __func__); 409 return -EINVAL; 410 } 411 412 switch (interface) { 413 case PHY_INTERFACE_MODE_RGMII: 414 trgint = 0; 415 /* PLL frequency: 125MHz */ 416 ncpo1 = 0x0c80; 417 break; 418 case PHY_INTERFACE_MODE_TRGMII: 419 trgint = 1; 420 if (priv->id == ID_MT7621) { 421 /* PLL frequency: 150MHz: 1.2GBit */ 422 if (xtal == HWTRAP_XTAL_40MHZ) 423 ncpo1 = 0x0780; 424 if (xtal == HWTRAP_XTAL_25MHZ) 425 ncpo1 = 0x0a00; 426 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 427 if (xtal == HWTRAP_XTAL_40MHZ) 428 ncpo1 = 0x0c80; 429 if (xtal == HWTRAP_XTAL_25MHZ) 430 ncpo1 = 0x1400; 431 } 432 break; 433 default: 434 dev_err(priv->dev, "xMII interface %d not supported\n", 435 interface); 436 return -EINVAL; 437 } 438 439 if (xtal == HWTRAP_XTAL_25MHZ) 440 ssc_delta = 0x57; 441 else 442 ssc_delta = 0x87; 443 444 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 445 P6_INTF_MODE(trgint)); 446 447 /* Lower Tx Driving for TRGMII path */ 448 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 449 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 450 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 451 452 /* Disable MT7530 core and TRGMII Tx clocks */ 453 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, 454 REG_GSWCK_EN | REG_TRGMIICK_EN); 455 456 /* Setup core clock for MT7530 */ 457 /* Disable PLL */ 458 core_write(priv, CORE_GSWPLL_GRP1, 0); 459 460 /* Set core clock into 500Mhz */ 461 core_write(priv, CORE_GSWPLL_GRP2, 462 RG_GSWPLL_POSDIV_500M(1) | 463 RG_GSWPLL_FBKDIV_500M(25)); 464 465 /* Enable PLL */ 466 core_write(priv, CORE_GSWPLL_GRP1, 467 RG_GSWPLL_EN_PRE | 468 RG_GSWPLL_POSDIV_200M(2) | 469 RG_GSWPLL_FBKDIV_200M(32)); 470 471 /* Setup the MT7530 TRGMII Tx Clock */ 472 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 473 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 474 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 475 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 476 core_write(priv, CORE_PLL_GROUP4, 477 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 478 RG_SYSPLL_BIAS_LPF_EN); 479 core_write(priv, CORE_PLL_GROUP2, 480 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 481 RG_SYSPLL_POSDIV(1)); 482 core_write(priv, CORE_PLL_GROUP7, 483 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 484 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 485 486 /* Enable MT7530 core and TRGMII Tx clocks */ 487 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 488 REG_GSWCK_EN | REG_TRGMIICK_EN); 489 490 if (!trgint) 491 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 492 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 493 RD_TAP_MASK, RD_TAP(16)); 494 return 0; 495 } 496 497 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) 498 { 499 u32 val; 500 501 val = mt7530_read(priv, MT7531_TOP_SIG_SR); 502 503 return (val & PAD_DUAL_SGMII_EN) != 0; 504 } 505 506 static int 507 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) 508 { 509 return 0; 510 } 511 512 static void 513 mt7531_pll_setup(struct mt7530_priv *priv) 514 { 515 u32 top_sig; 516 u32 hwstrap; 517 u32 xtal; 518 u32 val; 519 520 if (mt7531_dual_sgmii_supported(priv)) 521 return; 522 523 val = mt7530_read(priv, MT7531_CREV); 524 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); 525 hwstrap = mt7530_read(priv, MT7531_HWTRAP); 526 if ((val & CHIP_REV_M) > 0) 527 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : 528 HWTRAP_XTAL_FSEL_25MHZ; 529 else 530 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; 531 532 /* Step 1 : Disable MT7531 COREPLL */ 533 val = mt7530_read(priv, MT7531_PLLGP_EN); 534 val &= ~EN_COREPLL; 535 mt7530_write(priv, MT7531_PLLGP_EN, val); 536 537 /* Step 2: switch to XTAL output */ 538 val = mt7530_read(priv, MT7531_PLLGP_EN); 539 val |= SW_CLKSW; 540 mt7530_write(priv, MT7531_PLLGP_EN, val); 541 542 val = mt7530_read(priv, MT7531_PLLGP_CR0); 543 val &= ~RG_COREPLL_EN; 544 mt7530_write(priv, MT7531_PLLGP_CR0, val); 545 546 /* Step 3: disable PLLGP and enable program PLLGP */ 547 val = mt7530_read(priv, MT7531_PLLGP_EN); 548 val |= SW_PLLGP; 549 mt7530_write(priv, MT7531_PLLGP_EN, val); 550 551 /* Step 4: program COREPLL output frequency to 500MHz */ 552 val = mt7530_read(priv, MT7531_PLLGP_CR0); 553 val &= ~RG_COREPLL_POSDIV_M; 554 val |= 2 << RG_COREPLL_POSDIV_S; 555 mt7530_write(priv, MT7531_PLLGP_CR0, val); 556 usleep_range(25, 35); 557 558 switch (xtal) { 559 case HWTRAP_XTAL_FSEL_25MHZ: 560 val = mt7530_read(priv, MT7531_PLLGP_CR0); 561 val &= ~RG_COREPLL_SDM_PCW_M; 562 val |= 0x140000 << RG_COREPLL_SDM_PCW_S; 563 mt7530_write(priv, MT7531_PLLGP_CR0, val); 564 break; 565 case HWTRAP_XTAL_FSEL_40MHZ: 566 val = mt7530_read(priv, MT7531_PLLGP_CR0); 567 val &= ~RG_COREPLL_SDM_PCW_M; 568 val |= 0x190000 << RG_COREPLL_SDM_PCW_S; 569 mt7530_write(priv, MT7531_PLLGP_CR0, val); 570 break; 571 } 572 573 /* Set feedback divide ratio update signal to high */ 574 val = mt7530_read(priv, MT7531_PLLGP_CR0); 575 val |= RG_COREPLL_SDM_PCW_CHG; 576 mt7530_write(priv, MT7531_PLLGP_CR0, val); 577 /* Wait for at least 16 XTAL clocks */ 578 usleep_range(10, 20); 579 580 /* Step 5: set feedback divide ratio update signal to low */ 581 val = mt7530_read(priv, MT7531_PLLGP_CR0); 582 val &= ~RG_COREPLL_SDM_PCW_CHG; 583 mt7530_write(priv, MT7531_PLLGP_CR0, val); 584 585 /* Enable 325M clock for SGMII */ 586 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); 587 588 /* Enable 250SSC clock for RGMII */ 589 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); 590 591 /* Step 6: Enable MT7531 PLL */ 592 val = mt7530_read(priv, MT7531_PLLGP_CR0); 593 val |= RG_COREPLL_EN; 594 mt7530_write(priv, MT7531_PLLGP_CR0, val); 595 596 val = mt7530_read(priv, MT7531_PLLGP_EN); 597 val |= EN_COREPLL; 598 mt7530_write(priv, MT7531_PLLGP_EN, val); 599 usleep_range(25, 35); 600 } 601 602 static void 603 mt7530_mib_reset(struct dsa_switch *ds) 604 { 605 struct mt7530_priv *priv = ds->priv; 606 607 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 608 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 609 } 610 611 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum) 612 { 613 return mdiobus_read_nested(priv->bus, port, regnum); 614 } 615 616 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum, 617 u16 val) 618 { 619 return mdiobus_write_nested(priv->bus, port, regnum, val); 620 } 621 622 static int 623 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, 624 int regnum) 625 { 626 struct mii_bus *bus = priv->bus; 627 struct mt7530_dummy_poll p; 628 u32 reg, val; 629 int ret; 630 631 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 632 633 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 634 635 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 636 !(val & MT7531_PHY_ACS_ST), 20, 100000); 637 if (ret < 0) { 638 dev_err(priv->dev, "poll timeout\n"); 639 goto out; 640 } 641 642 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 643 MT7531_MDIO_DEV_ADDR(devad) | regnum; 644 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 645 646 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 647 !(val & MT7531_PHY_ACS_ST), 20, 100000); 648 if (ret < 0) { 649 dev_err(priv->dev, "poll timeout\n"); 650 goto out; 651 } 652 653 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | 654 MT7531_MDIO_DEV_ADDR(devad); 655 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 656 657 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 658 !(val & MT7531_PHY_ACS_ST), 20, 100000); 659 if (ret < 0) { 660 dev_err(priv->dev, "poll timeout\n"); 661 goto out; 662 } 663 664 ret = val & MT7531_MDIO_RW_DATA_MASK; 665 out: 666 mutex_unlock(&bus->mdio_lock); 667 668 return ret; 669 } 670 671 static int 672 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, 673 int regnum, u32 data) 674 { 675 struct mii_bus *bus = priv->bus; 676 struct mt7530_dummy_poll p; 677 u32 val, reg; 678 int ret; 679 680 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 681 682 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 683 684 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 685 !(val & MT7531_PHY_ACS_ST), 20, 100000); 686 if (ret < 0) { 687 dev_err(priv->dev, "poll timeout\n"); 688 goto out; 689 } 690 691 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 692 MT7531_MDIO_DEV_ADDR(devad) | regnum; 693 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 694 695 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 696 !(val & MT7531_PHY_ACS_ST), 20, 100000); 697 if (ret < 0) { 698 dev_err(priv->dev, "poll timeout\n"); 699 goto out; 700 } 701 702 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | 703 MT7531_MDIO_DEV_ADDR(devad) | data; 704 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 705 706 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 707 !(val & MT7531_PHY_ACS_ST), 20, 100000); 708 if (ret < 0) { 709 dev_err(priv->dev, "poll timeout\n"); 710 goto out; 711 } 712 713 out: 714 mutex_unlock(&bus->mdio_lock); 715 716 return ret; 717 } 718 719 static int 720 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) 721 { 722 struct mii_bus *bus = priv->bus; 723 struct mt7530_dummy_poll p; 724 int ret; 725 u32 val; 726 727 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 728 729 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 730 731 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 732 !(val & MT7531_PHY_ACS_ST), 20, 100000); 733 if (ret < 0) { 734 dev_err(priv->dev, "poll timeout\n"); 735 goto out; 736 } 737 738 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | 739 MT7531_MDIO_REG_ADDR(regnum); 740 741 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); 742 743 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 744 !