xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 2f5947df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phy.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <net/dsa.h>
22 
23 #include "mt7530.h"
24 
25 /* String, offset, and register size in bytes if different from 4 bytes */
26 static const struct mt7530_mib_desc mt7530_mib[] = {
27 	MIB_DESC(1, 0x00, "TxDrop"),
28 	MIB_DESC(1, 0x04, "TxCrcErr"),
29 	MIB_DESC(1, 0x08, "TxUnicast"),
30 	MIB_DESC(1, 0x0c, "TxMulticast"),
31 	MIB_DESC(1, 0x10, "TxBroadcast"),
32 	MIB_DESC(1, 0x14, "TxCollision"),
33 	MIB_DESC(1, 0x18, "TxSingleCollision"),
34 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
35 	MIB_DESC(1, 0x20, "TxDeferred"),
36 	MIB_DESC(1, 0x24, "TxLateCollision"),
37 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
38 	MIB_DESC(1, 0x2c, "TxPause"),
39 	MIB_DESC(1, 0x30, "TxPktSz64"),
40 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
41 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
42 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
43 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
44 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
45 	MIB_DESC(2, 0x48, "TxBytes"),
46 	MIB_DESC(1, 0x60, "RxDrop"),
47 	MIB_DESC(1, 0x64, "RxFiltering"),
48 	MIB_DESC(1, 0x6c, "RxMulticast"),
49 	MIB_DESC(1, 0x70, "RxBroadcast"),
50 	MIB_DESC(1, 0x74, "RxAlignErr"),
51 	MIB_DESC(1, 0x78, "RxCrcErr"),
52 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
53 	MIB_DESC(1, 0x80, "RxFragErr"),
54 	MIB_DESC(1, 0x84, "RxOverSzErr"),
55 	MIB_DESC(1, 0x88, "RxJabberErr"),
56 	MIB_DESC(1, 0x8c, "RxPause"),
57 	MIB_DESC(1, 0x90, "RxPktSz64"),
58 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
59 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
60 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
61 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
62 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
63 	MIB_DESC(2, 0xa8, "RxBytes"),
64 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
65 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
66 	MIB_DESC(1, 0xb8, "RxArlDrop"),
67 };
68 
69 static int
70 mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
71 {
72 	int ret;
73 
74 	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
75 	if (ret < 0)
76 		dev_err(priv->dev,
77 			"failed to priv write register\n");
78 	return ret;
79 }
80 
81 static u32
82 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
83 {
84 	int ret;
85 	u32 val;
86 
87 	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
88 	if (ret < 0) {
89 		dev_err(priv->dev,
90 			"failed to priv read register\n");
91 		return ret;
92 	}
93 
94 	return val;
95 }
96 
97 static void
98 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
99 		  u32 mask, u32 set)
100 {
101 	u32 val;
102 
103 	val = mt7623_trgmii_read(priv, reg);
104 	val &= ~mask;
105 	val |= set;
106 	mt7623_trgmii_write(priv, reg, val);
107 }
108 
109 static void
110 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
111 {
112 	mt7623_trgmii_rmw(priv, reg, 0, val);
113 }
114 
115 static void
116 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
117 {
118 	mt7623_trgmii_rmw(priv, reg, val, 0);
119 }
120 
121 static int
122 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
123 {
124 	struct mii_bus *bus = priv->bus;
125 	int value, ret;
126 
127 	/* Write the desired MMD Devad */
128 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
129 	if (ret < 0)
130 		goto err;
131 
132 	/* Write the desired MMD register address */
133 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
134 	if (ret < 0)
135 		goto err;
136 
137 	/* Select the Function : DATA with no post increment */
138 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
139 	if (ret < 0)
140 		goto err;
141 
142 	/* Read the content of the MMD's selected register */
143 	value = bus->read(bus, 0, MII_MMD_DATA);
144 
145 	return value;
146 err:
147 	dev_err(&bus->dev,  "failed to read mmd register\n");
148 
149 	return ret;
150 }
151 
152 static int
153 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
154 			int devad, u32 data)
155 {
156 	struct mii_bus *bus = priv->bus;
157 	int ret;
158 
159 	/* Write the desired MMD Devad */
160 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
161 	if (ret < 0)
162 		goto err;
163 
164 	/* Write the desired MMD register address */
165 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
166 	if (ret < 0)
167 		goto err;
168 
169 	/* Select the Function : DATA with no post increment */
170 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
171 	if (ret < 0)
172 		goto err;
173 
174 	/* Write the data into MMD's selected register */
175 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
176 err:
177 	if (ret < 0)
178 		dev_err(&bus->dev,
179 			"failed to write mmd register\n");
180 	return ret;
181 }
182 
183 static void
184 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	struct mii_bus *bus = priv->bus;
187 
188 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
189 
190 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
191 
192 	mutex_unlock(&bus->mdio_lock);
193 }
194 
195 static void
196 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
197 {
198 	struct mii_bus *bus = priv->bus;
199 	u32 val;
200 
201 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
202 
203 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
204 	val &= ~mask;
205 	val |= set;
206 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
207 
208 	mutex_unlock(&bus->mdio_lock);
209 }
210 
211 static void
212 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
213 {
214 	core_rmw(priv, reg, 0, val);
215 }
216 
217 static void
218 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
219 {
220 	core_rmw(priv, reg, val, 0);
221 }
222 
223 static int
224 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
225 {
226 	struct mii_bus *bus = priv->bus;
