xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 2bad466c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 	struct mii_bus *bus = priv->bus;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152 
153 	mutex_unlock(&bus->mdio_lock);
154 }
155 
156 static void
157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158 {
159 	struct mii_bus *bus = priv->bus;
160 	u32 val;
161 
162 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163 
164 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 	val &= ~mask;
166 	val |= set;
167 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168 
169 	mutex_unlock(&bus->mdio_lock);
170 }
171 
172 static void
173 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, 0, val);
176 }
177 
178 static void
179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	core_rmw(priv, reg, val, 0);
182 }
183 
184 static int
185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186 {
187 	struct mii_bus *bus = priv->bus;
188 	u16 page, r, lo, hi;
189 	int ret;
190 
191 	page = (reg >> 6) & 0x3ff;
192 	r  = (reg >> 2) & 0xf;
193 	lo = val & 0xffff;
194 	hi = val >> 16;
195 
196 	/* MT7530 uses 31 as the pseudo port */
197 	ret = bus->write(bus, 0x1f, 0x1f, page);
198 	if (ret < 0)
199 		goto err;
200 
201 	ret = bus->write(bus, 0x1f, r,  lo);
202 	if (ret < 0)
203 		goto err;
204 
205 	ret = bus->write(bus, 0x1f, 0x10, hi);
206 err:
207 	if (ret < 0)
208 		dev_err(&bus->dev,
209 			"failed to write mt7530 register\n");
210 	return ret;
211 }
212 
213 static u32
214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215 {
216 	struct mii_bus *bus = priv->bus;
217 	u16 page, r, lo, hi;
218 	int ret;
219 
220 	page = (reg >> 6) & 0x3ff;
221 	r = (reg >> 2) & 0xf;
222 
223 	/* MT7530 uses 31 as the pseudo port */
224 	ret = bus->write(bus, 0x1f, 0x1f, page);
225 	if (ret < 0) {
226 		dev_err(&bus->dev,
227 			"failed to read mt7530 register\n");
228 		return ret;
229 	}
230 
231 	lo = bus->read(bus, 0x1f, r);
232 	hi = bus->read(bus, 0x1f, 0x10);
233 
234 	return (hi << 16) | (lo & 0xffff);
235 }
236 
237 static void
238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 	struct mii_bus *bus = priv->bus;
241 
242 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243 
244 	mt7530_mii_write(priv, reg, val);
245 
246 	mutex_unlock(&bus->mdio_lock);
247 }
248 
249 static u32
250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251 {
252 	return mt7530_mii_read(p->priv, p->reg);
253 }
254 
255 static u32
256 _mt7530_read(struct mt7530_dummy_poll *p)
257 {
258 	struct mii_bus		*bus = p->priv->bus;
259 	u32 val;
260 
261 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262 
263 	val = mt7530_mii_read(p->priv, p->reg);
264 
265 	mutex_unlock(&bus->mdio_lock);
266 
267 	return val;
268 }
269 
270 static u32
271 mt7530_read(struct mt7530_priv *priv, u32 reg)
272 {
273 	struct mt7530_dummy_poll p;
274 
275 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 	return _mt7530_read(&p);
277 }
278 
279 static void
280 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 	   u32 mask, u32 set)
282 {
283 	struct mii_bus *bus = priv->bus;
284 	u32 val;
285 
286 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287 
288 	val = mt7530_mii_read(priv, reg);
289 	val &= ~mask;
290 	val |= set;
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static void
297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, 0, val);
300 }
301 
302 static void
303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304 {
305 	mt7530_rmw(priv, reg, val, 0);
306 }
307 
308 static int
309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310 {
311 	u32 val;
312 	int ret;
313 	struct mt7530_dummy_poll p;
314 
315 	/* Set the command operating upon the MAC address entries */
316 	val = ATC_BUSY | ATC_MAT(0) | cmd;
317 	mt7530_write(priv, MT7530_ATC, val);
318 
319 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 	ret = readx_poll_timeout(_mt7530_read, &p, val,
321 				 !(val & ATC_BUSY), 20, 20000);
322 	if (ret < 0) {
323 		dev_err(priv->dev, "reset timeout\n");
324 		return ret;
325 	}
326 
327 	/* Additional sanity for read command if the specified
328 	 * entry is invalid
329 	 */
330 	val = mt7530_read(priv, MT7530_ATC);
331 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 		return -EINVAL;
333 
334 	if (rsp)
335 		*rsp = val;
336 
337 	return 0;
338 }
339 
340 static void
341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342 {
343 	u32 reg[3];
344 	int i;
345 
346 	/* Read from ARL table into an array */
347 	for (i = 0; i < 3; i++) {
348 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349 
350 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 			__func__, __LINE__, i, reg[i]);
352 	}
353 
354 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364 }
365 
366 static void
367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 		 u8 port_mask, const u8 *mac,
369 		 u8 aging, u8 type)
370 {
371 	u32 reg[3] = { 0 };
372 	int i;
373 
374 	reg[1] |= vid & CVID_MASK;
375 	reg[1] |= ATA2_IVL;
376 	reg[1] |= ATA2_FID(FID_BRIDGED);
377 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 	/* STATIC_ENT indicate that entry is static wouldn't
380 	 * be aged out and STATIC_EMP specified as erasing an
381 	 * entry
382 	 */
383 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 	reg[1] |= mac[5] << MAC_BYTE_5;
385 	reg[1] |= mac[4] << MAC_BYTE_4;
386 	reg[0] |= mac[3] << MAC_BYTE_3;
387 	reg[0] |= mac[2] << MAC_BYTE_2;
388 	reg[0] |= mac[1] << MAC_BYTE_1;
389 	reg[0] |= mac[0] << MAC_BYTE_0;
390 
391 	/* Write array into the ARL table */
392 	for (i = 0; i < 3; i++)
393 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394 }
395 
396 /* Set up switch core clock for MT7530 */
397 static void mt7530_pll_setup(struct mt7530_priv *priv)
398 {
399 	/* Disable core clock */
400 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
401 
402 	/* Disable PLL */
403 	core_write(priv, CORE_GSWPLL_GRP1, 0);
404 
405 	/* Set core clock into 500Mhz */
406 	core_write(priv, CORE_GSWPLL_GRP2,
407 		   RG_GSWPLL_POSDIV_500M(1) |
408 		   RG_GSWPLL_FBKDIV_500M(25));
409 
410 	/* Enable PLL */
411 	core_write(priv, CORE_GSWPLL_GRP1,
412 		   RG_GSWPLL_EN_PRE |
413 		   RG_GSWPLL_POSDIV_200M(2) |
414 		   RG_GSWPLL_FBKDIV_200M(32));
415 
416 	udelay(20);
417 
418 	/* Enable core clock */
419 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
420 }
421 
422 /* Setup port 6 interface mode and TRGMII TX circuit */
423 static int
424 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
425 {
426 	struct mt7530_priv *priv = ds->priv;
427 	u32 ncpo1, ssc_delta, trgint, xtal;
428 
429 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
430 
431 	if (xtal == HWTRAP_XTAL_20MHZ) {
432 		dev_err(priv->dev,
433 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
434 			__func__);
435 		return -EINVAL;
436 	}
437 
438 	switch (interface) {
439 	case PHY_INTERFACE_MODE_RGMII:
440 		trgint = 0;
441 		break;
442 	case PHY_INTERFACE_MODE_TRGMII:
443 		trgint = 1;
444 		if (xtal == HWTRAP_XTAL_25MHZ)
445 			ssc_delta = 0x57;
446 		else
447 			ssc_delta = 0x87;
448 		if (priv->id == ID_MT7621) {
449 			/* PLL frequency: 150MHz: 1.2GBit */