(val & MT7531_PHY_ACS_ST), 20, 100000); 745 if (ret < 0) { 746 dev_err(priv->dev, "poll timeout\n"); 747 goto out; 748 } 749 750 ret = val & MT7531_MDIO_RW_DATA_MASK; 751 out: 752 mutex_unlock(&bus->mdio_lock); 753 754 return ret; 755 } 756 757 static int 758 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, 759 u16 data) 760 { 761 struct mii_bus *bus = priv->bus; 762 struct mt7530_dummy_poll p; 763 int ret; 764 u32 reg; 765 766 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 767 768 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 769 770 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 771 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 772 if (ret < 0) { 773 dev_err(priv->dev, "poll timeout\n"); 774 goto out; 775 } 776 777 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | 778 MT7531_MDIO_REG_ADDR(regnum) | data; 779 780 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 781 782 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 783 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 784 if (ret < 0) { 785 dev_err(priv->dev, "poll timeout\n"); 786 goto out; 787 } 788 789 out: 790 mutex_unlock(&bus->mdio_lock); 791 792 return ret; 793 } 794 795 static int 796 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum) 797 { 798 int devad; 799 int ret; 800 801 if (regnum & MII_ADDR_C45) { 802 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 803 ret = mt7531_ind_c45_phy_read(priv, port, devad, 804 regnum & MII_REGADDR_C45_MASK); 805 } else { 806 ret = mt7531_ind_c22_phy_read(priv, port, regnum); 807 } 808 809 return ret; 810 } 811 812 static int 813 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum, 814 u16 data) 815 { 816 int devad; 817 int ret; 818 819 if (regnum & MII_ADDR_C45) { 820 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 821 ret = mt7531_ind_c45_phy_write(priv, port, devad, 822 regnum & MII_REGADDR_C45_MASK, 823 data); 824 } else { 825 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); 826 } 827 828 return ret; 829 } 830 831 static int 832 mt753x_phy_read(struct mii_bus *bus, int port, int regnum) 833 { 834 struct mt7530_priv *priv = bus->priv; 835 836 return priv->info->phy_read(priv, port, regnum); 837 } 838 839 static int 840 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val) 841 { 842 struct mt7530_priv *priv = bus->priv; 843 844 return priv->info->phy_write(priv, port, regnum, val); 845 } 846 847 static void 848 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 849 uint8_t *data) 850 { 851 int i; 852 853 if (stringset != ETH_SS_STATS) 854 return; 855 856 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 857 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 858 ETH_GSTRING_LEN); 859 } 860 861 static void 862 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 863 uint64_t *data) 864 { 865 struct mt7530_priv *priv = ds->priv; 866 const struct mt7530_mib_desc *mib; 867 u32 reg, i; 868 u64 hi; 869 870 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 871 mib = &mt7530_mib[i]; 872 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 873 874 data[i] = mt7530_read(priv, reg); 875 if (mib->size == 2) { 876 hi = mt7530_read(priv, reg + 4); 877 data[i] |= hi << 32; 878 } 879 } 880 } 881 882 static int 883 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 884 { 885 if (sset != ETH_SS_STATS) 886 return 0; 887 888 return ARRAY_SIZE(mt7530_mib); 889 } 890 891 static int 892 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 893 { 894 struct mt7530_priv *priv = ds->priv; 895 unsigned int secs = msecs / 1000; 896 unsigned int tmp_age_count; 897 unsigned int error = -1; 898 unsigned int age_count; 899 unsigned int age_unit; 900 901 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ 902 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) 903 return -ERANGE; 904 905 /* iterate through all possible age_count to find the closest pair */ 906 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { 907 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; 908 909 if (tmp_age_unit <= AGE_UNIT_MAX) { 910 unsigned int tmp_error = secs - 911 (tmp_age_count + 1) * (tmp_age_unit + 1); 912 913 /* found a closer pair */ 914 if (error > tmp_error) { 915 error = tmp_error; 916 age_count = tmp_age_count; 917 age_unit = tmp_age_unit; 918 } 919 920 /* found the exact match, so break the loop */ 921 if (!error) 922 break; 923 } 924 } 925 926 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); 927 928 return 0; 929 } 930 931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 932 { 933 struct mt7530_priv *priv = ds->priv; 934 u8 tx_delay = 0; 935 int val; 936 937 mutex_lock(&priv->reg_mutex); 938 939 val = mt7530_read(priv, MT7530_MHWTRAP); 940 941 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 942 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 943 944 switch (priv->p5_intf_sel) { 945 case P5_INTF_SEL_PHY_P0: 946 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 947 val |= MHWTRAP_PHY0_SEL; 948 fallthrough; 949 case P5_INTF_SEL_PHY_P4: 950 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 951 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 952 953 /* Setup the MAC by default for the cpu port */ 954 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 955 break; 956 case P5_INTF_SEL_GMAC5: 957 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 958 val &= ~MHWTRAP_P5_DIS; 959 break; 960 case P5_DISABLED: 961 interface = PHY_INTERFACE_MODE_NA; 962 break; 963 default: 964 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 965 priv->p5_intf_sel); 966 goto unlock_exit; 967 } 968 969 /* Setup RGMII settings */ 970 if (phy_interface_mode_is_rgmii(interface)) { 971 val |= MHWTRAP_P5_RGMII_MODE; 972 973 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 974 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 975 976 /* Don't set delay in DSA mode */ 977 if (!dsa_is_dsa_port(priv->ds, 5) && 978 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 979 interface == PHY_INTERFACE_MODE_RGMII_ID)) 980 tx_delay = 4; /* n * 0.5 ns */ 981 982 /* P5 RGMII TX Clock Control: delay x */ 983 mt7530_write(priv, MT7530_P5RGMIITXCR, 984 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 985 986 /* reduce P5 RGMII Tx driving, 8mA */ 987 mt7530_write(priv, MT7530_IO_DRV_CR, 988 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 989 } 990 991 mt7530_write(priv, MT7530_MHWTRAP, val); 992 993 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 994 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 995 996 priv->p5_interface = interface; 997 998 unlock_exit: 999 mutex_unlock(&priv->reg_mutex); 1000 } 1001 1002 static int 1003 mt753x_cpu_port_enable(struct dsa_switch *ds, int port) 1004 { 1005 struct mt7530_priv *priv = ds->priv; 1006 int ret; 1007 1008 /* Setup max capability of CPU port at first */ 1009 if (priv->info->cpu_port_config) { 1010 ret = priv->info->cpu_port_config(ds, port); 1011 if (ret) 1012 return ret; 1013 } 1014 1015 /* Enable Mediatek header mode on the cpu port */ 1016 mt7530_write(priv, MT7530_PVC_P(port), 1017 PORT_SPEC_TAG); 1018 1019 /* Disable flooding by default */ 1020 mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK, 1021 BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port))); 1022 1023 /* Set CPU port number */ 1024 if (priv->id == ID_MT7621) 1025 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 1026 1027 /* CPU port gets connected to all user ports of 1028 * the switch. 1029 */ 1030 mt7530_write(priv, MT7530_PCR_P(port), 1031 PCR_MATRIX(dsa_user_ports(priv->ds))); 1032 1033 /* Set to fallback mode for independent VLAN learning */ 1034 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1035 MT7530_PORT_FALLBACK_MODE); 1036 1037 return 0; 1038 } 1039 1040 static int 1041 mt7530_port_enable(struct dsa_switch *ds, int port, 1042 struct phy_device *phy) 1043 { 1044 struct dsa_port *dp = dsa_to_port(ds, port); 1045 struct mt7530_priv *priv = ds->priv; 1046 1047 mutex_lock(&priv->reg_mutex); 1048 1049 /* Allow the user port gets connected to the cpu port and also 1050 * restore the port matrix if the port is the member of a certain 1051 * bridge. 1052 */ 1053 if (dsa_port_is_user(dp)) { 1054 struct dsa_port *cpu_dp = dp->cpu_dp; 1055 1056 priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index)); 1057 } 1058 priv->ports[port].enable = true; 1059 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1060 priv->ports[port].pm); 1061 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1062 1063 mutex_unlock(&priv->reg_mutex); 1064 1065 return 0; 1066 } 1067 1068 static void 1069 mt7530_port_disable(struct dsa_switch *ds, int port) 1070 { 1071 struct mt7530_priv *priv = ds->priv; 1072 1073 mutex_lock(&priv->reg_mutex); 1074 1075 /* Clear up all port matrix which could be restored in the next 1076 * enablement for the port. 1077 */ 1078 priv->ports[port].enable = false; 1079 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1080 PCR_MATRIX_CLR); 1081 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1082 1083 mutex_unlock(&priv->reg_mutex); 1084 } 1085 1086 static int 1087 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1088 { 1089 struct mt7530_priv *priv = ds->priv; 1090 struct mii_bus *bus = priv->bus; 1091 int length; 1092 u32 val; 1093 1094 /* When a new MTU is set, DSA always set the CPU port's MTU to the 1095 * largest MTU of the slave ports. Because the switch only has a global 1096 * RX length register, only allowing CPU port here is enough. 1097 */ 1098 if (!dsa_is_cpu_port(ds, port)) 1099 return 0; 1100 1101 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 1102 1103 val = mt7530_mii_read(priv, MT7530_GMACCR); 1104 val &= ~MAX_RX_PKT_LEN_MASK; 1105 1106 /* RX length also includes Ethernet header, MTK tag, and FCS length */ 1107 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; 1108 if (length <= 1522) { 1109 val |= MAX_RX_PKT_LEN_1522; 1110 } else if (length <= 1536) { 1111 val |= MAX_RX_PKT_LEN_1536; 1112 } else if (length <= 1552) { 1113 val |= MAX_RX_PKT_LEN_1552; 1114 } else { 1115 val &= ~MAX_RX_JUMBO_MASK; 1116 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); 1117 val |= MAX_RX_PKT_LEN_JUMBO; 1118 } 1119 1120 mt7530_mii_write(priv, MT7530_GMACCR, val); 1121 1122 mutex_unlock(&bus->mdio_lock); 1123 1124 return 0; 1125 } 1126 1127 static int 1128 mt7530_port_max_mtu(struct dsa_switch *ds, int port) 1129 { 1130 return MT7530_MAX_MTU; 1131 } 1132 1133 static void 1134 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1135 { 1136 struct mt7530_priv *priv = ds->priv; 1137 u32 stp_state; 1138 1139 switch (state) { 1140 case BR_STATE_DISABLED: 1141 stp_state = MT7530_STP_DISABLED; 1142 break; 1143 case BR_STATE_BLOCKING: 1144 stp_state = MT7530_STP_BLOCKING; 1145 break; 1146 case BR_STATE_LISTENING: 1147 stp_state = MT7530_STP_LISTENING; 1148 break; 1149 case BR_STATE_LEARNING: 1150 stp_state = MT7530_STP_LEARNING; 1151 break; 1152 case BR_STATE_FORWARDING: 1153 default: 1154 stp_state = MT7530_STP_FORWARDING; 1155 break; 1156 } 1157 1158 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED), 1159 FID_PST(FID_BRIDGED, stp_state)); 1160 } 1161 1162 static int 1163 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port, 1164 struct switchdev_brport_flags flags, 1165 struct netlink_ext_ack *extack) 1166 { 1167 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | 1168 BR_BCAST_FLOOD)) 1169 return -EINVAL; 1170 1171 return 0; 1172 } 1173 1174 static int 1175 mt7530_port_bridge_flags(struct dsa_switch *ds, int port, 1176 struct switchdev_brport_flags flags, 1177 struct netlink_ext_ack *extack) 1178 { 1179 struct mt7530_priv *priv = ds->priv; 1180 1181 if (flags.mask & BR_LEARNING) 1182 mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS, 1183 flags.val & BR_LEARNING ? 