227 	u16 page, r, lo, hi;
228 	int ret;
229 
230 	page = (reg >> 6) & 0x3ff;
231 	r  = (reg >> 2) & 0xf;
232 	lo = val & 0xffff;
233 	hi = val >> 16;
234 
235 	/* MT7530 uses 31 as the pseudo port */
236 	ret = bus->write(bus, 0x1f, 0x1f, page);
237 	if (ret < 0)
238 		goto err;
239 
240 	ret = bus->write(bus, 0x1f, r,  lo);
241 	if (ret < 0)
242 		goto err;
243 
244 	ret = bus->write(bus, 0x1f, 0x10, hi);
245 err:
246 	if (ret < 0)
247 		dev_err(&bus->dev,
248 			"failed to write mt7530 register\n");
249 	return ret;
250 }
251 
252 static u32
253 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
254 {
255 	struct mii_bus *bus = priv->bus;
256 	u16 page, r, lo, hi;
257 	int ret;
258 
259 	page = (reg >> 6) & 0x3ff;
260 	r = (reg >> 2) & 0xf;
261 
262 	/* MT7530 uses 31 as the pseudo port */
263 	ret = bus->write(bus, 0x1f, 0x1f, page);
264 	if (ret < 0) {
265 		dev_err(&bus->dev,
266 			"failed to read mt7530 register\n");
267 		return ret;
268 	}
269 
270 	lo = bus->read(bus, 0x1f, r);
271 	hi = bus->read(bus, 0x1f, 0x10);
272 
273 	return (hi << 16) | (lo & 0xffff);
274 }
275 
276 static void
277 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	struct mii_bus *bus = priv->bus;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	mt7530_mii_write(priv, reg, val);
284 
285 	mutex_unlock(&bus->mdio_lock);
286 }
287 
288 static u32
289 _mt7530_read(struct mt7530_dummy_poll *p)
290 {
291 	struct mii_bus		*bus = p->priv->bus;
292 	u32 val;
293 
294 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
295 
296 	val = mt7530_mii_read(p->priv, p->reg);
297 
298 	mutex_unlock(&bus->mdio_lock);
299 
300 	return val;
301 }
302 
303 static u32
304 mt7530_read(struct mt7530_priv *priv, u32 reg)
305 {
306 	struct mt7530_dummy_poll p;
307 
308 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
309 	return _mt7530_read(&p);
310 }
311 
312 static void
313 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
314 	   u32 mask, u32 set)
315 {
316 	struct mii_bus *bus = priv->bus;
317 	u32 val;
318 
319 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
320 
321 	val = mt7530_mii_read(priv, reg);
322 	val &= ~mask;
323 	val |= set;
324 	mt7530_mii_write(priv, reg, val);
325 
326 	mutex_unlock(&bus->mdio_lock);
327 }
328 
329 static void
330 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
331 {
332 	mt7530_rmw(priv, reg, 0, val);
333 }
334 
335 static void
336 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
337 {
338 	mt7530_rmw(priv, reg, val, 0);
339 }
340 
341 static int
342 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
343 {
344 	u32 val;
345 	int ret;
346 	struct mt7530_dummy_poll p;
347 
348 	/* Set the command operating upon the MAC address entries */
349 	val = ATC_BUSY | ATC_MAT(0) | cmd;
350 	mt7530_write(priv, MT7530_ATC, val);
351 
352 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
353 	ret = readx_poll_timeout(_mt7530_read, &p, val,
354 				 !(val & ATC_BUSY), 20, 20000);
355 	if (ret < 0) {
356 		dev_err(priv->dev, "reset timeout\n");
357 		return ret;
358 	}
359 
360 	/* Additional sanity for read command if the specified
361 	 * entry is invalid
362 	 */
363 	val = mt7530_read(priv, MT7530_ATC);
364 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
365 		return -EINVAL;
366 
367 	if (rsp)
368 		*rsp = val;
369 
370 	return 0;
371 }
372 
373 static void
374 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
375 {
376 	u32 reg[3];
377 	int i;
378 
379 	/* Read from ARL table into an array */
380 	for (i = 0; i < 3; i++) {
381 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
382 
383 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
384 			__func__, __LINE__, i, reg[i]);
385 	}
386 
387 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
388 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
389 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
390 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
391 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
392 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
393 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
394 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
395 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
396 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
397 }
398 
399 static void
400 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
401 		 u8 port_mask, const u8 *mac,
402 		 u8 aging, u8 type)
403 {
404 	u32 reg[3] = { 0 };
405 	int i;
406 
407 	reg[1] |= vid & CVID_MASK;
408 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
409 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
410 	/* STATIC_ENT indicate that entry is static wouldn't
411 	 * be aged out and STATIC_EMP specified as erasing an
412 	 * entry
413 	 */
414 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
415 	reg[1] |= mac[5] << MAC_BYTE_5;
416 	reg[1] |= mac[4] << MAC_BYTE_4;
417 	reg[0] |= mac[3] << MAC_BYTE_3;
418 	reg[0] |= mac[2] << MAC_BYTE_2;
419 	reg[0] |= mac[1] << MAC_BYTE_1;
420 	reg[0] |= mac[0] << MAC_BYTE_0;
421 
422 	/* Write array into the ARL table */
423 	for (i = 0; i < 3; i++)
424 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
425 }
426 
427 static int
428 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
429 {
430 	struct mt7530_priv *priv = ds->priv;
431 	u32 ncpo1, ssc_delta, trgint, i, xtal;
432 
433 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
434 
435 	if (xtal == HWTRAP_XTAL_20MHZ) {
436 		dev_err(priv->dev,
437 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
438 			__func__);
439 		return -EINVAL;
440 	}
441 
442 	switch (mode) {
443 	case PHY_INTERFACE_MODE_RGMII:
444 		trgint = 0;
445 		/* PLL frequency: 125MHz */
446 		ncpo1 = 0x0c80;
447 		break;
448 	case PHY_INTERFACE_MODE_TRGMII:
449 		trgint = 1;
450 		if (priv->id == ID_MT7621) {
451 			/* PLL frequency: 150MHz: 1.2GBit */
452 			if (xtal == HWTRAP_XTAL_40MHZ)
453 				ncpo1 = 0x0780;