450 			if (xtal == HWTRAP_XTAL_40MHZ)
451 				ncpo1 = 0x0780;
452 			if (xtal == HWTRAP_XTAL_25MHZ)
453 				ncpo1 = 0x0a00;
454 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
455 			if (xtal == HWTRAP_XTAL_40MHZ)
456 				ncpo1 = 0x0c80;
457 			if (xtal == HWTRAP_XTAL_25MHZ)
458 				ncpo1 = 0x1400;
459 		}
460 		break;
461 	default:
462 		dev_err(priv->dev, "xMII interface %d not supported\n",
463 			interface);
464 		return -EINVAL;
465 	}
466 
467 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
468 		   P6_INTF_MODE(trgint));
469 
470 	if (trgint) {
471 		/* Disable the MT7530 TRGMII clocks */
472 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
473 
474 		/* Setup the MT7530 TRGMII Tx Clock */
475 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
476 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
477 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
478 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
479 		core_write(priv, CORE_PLL_GROUP4,
480 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
481 			   RG_SYSPLL_BIAS_LPF_EN);
482 		core_write(priv, CORE_PLL_GROUP2,
483 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
484 			   RG_SYSPLL_POSDIV(1));
485 		core_write(priv, CORE_PLL_GROUP7,
486 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
487 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
488 
489 		/* Enable the MT7530 TRGMII clocks */
490 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
491 	}
492 
493 	return 0;
494 }
495 
496 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
497 {
498 	u32 val;
499 
500 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
501 
502 	return (val & PAD_DUAL_SGMII_EN) != 0;
503 }
504 
505 static int
506 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
507 {
508 	return 0;
509 }
510 
511 static void
512 mt7531_pll_setup(struct mt7530_priv *priv)
513 {
514 	u32 top_sig;
515 	u32 hwstrap;
516 	u32 xtal;
517 	u32 val;
518 
519 	if (mt7531_dual_sgmii_supported(priv))
520 		return;
521 
522 	val = mt7530_read(priv, MT7531_CREV);
523 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
524 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
525 	if ((val & CHIP_REV_M) > 0)
526 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
527 						    HWTRAP_XTAL_FSEL_25MHZ;
528 	else
529 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
530 
531 	/* Step 1 : Disable MT7531 COREPLL */
532 	val = mt7530_read(priv, MT7531_PLLGP_EN);
533 	val &= ~EN_COREPLL;
534 	mt7530_write(priv, MT7531_PLLGP_EN, val);
535 
536 	/* Step 2: switch to XTAL output */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_CLKSW;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
542 	val &= ~RG_COREPLL_EN;
543 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
544 
545 	/* Step 3: disable PLLGP and enable program PLLGP */
546 	val = mt7530_read(priv, MT7531_PLLGP_EN);
547 	val |= SW_PLLGP;
548 	mt7530_write(priv, MT7531_PLLGP_EN, val);
549 
550 	/* Step 4: program COREPLL output frequency to 500MHz */
551 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
552 	val &= ~RG_COREPLL_POSDIV_M;
553 	val |= 2 << RG_COREPLL_POSDIV_S;
554 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
555 	usleep_range(25, 35);
556 
557 	switch (xtal) {
558 	case HWTRAP_XTAL_FSEL_25MHZ:
559 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 		val &= ~RG_COREPLL_SDM_PCW_M;
561 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
562 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 		break;
564 	case HWTRAP_XTAL_FSEL_40MHZ:
565 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
566 		val &= ~RG_COREPLL_SDM_PCW_M;
567 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
568 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
569 		break;
570 	}
571 
572 	/* Set feedback divide ratio update signal to high */
573 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
574 	val |= RG_COREPLL_SDM_PCW_CHG;
575 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
576 	/* Wait for at least 16 XTAL clocks */
577 	usleep_range(10, 20);
578 
579 	/* Step 5: set feedback divide ratio update signal to low */
580 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
581 	val &= ~RG_COREPLL_SDM_PCW_CHG;
582 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
583 
584 	/* Enable 325M clock for SGMII */
585 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
586 
587 	/* Enable 250SSC clock for RGMII */
588 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
589 
590 	/* Step 6: Enable MT7531 PLL */
591 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
592 	val |= RG_COREPLL_EN;
593 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
594 
595 	val = mt7530_read(priv, MT7531_PLLGP_EN);
596 	val |= EN_COREPLL;
597 	mt7530_write(priv, MT7531_PLLGP_EN, val);
598 	usleep_range(25, 35);
599 }
600 
601 static void
602 mt7530_mib_reset(struct dsa_switch *ds)
603 {
604 	struct mt7530_priv *priv = ds->priv;
605 
606 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
607 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
608 }
609 
610 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
611 {
612 	return mdiobus_read_nested(priv->bus, port, regnum);
613 }
614 
615 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
616 				u16 val)
617 {
618 	return mdiobus_write_nested(priv->bus, port, regnum, val);
619 }
620 
621 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
622 			       int devad, int regnum)
623 {
624 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
625 }
626 
627 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
628 				int regnum, u16 val)
629 {
630 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
631 }
632 
633 static int
634 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
635 			int regnum)
636 {
637 	struct mii_bus *bus = priv->bus;
638 	struct mt7530_dummy_poll p;
639 	u32 reg, val;
640 	int ret;
641 
642 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
643 
644 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
645 
646 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
647 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
648 	if (ret < 0) {
649 		dev_err(priv->dev, "poll timeout\n");
650 		goto out;
651 	}
652 
653 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
654 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
655 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
656 
657 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
658 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
659 	if (ret < 0) {
660 		dev_err(priv->dev, "poll timeout\n");
661 		goto out;
662 	}
663 
664 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
665 	      MT7531_MDIO_DEV_ADDR(devad);
666 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
667 
668 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
669 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
670 	if (ret < 0) {
671 		dev_err(priv->dev, "poll timeout\n");
672 		goto out;
673 	}
674 
675 	ret = val & MT7531_MDIO_RW_DATA_MASK;
676 out:
677 	mutex_unlock(&bus->mdio_lock);
678 
679 	return ret;
680 }
681 
682 static int