0 : SA_DIS); 1184 1185 if (flags.mask & BR_FLOOD) 1186 mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)), 1187 flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0); 1188 1189 if (flags.mask & BR_MCAST_FLOOD) 1190 mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)), 1191 flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0); 1192 1193 if (flags.mask & BR_BCAST_FLOOD) 1194 mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)), 1195 flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0); 1196 1197 return 0; 1198 } 1199 1200 static int 1201 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 1202 struct dsa_bridge bridge, bool *tx_fwd_offload, 1203 struct netlink_ext_ack *extack) 1204 { 1205 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp; 1206 struct dsa_port *cpu_dp = dp->cpu_dp; 1207 u32 port_bitmap = BIT(cpu_dp->index); 1208 struct mt7530_priv *priv = ds->priv; 1209 1210 mutex_lock(&priv->reg_mutex); 1211 1212 dsa_switch_for_each_user_port(other_dp, ds) { 1213 int other_port = other_dp->index; 1214 1215 if (dp == other_dp) 1216 continue; 1217 1218 /* Add this port to the port matrix of the other ports in the 1219 * same bridge. If the port is disabled, port matrix is kept 1220 * and not being setup until the port becomes enabled. 1221 */ 1222 if (!dsa_port_offloads_bridge(other_dp, &bridge)) 1223 continue; 1224 1225 if (priv->ports[other_port].enable) 1226 mt7530_set(priv, MT7530_PCR_P(other_port), 1227 PCR_MATRIX(BIT(port))); 1228 priv->ports[other_port].pm |= PCR_MATRIX(BIT(port)); 1229 1230 port_bitmap |= BIT(other_port); 1231 } 1232 1233 /* Add the all other ports to this port matrix. */ 1234 if (priv->ports[port].enable) 1235 mt7530_rmw(priv, MT7530_PCR_P(port), 1236 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 1237 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 1238 1239 /* Set to fallback mode for independent VLAN learning */ 1240 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1241 MT7530_PORT_FALLBACK_MODE); 1242 1243 mutex_unlock(&priv->reg_mutex); 1244 1245 return 0; 1246 } 1247 1248 static void 1249 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 1250 { 1251 struct mt7530_priv *priv = ds->priv; 1252 bool all_user_ports_removed = true; 1253 int i; 1254 1255 /* This is called after .port_bridge_leave when leaving a VLAN-aware 1256 * bridge. Don't set standalone ports to fallback mode. 1257 */ 1258 if (dsa_port_bridge_dev_get(dsa_to_port(ds, port))) 1259 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1260 MT7530_PORT_FALLBACK_MODE); 1261 1262 mt7530_rmw(priv, MT7530_PVC_P(port), 1263 VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK, 1264 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 1265 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) | 1266 MT7530_VLAN_ACC_ALL); 1267 1268 /* Set PVID to 0 */ 1269 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1270 G0_PORT_VID_DEF); 1271 1272 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1273 if (dsa_is_user_port(ds, i) && 1274 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1275 all_user_ports_removed = false; 1276 break; 1277 } 1278 } 1279 1280 /* CPU port also does the same thing until all user ports belonging to 1281 * the CPU port get out of VLAN filtering mode. 1282 */ 1283 if (all_user_ports_removed) { 1284 struct dsa_port *dp = dsa_to_port(ds, port); 1285 struct dsa_port *cpu_dp = dp->cpu_dp; 1286 1287 mt7530_write(priv, MT7530_PCR_P(cpu_dp->index), 1288 PCR_MATRIX(dsa_user_ports(priv->ds))); 1289 mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG 1290 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1291 } 1292 } 1293 1294 static void 1295 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 1296 { 1297 struct mt7530_priv *priv = ds->priv; 1298 1299 /* Trapped into security mode allows packet forwarding through VLAN 1300 * table lookup. 1301 */ 1302 if (dsa_is_user_port(ds, port)) { 1303 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1304 MT7530_PORT_SECURITY_MODE); 1305 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1306 G0_PORT_VID(priv->ports[port].pvid)); 1307 1308 /* Only accept tagged frames if PVID is not set */ 1309 if (!priv->ports[port].pvid) 1310 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1311 MT7530_VLAN_ACC_TAGGED); 1312 } 1313 1314 /* Set the port as a user port which is to be able to recognize VID 1315 * from incoming packets before fetching entry within the VLAN table. 1316 */ 1317 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1318 VLAN_ATTR(MT7530_VLAN_USER) | 1319 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 1320 } 1321 1322 static void 1323 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 1324 struct dsa_bridge bridge) 1325 { 1326 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp; 1327 struct dsa_port *cpu_dp = dp->cpu_dp; 1328 struct mt7530_priv *priv = ds->priv; 1329 1330 mutex_lock(&priv->reg_mutex); 1331 1332 dsa_switch_for_each_user_port(other_dp, ds) { 1333 int other_port = other_dp->index; 1334 1335 if (dp == other_dp) 1336 continue; 1337 1338 /* Remove this port from the port matrix of the other ports 1339 * in the same bridge. If the port is disabled, port matrix 1340 * is kept and not being setup until the port becomes enabled. 1341 */ 1342 if (!dsa_port_offloads_bridge(other_dp, &bridge)) 1343 continue; 1344 1345 if (priv->ports[other_port].enable) 1346 mt7530_clear(priv, MT7530_PCR_P(other_port), 1347 PCR_MATRIX(BIT(port))); 1348 priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port)); 1349 } 1350 1351 /* Set the cpu port to be the only one in the port matrix of 1352 * this port. 1353 */ 1354 if (priv->ports[port].enable) 1355 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1356 PCR_MATRIX(BIT(cpu_dp->index))); 1357 priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index)); 1358 1359 /* When a port is removed from the bridge, the port would be set up 1360 * back to the default as is at initial boot which is a VLAN-unaware 1361 * port. 1362 */ 1363 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1364 MT7530_PORT_MATRIX_MODE); 1365 1366 mutex_unlock(&priv->reg_mutex); 1367 } 1368 1369 static int 1370 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 1371 const unsigned char *addr, u16 vid, 1372 struct dsa_db db) 1373 { 1374 struct mt7530_priv *priv = ds->priv; 1375 int ret; 1376 u8 port_mask = BIT(port); 1377 1378 mutex_lock(&priv->reg_mutex); 1379 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1380 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1381 mutex_unlock(&priv->reg_mutex); 1382 1383 return ret; 1384 } 1385 1386 static int 1387 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 1388 const unsigned char *addr, u16 vid, 1389 struct dsa_db db) 1390 { 1391 struct mt7530_priv *priv = ds->priv; 1392 int ret; 1393 u8 port_mask = BIT(port); 1394 1395 mutex_lock(&priv->reg_mutex); 1396 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 1397 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1398 mutex_unlock(&priv->reg_mutex); 1399 1400 return ret; 1401 } 1402 1403 static int 1404 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 1405 dsa_fdb_dump_cb_t *cb, void *data) 1406 { 1407 struct mt7530_priv *priv = ds->priv; 1408 struct mt7530_fdb _fdb = { 0 }; 1409 int cnt = MT7530_NUM_FDB_RECORDS; 1410 int ret = 0; 1411 u32 rsp = 0; 1412 1413 mutex_lock(&priv->reg_mutex); 1414 1415 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 1416 if (ret < 0) 1417 goto err; 1418 1419 do { 1420 if (rsp & ATC_SRCH_HIT) { 1421 mt7530_fdb_read(priv, &_fdb); 1422 if (_fdb.port_mask & BIT(port)) { 1423 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 1424 data); 1425 if (ret < 0) 1426 break; 1427 } 1428 } 1429 } while (--cnt && 1430 !(rsp & ATC_SRCH_END) && 1431 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 1432 err: 1433 mutex_unlock(&priv->reg_mutex); 1434 1435 return 0; 1436 } 1437 1438 static int 1439 mt7530_port_mdb_add(struct dsa_switch *ds, int port, 1440 const struct switchdev_obj_port_mdb *mdb, 1441 struct dsa_db db) 1442 { 1443 struct mt7530_priv *priv = ds->priv; 1444 const u8 *addr = mdb->addr; 1445 u16 vid = mdb->vid; 1446 u8 port_mask = 0; 1447 int ret; 1448 1449 mutex_lock(&priv->reg_mutex); 1450 1451 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); 1452 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) 1453 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) 1454 & PORT_MAP_MASK; 1455 1456 port_mask |= BIT(port); 1457 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1458 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1459 1460 mutex_unlock(&priv->reg_mutex); 1461 1462 return ret; 1463 } 1464 1465 static int 1466 mt7530_port_mdb_del(struct dsa_switch *ds, int port, 1467 const struct switchdev_obj_port_mdb *mdb, 1468 struct dsa_db db) 1469 { 1470 struct mt7530_priv *priv = ds->priv; 1471 const u8 *addr = mdb->addr; 1472 u16 vid = mdb->vid; 1473 u8 port_mask = 0; 1474 int ret; 1475 1476 mutex_lock(&priv->reg_mutex); 1477 1478 mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); 1479 if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) 1480 port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) 1481 & PORT_MAP_MASK; 1482 1483 port_mask &= ~BIT(port); 1484 mt7530_fdb_write(priv, vid, port_mask, addr, -1, 1485 port_mask ? STATIC_ENT : STATIC_EMP); 1486 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1487 1488 mutex_unlock(&priv->reg_mutex); 1489 1490 return ret; 1491 } 1492 1493 static int 1494 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 1495 { 1496 struct mt7530_dummy_poll p; 1497 u32 val; 1498 int ret; 1499 1500 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 1501 mt7530_write(priv, MT7530_VTCR, val); 1502 1503 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 1504 ret = readx_poll_timeout(_mt7530_read, &p, val, 1505 !