454 			if (xtal == HWTRAP_XTAL_25MHZ)
455 				ncpo1 = 0x0a00;
456 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
457 			if (xtal == HWTRAP_XTAL_40MHZ)
458 				ncpo1 = 0x0c80;
459 			if (xtal == HWTRAP_XTAL_25MHZ)
460 				ncpo1 = 0x1400;
461 		}
462 		break;
463 	default:
464 		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
465 		return -EINVAL;
466 	}
467 
468 	if (xtal == HWTRAP_XTAL_25MHZ)
469 		ssc_delta = 0x57;
470 	else
471 		ssc_delta = 0x87;
472 
473 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
474 		   P6_INTF_MODE(trgint));
475 
476 	/* Lower Tx Driving for TRGMII path */
477 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
478 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
479 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
480 
481 	/* Setup core clock for MT7530 */
482 	if (!trgint) {
483 		/* Disable MT7530 core clock */
484 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
485 
486 		/* Disable PLL, since phy_device has not yet been created
487 		 * provided for phy_[read,write]_mmd_indirect is called, we
488 		 * provide our own core_write_mmd_indirect to complete this
489 		 * function.
490 		 */
491 		core_write_mmd_indirect(priv,
492 					CORE_GSWPLL_GRP1,
493 					MDIO_MMD_VEND2,
494 					0);
495 
496 		/* Set core clock into 500Mhz */
497 		core_write(priv, CORE_GSWPLL_GRP2,
498 			   RG_GSWPLL_POSDIV_500M(1) |
499 			   RG_GSWPLL_FBKDIV_500M(25));
500 
501 		/* Enable PLL */
502 		core_write(priv, CORE_GSWPLL_GRP1,
503 			   RG_GSWPLL_EN_PRE |
504 			   RG_GSWPLL_POSDIV_200M(2) |
505 			   RG_GSWPLL_FBKDIV_200M(32));
506 
507 		/* Enable MT7530 core clock */
508 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
509 	}
510 
511 	/* Setup the MT7530 TRGMII Tx Clock */
512 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
513 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
514 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
515 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
516 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
517 	core_write(priv, CORE_PLL_GROUP4,
518 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
519 		   RG_SYSPLL_BIAS_LPF_EN);
520 	core_write(priv, CORE_PLL_GROUP2,
521 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
522 		   RG_SYSPLL_POSDIV(1));
523 	core_write(priv, CORE_PLL_GROUP7,
524 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
525 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
526 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
527 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
528 
529 	if (!trgint)
530 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
531 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
532 				   RD_TAP_MASK, RD_TAP(16));
533 	else
534 		if (priv->id != ID_MT7621)
535 			mt7623_trgmii_set(priv, GSW_INTF_MODE,
536 					  INTF_MODE_TRGMII);
537 
538 	return 0;
539 }
540 
541 static int
542 mt7623_pad_clk_setup(struct dsa_switch *ds)
543 {
544 	struct mt7530_priv *priv = ds->priv;
545 	int i;
546 
547 	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
548 		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
549 				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
550 
551 	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
552 	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
553 
554 	return 0;
555 }
556 
557 static void
558 mt7530_mib_reset(struct dsa_switch *ds)
559 {
560 	struct mt7530_priv *priv = ds->priv;
561 
562 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
563 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
564 }
565 
566 static void
567 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
568 {
569 	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
570 
571 	if (enable)
572 		mt7530_set(priv, MT7530_PMCR_P(port), mask);
573 	else
574 		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
575 }
576 
577 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
578 {
579 	struct mt7530_priv *priv = ds->priv;
580 
581 	return mdiobus_read_nested(priv->bus, port, regnum);
582 }
583 
584 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
585 			    u16 val)
586 {
587 	struct mt7530_priv *priv = ds->priv;
588 
589 	return mdiobus_write_nested(priv->bus, port, regnum, val);
590 }
591 
592 static void
593 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
594 		   uint8_t *data)
595 {
596 	int i;
597 
598 	if (stringset != ETH_SS_STATS)
599 		return;
600 
601 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
602 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
603 			ETH_GSTRING_LEN);
604 }
605 
606 static void
607 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
608 			 uint64_t *data)
609 {
610 	struct mt7530_priv *priv = ds->priv;
611 	const struct mt7530_mib_desc *mib;
612 	u32 reg, i;
613 	u64 hi;
614 
615 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
616 		mib = &mt7530_mib[i];
617 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
618 
619 		data[i] = mt7530_read(priv, reg);
620 		if (mib->size == 2) {
621 			hi = mt7530_read(priv, reg + 4);
622 			data[i] |= hi << 32;
623 		}
624 	}
625 }
626 
627 static int
628 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
629 {
630 	if (sset != ETH_SS_STATS)
631 		return 0;
632 
633 	return ARRAY_SIZE(mt7530_mib);
634 }
635 
636 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
637 			       struct phy_device *phydev)
638 {
639 	struct mt7530_priv *priv = ds->priv;
640 
641 	if (phy_is_pseudo_fixed_link(phydev)) {
642 		dev_dbg(priv->dev, "phy-mode for master device = %x\n",
643 			phydev->interface);
644 
645 		/* Setup TX circuit incluing relevant PAD and driving */
646 		mt7530_pad_clk_setup(ds, phydev->interface);
647 
648 		if (priv->id == ID_MT7530) {
649 			/* Setup RX circuit, relevant PAD and driving on the
650 			 * host which must be placed after the setup on the
651 			 * device side is all finished.