683 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
684 			 int regnum, u16 data)
685 {
686 	struct mii_bus *bus = priv->bus;
687 	struct mt7530_dummy_poll p;
688 	u32 val, reg;
689 	int ret;
690 
691 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
692 
693 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
703 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
704 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
705 
706 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
707 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
708 	if (ret < 0) {
709 		dev_err(priv->dev, "poll timeout\n");
710 		goto out;
711 	}
712 
713 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
714 	      MT7531_MDIO_DEV_ADDR(devad) | data;
715 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
716 
717 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
718 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
719 	if (ret < 0) {
720 		dev_err(priv->dev, "poll timeout\n");
721 		goto out;
722 	}
723 
724 out:
725 	mutex_unlock(&bus->mdio_lock);
726 
727 	return ret;
728 }
729 
730 static int
731 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
732 {
733 	struct mii_bus *bus = priv->bus;
734 	struct mt7530_dummy_poll p;
735 	int ret;
736 	u32 val;
737 
738 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
739 
740 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
741 
742 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
743 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
744 	if (ret < 0) {
745 		dev_err(priv->dev, "poll timeout\n");
746 		goto out;
747 	}
748 
749 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
750 	      MT7531_MDIO_REG_ADDR(regnum);
751 
752 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
753 
754 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
755 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
756 	if (ret < 0) {
757 		dev_err(priv->dev, "poll timeout\n");
758 		goto out;
759 	}
760 
761 	ret = val & MT7531_MDIO_RW_DATA_MASK;
762 out:
763 	mutex_unlock(&bus->mdio_lock);
764 
765 	return ret;
766 }
767 
768 static int
769 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
770 			 u16 data)
771 {
772 	struct mii_bus *bus = priv->bus;
773 	struct mt7530_dummy_poll p;
774 	int ret;
775 	u32 reg;
776 
777 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
778 
779 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
780 
781 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
782 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
783 	if (ret < 0) {
784 		dev_err(priv->dev, "poll timeout\n");
785 		goto out;
786 	}
787 
788 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
789 	      MT7531_MDIO_REG_ADDR(regnum) | data;
790 
791 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
792 
793 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
794 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
795 	if (ret < 0) {
796 		dev_err(priv->dev, "poll timeout\n");
797 		goto out;
798 	}
799 
800 out:
801 	mutex_unlock(&bus->mdio_lock);
802 
803 	return ret;
804 }
805 
806 static int
807 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
808 {
809 	struct mt7530_priv *priv = bus->priv;
810 
811 	return priv->info->phy_read_c22(priv, port, regnum);
812 }
813 
814 static int
815 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
816 {
817 	struct mt7530_priv *priv = bus->priv;
818 
819 	return priv->info->phy_read_c45(priv, port, devad, regnum);
820 }
821 
822 static int
823 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
824 {
825 	struct mt7530_priv *priv = bus->priv;
826 
827 	return priv->info->phy_write_c22(priv, port, regnum, val);
828 }
829 
830 static int
831 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
832 		     u16 val)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
837 }
838 
839 static void
840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 		   uint8_t *data)
842 {
843 	int i;
844 
845 	if (stringset != ETH_SS_STATS)
846 		return;
847 
848 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 			ETH_GSTRING_LEN);
851 }
852 
853 static void
854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 			 uint64_t *data)
856 {
857 	struct mt7530_priv *priv = ds->priv;
858 	const struct mt7530_mib_desc *mib;
859 	u32 reg, i;
860 	u64 hi;
861 
862 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 		mib = &mt7530_mib[i];
864 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865 
866 		data[i] = mt7530_read(priv, reg);
867 		if (mib->size == 2) {
868 			hi = mt7530_read(priv, reg + 4);
869 			data[i] |= hi << 32;
870 		}
871 	}
872 }
873 
874 static int
875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876 {
877 	if (sset != ETH_SS_STATS)
878 		return 0;
879 
880 	return ARRAY_SIZE(mt7530_mib);
881 }
882 
883 static int
884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885 {
886 	struct mt7530_priv *priv = ds->priv;
887 	unsigned int secs = msecs / 1000;
888 	unsigned int tmp_age_count;
889 	unsigned int error = -1;
890 	unsigned int age_count;
891 	unsigned int age_unit;
892 
893 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 		return -ERANGE;
896 
897 	/* iterate through all possible age_count to find the closest pair */
898 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900 
901 		if (tmp_age_unit <= AGE_UNIT_MAX) {
902 			unsigned int tmp_error = secs -
903 				(tmp_age_count + 1) * (tmp_age_unit + 1);
904 
905 			/* found a closer pair */
906 			if (error > tmp_error) {
907 				error = tmp_error;
908 				age_count = tmp_age_count;
909 				age_unit = tmp_age_unit;
910 			}
911 
912 			/* found the exact match, so break the loop */
913 			if (!error)
914 				break;
915 		}
916 	}
917 
918 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919 
920 	return 0;
921 }
922 
923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924 {
925 	struct mt7530_priv *priv = ds->priv;
926 	u8 tx_delay = 0;
927 	int val;
928 
929 	mutex_lock(&priv->reg_mutex);
930 
931 	val = mt7530_read(priv, MT7530_MHWTRAP);
932 
933 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935 
936 	switch (priv->p5_intf_sel) {
937 	case P5_INTF_SEL_PHY_P0:
938 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 		val |= MHWTRAP_PHY0_SEL;
940 		fallthrough;
941 	case P5_INTF_SEL_PHY_P4:
942 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944 
945 		/* Setup the MAC by default for the cpu port */
946 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 		break;
948 	case P5_INTF_SEL_GMAC5:
949 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 		val &= ~MHWTRAP_P5_DIS;
951 		break;
952 	case P5_DISABLED:
953 		interface = PHY_INTERFACE_MODE_NA;
954 		break;
955 	default:
956 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 			priv->p5_intf_sel);
958 		goto unlock_exit;
959 	}
960 
961 	/* Setup RGMII settings */
962 	if (phy_interface_mode_is_rgmii(interface)) {
963 		val |= MHWTRAP_P5_RGMII_MODE;
964 
965 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
966 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967 
968 		/* Don't set delay in DSA mode */
969 		if (!dsa_is_dsa_port(priv->ds, 5) &&