(val & VTCR_BUSY), 20, 20000); 1506 if (ret < 0) { 1507 dev_err(priv->dev, "poll timeout\n"); 1508 return ret; 1509 } 1510 1511 val = mt7530_read(priv, MT7530_VTCR); 1512 if (val & VTCR_INVALID) { 1513 dev_err(priv->dev, "read VTCR invalid\n"); 1514 return -EINVAL; 1515 } 1516 1517 return 0; 1518 } 1519 1520 static int 1521 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, 1522 struct netlink_ext_ack *extack) 1523 { 1524 struct dsa_port *dp = dsa_to_port(ds, port); 1525 struct dsa_port *cpu_dp = dp->cpu_dp; 1526 1527 if (vlan_filtering) { 1528 /* The port is being kept as VLAN-unaware port when bridge is 1529 * set up with vlan_filtering not being set, Otherwise, the 1530 * port and the corresponding CPU port is required the setup 1531 * for becoming a VLAN-aware port. 1532 */ 1533 mt7530_port_set_vlan_aware(ds, port); 1534 mt7530_port_set_vlan_aware(ds, cpu_dp->index); 1535 } else { 1536 mt7530_port_set_vlan_unaware(ds, port); 1537 } 1538 1539 return 0; 1540 } 1541 1542 static void 1543 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1544 struct mt7530_hw_vlan_entry *entry) 1545 { 1546 struct dsa_port *dp = dsa_to_port(priv->ds, entry->port); 1547 u8 new_members; 1548 u32 val; 1549 1550 new_members = entry->old_members | BIT(entry->port); 1551 1552 /* Validate the entry with independent learning, create egress tag per 1553 * VLAN and joining the port as one of the port members. 1554 */ 1555 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) | 1556 VLAN_VALID; 1557 mt7530_write(priv, MT7530_VAWD1, val); 1558 1559 /* Decide whether adding tag or not for those outgoing packets from the 1560 * port inside the VLAN. 1561 * CPU port is always taken as a tagged port for serving more than one 1562 * VLANs across and also being applied with egress type stack mode for 1563 * that VLAN tags would be appended after hardware special tag used as 1564 * DSA tag. 1565 */ 1566 if (dsa_port_is_cpu(dp)) 1567 val = MT7530_VLAN_EGRESS_STACK; 1568 else if (entry->untagged) 1569 val = MT7530_VLAN_EGRESS_UNTAG; 1570 else 1571 val = MT7530_VLAN_EGRESS_TAG; 1572 mt7530_rmw(priv, MT7530_VAWD2, 1573 ETAG_CTRL_P_MASK(entry->port), 1574 ETAG_CTRL_P(entry->port, val)); 1575 } 1576 1577 static void 1578 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1579 struct mt7530_hw_vlan_entry *entry) 1580 { 1581 u8 new_members; 1582 u32 val; 1583 1584 new_members = entry->old_members & ~BIT(entry->port); 1585 1586 val = mt7530_read(priv, MT7530_VAWD1); 1587 if (!(val & VLAN_VALID)) { 1588 dev_err(priv->dev, 1589 "Cannot be deleted due to invalid entry\n"); 1590 return; 1591 } 1592 1593 if (new_members) { 1594 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1595 VLAN_VALID; 1596 mt7530_write(priv, MT7530_VAWD1, val); 1597 } else { 1598 mt7530_write(priv, MT7530_VAWD1, 0); 1599 mt7530_write(priv, MT7530_VAWD2, 0); 1600 } 1601 } 1602 1603 static void 1604 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1605 struct mt7530_hw_vlan_entry *entry, 1606 mt7530_vlan_op vlan_op) 1607 { 1608 u32 val; 1609 1610 /* Fetch entry */ 1611 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1612 1613 val = mt7530_read(priv, MT7530_VAWD1); 1614 1615 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1616 1617 /* Manipulate entry */ 1618 vlan_op(priv, entry); 1619 1620 /* Flush result to hardware */ 1621 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1622 } 1623 1624 static int 1625 mt7530_setup_vlan0(struct mt7530_priv *priv) 1626 { 1627 u32 val; 1628 1629 /* Validate the entry with independent learning, keep the original 1630 * ingress tag attribute. 1631 */ 1632 val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) | 1633 VLAN_VALID; 1634 mt7530_write(priv, MT7530_VAWD1, val); 1635 1636 return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0); 1637 } 1638 1639 static int 1640 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1641 const struct switchdev_obj_port_vlan *vlan, 1642 struct netlink_ext_ack *extack) 1643 { 1644 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1645 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1646 struct mt7530_hw_vlan_entry new_entry; 1647 struct mt7530_priv *priv = ds->priv; 1648 1649 mutex_lock(&priv->reg_mutex); 1650 1651 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1652 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); 1653 1654 if (pvid) { 1655 priv->ports[port].pvid = vlan->vid; 1656 1657 /* Accept all frames if PVID is set */ 1658 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1659 MT7530_VLAN_ACC_ALL); 1660 1661 /* Only configure PVID if VLAN filtering is enabled */ 1662 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1663 mt7530_rmw(priv, MT7530_PPBV1_P(port), 1664 G0_PORT_VID_MASK, 1665 G0_PORT_VID(vlan->vid)); 1666 } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) { 1667 /* This VLAN is overwritten without PVID, so unset it */ 1668 priv->ports[port].pvid = G0_PORT_VID_DEF; 1669 1670 /* Only accept tagged frames if the port is VLAN-aware */ 1671 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1672 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1673 MT7530_VLAN_ACC_TAGGED); 1674 1675 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1676 G0_PORT_VID_DEF); 1677 } 1678 1679 mutex_unlock(&priv->reg_mutex); 1680 1681 return 0; 1682 } 1683 1684 static int 1685 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1686 const struct switchdev_obj_port_vlan *vlan) 1687 { 1688 struct mt7530_hw_vlan_entry target_entry; 1689 struct mt7530_priv *priv = ds->priv; 1690 1691 mutex_lock(&priv->reg_mutex); 1692 1693 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1694 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, 1695 mt7530_hw_vlan_del); 1696 1697 /* PVID is being restored to the default whenever the PVID port 1698 * is being removed from the VLAN. 1699 */ 1700 if (priv->ports[port].pvid == vlan->vid) { 1701 priv->ports[port].pvid = G0_PORT_VID_DEF; 1702 1703 /* Only accept tagged frames if the port is VLAN-aware */ 1704 if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) 1705 mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, 1706 MT7530_VLAN_ACC_TAGGED); 1707 1708 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1709 G0_PORT_VID_DEF); 1710 } 1711 1712 1713 mutex_unlock(&priv->reg_mutex); 1714 1715 return 0; 1716 } 1717 1718 static int mt753x_mirror_port_get(unsigned int id, u32 val) 1719 { 1720 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : 1721 MIRROR_PORT(val); 1722 } 1723 1724 static int mt753x_mirror_port_set(unsigned int id, u32 val) 1725 { 1726 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : 1727 MIRROR_PORT(val); 1728 } 1729 1730 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, 1731 struct dsa_mall_mirror_tc_entry *mirror, 1732 bool ingress, struct netlink_ext_ack *extack) 1733 { 1734 struct mt7530_priv *priv = ds->priv; 1735 int monitor_port; 1736 u32 val; 1737 1738 /* Check for existent entry */ 1739 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1740 return -EEXIST; 1741 1742 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1743 1744 /* MT7530 only supports one monitor port */ 1745 monitor_port = mt753x_mirror_port_get(priv->id, val); 1746 if (val & MT753X_MIRROR_EN(priv->id) && 1747 monitor_port != mirror->to_local_port) 1748 return -EEXIST; 1749 1750 val |= MT753X_MIRROR_EN(priv->id); 1751 val &= ~MT753X_MIRROR_MASK(priv->id); 1752 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); 1753 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1754 1755 val = mt7530_read(priv, MT7530_PCR_P(port)); 1756 if (ingress) { 1757 val |= PORT_RX_MIR; 1758 priv->mirror_rx |= BIT(port); 1759 } else { 1760 val |= PORT_TX_MIR; 1761 priv->mirror_tx |= BIT(port); 1762 } 1763 mt7530_write(priv, MT7530_PCR_P(port), val); 1764 1765 return 0; 1766 } 1767 1768 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, 1769 struct dsa_mall_mirror_tc_entry *mirror) 1770 { 1771 struct mt7530_priv *priv = ds->priv; 1772 u32 val; 1773 1774 val = mt7530_read(priv, MT7530_PCR_P(port)); 1775 if (mirror->ingress) { 1776 val &= ~PORT_RX_MIR; 1777 priv->mirror_rx &= ~BIT(port); 1778 } else { 1779 val &= ~PORT_TX_MIR; 1780 priv->mirror_tx &= ~BIT(port); 1781 } 1782 mt7530_write(priv, MT7530_PCR_P(port), val); 1783 1784 if (!priv->mirror_rx && !priv->mirror_tx) { 1785 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1786 val &= ~MT753X_MIRROR_EN(priv->id); 1787 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1788 } 1789 } 1790 1791 static enum dsa_tag_protocol 1792 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1793 enum dsa_tag_protocol mp) 1794 { 1795 return DSA_TAG_PROTO_MTK; 1796 } 1797 1798 #ifdef CONFIG_GPIOLIB 1799 static inline u32 1800 mt7530_gpio_to_bit(unsigned int offset) 1801 { 1802 /* Map GPIO offset to register bit 1803 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 1804 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 1805 * [10: 8] port 2 LED 0..2 as GPIO 6..8 1806 * [14:12] port 3 LED 0..2 as GPIO 9..11 1807 * [18:16] port 4 LED 0..2 as GPIO 12..14 1808 */ 1809 return BIT(offset + offset / 3); 1810 } 1811 1812 static int 1813 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) 1814 { 1815 struct mt7530_priv *priv = gpiochip_get_data(gc); 1816 u32 bit = mt7530_gpio_to_bit(offset); 1817 1818 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); 1819 } 1820 1821 static void 1822 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) 1823 { 1824 struct mt7530_priv *priv = gpiochip_get_data(gc); 1825 u32 bit = mt7530_gpio_to_bit(offset); 1826 1827 if (value) 1828 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1829 else 1830 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1831 } 1832 1833 static int 1834 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) 1835 { 1836 struct mt7530_priv *priv = gpiochip_get_data(gc); 1837 u32 bit = mt7530_gpio_to_bit(offset); 1838 1839 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? 