652 			 */
653 			mt7623_pad_clk_setup(ds);
654 		}
655 	} else {
656 		u16 lcl_adv = 0, rmt_adv = 0;
657 		u8 flowctrl;
658 		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
659 
660 		switch (phydev->speed) {
661 		case SPEED_1000:
662 			mcr |= PMCR_FORCE_SPEED_1000;
663 			break;
664 		case SPEED_100:
665 			mcr |= PMCR_FORCE_SPEED_100;
666 			break;
667 		}
668 
669 		if (phydev->link)
670 			mcr |= PMCR_FORCE_LNK;
671 
672 		if (phydev->duplex) {
673 			mcr |= PMCR_FORCE_FDX;
674 
675 			if (phydev->pause)
676 				rmt_adv = LPA_PAUSE_CAP;
677 			if (phydev->asym_pause)
678 				rmt_adv |= LPA_PAUSE_ASYM;
679 
680 			lcl_adv = linkmode_adv_to_lcl_adv_t(
681 				phydev->advertising);
682 			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
683 
684 			if (flowctrl & FLOW_CTRL_TX)
685 				mcr |= PMCR_TX_FC_EN;
686 			if (flowctrl & FLOW_CTRL_RX)
687 				mcr |= PMCR_RX_FC_EN;
688 		}
689 		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
690 	}
691 }
692 
693 static int
694 mt7530_cpu_port_enable(struct mt7530_priv *priv,
695 		       int port)
696 {
697 	/* Enable Mediatek header mode on the cpu port */
698 	mt7530_write(priv, MT7530_PVC_P(port),
699 		     PORT_SPEC_TAG);
700 
701 	/* Setup the MAC by default for the cpu port */
702 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
703 
704 	/* Disable auto learning on the cpu port */
705 	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
706 
707 	/* Unknown unicast frame fordwarding to the cpu port */
708 	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
709 
710 	/* Set CPU port number */
711 	if (priv->id == ID_MT7621)
712 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
713 
714 	/* CPU port gets connected to all user ports of
715 	 * the switch
716 	 */
717 	mt7530_write(priv, MT7530_PCR_P(port),
718 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
719 
720 	return 0;
721 }
722 
723 static int
724 mt7530_port_enable(struct dsa_switch *ds, int port,
725 		   struct phy_device *phy)
726 {
727 	struct mt7530_priv *priv = ds->priv;
728 
729 	mutex_lock(&priv->reg_mutex);
730 
731 	/* Setup the MAC for the user port */
732 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
733 
734 	/* Allow the user port gets connected to the cpu port and also
735 	 * restore the port matrix if the port is the member of a certain
736 	 * bridge.
737 	 */
738 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
739 	priv->ports[port].enable = true;
740 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
741 		   priv->ports[port].pm);
742 	mt7530_port_set_status(priv, port, 1);
743 
744 	mutex_unlock(&priv->reg_mutex);
745 
746 	return 0;
747 }
748 
749 static void
750 mt7530_port_disable(struct dsa_switch *ds, int port)
751 {
752 	struct mt7530_priv *priv = ds->priv;
753 
754 	mutex_lock(&priv->reg_mutex);
755 
756 	/* Clear up all port matrix which could be restored in the next
757 	 * enablement for the port.