970 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
972 			tx_delay = 4; /* n * 0.5 ns */
973 
974 		/* P5 RGMII TX Clock Control: delay x */
975 		mt7530_write(priv, MT7530_P5RGMIITXCR,
976 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977 
978 		/* reduce P5 RGMII Tx driving, 8mA */
979 		mt7530_write(priv, MT7530_IO_DRV_CR,
980 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 	}
982 
983 	mt7530_write(priv, MT7530_MHWTRAP, val);
984 
985 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987 
988 	priv->p5_interface = interface;
989 
990 unlock_exit:
991 	mutex_unlock(&priv->reg_mutex);
992 }
993 
994 static int
995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996 {
997 	struct mt7530_priv *priv = ds->priv;
998 	int ret;
999 
1000 	/* Setup max capability of CPU port at first */
1001 	if (priv->info->cpu_port_config) {
1002 		ret = priv->info->cpu_port_config(ds, port);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Enable Mediatek header mode on the cpu port */
1008 	mt7530_write(priv, MT7530_PVC_P(port),
1009 		     PORT_SPEC_TAG);
1010 
1011 	/* Disable flooding by default */
1012 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014 
1015 	/* Set CPU port number */
1016 	if (priv->id == ID_MT7621)
1017 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018 
1019 	/* CPU port gets connected to all user ports of
1020 	 * the switch.
1021 	 */
1022 	mt7530_write(priv, MT7530_PCR_P(port),
1023 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1024 
1025 	/* Set to fallback mode for independent VLAN learning */
1026 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1027 		   MT7530_PORT_FALLBACK_MODE);
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 mt7530_port_enable(struct dsa_switch *ds, int port,
1034 		   struct phy_device *phy)
1035 {
1036 	struct dsa_port *dp = dsa_to_port(ds, port);
1037 	struct mt7530_priv *priv = ds->priv;
1038 
1039 	mutex_lock(&priv->reg_mutex);
1040 
1041 	/* Allow the user port gets connected to the cpu port and also
1042 	 * restore the port matrix if the port is the member of a certain
1043 	 * bridge.
1044 	 */
1045 	if (dsa_port_is_user(dp)) {
1046 		struct dsa_port *cpu_dp = dp->cpu_dp;
1047 
1048 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1049 	}
1050 	priv->ports[port].enable = true;
1051 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1052 		   priv->ports[port].pm);
1053 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1054 
1055 	mutex_unlock(&priv->reg_mutex);
1056 
1057 	return 0;
1058 }
1059 
1060 static void
1061 mt7530_port_disable(struct dsa_switch *ds, int port)
1062 {
1063 	struct mt7530_priv *priv = ds->priv;
1064 
1065 	mutex_lock(&priv->reg_mutex);
1066 
1067 	/* Clear up all port matrix which could be restored in the next
1068 	 * enablement for the port.
1069 	 */
1070 	priv->ports[port].enable = false;
1071 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1072 		   PCR_MATRIX_CLR);
1073 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1074 
1075 	mutex_unlock(&priv->reg_mutex);
1076 }
1077 
1078 static int
1079 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1080 {
1081 	struct mt7530_priv *priv = ds->priv;
1082 	struct mii_bus *bus = priv->bus;
1083 	int length;
1084 	u32 val;
1085 
1086 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1087 	 * largest MTU of the slave ports. Because the switch only has a global
1088 	 * RX length register, only allowing CPU port here is enough.
1089 	 */
1090 	if (!dsa_is_cpu_port(ds, port))
1091 		return 0;
1092 
1093 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1094 
1095 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1096 	val &= ~MAX_RX_PKT_LEN_MASK;
1097 
1098 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1099 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1100 	if (length <= 1522) {
1101 		val |= MAX_RX_PKT_LEN_1522;
1102 	} else if (length <= 1536) {
1103 		val |= MAX_RX_PKT_LEN_1536;
1104 	} else if (length <= 1552) {
1105 		val |= MAX_RX_PKT_LEN_1552;
1106 	} else {
1107 		val &= ~MAX_RX_JUMBO_MASK;
1108 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1109 		val |= MAX_RX_PKT_LEN_JUMBO;
1110 	}
1111 
1112 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1113 
1114 	mutex_unlock(&bus->mdio_lock);
1115 
1116 	return 0;
1117 }
1118 
1119 static int
1120 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1121 {
1122 	return MT7530_MAX_MTU;
1123 }
1124 
1125 static void
1126 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1127 {
1128 	struct mt7530_priv *priv = ds->priv;
1129 	u32 stp_state;
1130 
1131 	switch (state) {
1132 	case BR_STATE_DISABLED:
1133 		stp_state = MT7530_STP_DISABLED;
1134 		break;
1135 	case BR_STATE_BLOCKING:
1136 		stp_state = MT7530_STP_BLOCKING;
1137 		break;
1138 	case BR_STATE_LISTENING:
1139 		stp_state = MT7530_STP_LISTENING;
1140 		break;
1141 	case BR_STATE_LEARNING:
1142 		stp_state = MT7530_STP_LEARNING;
1143 		break;
1144 	case BR_STATE_FORWARDING:
1145 	default:
1146 		stp_state = MT7530_STP_FORWARDING;
1147 		break;
1148 	}
1149 
1150 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1151 		   FID_PST(FID_BRIDGED, stp_state));
1152 }
1153 
1154 static int
1155 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1156 			     struct switchdev_brport_flags flags,
1157 			     struct netlink_ext_ack *extack)
1158 {
1159 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1160 			   BR_BCAST_FLOOD))
1161 		return -EINVAL;
1162 
1163 	return 0;
1164 }
1165 
1166 static int
1167 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1168 			 struct switchdev_brport_flags flags,
1169 			 struct netlink_ext_ack *extack)
1170 {
1171 	struct mt7530_priv *priv = ds->priv;
1172 
1173 	if (flags.mask & BR_LEARNING)
1174 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1175 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1176 
1177 	if (flags.mask & BR_FLOOD)
1178 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1179 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1180 
1181 	if (flags.mask & BR_MCAST_FLOOD)
1182 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1183 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1184 
1185 	if (flags.mask & BR_BCAST_FLOOD)
1186 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1187 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1188 
1189 	return 0;
1190 }
1191 
1192 static int
1193 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1194 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1195 			struct netlink_ext_ack *extack)
1196 {
1197 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1198 	struct dsa_port *cpu_dp = dp->cpu_dp;
1199 	u32 port_bitmap = BIT(cpu_dp->index);
1200 	struct mt7530_priv *priv = ds->priv;
1201 
1202 	mutex_lock(&priv->reg_mutex);
1203 
1204 	dsa_switch_for_each_user_port(other_dp, ds) {
1205 		int other_port = other_dp->index;
1206 
1207 		if (dp == other_dp)
1208 			continue;
1209 
1210 		/* Add this port to the port matrix of the other ports in the
1211 		 * same bridge. If the port is disabled, port matrix is kept
1212 		 * and not being setup until the port becomes enabled.