1840 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1841 } 1842 1843 static int 1844 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) 1845 { 1846 struct mt7530_priv *priv = gpiochip_get_data(gc); 1847 u32 bit = mt7530_gpio_to_bit(offset); 1848 1849 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); 1850 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); 1851 1852 return 0; 1853 } 1854 1855 static int 1856 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) 1857 { 1858 struct mt7530_priv *priv = gpiochip_get_data(gc); 1859 u32 bit = mt7530_gpio_to_bit(offset); 1860 1861 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); 1862 1863 if (value) 1864 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1865 else 1866 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1867 1868 mt7530_set(priv, MT7530_LED_GPIO_OE, bit); 1869 1870 return 0; 1871 } 1872 1873 static int 1874 mt7530_setup_gpio(struct mt7530_priv *priv) 1875 { 1876 struct device *dev = priv->dev; 1877 struct gpio_chip *gc; 1878 1879 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); 1880 if (!gc) 1881 return -ENOMEM; 1882 1883 mt7530_write(priv, MT7530_LED_GPIO_OE, 0); 1884 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); 1885 mt7530_write(priv, MT7530_LED_IO_MODE, 0); 1886 1887 gc->label = "mt7530"; 1888 gc->parent = dev; 1889 gc->owner = THIS_MODULE; 1890 gc->get_direction = mt7530_gpio_get_direction; 1891 gc->direction_input = mt7530_gpio_direction_input; 1892 gc->direction_output = mt7530_gpio_direction_output; 1893 gc->get = mt7530_gpio_get; 1894 gc->set = mt7530_gpio_set; 1895 gc->base = -1; 1896 gc->ngpio = 15; 1897 gc->can_sleep = true; 1898 1899 return devm_gpiochip_add_data(dev, gc, priv); 1900 } 1901 #endif /* CONFIG_GPIOLIB */ 1902 1903 static irqreturn_t 1904 mt7530_irq_thread_fn(int irq, void *dev_id) 1905 { 1906 struct mt7530_priv *priv = dev_id; 1907 bool handled = false; 1908 u32 val; 1909 int p; 1910 1911 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); 1912 val = mt7530_mii_read(priv, MT7530_SYS_INT_STS); 1913 mt7530_mii_write(priv, MT7530_SYS_INT_STS, val); 1914 mutex_unlock(&priv->bus->mdio_lock); 1915 1916 for (p = 0; p < MT7530_NUM_PHYS; p++) { 1917 if (BIT(p) & val) { 1918 unsigned int irq; 1919 1920 irq = irq_find_mapping(priv->irq_domain, p); 1921 handle_nested_irq(irq); 1922 handled = true; 1923 } 1924 } 1925 1926 return IRQ_RETVAL(handled); 1927 } 1928 1929 static void 1930 mt7530_irq_mask(struct irq_data *d) 1931 { 1932 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1933 1934 priv->irq_enable &= ~BIT(d->hwirq); 1935 } 1936 1937 static void 1938 mt7530_irq_unmask(struct irq_data *d) 1939 { 1940 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1941 1942 priv->irq_enable |= BIT(d->hwirq); 1943 } 1944 1945 static void 1946 mt7530_irq_bus_lock(struct irq_data *d) 1947 { 1948 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1949 1950 mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); 1951 } 1952 1953 static void 1954 mt7530_irq_bus_sync_unlock(struct irq_data *d) 1955 { 1956 struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); 1957 1958 mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); 1959 mutex_unlock(&priv->bus->mdio_lock); 1960 } 1961 1962 static struct irq_chip mt7530_irq_chip = { 1963 .name = KBUILD_MODNAME, 1964 .irq_mask = mt7530_irq_mask, 1965 .irq_unmask = mt7530_irq_unmask, 1966 .irq_bus_lock = mt7530_irq_bus_lock, 1967 .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock, 1968 }; 1969 1970 static int 1971 mt7530_irq_map(struct irq_domain *domain, unsigned int irq, 1972 irq_hw_number_t hwirq) 1973 { 1974 irq_set_chip_data(irq, domain->host_data); 1975 irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq); 1976 irq_set_nested_thread(irq, true); 1977 irq_set_noprobe(irq); 1978 1979 return 0; 1980 } 1981 1982 static const struct irq_domain_ops mt7530_irq_domain_ops = { 1983 .map = mt7530_irq_map, 1984 .xlate = irq_domain_xlate_onecell, 1985 }; 1986 1987 static void 1988 mt7530_setup_mdio_irq(struct mt7530_priv *priv) 1989 { 1990 struct dsa_switch *ds = priv->ds; 1991 int p; 1992 1993 for (p = 0; p < MT7530_NUM_PHYS; p++) { 1994 if (BIT(p) & ds->phys_mii_mask) { 1995 unsigned int irq; 1996 1997 irq = irq_create_mapping(priv->irq_domain, p); 1998 ds->slave_mii_bus->irq[p] = irq; 1999 } 2000 } 2001 } 2002 2003 static int 2004 mt7530_setup_irq(struct mt7530_priv *priv) 2005 { 2006 struct device *dev = priv->dev; 2007 struct device_node *np = dev->of_node; 2008 int ret; 2009 2010 if (!of_property_read_bool(np, "interrupt-controller")) { 2011 dev_info(dev, "no interrupt support\n"); 2012 return 0; 2013 } 2014 2015 priv->irq = of_irq_get(np, 0); 2016 if (priv->irq <= 0) { 2017 dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq); 2018 return priv->irq ? : -EINVAL; 2019 } 2020 2021 priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, 2022 &mt7530_irq_domain_ops, priv); 2023 if (!priv->irq_domain) { 2024 dev_err(dev, "failed to create IRQ domain\n"); 2025 return -ENOMEM; 2026 } 2027 2028 /* This register must be set for MT7530 to properly fire interrupts */ 2029 if (priv->id != ID_MT7531) 2030 mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL); 2031 2032 ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn, 2033 IRQF_ONESHOT, KBUILD_MODNAME, priv); 2034 if (ret) { 2035 irq_domain_remove(priv->irq_domain); 2036 dev_err(dev, "failed to request IRQ: %d\n", ret); 2037 return ret; 2038 } 2039 2040 return 0; 2041 } 2042 2043 static void 2044 mt7530_free_mdio_irq(struct mt7530_priv *priv) 2045 { 2046 int p; 2047 2048 for (p = 0; p < MT7530_NUM_PHYS; p++) { 2049 if (BIT(p) & priv->ds->phys_mii_mask) { 2050 unsigned int irq; 2051 2052 irq = irq_find_mapping(priv->irq_domain, p); 2053 irq_dispose_mapping(irq); 2054 } 2055 } 2056 } 2057 2058 static void 2059 mt7530_free_irq_common(struct mt7530_priv *priv) 2060 { 2061 free_irq(priv->irq, priv); 2062 irq_domain_remove(priv->irq_domain); 2063 } 2064 2065 static void 2066 mt7530_free_irq(struct mt7530_priv *priv) 2067 { 2068 mt7530_free_mdio_irq(priv); 2069 mt7530_free_irq_common(priv); 2070 } 2071 2072 static int 2073 mt7530_setup_mdio(struct mt7530_priv *priv) 2074 { 2075 struct dsa_switch *ds = priv->ds; 2076 struct device *dev = priv->dev; 2077 struct mii_bus *bus; 2078 static int idx; 2079 int ret; 2080 2081 bus = devm_mdiobus_alloc(dev); 2082 if (!bus) 2083 return -ENOMEM; 2084 2085 ds->slave_mii_bus = bus; 2086 bus->priv = priv; 2087 bus->name = KBUILD_MODNAME "-mii"; 2088 snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++); 2089 bus->read = mt753x_phy_read; 2090 bus->write = mt753x_phy_write; 2091 bus->parent = dev; 2092 bus->phy_mask = ~ds->phys_mii_mask; 2093 2094 if (priv->irq) 2095 mt7530_setup_mdio_irq(priv); 2096 2097 ret = devm_mdiobus_register(dev, bus); 2098 if (ret) { 2099 dev_err(dev, "failed to register MDIO bus: %d\n", ret); 2100 if (priv->irq) 2101 mt7530_free_mdio_irq(priv); 2102 } 2103 2104 return ret; 2105 } 2106 2107 static int 2108 mt7530_setup(struct dsa_switch *ds) 2109 { 2110 struct mt7530_priv *priv = ds->priv; 2111 struct device_node *dn = NULL; 2112 struct device_node *phy_node; 2113 struct device_node *mac_np; 2114 struct mt7530_dummy_poll p; 2115 phy_interface_t interface; 2116 struct dsa_port *cpu_dp; 2117 u32 id, val; 2118 int ret, i; 2119 2120 /* The parent node of master netdev which holds the common system 2121 * controller also is the container for two GMACs nodes representing 2122 * as two netdev instances. 2123 */ 2124 dsa_switch_for_each_cpu_port(cpu_dp, ds) { 2125 dn = cpu_dp->master->dev.of_node->parent; 2126 /* It doesn't matter which CPU port is found first, 2127 * their masters should share the same parent OF node 2128 */ 2129 break; 2130 } 2131 2132 if (!dn) { 2133 dev_err(ds->dev, "parent OF node of DSA master not found"); 2134 return -EINVAL; 2135 } 2136 2137 ds->assisted_learning_on_cpu_port = true; 2138 ds->mtu_enforcement_ingress = true; 2139 2140 if (priv->id == ID_MT7530) { 2141 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 2142 ret = regulator_enable(priv->core_pwr); 2143 if (ret < 0) { 2144 dev_err(priv->dev, 2145 "Failed to enable core power: %d\n", ret); 2146 return ret; 2147 } 2148 2149 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 2150 ret = regulator_enable(priv->io_pwr); 2151 if (ret < 0) { 2152 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 2153 ret); 2154 return ret; 2155 } 2156 } 2157 2158 /* Reset whole chip through gpio pin or memory-mapped registers for 2159 * different type of hardware 2160 */ 2161 if (priv->mcm) { 2162 reset_control_assert(priv->rstc); 2163 usleep_range(1000, 1100); 2164 reset_control_deassert(priv->rstc); 2165 } else { 2166 gpiod_set_value_cansleep(priv->reset, 0); 2167 usleep_range(1000, 1100); 2168 gpiod_set_value_cansleep(priv->reset, 1); 2169 } 2170 2171 /* Waiting for MT7530 got to stable */ 2172 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 2173 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 2174 20, 1000000); 2175 if (ret < 0) { 2176 dev_err(priv->dev, "reset timeout\n"); 2177 return ret; 2178 } 2179 2180 id = mt7530_read(priv, MT7530_CREV); 2181 id >>= CHIP_NAME_SHIFT; 2182 if (id != MT7530_ID) { 2183 dev_err(priv->dev, "chip %x can't be supported\n", id); 2184 return -ENODEV; 2185 } 2186 2187 /* Reset the switch through internal reset */ 2188 mt7530_write(priv, MT7530_SYS_CTRL, 2189 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 2190 SYS_CTRL_REG_RST); 2191 2192 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 2193 val = mt7530_read(priv, MT7530_MHWTRAP); 2194 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 2195 val |= MHWTRAP_MANUAL; 2196 mt7530_write(priv, MT7530_MHWTRAP, val); 2197 2198 priv->p6_interface = PHY_INTERFACE_MODE_NA; 2199 2200 /* Enable and reset MIB counters */ 2201 mt7530_mib_reset(ds); 2202 2203 for (i = 0; i < MT7530_NUM_PORTS; i++) { 2204 /* Disable forwarding by default on all ports */ 2205 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 2206 PCR_MATRIX_CLR); 2207 2208 /* Disable learning by default on all ports */ 2209 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); 2210 2211 if (dsa_is_cpu_port(ds, i)) { 2212 ret = mt753x_cpu_port_enable(ds, i); 2213 if (ret) 2214 return ret; 2215 } else { 2216 mt7530_port_disable(ds, i); 2217 2218 /* Set default PVID to 0 on all user ports */ 2219 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, 2220 G0_PORT_VID_DEF); 2221 } 2222 /* Enable consistent egress tag */ 2223 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 2224 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 2225 } 2226 2227 /* Setup VLAN ID 0 for VLAN-unaware bridges */ 2228 ret = mt7530_setup_vlan0(priv); 2229 if (ret) 2230 return ret; 2231 2232 /* Setup port 5 */ 2233 priv->p5_intf_sel = P5_DISABLED; 2234 interface = PHY_INTERFACE_MODE_NA; 2235 2236 if (!dsa_is_unused_port(ds, 5)) { 2237 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 2238 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 2239 if (ret && ret != -ENODEV) 2240 return ret; 2241 } else { 2242 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 2243 for_each_child_of_node(dn, mac_np) { 2244 if (!of_device_is_compatible(mac_np, 2245 "mediatek,eth-mac")) 2246 continue; 2247 2248 ret = of_property_read_u32(mac_np, "reg", &id); 2249 if (ret < 0 || id != 1) 2250 continue; 2251 2252 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 2253 if (!phy_node) 2254 continue; 2255 2256 if (phy_node->parent == priv->dev->of_node->parent) { 2257 ret = of_get_phy_mode(mac_np, &interface); 2258 if (ret && ret != -ENODEV) { 2259 of_node_put(mac_np); 2260 of_node_put(phy_node); 2261 return ret; 2262 } 2263 id = of_mdio_parse_addr(ds->dev, phy_node); 2264 if (id == 0) 2265 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 2266 if (id == 4) 2267 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 2268 } 2269 of_node_put(mac_np); 2270 