758 	 */
759 	priv->ports[port].enable = false;
760 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
761 		   PCR_MATRIX_CLR);
762 	mt7530_port_set_status(priv, port, 0);
763 
764 	mutex_unlock(&priv->reg_mutex);
765 }
766 
767 static void
768 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
769 {
770 	struct mt7530_priv *priv = ds->priv;
771 	u32 stp_state;
772 
773 	switch (state) {
774 	case BR_STATE_DISABLED:
775 		stp_state = MT7530_STP_DISABLED;
776 		break;
777 	case BR_STATE_BLOCKING:
778 		stp_state = MT7530_STP_BLOCKING;
779 		break;
780 	case BR_STATE_LISTENING:
781 		stp_state = MT7530_STP_LISTENING;
782 		break;
783 	case BR_STATE_LEARNING:
784 		stp_state = MT7530_STP_LEARNING;
785 		break;
786 	case BR_STATE_FORWARDING:
787 	default:
788 		stp_state = MT7530_STP_FORWARDING;
789 		break;
790 	}
791 
792 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
793 }
794 
795 static int
796 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
797 			struct net_device *bridge)
798 {
799 	struct mt7530_priv *priv = ds->priv;
800 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
801 	int i;
802 
803 	mutex_lock(&priv->reg_mutex);
804 
805 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
806 		/* Add this port to the port matrix of the other ports in the
807 		 * same bridge. If the port is disabled, port matrix is kept
808 		 * and not being setup until the port becomes enabled.
809 		 */
810 		if (dsa_is_user_port(ds, i) && i != port) {
811 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
812 				continue;
813 			if (priv->ports[i].enable)
814 				mt7530_set(priv, MT7530_PCR_P(i),
815 					   PCR_MATRIX(BIT(port)));
816 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
817 
818 			port_bitmap |= BIT(i);
819 		}
820 	}
821 
822 	/* Add the all other ports to this port matrix. */
823 	if (priv->ports[port].enable)
824 		mt7530_rmw(priv, MT7530_PCR_P(port),
825 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
826 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
827 
828 	mutex_unlock(&priv->reg_mutex);
829 
830 	return 0;
831 }
832 
833 static void
834 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
835 {
836 	struct mt7530_priv *priv = ds->priv;
837 	bool all_user_ports_removed = true;
838 	int i;
839 
840 	/* When a port is removed from the bridge, the port would be set up
841 	 * back to the default as is at initial boot which is a VLAN-unaware
842 	 * port.
843 	 */
844 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
845 		   MT7530_PORT_MATRIX_MODE);
846 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
847 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
848 
849 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
850 		if (dsa_is_user_port(ds, i) &&
851 		    dsa_port_is_vlan_filtering(&ds->ports[i])) {
852 			all_user_ports_removed = false;
853 			break;
854 		}
855 	}
856 
857 	/* CPU port also does the same thing until all user ports belonging to
858 	 * the CPU port get out of VLAN filtering mode.
859 	 */
860 	if (all_user_ports_removed) {
861 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
862 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
863 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
864 			     PORT_SPEC_TAG);
865 	}
866 }
867 
868 static void
869 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
870 {
871 	struct mt7530_priv *priv = ds->priv;
872 
873 	/* The real fabric path would be decided on the membership in the
874 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
875 	 * means potential VLAN can be consisting of certain subset of all
876 	 * ports.
877 	 */
878 	mt7530_rmw(priv, MT7530_PCR_P(port),
879 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
880 
881 	/* Trapped into security mode allows packet forwarding through VLAN
882 	 * table lookup.
883 	 */
884 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
885 		   MT7530_PORT_SECURITY_MODE);
886 
887 	/* Set the port as a user port which is to be able to recognize VID
888 	 * from incoming packets before fetching entry within the VLAN table.
889 	 */
890 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
891 		   VLAN_ATTR(MT7530_VLAN_USER));
892 }
893 
894 static void
895 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
896 			 struct net_device *bridge)
897 {
898 	struct mt7530_priv *priv = ds->priv;
899 	int i;
900 
901 	mutex_lock(&priv->reg_mutex);
902 
903 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
904 		/* Remove this port from the port matrix of the other ports
905 		 * in the same bridge. If the port is disabled, port matrix
906 		 * is kept and not being setup until the port becomes enabled.
907 		 * And the other port's port matrix cannot be broken when the
908 		 * other port is still a VLAN-aware port.
909 		 */
910 		if (dsa_is_user_port(ds, i) && i != port &&
911 		   !dsa_port_is_vlan_filtering(&ds->ports[i])) {
912 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
913 				continue;
914 			if (priv->ports[i].enable)
915 				mt7530_clear(priv, MT7530_PCR_P(i),
916 					     PCR_MATRIX(BIT(port)));
917 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
918 		}
919 	}
920 
921 	/* Set the cpu port to be the only one in the port matrix of
922 	 * this port.