1213 		 */
1214 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1215 			continue;
1216 
1217 		if (priv->ports[other_port].enable)
1218 			mt7530_set(priv, MT7530_PCR_P(other_port),
1219 				   PCR_MATRIX(BIT(port)));
1220 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1221 
1222 		port_bitmap |= BIT(other_port);
1223 	}
1224 
1225 	/* Add the all other ports to this port matrix. */
1226 	if (priv->ports[port].enable)
1227 		mt7530_rmw(priv, MT7530_PCR_P(port),
1228 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1229 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1230 
1231 	/* Set to fallback mode for independent VLAN learning */
1232 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1233 		   MT7530_PORT_FALLBACK_MODE);
1234 
1235 	mutex_unlock(&priv->reg_mutex);
1236 
1237 	return 0;
1238 }
1239 
1240 static void
1241 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1242 {
1243 	struct mt7530_priv *priv = ds->priv;
1244 	bool all_user_ports_removed = true;
1245 	int i;
1246 
1247 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1248 	 * bridge. Don't set standalone ports to fallback mode.
1249 	 */
1250 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1251 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1252 			   MT7530_PORT_FALLBACK_MODE);
1253 
1254 	mt7530_rmw(priv, MT7530_PVC_P(port),
1255 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1256 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1257 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1258 		   MT7530_VLAN_ACC_ALL);
1259 
1260 	/* Set PVID to 0 */
1261 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1262 		   G0_PORT_VID_DEF);
1263 
1264 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1265 		if (dsa_is_user_port(ds, i) &&
1266 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1267 			all_user_ports_removed = false;
1268 			break;
1269 		}
1270 	}
1271 
1272 	/* CPU port also does the same thing until all user ports belonging to
1273 	 * the CPU port get out of VLAN filtering mode.
1274 	 */
1275 	if (all_user_ports_removed) {
1276 		struct dsa_port *dp = dsa_to_port(ds, port);
1277 		struct dsa_port *cpu_dp = dp->cpu_dp;
1278 
1279 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1280 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1281 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1282 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1283 	}
1284 }
1285 
1286 static void
1287 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1288 {
1289 	struct mt7530_priv *priv = ds->priv;
1290 
1291 	/* Trapped into security mode allows packet forwarding through VLAN
1292 	 * table lookup.
1293 	 */
1294 	if (dsa_is_user_port(ds, port)) {
1295 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1296 			   MT7530_PORT_SECURITY_MODE);
1297 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1298 			   G0_PORT_VID(priv->ports[port].pvid));
1299 
1300 		/* Only accept tagged frames if PVID is not set */
1301 		if (!priv->ports[port].pvid)
1302 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1303 				   MT7530_VLAN_ACC_TAGGED);
1304 
1305 		/* Set the port as a user port which is to be able to recognize
1306 		 * VID from incoming packets before fetching entry within the
1307 		 * VLAN table.
1308 		 */
1309 		mt7530_rmw(priv, MT7530_PVC_P(port),
1310 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1311 			   VLAN_ATTR(MT7530_VLAN_USER) |
1312 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1313 	} else {
1314 		/* Also set CPU ports to the "user" VLAN port attribute, to
1315 		 * allow VLAN classification, but keep the EG_TAG attribute as
1316 		 * "consistent" (i.o.w. don't change its value) for packets
1317 		 * received by the switch from the CPU, so that tagged packets
1318 		 * are forwarded to user ports as tagged, and untagged as
1319 		 * untagged.
1320 		 */
1321 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1322 			   VLAN_ATTR(MT7530_VLAN_USER));
1323 	}
1324 }
1325 
1326 static void
1327 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1328 			 struct dsa_bridge bridge)
1329 {
1330 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1331 	struct dsa_port *cpu_dp = dp->cpu_dp;
1332 	struct mt7530_priv *priv = ds->priv;
1333 
1334 	mutex_lock(&priv->reg_mutex);
1335 
1336 	dsa_switch_for_each_user_port(other_dp, ds) {
1337 		int other_port = other_dp->index;
1338 
1339 		if (dp == other_dp)
1340 			continue;
1341 
1342 		/* Remove this port from the port matrix of the other ports
1343 		 * in the same bridge. If the port is disabled, port matrix
1344 		 * is kept and not being setup until the port becomes enabled.
1345 		 */
1346 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1347 			continue;
1348 
1349 		if (priv->ports[other_port].enable)
1350 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1351 				     PCR_MATRIX(BIT(port)));
1352 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1353 	}
1354 
1355 	/* Set the cpu port to be the only one in the port matrix of
1356 	 * this port.