of_node_put(phy_node); 2271 break; 2272 } 2273 } 2274 2275 #ifdef CONFIG_GPIOLIB 2276 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { 2277 ret = mt7530_setup_gpio(priv); 2278 if (ret) 2279 return ret; 2280 } 2281 #endif /* CONFIG_GPIOLIB */ 2282 2283 mt7530_setup_port5(ds, interface); 2284 2285 /* Flush the FDB table */ 2286 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 2287 if (ret < 0) 2288 return ret; 2289 2290 return 0; 2291 } 2292 2293 static int 2294 mt7531_setup(struct dsa_switch *ds) 2295 { 2296 struct mt7530_priv *priv = ds->priv; 2297 struct mt7530_dummy_poll p; 2298 struct dsa_port *cpu_dp; 2299 u32 val, id; 2300 int ret, i; 2301 2302 /* Reset whole chip through gpio pin or memory-mapped registers for 2303 * different type of hardware 2304 */ 2305 if (priv->mcm) { 2306 reset_control_assert(priv->rstc); 2307 usleep_range(1000, 1100); 2308 reset_control_deassert(priv->rstc); 2309 } else { 2310 gpiod_set_value_cansleep(priv->reset, 0); 2311 usleep_range(1000, 1100); 2312 gpiod_set_value_cansleep(priv->reset, 1); 2313 } 2314 2315 /* Waiting for MT7530 got to stable */ 2316 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 2317 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 2318 20, 1000000); 2319 if (ret < 0) { 2320 dev_err(priv->dev, "reset timeout\n"); 2321 return ret; 2322 } 2323 2324 id = mt7530_read(priv, MT7531_CREV); 2325 id >>= CHIP_NAME_SHIFT; 2326 2327 if (id != MT7531_ID) { 2328 dev_err(priv->dev, "chip %x can't be supported\n", id); 2329 return -ENODEV; 2330 } 2331 2332 /* all MACs must be forced link-down before sw reset */ 2333 for (i = 0; i < MT7530_NUM_PORTS; i++) 2334 mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK); 2335 2336 /* Reset the switch through internal reset */ 2337 mt7530_write(priv, MT7530_SYS_CTRL, 2338 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 2339 SYS_CTRL_REG_RST); 2340 2341 mt7531_pll_setup(priv); 2342 2343 if (mt7531_dual_sgmii_supported(priv)) { 2344 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; 2345 2346 /* Let ds->slave_mii_bus be able to access external phy. */ 2347 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, 2348 MT7531_EXT_P_MDC_11); 2349 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, 2350 MT7531_EXT_P_MDIO_12); 2351 } else { 2352 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 2353 } 2354 dev_dbg(ds->dev, "P5 support %s interface\n", 2355 p5_intf_modes(priv->p5_intf_sel)); 2356 2357 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, 2358 MT7531_GPIO0_INTERRUPT); 2359 2360 /* Let phylink decide the interface later. */ 2361 priv->p5_interface = PHY_INTERFACE_MODE_NA; 2362 priv->p6_interface = PHY_INTERFACE_MODE_NA; 2363 2364 /* Enable PHY core PLL, since phy_device has not yet been created 2365 * provided for phy_[read,write]_mmd_indirect is called, we provide 2366 * our own mt7531_ind_mmd_phy_[read,write] to complete this 2367 * function. 2368 */ 2369 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, 2370 MDIO_MMD_VEND2, CORE_PLL_GROUP4); 2371 val |= MT7531_PHY_PLL_BYPASS_MODE; 2372 val &= ~MT7531_PHY_PLL_OFF; 2373 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, 2374 CORE_PLL_GROUP4, val); 2375 2376 /* BPDU to CPU port */ 2377 dsa_switch_for_each_cpu_port(cpu_dp, ds) { 2378 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, 2379 BIT(cpu_dp->index)); 2380 break; 2381 } 2382 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, 2383 MT753X_BPDU_CPU_ONLY); 2384 2385 /* Enable and reset MIB counters */ 2386 mt7530_mib_reset(ds); 2387 2388 for (i = 0; i < MT7530_NUM_PORTS; i++) { 2389 /* Disable forwarding by default on all ports */ 2390 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 2391 PCR_MATRIX_CLR); 2392 2393 /* Disable learning by default on all ports */ 2394 mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); 2395 2396 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); 2397 2398 if (dsa_is_cpu_port(ds, i)) { 2399 ret = mt753x_cpu_port_enable(ds, i); 2400 if (ret) 2401 return ret; 2402 } else { 2403 mt7530_port_disable(ds, i); 2404 2405 /* Set default PVID to 0 on all user ports */ 2406 mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, 2407 G0_PORT_VID_DEF); 2408 } 2409 2410 /* Enable consistent egress tag */ 2411 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 2412 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 2413 } 2414 2415 /* Setup VLAN ID 0 for VLAN-unaware bridges */ 2416 ret = mt7530_setup_vlan0(priv); 2417 if (ret) 2418 return ret; 2419 2420 ds->assisted_learning_on_cpu_port = true; 2421 ds->mtu_enforcement_ingress = true; 2422 2423 /* Flush the FDB table */ 2424 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 2425 if (ret < 0) 2426 return ret; 2427 2428 return 0; 2429 } 2430 2431 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port, 2432 struct phylink_config *config) 2433 { 2434 switch (port) { 2435 case 0 ... 4: /* Internal phy */ 2436 __set_bit(PHY_INTERFACE_MODE_GMII, 2437 config->supported_interfaces); 2438 break; 2439 2440 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2441 phy_interface_set_rgmii(config->supported_interfaces); 2442 __set_bit(PHY_INTERFACE_MODE_MII, 2443 config->supported_interfaces); 2444 __set_bit(PHY_INTERFACE_MODE_GMII, 2445 config->supported_interfaces); 2446 break; 2447 2448 case 6: /* 1st cpu port */ 2449 __set_bit(PHY_INTERFACE_MODE_RGMII, 2450 config->supported_interfaces); 2451 __set_bit(PHY_INTERFACE_MODE_TRGMII, 2452 config->supported_interfaces); 2453 break; 2454 } 2455 } 2456 2457 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) 2458 { 2459 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); 2460 } 2461 2462 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port, 2463 struct phylink_config *config) 2464 { 2465 struct mt7530_priv *priv = ds->priv; 2466 2467 switch (port) { 2468 case 0 ... 4: /* Internal phy */ 2469 __set_bit(PHY_INTERFACE_MODE_GMII, 2470 config->supported_interfaces); 2471 break; 2472 2473 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ 2474 if (mt7531_is_rgmii_port(priv, port)) { 2475 phy_interface_set_rgmii(config->supported_interfaces); 2476 break; 2477 } 2478 fallthrough; 2479 2480 case 6: /* 1st cpu port supports sgmii/8023z only */ 2481 __set_bit(PHY_INTERFACE_MODE_SGMII, 2482 config->supported_interfaces); 2483 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 2484 config->supported_interfaces); 2485 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 2486 config->supported_interfaces); 2487 2488 config->mac_capabilities |= MAC_2500FD; 2489 break; 2490 } 2491 } 2492 2493 static int 2494 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) 2495 { 2496 struct mt7530_priv *priv = ds->priv; 2497 2498 return priv->info->pad_setup(ds, state->interface); 2499 } 2500 2501 static int 2502 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2503 phy_interface_t interface) 2504 { 2505 struct mt7530_priv *priv = ds->priv; 2506 2507 /* Only need to setup port5. */ 2508 if (port != 5) 2509 return 0; 2510 2511 mt7530_setup_port5(priv->ds, interface); 2512 2513 return 0; 2514 } 2515 2516 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, 2517 phy_interface_t interface, 2518 struct phy_device *phydev) 2519 { 2520 u32 val; 2521 2522 if (!mt7531_is_rgmii_port(priv, port)) { 2523 dev_err(priv->dev, "RGMII mode is not available for port %d\n", 2524 port); 2525 return -EINVAL; 2526 } 2527 2528 val = mt7530_read(priv, MT7531_CLKGEN_CTRL); 2529 val |= GP_CLK_EN; 2530 val &= ~GP_MODE_MASK; 2531 val |= GP_MODE(MT7531_GP_MODE_RGMII); 2532 val &= ~CLK_SKEW_IN_MASK; 2533 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); 2534 val &= ~CLK_SKEW_OUT_MASK; 2535 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); 2536 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; 2537 2538 /* Do not adjust rgmii delay when vendor phy driver presents. */ 2539 if (!phydev || phy_driver_is_genphy(phydev)) { 2540 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); 2541 switch (interface) { 2542 case PHY_INTERFACE_MODE_RGMII: 2543 val |= TXCLK_NO_REVERSE; 2544 val |= RXCLK_NO_DELAY; 2545 break; 2546 case PHY_INTERFACE_MODE_RGMII_RXID: 2547 val |= TXCLK_NO_REVERSE; 2548 break; 2549 case PHY_INTERFACE_MODE_RGMII_TXID: 2550 val |= RXCLK_NO_DELAY; 2551 break; 2552 case PHY_INTERFACE_MODE_RGMII_ID: 2553 break; 2554 default: 2555 return -EINVAL; 2556 } 2557 } 2558 mt7530_write(priv, MT7531_CLKGEN_CTRL, val); 2559 2560 return 0; 2561 } 2562 2563 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode, 2564 phy_interface_t interface, int speed, int duplex) 2565 { 2566 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; 2567 int port = pcs_to_mt753x_pcs(pcs)->port; 2568 unsigned int val; 2569 2570 /* For adjusting speed and duplex of SGMII force mode. */ 2571 if (interface != PHY_INTERFACE_MODE_SGMII || 2572 phylink_autoneg_inband(mode)) 2573 return; 2574 2575 /* SGMII force mode setting */ 2576 val = mt7530_read(priv, MT7531_SGMII_MODE(port)); 2577 val &= ~MT7531_SGMII_IF_MODE_MASK; 2578 2579 switch (speed) { 2580 case SPEED_10: 2581 val |= MT7531_SGMII_FORCE_SPEED_10; 2582 break; 2583 case SPEED_100: 2584 val |= MT7531_SGMII_FORCE_SPEED_100; 2585 break; 2586 case SPEED_1000: 2587 val |= MT7531_SGMII_FORCE_SPEED_1000; 2588 break; 2589 } 2590 2591 /* MT7531 SGMII 1G force mode can only work in full duplex mode, 2592 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2593 * 2594 * The speed check is unnecessary as the MAC capabilities apply 2595 * this restriction. --rmk 2596 */ 2597 if ((speed == SPEED_10 || speed == SPEED_100) && 2598 duplex != DUPLEX_FULL) 2599 val |= MT7531_SGMII_FORCE_HALF_DUPLEX; 2600 2601 mt7530_write(priv, MT7531_SGMII_MODE(port), val); 2602 } 2603 2604 static bool mt753x_is_mac_port(u32 port) 2605 { 2606 return (port == 5 || port == 6); 2607 } 2608 2609 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, 2610 phy_interface_t interface) 2611 { 2612 u32 val; 2613 2614 if (!mt753x_is_mac_port(port)) 2615 return -EINVAL; 2616 2617 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2618 MT7531_SGMII_PHYA_PWD); 2619 2620 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); 2621 val &= ~MT7531_RG_TPHY_SPEED_MASK; 2622 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B 2623 * encoding. 2624 */ 2625 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? 