923 	 */
924 	if (priv->ports[port].enable)
925 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
926 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
927 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
928 
929 	mutex_unlock(&priv->reg_mutex);
930 }
931 
932 static int
933 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
934 		    const unsigned char *addr, u16 vid)
935 {
936 	struct mt7530_priv *priv = ds->priv;
937 	int ret;
938 	u8 port_mask = BIT(port);
939 
940 	mutex_lock(&priv->reg_mutex);
941 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
942 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
943 	mutex_unlock(&priv->reg_mutex);
944 
945 	return ret;
946 }
947 
948 static int
949 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
950 		    const unsigned char *addr, u16 vid)
951 {
952 	struct mt7530_priv *priv = ds->priv;
953 	int ret;
954 	u8 port_mask = BIT(port);
955 
956 	mutex_lock(&priv->reg_mutex);
957 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
958 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
959 	mutex_unlock(&priv->reg_mutex);
960 
961 	return ret;
962 }
963 
964 static int
965 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
966 		     dsa_fdb_dump_cb_t *cb, void *data)
967 {
968 	struct mt7530_priv *priv = ds->priv;
969 	struct mt7530_fdb _fdb = { 0 };
970 	int cnt = MT7530_NUM_FDB_RECORDS;
971 	int ret = 0;
972 	u32 rsp = 0;
973 
974 	mutex_lock(&priv->reg_mutex);
975 
976 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
977 	if (ret < 0)
978 		goto err;
979 
980 	do {
981 		if (rsp & ATC_SRCH_HIT) {
982 			mt7530_fdb_read(priv, &_fdb);
983 			if (_fdb.port_mask & BIT(port)) {
984 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
985 					 data);
986 				if (ret < 0)
987 					break;
988 			}
989 		}
990 	} while (--cnt &&
991 		 !(rsp & ATC_SRCH_END) &&
992 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
993 err:
994 	mutex_unlock(&priv->reg_mutex);
995 
996 	return 0;
997 }
998 
999 static int
1000 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1001 {
1002 	struct mt7530_dummy_poll p;
1003 	u32 val;
1004 	int ret;
1005 
1006 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1007 	mt7530_write(priv, MT7530_VTCR, val);
1008 
1009 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1010 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1011 				 !(val & VTCR_BUSY), 20, 20000);
1012 	if (ret < 0) {
1013 		dev_err(priv->dev, "poll timeout\n");
1014 		return ret;
1015 	}
1016 
1017 	val = mt7530_read(priv, MT7530_VTCR);
1018 	if (val & VTCR_INVALID) {
1019 		dev_err(priv->dev, "read VTCR invalid\n");
1020 		return -EINVAL;
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 static int
1027 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1028 			   bool vlan_filtering)
1029 {
1030 	if (vlan_filtering) {
1031 		/* The port is being kept as VLAN-unaware port when bridge is
1032 		 * set up with vlan_filtering not being set, Otherwise, the
1033 		 * port and the corresponding CPU port is required the setup
1034 		 * for becoming a VLAN-aware port.
1035 		 */
1036 		mt7530_port_set_vlan_aware(ds, port);
1037 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1038 	} else {
1039 		mt7530_port_set_vlan_unaware(ds, port);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int
1046 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1047 			 const struct switchdev_obj_port_vlan *vlan)
1048 {
1049 	/* nothing needed */
1050 
1051 	return 0;
1052 }
1053 
1054 static void
1055 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1056 		   struct mt7530_hw_vlan_entry *entry)
1057 {
1058 	u8 new_members;
1059 	u32 val;
1060 
1061 	new_members = entry->old_members | BIT(entry->port) |
1062 		      BIT(MT7530_CPU_PORT);
1063 
1064 	/* Validate the entry with independent learning, create egress tag per
1065 	 * VLAN and joining the port as one of the port members.
1066 	 */
1067 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1068 	mt7530_write(priv, MT7530_VAWD1, val);
1069 
1070 	/* Decide whether adding tag or not for those outgoing packets from the
1071 	 * port inside the VLAN.
1072 	 */
1073 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1074 				MT7530_VLAN_EGRESS_TAG;
1075 	mt7530_rmw(priv, MT7530_VAWD2,
1076 		   ETAG_CTRL_P_MASK(entry->port),
1077 		   ETAG_CTRL_P(entry->port, val));
1078 
1079 	/* CPU port is always taken as a tagged port for serving more than one
1080 	 * VLANs across and also being applied with egress type stack mode for
1081 	 * that VLAN tags would be appended after hardware special tag used as
1082 	 * DSA tag.
1083 	 */
1084 	mt7530_rmw(priv, MT7530_VAWD2,
1085 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1086 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1087 			       MT7530_VLAN_EGRESS_STACK));
1088 }
1089 
1090 static void
1091 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1092 		   struct mt7530_hw_vlan_entry *entry)
1093 {
1094 	u8 new_members;
1095 	u32 val;
1096 
1097 	new_members = entry->old_members & ~BIT(entry->port);
1098 
1099 	val = mt7530_read(priv, MT7530_VAWD1);
1100 	if (!(val & VLAN_VALID)) {
1101 		dev_err(priv->dev,
1102 			"Cannot be deleted due to invalid entry\n");
1103 		return;
1104 	}
1105 
1106 	/* If certain member apart from CPU port is still alive in the VLAN,
1107 	 * the entry would be kept valid. Otherwise, the entry is got to be
1108 	 * disabled.
1109 	 */
1110 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1111 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1112 		      VLAN_VALID;
1113 		mt7530_write(priv, MT7530_VAWD1, val);
1114 	} else {
1115 		mt7530_write(priv, MT7530_VAWD1, 0);
1116 		mt7530_write(priv, MT7530_VAWD2, 0);
1117 	}
1118 }
1119 
1120 static void
1121 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1122 		      struct mt7530_hw_vlan_entry *entry,
1123 		      mt7530_vlan_op vlan_op)
1124 {
1125 	u32 val;
1126 
1127 	/* Fetch entry */
1128 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1129 
1130 	val = mt7530_read(priv, MT7530_VAWD1);
1131 
1132 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1133 
1134 	/* Manipulate entry */
1135 	vlan_op(priv, entry);
1136 
1137 	/* Flush result to hardware */
1138 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1139 }
1140 
1141 static void
1142 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1143 		     const struct switchdev_obj_port_vlan *vlan)
1144 {
1145 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1146 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1147 	struct mt7530_hw_vlan_entry new_entry;
1148 	struct mt7530_priv *priv = ds->priv;
1149 	u16 vid;
1150 
1151 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1152 	 * being set.