1357 	 */
1358 	if (priv->ports[port].enable)
1359 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1360 			   PCR_MATRIX(BIT(cpu_dp->index)));
1361 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1362 
1363 	/* When a port is removed from the bridge, the port would be set up
1364 	 * back to the default as is at initial boot which is a VLAN-unaware
1365 	 * port.
1366 	 */
1367 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1368 		   MT7530_PORT_MATRIX_MODE);
1369 
1370 	mutex_unlock(&priv->reg_mutex);
1371 }
1372 
1373 static int
1374 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1375 		    const unsigned char *addr, u16 vid,
1376 		    struct dsa_db db)
1377 {
1378 	struct mt7530_priv *priv = ds->priv;
1379 	int ret;
1380 	u8 port_mask = BIT(port);
1381 
1382 	mutex_lock(&priv->reg_mutex);
1383 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1384 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1385 	mutex_unlock(&priv->reg_mutex);
1386 
1387 	return ret;
1388 }
1389 
1390 static int
1391 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1392 		    const unsigned char *addr, u16 vid,
1393 		    struct dsa_db db)
1394 {
1395 	struct mt7530_priv *priv = ds->priv;
1396 	int ret;
1397 	u8 port_mask = BIT(port);
1398 
1399 	mutex_lock(&priv->reg_mutex);
1400 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1401 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1402 	mutex_unlock(&priv->reg_mutex);
1403 
1404 	return ret;
1405 }
1406 
1407 static int
1408 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1409 		     dsa_fdb_dump_cb_t *cb, void *data)
1410 {
1411 	struct mt7530_priv *priv = ds->priv;
1412 	struct mt7530_fdb _fdb = { 0 };
1413 	int cnt = MT7530_NUM_FDB_RECORDS;
1414 	int ret = 0;
1415 	u32 rsp = 0;
1416 
1417 	mutex_lock(&priv->reg_mutex);
1418 
1419 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1420 	if (ret < 0)
1421 		goto err;
1422 
1423 	do {
1424 		if (rsp & ATC_SRCH_HIT) {
1425 			mt7530_fdb_read(priv, &_fdb);
1426 			if (_fdb.port_mask & BIT(port)) {
1427 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1428 					 data);
1429 				if (ret < 0)
1430 					break;
1431 			}
1432 		}
1433 	} while (--cnt &&
1434 		 !(rsp & ATC_SRCH_END) &&
1435 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1436 err:
1437 	mutex_unlock(&priv->reg_mutex);
1438 
1439 	return 0;
1440 }
1441 
1442 static int
1443 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1444 		    const struct switchdev_obj_port_mdb *mdb,
1445 		    struct dsa_db db)
1446 {
1447 	struct mt7530_priv *priv = ds->priv;
1448 	const u8 *addr = mdb->addr;
1449 	u16 vid = mdb->vid;
1450 	u8 port_mask = 0;
1451 	int ret;
1452 
1453 	mutex_lock(&priv->reg_mutex);
1454 
1455 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1456 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1457 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1458 			    & PORT_MAP_MASK;
1459 
1460 	port_mask |= BIT(port);
1461 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1462 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1463 
1464 	mutex_unlock(&priv->reg_mutex);
1465 
1466 	return ret;
1467 }
1468 
1469 static int
1470 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1471 		    const struct switchdev_obj_port_mdb *mdb,
1472 		    struct dsa_db db)
1473 {
1474 	struct mt7530_priv *priv = ds->priv;
1475 	const u8 *addr = mdb->addr;
1476 	u16 vid = mdb->vid;
1477 	u8 port_mask = 0;
1478 	int ret;
1479 
1480 	mutex_lock(&priv->reg_mutex);
1481 
1482 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1483 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1484 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1485 			    & PORT_MAP_MASK;
1486 
1487 	port_mask &= ~BIT(port);
1488 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1489 			 port_mask ? STATIC_ENT : STATIC_EMP);
1490 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1491 
1492 	mutex_unlock(&priv->reg_mutex);
1493 
1494 	return ret;
1495 }
1496 
1497 static int
1498 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1499 {
1500 	struct mt7530_dummy_poll p;
1501 	u32 val;
1502 	int ret;
1503 
1504 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1505 	mt7530_write(priv, MT7530_VTCR, val);
1506 
1507 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1508 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1509 				 !(val & VTCR_BUSY), 20, 20000);
1510 	if (ret < 0) {
1511 		dev_err(priv->dev, "poll timeout\n");
1512 		return ret;
1513 	}
1514 
1515 	val = mt7530_read(priv, MT7530_VTCR);
1516 	if (val & VTCR_INVALID) {
1517 		dev_err(priv->dev, "read VTCR invalid\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static int
1525 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1526 			   struct netlink_ext_ack *extack)
1527 {
1528 	struct dsa_port *dp = dsa_to_port(ds, port);
1529 	struct dsa_port *cpu_dp = dp->cpu_dp;
1530 
1531 	if (vlan_filtering) {
1532 		/* The port is being kept as VLAN-unaware port when bridge is
1533 		 * set up with vlan_filtering not being set, Otherwise, the
1534 		 * port and the corresponding CPU port is required the setup
1535 		 * for becoming a VLAN-aware port.
1536 		 */
1537 		mt7530_port_set_vlan_aware(ds, port);
1538 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1539 	} else {
1540 		mt7530_port_set_vlan_unaware(ds, port);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static void
1547 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1548 		   struct mt7530_hw_vlan_entry *entry)
1549 {
1550 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1551 	u8 new_members;
1552 	u32 val;
1553 
1554 	new_members = entry->old_members | BIT(entry->port);
1555 
1556 	/* Validate the entry with independent learning, create egress tag per
1557 	 * VLAN and joining the port as one of the port members.
1558 	 */
1559 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1560 	      VLAN_VALID;
1561 	mt7530_write(priv, MT7530_VAWD1, val);
1562 
1563 	/* Decide whether adding tag or not for those outgoing packets from the
1564 	 * port inside the VLAN.
1565 	 * CPU port is always taken as a tagged port for serving more than one
1566 	 * VLANs across and also being applied with egress type stack mode for
1567 	 * that VLAN tags would be appended after hardware special tag used as
1568 	 * DSA tag.