2626 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; 2627 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); 2628 2629 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2630 2631 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex 2632 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2633 */ 2634 mt7530_rmw(priv, MT7531_SGMII_MODE(port), 2635 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, 2636 MT7531_SGMII_FORCE_SPEED_1000); 2637 2638 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2639 2640 return 0; 2641 } 2642 2643 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, 2644 phy_interface_t interface) 2645 { 2646 if (!mt753x_is_mac_port(port)) 2647 return -EINVAL; 2648 2649 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2650 MT7531_SGMII_PHYA_PWD); 2651 2652 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), 2653 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); 2654 2655 mt7530_set(priv, MT7531_SGMII_MODE(port), 2656 MT7531_SGMII_REMOTE_FAULT_DIS | 2657 MT7531_SGMII_SPEED_DUPLEX_AN); 2658 2659 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), 2660 MT7531_SGMII_TX_CONFIG_MASK, 1); 2661 2662 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2663 2664 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); 2665 2666 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2667 2668 return 0; 2669 } 2670 2671 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs) 2672 { 2673 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; 2674 int port = pcs_to_mt753x_pcs(pcs)->port; 2675 u32 val; 2676 2677 /* Only restart AN when AN is enabled */ 2678 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2679 if (val & MT7531_SGMII_AN_ENABLE) { 2680 val |= MT7531_SGMII_AN_RESTART; 2681 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); 2682 } 2683 } 2684 2685 static int 2686 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2687 phy_interface_t interface) 2688 { 2689 struct mt7530_priv *priv = ds->priv; 2690 struct phy_device *phydev; 2691 struct dsa_port *dp; 2692 2693 if (!mt753x_is_mac_port(port)) { 2694 dev_err(priv->dev, "port %d is not a MAC port\n", port); 2695 return -EINVAL; 2696 } 2697 2698 switch (interface) { 2699 case PHY_INTERFACE_MODE_RGMII: 2700 case PHY_INTERFACE_MODE_RGMII_ID: 2701 case PHY_INTERFACE_MODE_RGMII_RXID: 2702 case PHY_INTERFACE_MODE_RGMII_TXID: 2703 dp = dsa_to_port(ds, port); 2704 phydev = dp->slave->phydev; 2705 return mt7531_rgmii_setup(priv, port, interface, phydev); 2706 case PHY_INTERFACE_MODE_SGMII: 2707 return mt7531_sgmii_setup_mode_an(priv, port, interface); 2708 case PHY_INTERFACE_MODE_NA: 2709 case PHY_INTERFACE_MODE_1000BASEX: 2710 case PHY_INTERFACE_MODE_2500BASEX: 2711 return mt7531_sgmii_setup_mode_force(priv, port, interface); 2712 default: 2713 return -EINVAL; 2714 } 2715 2716 return -EINVAL; 2717 } 2718 2719 static int 2720 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2721 const struct phylink_link_state *state) 2722 { 2723 struct mt7530_priv *priv = ds->priv; 2724 2725 return priv->info->mac_port_config(ds, port, mode, state->interface); 2726 } 2727 2728 static struct phylink_pcs * 2729 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port, 2730 phy_interface_t interface) 2731 { 2732 struct mt7530_priv *priv = ds->priv; 2733 2734 switch (interface) { 2735 case PHY_INTERFACE_MODE_TRGMII: 2736 case PHY_INTERFACE_MODE_SGMII: 2737 case PHY_INTERFACE_MODE_1000BASEX: 2738 case PHY_INTERFACE_MODE_2500BASEX: 2739 return &priv->pcs[port].pcs; 2740 2741 default: 2742 return NULL; 2743 } 2744 } 2745 2746 static void 2747 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2748 const struct phylink_link_state *state) 2749 { 2750 struct mt7530_priv *priv = ds->priv; 2751 u32 mcr_cur, mcr_new; 2752 2753 switch (port) { 2754 case 0 ... 4: /* Internal phy */ 2755 if (state->interface != PHY_INTERFACE_MODE_GMII) 2756 goto unsupported; 2757 break; 2758 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2759 if (priv->p5_interface == state->interface) 2760 break; 2761 2762 if (mt753x_mac_config(ds, port, mode, state) < 0) 2763 goto unsupported; 2764 2765 if (priv->p5_intf_sel != P5_DISABLED) 2766 priv->p5_interface = state->interface; 2767 break; 2768 case 6: /* 1st cpu port */ 2769 if (priv->p6_interface == state->interface) 2770 break; 2771 2772 mt753x_pad_setup(ds, state); 2773 2774 if (mt753x_mac_config(ds, port, mode, state) < 0) 2775 goto unsupported; 2776 2777 priv->p6_interface = state->interface; 2778 break; 2779 default: 2780 unsupported: 2781 dev_err(ds->dev, "%s: unsupported %s port: %i\n", 2782 __func__, phy_modes(state->interface), port); 2783 return; 2784 } 2785 2786 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 2787 mcr_new = mcr_cur; 2788 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 2789 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 2790 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); 2791 2792 /* Are we connected to external phy */ 2793 if (port == 5 && dsa_is_user_port(ds, 5)) 2794 mcr_new |= PMCR_EXT_PHY; 2795 2796 if (mcr_new != mcr_cur) 2797 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 2798 } 2799 2800 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, 2801 unsigned int mode, 2802 phy_interface_t interface) 2803 { 2804 struct mt7530_priv *priv = ds->priv; 2805 2806 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 2807 } 2808 2809 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs, 2810 unsigned int mode, 2811 phy_interface_t interface, 2812 int speed, int duplex) 2813 { 2814 if (pcs->ops->pcs_link_up) 2815 pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex); 2816 } 2817 2818 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, 2819 unsigned int mode, 2820 phy_interface_t interface, 2821 struct phy_device *phydev, 2822 int speed, int duplex, 2823 bool tx_pause, bool rx_pause) 2824 { 2825 struct mt7530_priv *priv = ds->priv; 2826 u32 mcr; 2827 2828 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 2829 2830 /* MT753x MAC works in 1G full duplex mode for all up-clocked 2831 * variants. 2832 */ 2833 if (interface == PHY_INTERFACE_MODE_TRGMII || 2834 (phy_interface_mode_is_8023z(interface))) { 2835 speed = SPEED_1000; 2836 duplex = DUPLEX_FULL; 2837 } 2838 2839 switch (speed) { 2840 case SPEED_1000: 2841 mcr |= PMCR_FORCE_SPEED_1000; 2842 break; 2843 case SPEED_100: 2844 mcr |= PMCR_FORCE_SPEED_100; 2845 break; 2846 } 2847 if (duplex == DUPLEX_FULL) { 2848 mcr |= PMCR_FORCE_FDX; 2849 if (tx_pause) 2850 mcr |= PMCR_TX_FC_EN; 2851 if (rx_pause) 2852 mcr |= PMCR_RX_FC_EN; 2853 } 2854 2855 if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) { 2856 switch (speed) { 2857 case SPEED_1000: 2858 mcr |= PMCR_FORCE_EEE1G; 2859 break; 2860 case SPEED_100: 2861 mcr |= PMCR_FORCE_EEE100; 2862 break; 2863 } 2864 } 2865 2866 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 2867 } 2868 2869 static int 2870 mt7531_cpu_port_config(struct dsa_switch *ds, int port) 2871 { 2872 struct mt7530_priv *priv = ds->priv; 2873 phy_interface_t interface; 2874 int speed; 2875 int ret; 2876 2877 switch (port) { 2878 case 5: 2879 if (mt7531_is_rgmii_port(priv, port)) 2880 interface = PHY_INTERFACE_MODE_RGMII; 2881 else 2882 interface = PHY_INTERFACE_MODE_2500BASEX; 2883 2884 priv->p5_interface = interface; 2885 break; 2886 case 6: 2887 interface = PHY_INTERFACE_MODE_2500BASEX; 2888 2889 priv->p6_interface = interface; 2890 break; 2891 default: 2892 return -EINVAL; 2893 } 2894 2895 if (interface == PHY_INTERFACE_MODE_2500BASEX) 2896 speed = SPEED_2500; 2897 else 2898 speed = SPEED_1000; 2899 2900 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); 2901 if (ret) 2902 return ret; 2903 mt7530_write(priv, MT7530_PMCR_P(port), 2904 PMCR_CPU_PORT_SETTING(priv->id)); 2905 mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED, 2906 interface, speed, DUPLEX_FULL); 2907 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, 2908 speed, DUPLEX_FULL, true, true); 2909 2910 return 0; 2911 } 2912 2913 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port, 2914 struct phylink_config *config) 2915 { 2916 struct mt7530_priv *priv = ds->priv; 2917 2918 /* This switch only supports full-duplex at 1Gbps */ 2919 config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 2920 MAC_10 | MAC_100 | MAC_1000FD; 2921 2922 if ((priv->id == ID_MT7531) && mt753x_is_mac_port(port)) 2923 config->mac_capabilities |= MAC_2500FD; 2924 2925 /* This driver does not make use of the speed, duplex, pause or the 2926 * advertisement in its mac_config, so it is safe to mark this driver 2927 * as non-legacy. 2928 */ 2929 config->legacy_pre_march2020 = false; 2930 2931 priv->info->mac_port_get_caps(ds, port, config); 2932 } 2933 2934 static int mt753x_pcs_validate(struct phylink_pcs *pcs, 2935 unsigned long *supported, 2936 const struct phylink_link_state *state) 2937 { 2938 /* Autonegotiation is not supported in TRGMII nor 802.3z modes */ 2939 if (state->interface == PHY_INTERFACE_MODE_TRGMII || 2940 phy_interface_mode_is_8023z(state->interface)) 2941 phylink_clear(supported, Autoneg); 2942 2943 return 0; 2944 } 2945 2946 static void mt7530_pcs_get_state(struct phylink_pcs *pcs, 2947 struct phylink_link_state *state) 2948 { 2949 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; 2950 int port = pcs_to_mt753x_pcs(pcs)->port; 2951 u32 pmsr; 2952 2953 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 2954 2955 state->link = (pmsr & PMSR_LINK); 2956 state->an_complete = state->link; 2957 state->duplex = !!(pmsr & PMSR_DPX); 2958 2959 switch (pmsr & PMSR_SPEED_MASK) { 2960 case PMSR_SPEED_10: 2961 state->speed = SPEED_10; 2962 break; 2963 case PMSR_SPEED_100: 2964 state->speed = SPEED_100; 2965 break; 2966 case PMSR_SPEED_1000: 2967 state->speed = SPEED_1000; 2968 break; 2969 default: 2970 state->speed = SPEED_UNKNOWN; 2971 break; 2972 } 2973 2974 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 2975 if (pmsr & PMSR_RX_FC) 2976 state->pause |= MLO_PAUSE_RX; 2977 if (pmsr & PMSR_TX_FC) 2978 state->pause |= MLO_PAUSE_TX; 2979 } 2980 2981 static int 2982 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, 2983 struct phylink_link_state *state) 2984 { 2985 u32 status, val; 2986 u16 config_reg; 2987 2988 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2989 state->link = !!(status & MT7531_SGMII_LINK_STATUS); 2990 state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE); 2991 if (state->interface == PHY_INTERFACE_MODE_SGMII && 2992 (status & MT7531_SGMII_AN_ENABLE)) { 2993 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); 2994 config_reg = val >> 16; 2995 2996 switch (config_reg & LPA_SGMII_SPD_MASK) { 2997 case LPA_SGMII_1000: 2998 state->speed = SPEED_1000; 2999 break; 3000 case LPA_SGMII_100: 3001 state->speed = SPEED_100; 3002 break; 3003 case LPA_SGMII_10: 3004 state->speed = SPEED_10; 3005 break; 3006 default: 3007 dev_err(priv->dev, "invalid sgmii PHY speed\n"); 3008 state->link = false; 3009 return -EINVAL; 3010 } 3011 3012 if (config_reg & LPA_SGMII_FULL_DUPLEX) 3013 state->duplex = DUPLEX_FULL; 3014 else 3015 state->duplex = DUPLEX_HALF; 3016 } 3017 3018 return 0; 3019 } 3020 3021 static void 3022 mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port, 3023 struct phylink_link_state *state) 3024 { 3025 unsigned int val; 3026 3027 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 3028 state->link = !!