1153 	 */
1154 	if (!dsa_port_is_vlan_filtering(&ds->ports[port]))
1155 		return;
1156 
1157 	mutex_lock(&priv->reg_mutex);
1158 
1159 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1160 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1161 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1162 				      mt7530_hw_vlan_add);
1163 	}
1164 
1165 	if (pvid) {
1166 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1167 			   G0_PORT_VID(vlan->vid_end));
1168 		priv->ports[port].pvid = vlan->vid_end;
1169 	}
1170 
1171 	mutex_unlock(&priv->reg_mutex);
1172 }
1173 
1174 static int
1175 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1176 		     const struct switchdev_obj_port_vlan *vlan)
1177 {
1178 	struct mt7530_hw_vlan_entry target_entry;
1179 	struct mt7530_priv *priv = ds->priv;
1180 	u16 vid, pvid;
1181 
1182 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1183 	 * being set.
1184 	 */
1185 	if (!dsa_port_is_vlan_filtering(&ds->ports[port]))
1186 		return 0;
1187 
1188 	mutex_lock(&priv->reg_mutex);
1189 
1190 	pvid = priv->ports[port].pvid;
1191 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1192 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1193 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1194 				      mt7530_hw_vlan_del);
1195 
1196 		/* PVID is being restored to the default whenever the PVID port
1197 		 * is being removed from the VLAN.
1198 		 */
1199 		if (pvid == vid)
1200 			pvid = G0_PORT_VID_DEF;
1201 	}
1202 
1203 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1204 	priv->ports[port].pvid = pvid;
1205 
1206 	mutex_unlock(&priv->reg_mutex);
1207 
1208 	return 0;
1209 }
1210 
1211 static enum dsa_tag_protocol
1212 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1213 {
1214 	struct mt7530_priv *priv = ds->priv;
1215 
1216 	if (port != MT7530_CPU_PORT) {
1217 		dev_warn(priv->dev,
1218 			 "port not matched with tagging CPU port\n");
1219 		return DSA_TAG_PROTO_NONE;
1220 	} else {
1221 		return DSA_TAG_PROTO_MTK;
1222 	}
1223 }
1224 
1225 static int
1226 mt7530_setup(struct dsa_switch *ds)
1227 {
1228 	struct mt7530_priv *priv = ds->priv;
1229 	int ret, i;
1230 	u32 id, val;
1231 	struct device_node *dn;
1232 	struct mt7530_dummy_poll p;
1233 
1234 	/* The parent node of master netdev which holds the common system
1235 	 * controller also is the container for two GMACs nodes representing
1236 	 * as two netdev instances.
1237 	 */
1238 	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1239 
1240 	if (priv->id == ID_MT7530) {
1241 		priv->ethernet = syscon_node_to_regmap(dn);
1242 		if (IS_ERR(priv->ethernet))
1243 			return PTR_ERR(priv->ethernet);
1244 
1245 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1246 		ret = regulator_enable(priv->core_pwr);
1247 		if (ret < 0) {
1248 			dev_err(priv->dev,
1249 				"Failed to enable core power: %d\n", ret);
1250 			return ret;
1251 		}
1252 
1253 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1254 		ret = regulator_enable(priv->io_pwr);
1255 		if (ret < 0) {
1256 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1257 				ret);
1258 			return ret;
1259 		}
1260 	}
1261 
1262 	/* Reset whole chip through gpio pin or memory-mapped registers for
1263 	 * different type of hardware
1264 	 */
1265 	if (priv->mcm) {
1266 		reset_control_assert(priv->rstc);
1267 		usleep_range(1000, 1100);
1268 		reset_control_deassert(priv->rstc);
1269 	} else {
1270 		gpiod_set_value_cansleep(priv->reset, 0);
1271 		usleep_range(1000, 1100);
1272 		gpiod_set_value_cansleep(priv->reset, 1);
1273 	}
1274 
1275 	/* Waiting for MT7530 got to stable */
1276 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1277 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1278 				 20, 1000000);
1279 	if (ret < 0) {
1280 		dev_err(priv->dev, "reset timeout\n");
1281 		return ret;
1282 	}
1283 
1284 	id = mt7530_read(priv, MT7530_CREV);
1285 	id >>= CHIP_NAME_SHIFT;
1286 	if (id != MT7530_ID) {
1287 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1288 		return -ENODEV;
1289 	}
1290 
1291 	/* Reset the switch through internal reset */
1292 	mt7530_write(priv, MT7530_SYS_CTRL,
1293 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1294 		     SYS_CTRL_REG_RST);
1295 
1296 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1297 	val = mt7530_read(priv, MT7530_MHWTRAP);
1298 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1299 	val |= MHWTRAP_MANUAL;
1300 	mt7530_write(priv, MT7530_MHWTRAP, val);
1301 
1302 	/* Enable and reset MIB counters */
1303 	mt7530_mib_reset(ds);
1304 
1305 	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1306 
1307 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1308 		/* Disable forwarding by default on all ports */
1309 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1310 			   PCR_MATRIX_CLR);