1569 	 */
1570 	if (dsa_port_is_cpu(dp))
1571 		val = MT7530_VLAN_EGRESS_STACK;
1572 	else if (entry->untagged)
1573 		val = MT7530_VLAN_EGRESS_UNTAG;
1574 	else
1575 		val = MT7530_VLAN_EGRESS_TAG;
1576 	mt7530_rmw(priv, MT7530_VAWD2,
1577 		   ETAG_CTRL_P_MASK(entry->port),
1578 		   ETAG_CTRL_P(entry->port, val));
1579 }
1580 
1581 static void
1582 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1583 		   struct mt7530_hw_vlan_entry *entry)
1584 {
1585 	u8 new_members;
1586 	u32 val;
1587 
1588 	new_members = entry->old_members & ~BIT(entry->port);
1589 
1590 	val = mt7530_read(priv, MT7530_VAWD1);
1591 	if (!(val & VLAN_VALID)) {
1592 		dev_err(priv->dev,
1593 			"Cannot be deleted due to invalid entry\n");
1594 		return;
1595 	}
1596 
1597 	if (new_members) {
1598 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1599 		      VLAN_VALID;
1600 		mt7530_write(priv, MT7530_VAWD1, val);
1601 	} else {
1602 		mt7530_write(priv, MT7530_VAWD1, 0);
1603 		mt7530_write(priv, MT7530_VAWD2, 0);
1604 	}
1605 }
1606 
1607 static void
1608 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1609 		      struct mt7530_hw_vlan_entry *entry,
1610 		      mt7530_vlan_op vlan_op)
1611 {
1612 	u32 val;
1613 
1614 	/* Fetch entry */
1615 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1616 
1617 	val = mt7530_read(priv, MT7530_VAWD1);
1618 
1619 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1620 
1621 	/* Manipulate entry */
1622 	vlan_op(priv, entry);
1623 
1624 	/* Flush result to hardware */
1625 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1626 }
1627 
1628 static int
1629 mt7530_setup_vlan0(struct mt7530_priv *priv)
1630 {
1631 	u32 val;
1632 
1633 	/* Validate the entry with independent learning, keep the original
1634 	 * ingress tag attribute.
1635 	 */
1636 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1637 	      VLAN_VALID;
1638 	mt7530_write(priv, MT7530_VAWD1, val);
1639 
1640 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1641 }
1642 
1643 static int
1644 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1645 		     const struct switchdev_obj_port_vlan *vlan,
1646 		     struct netlink_ext_ack *extack)
1647 {
1648 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1649 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1650 	struct mt7530_hw_vlan_entry new_entry;
1651 	struct mt7530_priv *priv = ds->priv;
1652 
1653 	mutex_lock(&priv->reg_mutex);
1654 
1655 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1656 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1657 
1658 	if (pvid) {
1659 		priv->ports[port].pvid = vlan->vid;
1660 
1661 		/* Accept all frames if PVID is set */
1662 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1663 			   MT7530_VLAN_ACC_ALL);
1664 
1665 		/* Only configure PVID if VLAN filtering is enabled */
1666 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1667 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1668 				   G0_PORT_VID_MASK,
1669 				   G0_PORT_VID(vlan->vid));
1670 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1671 		/* This VLAN is overwritten without PVID, so unset it */
1672 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1673 
1674 		/* Only accept tagged frames if the port is VLAN-aware */
1675 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1676 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1677 				   MT7530_VLAN_ACC_TAGGED);
1678 
1679 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1680 			   G0_PORT_VID_DEF);
1681 	}
1682 
1683 	mutex_unlock(&priv->reg_mutex);
1684 
1685 	return 0;
1686 }
1687 
1688 static int
1689 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1690 		     const struct switchdev_obj_port_vlan *vlan)
1691 {
1692 	struct mt7530_hw_vlan_entry target_entry;
1693 	struct mt7530_priv *priv = ds->priv;
1694 
1695 	mutex_lock(&priv->reg_mutex);
1696 
1697 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1698 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1699 			      mt7530_hw_vlan_del);
1700 
1701 	/* PVID is being restored to the default whenever the PVID port
1702 	 * is being removed from the VLAN.
1703 	 */
1704 	if (priv->ports[port].pvid == vlan->vid) {
1705 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1706 
1707 		/* Only accept tagged frames if the port is VLAN-aware */
1708 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1709 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1710 				   MT7530_VLAN_ACC_TAGGED);
1711 
1712 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1713 			   G0_PORT_VID_DEF);
1714 	}
1715 
1716 
1717 	mutex_unlock(&priv->reg_mutex);
1718 
1719 	return 0;
1720 }
1721 
1722 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1723 {
1724 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1725 				   MIRROR_PORT(val);
1726 }
1727 
1728 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1729 {
1730 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1731 				   MIRROR_PORT(val);
1732 }
1733 
1734 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1735 				  struct dsa_mall_mirror_tc_entry *mirror,
1736 				  bool ingress, struct netlink_ext_ack *extack)
1737 {
1738 	struct mt7530_priv *priv = ds->priv;
1739 	int monitor_port;
1740 	u32 val;
1741 
1742 	/* Check for existent entry */
1743 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1744 		return -EEXIST;
1745 
1746 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1747 
1748 	/* MT7530 only supports one monitor port */
1749 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1750 	if (val & MT753X_MIRROR_EN(priv->id) &&
1751 	    monitor_port != mirror->to_local_port)
1752 		return -EEXIST;
1753 
1754 	val |= MT753X_MIRROR_EN(priv->id);
1755 	val &= ~MT753X_MIRROR_MASK(priv->id);
1756 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1757 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1758 
1759 	val = mt7530_read(priv, MT7530_PCR_P(port));
1760 	if (ingress) {
1761 		val |= PORT_RX_MIR;
1762 		priv->mirror_rx |= BIT(port);
1763 	} else {
1764 		val |= PORT_TX_MIR;
1765 		priv->mirror_tx |= BIT(port);
1766 	}
1767 	mt7530_write(priv, MT7530_PCR_P(port), val);
1768 
1769 	return 0;
1770 }
1771 
1772 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1773 				   struct dsa_mall_mirror_tc_entry *mirror)
1774 {
1775 	struct mt7530_priv *priv = ds->priv;
1776 	u32 val;
1777 
1778 	val = mt7530_read(priv, MT7530_PCR_P(port));
1779 	if (mirror->ingress) {
1780 		val &= ~PORT_RX_MIR;
1781 		priv->mirror_rx &= ~BIT(port);
1782 	} else {
1783 		val &= ~PORT_TX_MIR;
1784 		priv->mirror_tx &= ~BIT(port);
1785 	}
1786 	mt7530_write(priv, MT7530_PCR_P(port), val);
1787 
1788 	if (!priv->mirror_rx && !priv->mirror_tx) {
1789 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1790 		val &= ~MT753X_MIRROR_EN(priv->id);