(val & MT7531_SGMII_LINK_STATUS); 3029 if (!state->link) 3030 return; 3031 3032 state->an_complete = state->link; 3033 3034 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 3035 state->speed = SPEED_2500; 3036 else 3037 state->speed = SPEED_1000; 3038 3039 state->duplex = DUPLEX_FULL; 3040 state->pause = MLO_PAUSE_NONE; 3041 } 3042 3043 static void mt7531_pcs_get_state(struct phylink_pcs *pcs, 3044 struct phylink_link_state *state) 3045 { 3046 struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; 3047 int port = pcs_to_mt753x_pcs(pcs)->port; 3048 3049 if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3050 mt7531_sgmii_pcs_get_state_an(priv, port, state); 3051 return; 3052 } else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) || 3053 (state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3054 mt7531_sgmii_pcs_get_state_inband(priv, port, state); 3055 return; 3056 } 3057 3058 state->link = false; 3059 } 3060 3061 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode, 3062 phy_interface_t interface, 3063 const unsigned long *advertising, 3064 bool permit_pause_to_mac) 3065 { 3066 return 0; 3067 } 3068 3069 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs) 3070 { 3071 } 3072 3073 static const struct phylink_pcs_ops mt7530_pcs_ops = { 3074 .pcs_validate = mt753x_pcs_validate, 3075 .pcs_get_state = mt7530_pcs_get_state, 3076 .pcs_config = mt753x_pcs_config, 3077 .pcs_an_restart = mt7530_pcs_an_restart, 3078 }; 3079 3080 static const struct phylink_pcs_ops mt7531_pcs_ops = { 3081 .pcs_validate = mt753x_pcs_validate, 3082 .pcs_get_state = mt7531_pcs_get_state, 3083 .pcs_config = mt753x_pcs_config, 3084 .pcs_an_restart = mt7531_pcs_an_restart, 3085 .pcs_link_up = mt7531_pcs_link_up, 3086 }; 3087 3088 static int 3089 mt753x_setup(struct dsa_switch *ds) 3090 { 3091 struct mt7530_priv *priv = ds->priv; 3092 int i, ret; 3093 3094 /* Initialise the PCS devices */ 3095 for (i = 0; i < priv->ds->num_ports; i++) { 3096 priv->pcs[i].pcs.ops = priv->info->pcs_ops; 3097 priv->pcs[i].priv = priv; 3098 priv->pcs[i].port = i; 3099 if (mt753x_is_mac_port(i)) 3100 priv->pcs[i].pcs.poll = 1; 3101 } 3102 3103 ret = priv->info->sw_setup(ds); 3104 if (ret) 3105 return ret; 3106 3107 ret = mt7530_setup_irq(priv); 3108 if (ret) 3109 return ret; 3110 3111 ret = mt7530_setup_mdio(priv); 3112 if (ret && priv->irq) 3113 mt7530_free_irq_common(priv); 3114 3115 return ret; 3116 } 3117 3118 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port, 3119 struct ethtool_eee *e) 3120 { 3121 struct mt7530_priv *priv = ds->priv; 3122 u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port)); 3123 3124 e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN); 3125 e->tx_lpi_timer = GET_LPI_THRESH(eeecr); 3126 3127 return 0; 3128 } 3129 3130 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port, 3131 struct ethtool_eee *e) 3132 { 3133 struct mt7530_priv *priv = ds->priv; 3134 u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN; 3135 3136 if (e->tx_lpi_timer > 0xFFF) 3137 return -EINVAL; 3138 3139 set = SET_LPI_THRESH(e->tx_lpi_timer); 3140 if (!e->tx_lpi_enabled) 3141 /* Force LPI Mode without a delay */ 3142 set |= LPI_MODE_EN; 3143 mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set); 3144 3145 return 0; 3146 } 3147 3148 static const struct dsa_switch_ops mt7530_switch_ops = { 3149 .get_tag_protocol = mtk_get_tag_protocol, 3150 .setup = mt753x_setup, 3151 .get_strings = mt7530_get_strings, 3152 .get_ethtool_stats = mt7530_get_ethtool_stats, 3153 .get_sset_count = mt7530_get_sset_count, 3154 .set_ageing_time = mt7530_set_ageing_time, 3155 .port_enable = mt7530_port_enable, 3156 .port_disable = mt7530_port_disable, 3157 .port_change_mtu = mt7530_port_change_mtu, 3158 .port_max_mtu = mt7530_port_max_mtu, 3159 .port_stp_state_set = mt7530_stp_state_set, 3160 .port_pre_bridge_flags = mt7530_port_pre_bridge_flags, 3161 .port_bridge_flags = mt7530_port_bridge_flags, 3162 .port_bridge_join = mt7530_port_bridge_join, 3163 .port_bridge_leave = mt7530_port_bridge_leave, 3164 .port_fdb_add = mt7530_port_fdb_add, 3165 .port_fdb_del = mt7530_port_fdb_del, 3166 .port_fdb_dump = mt7530_port_fdb_dump, 3167 .port_mdb_add = mt7530_port_mdb_add, 3168 .port_mdb_del = mt7530_port_mdb_del, 3169 .port_vlan_filtering = mt7530_port_vlan_filtering, 3170 .port_vlan_add = mt7530_port_vlan_add, 3171 .port_vlan_del = mt7530_port_vlan_del, 3172 .port_mirror_add = mt753x_port_mirror_add, 3173 .port_mirror_del = mt753x_port_mirror_del, 3174 .phylink_get_caps = mt753x_phylink_get_caps, 3175 .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs, 3176 .phylink_mac_config = mt753x_phylink_mac_config, 3177 .phylink_mac_link_down = mt753x_phylink_mac_link_down, 3178 .phylink_mac_link_up = mt753x_phylink_mac_link_up, 3179 .get_mac_eee = mt753x_get_mac_eee, 3180 .set_mac_eee = mt753x_set_mac_eee, 3181 }; 3182 3183 static const struct mt753x_info mt753x_table[] = { 3184 [ID_MT7621] = { 3185 .id = ID_MT7621, 3186 .pcs_ops = &mt7530_pcs_ops, 3187 .sw_setup = mt7530_setup, 3188 .phy_read = mt7530_phy_read, 3189 .phy_write = mt7530_phy_write, 3190 .pad_setup = mt7530_pad_clk_setup, 3191 .mac_port_get_caps = mt7530_mac_port_get_caps, 3192 .mac_port_config = mt7530_mac_config, 3193 }, 3194 [ID_MT7530] = { 3195 .id = ID_MT7530, 3196 .pcs_ops = &mt7530_pcs_ops, 3197 .sw_setup = mt7530_setup, 3198 .phy_read = mt7530_phy_read, 3199 .phy_write = mt7530_phy_write, 3200 .pad_setup = mt7530_pad_clk_setup, 3201 .mac_port_get_caps = mt7530_mac_port_get_caps, 3202 .mac_port_config = mt7530_mac_config, 3203 }, 3204 [ID_MT7531] = { 3205 .id = ID_MT7531, 3206 .pcs_ops = &mt7531_pcs_ops, 3207 .sw_setup = mt7531_setup, 3208 .phy_read = mt7531_ind_phy_read, 3209 .phy_write = mt7531_ind_phy_write, 3210 .pad_setup = mt7531_pad_setup, 3211 .cpu_port_config = mt7531_cpu_port_config, 3212 .mac_port_get_caps = mt7531_mac_port_get_caps, 3213 .mac_port_config = mt7531_mac_config, 3214 }, 3215 }; 3216 3217 static const struct of_device_id mt7530_of_match[] = { 3218 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, 3219 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, 3220 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, 3221 { /* sentinel */ }, 3222 }; 3223 MODULE_DEVICE_TABLE(of, mt7530_of_match); 3224 3225 static int 3226 mt7530_probe(struct mdio_device *mdiodev) 3227 { 3228 struct mt7530_priv *priv; 3229 struct device_node *dn; 3230 3231 dn = mdiodev->dev.of_node; 3232 3233 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 3234 if (!priv) 3235 return -ENOMEM; 3236 3237 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 3238 if (!priv->ds) 3239 return -ENOMEM; 3240 3241 priv->ds->dev = &mdiodev->dev; 3242 priv->ds->num_ports = MT7530_NUM_PORTS; 3243 3244 /* Use medatek,mcm property to distinguish hardware type that would 3245 * casues a little bit differences on power-on sequence. 3246 */ 3247 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 3248 if (priv->mcm) { 3249 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 3250 3251 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 3252 if (IS_ERR(priv->rstc)) { 3253 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 3254 return PTR_ERR(priv->rstc); 3255 } 3256 } 3257 3258 /* Get the hardware identifier from the devicetree node. 3259 * We will need it for some of the clock and regulator setup. 3260 */ 3261 priv->info = of_device_get_match_data(&mdiodev->dev); 3262 if (!priv->info) 3263 return -EINVAL; 3264 3265 /* Sanity check if these required device operations are filled 3266 * properly. 3267 */ 3268 if (!priv->info->sw_setup || !priv->info->pad_setup || 3269 !priv->info->phy_read || !priv->info->phy_write || 3270 !priv->info->mac_port_get_caps || 3271 !priv->info->mac_port_config) 3272 return -EINVAL; 3273 3274 priv->id = priv->info->id; 3275 3276 if (priv->id == ID_MT7530) { 3277 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 3278 if (IS_ERR(priv->core_pwr)) 3279 return PTR_ERR(priv->core_pwr); 3280 3281 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 3282 if (IS_ERR(priv->io_pwr)) 3283 return PTR_ERR(priv->io_pwr); 3284 } 3285 3286 /* Not MCM that indicates switch works as the remote standalone 3287 * integrated circuit so the GPIO pin would be used to complete 3288 * the reset, otherwise memory-mapped register accessing used 3289 * through syscon provides in the case of MCM. 3290 */ 3291 if (!priv->mcm) { 3292 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 3293 GPIOD_OUT_LOW); 3294 if (IS_ERR(priv->reset)) { 3295 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 3296 return PTR_ERR(priv->reset); 3297 } 3298 } 3299 3300 priv->bus = mdiodev->bus; 3301 priv->dev = &mdiodev->dev; 3302 priv->ds->priv = priv; 3303 priv->ds->ops = &mt7530_switch_ops; 3304 mutex_init(&priv->reg_mutex); 3305 dev_set_drvdata(&mdiodev->dev, priv); 3306 3307 return dsa_register_switch(priv->ds); 3308 } 3309 3310 static void 3311 mt7530_remove(struct mdio_device *mdiodev) 3312 { 3313 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 3314 int ret = 0; 3315 3316 if (!priv) 3317 return; 3318 3319 ret = regulator_disable(priv->core_pwr); 3320 if (ret < 0) 3321 dev_err(priv->dev, 3322 "Failed to disable core power: %d\n", ret); 3323 3324 ret = regulator_disable(priv->io_pwr); 3325 if (ret < 0) 3326 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 3327 ret); 3328 3329 if (priv->irq) 3330 mt7530_free_irq(priv); 3331 3332 dsa_unregister_switch(priv->ds); 3333 mutex_destroy(&priv->reg_mutex); 3334 } 3335 3336 static void mt7530_shutdown(struct mdio_device *mdiodev) 3337 { 3338 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 3339 3340 if (!priv) 3341 return; 3342 3343 dsa_switch_shutdown(priv->ds); 3344 3345 dev_set_drvdata(&mdiodev->dev, NULL); 3346 } 3347 3348 static struct mdio_driver mt7530_mdio_driver = { 3349 .probe = mt7530_probe, 3350 .remove = mt7530_remove, 3351 .shutdown = mt7530_shutdown, 3352 .mdiodrv.driver = { 3353 .name = "mt7530", 3354 .of_match_table = mt7530_of_match, 3355 }, 3356 }; 3357 3358 mdio_module_driver(mt7530_mdio_driver); 3359 3360 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 3361 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 3362 MODULE_LICENSE("GPL"); 3363