1311 
1312 		if (dsa_is_cpu_port(ds, i))
1313 			mt7530_cpu_port_enable(priv, i);
1314 		else
1315 			mt7530_port_disable(ds, i);
1316 	}
1317 
1318 	/* Flush the FDB table */
1319 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	return 0;
1324 }
1325 
1326 static const struct dsa_switch_ops mt7530_switch_ops = {
1327 	.get_tag_protocol	= mtk_get_tag_protocol,
1328 	.setup			= mt7530_setup,
1329 	.get_strings		= mt7530_get_strings,
1330 	.phy_read		= mt7530_phy_read,
1331 	.phy_write		= mt7530_phy_write,
1332 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1333 	.get_sset_count		= mt7530_get_sset_count,
1334 	.adjust_link		= mt7530_adjust_link,
1335 	.port_enable		= mt7530_port_enable,
1336 	.port_disable		= mt7530_port_disable,
1337 	.port_stp_state_set	= mt7530_stp_state_set,
1338 	.port_bridge_join	= mt7530_port_bridge_join,
1339 	.port_bridge_leave	= mt7530_port_bridge_leave,
1340 	.port_fdb_add		= mt7530_port_fdb_add,
1341 	.port_fdb_del		= mt7530_port_fdb_del,
1342 	.port_fdb_dump		= mt7530_port_fdb_dump,
1343 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1344 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1345 	.port_vlan_add		= mt7530_port_vlan_add,
1346 	.port_vlan_del		= mt7530_port_vlan_del,
1347 };
1348 
1349 static const struct of_device_id mt7530_of_match[] = {
1350 	{ .compatible = "mediatek,mt7621", .data = (void *)ID_MT7621, },
1351 	{ .compatible = "mediatek,mt7530", .data = (void *)ID_MT7530, },
1352 	{ /* sentinel */ },
1353 };
1354 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1355 
1356 static int
1357 mt7530_probe(struct mdio_device *mdiodev)
1358 {
1359 	struct mt7530_priv *priv;
1360 	struct device_node *dn;
1361 
1362 	dn = mdiodev->dev.of_node;
1363 
1364 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1365 	if (!priv)
1366 		return -ENOMEM;
1367 
1368 	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1369 	if (!priv->ds)
1370 		return -ENOMEM;
1371 
1372 	/* Use medatek,mcm property to distinguish hardware type that would
1373 	 * casues a little bit differences on power-on sequence.
1374 	 */
1375 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1376 	if (priv->mcm) {
1377 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1378 
1379 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1380 		if (IS_ERR(priv->rstc)) {
1381 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1382 			return PTR_ERR(priv->rstc);
1383 		}
1384 	}
1385 
1386 	/* Get the hardware identifier from the devicetree node.
1387 	 * We will need it for some of the clock and regulator setup.
1388 	 */
1389 	priv->id = (unsigned int)(unsigned long)
1390 		of_device_get_match_data(&mdiodev->dev);
1391 
1392 	if (priv->id == ID_MT7530) {
1393 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1394 		if (IS_ERR(priv->core_pwr))
1395 			return PTR_ERR(priv->core_pwr);
1396 
1397 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1398 		if (IS_ERR(priv->io_pwr))
1399 			return PTR_ERR(priv->io_pwr);
1400 	}
1401 
1402 	/* Not MCM that indicates switch works as the remote standalone
1403 	 * integrated circuit so the GPIO pin would be used to complete
1404 	 * the reset, otherwise memory-mapped register accessing used
1405 	 * through syscon provides in the case of MCM.
1406 	 */
1407 	if (!priv->mcm) {
1408 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1409 						      GPIOD_OUT_LOW);
1410 		if (IS_ERR(priv->reset)) {
1411 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1412 			return PTR_ERR(priv->reset);
1413 		}
1414 	}
1415 
1416 	priv->bus = mdiodev->bus;
1417 	priv->dev = &mdiodev->dev;
1418 	priv->ds->priv = priv;
1419 	priv->ds->ops = &mt7530_switch_ops;
1420 	mutex_init(&priv->reg_mutex);
1421 	dev_set_drvdata(&mdiodev->dev, priv);
1422 
1423 	return dsa_register_switch(priv->ds);
1424 }
1425 
1426 static void
1427 mt7530_remove(struct mdio_device *mdiodev)
1428 {
1429 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1430 	int ret = 0;
1431 
1432 	ret = regulator_disable(priv->core_pwr);
1433 	if (ret < 0)
1434 		dev_err(priv->dev,
1435 			"Failed to disable core power: %d\n", ret);
1436 
1437 	ret = regulator_disable(priv->io_pwr);
1438 	if (ret < 0)
1439 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1440 			ret);
1441 
1442 	dsa_unregister_switch(priv->ds);
1443 	mutex_destroy(&priv->reg_mutex);
1444 }
1445 
1446 static struct mdio_driver mt7530_mdio_driver = {
1447 	.probe  = mt7530_probe,
1448 	.remove = mt7530_remove,
1449 	.mdiodrv.driver = {
1450 		.name = "mt7530",
1451 		.of_match_table = mt7530_of_match,
1452 	},
1453 };
1454 
1455 mdio_module_driver(mt7530_mdio_driver);
1456 
1457 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1458 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1459 MODULE_LICENSE("GPL");
1460