1791 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1792 	}
1793 }
1794 
1795 static enum dsa_tag_protocol
1796 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1797 		     enum dsa_tag_protocol mp)
1798 {
1799 	return DSA_TAG_PROTO_MTK;
1800 }
1801 
1802 #ifdef CONFIG_GPIOLIB
1803 static inline u32
1804 mt7530_gpio_to_bit(unsigned int offset)
1805 {
1806 	/* Map GPIO offset to register bit
1807 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1808 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1809 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1810 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1811 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1812 	 */
1813 	return BIT(offset + offset / 3);
1814 }
1815 
1816 static int
1817 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1818 {
1819 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1820 	u32 bit = mt7530_gpio_to_bit(offset);
1821 
1822 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1823 }
1824 
1825 static void
1826 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1827 {
1828 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1829 	u32 bit = mt7530_gpio_to_bit(offset);
1830 
1831 	if (value)
1832 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1833 	else
1834 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1835 }
1836 
1837 static int
1838 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1839 {
1840 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1841 	u32 bit = mt7530_gpio_to_bit(offset);
1842 
1843 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1844 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1845 }
1846 
1847 static int
1848 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1849 {
1850 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1851 	u32 bit = mt7530_gpio_to_bit(offset);
1852 
1853 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1854 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1855 
1856 	return 0;
1857 }
1858 
1859 static int
1860 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1861 {
1862 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1863 	u32 bit = mt7530_gpio_to_bit(offset);
1864 
1865 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1866 
1867 	if (value)
1868 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1869 	else
1870 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1871 
1872 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1873 
1874 	return 0;
1875 }
1876 
1877 static int
1878 mt7530_setup_gpio(struct mt7530_priv *priv)
1879 {
1880 	struct device *dev = priv->dev;
1881 	struct gpio_chip *gc;
1882 
1883 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1884 	if (!gc)
1885 		return -ENOMEM;
1886 
1887 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1888 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1889 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1890 
1891 	gc->label = "mt7530";
1892 	gc->parent = dev;
1893 	gc->owner = THIS_MODULE;
1894 	gc->get_direction = mt7530_gpio_get_direction;
1895 	gc->direction_input = mt7530_gpio_direction_input;
1896 	gc->direction_output = mt7530_gpio_direction_output;
1897 	gc->get = mt7530_gpio_get;
1898 	gc->set = mt7530_gpio_set;
1899 	gc->base = -1;
1900 	gc->ngpio = 15;
1901 	gc->can_sleep = true;
1902 
1903 	return devm_gpiochip_add_data(dev, gc, priv);
1904 }
1905 #endif /* CONFIG_GPIOLIB */
1906 
1907 static irqreturn_t
1908 mt7530_irq_thread_fn(int irq, void *dev_id)
1909 {
1910 	struct mt7530_priv *priv = dev_id;
1911 	bool handled = false;
1912 	u32 val;
1913 	int p;
1914 
1915 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1916 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1917 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1918 	mutex_unlock(&priv->bus->mdio_lock);
1919 
1920 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1921 		if (BIT(p) & val) {
1922 			unsigned int irq;
1923 
1924 			irq = irq_find_mapping(priv->irq_domain, p);
1925 			handle_nested_irq(irq);
1926 			handled = true;
1927 		}
1928 	}
1929 
1930 	return IRQ_RETVAL(handled);
1931 }
1932 
1933 static void
1934 mt7530_irq_mask(struct irq_data *d)
1935 {
1936 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1937 
1938 	priv->irq_enable &= ~BIT(d->hwirq);
1939 }
1940 
1941 static void
1942 mt7530_irq_unmask(struct irq_data *d)
1943 {
1944 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1945 
1946 	priv->irq_enable |= BIT(d->hwirq);
1947 }
1948 
1949 static void
1950 mt7530_irq_bus_lock(struct irq_data *d)
1951 {
1952 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1953 
1954 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1955 }
1956 
1957 static void
1958 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1959 {
1960 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1961 
1962 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1963 	mutex_unlock(&priv->bus->mdio_lock);
1964 }
1965 
1966 static struct irq_chip mt7530_irq_chip = {
1967 	.name = KBUILD_MODNAME,
1968 	.irq_mask = mt7530_irq_mask,
1969 	.irq_unmask = mt7530_irq_unmask,
1970 	.irq_bus_lock = mt7530_irq_bus_lock,
1971 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1972 };
1973 
1974 static int
1975 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1976 	       irq_hw_number_t hwirq)
1977 {
1978 	irq_set_chip_data(irq, domain->host_data);
1979 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1980 	irq_set_nested_thread(irq, true);
1981 	irq_set_noprobe(irq);
1982 
1983 	return 0;
1984 }
1985 
1986 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1987 	.map = mt7530_irq_map,
1988 	.xlate = irq_domain_xlate_onecell,
1989 };
1990 
1991 static void
1992 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1993 {
1994 	struct dsa_switch *ds = priv->ds;
1995 	int p;
1996 
1997 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1998 		if (BIT(p) & ds->phys_mii_mask) {
1999 			unsigned int irq;
2000 
2001 			irq = irq_create_mapping(priv->irq_domain, p);
2002 			ds->slave_mii_bus->irq[p] = irq;
2003 		}
2004 	}
2005 }
2006 
2007 static int
2008 mt7530_setup_irq(struct mt7530_priv *priv)
2009 {
2010 	struct device *dev = priv->dev;
2011 	struct device_node *np = dev->of_node;
2012 	int ret;
2013 
2014 	if (!of_property_read_bool(np, "interrupt-controller")) {
2015 		dev_info(dev, "no interrupt support\n");
2016 		return 0;
2017 	}
2018 
2019 	priv->irq = of_irq_get(np, 0);
2020 	if (priv->irq <= 0) {
2021 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2022 		return priv->irq ? : -EINVAL;
2023 	}
2024 
2025 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2026 						 &mt7530_irq_domain_ops, priv);
2027 	if (!priv->irq_domain) {
2028 		dev_err(dev, "failed to create IRQ domain\n");
2029 		return -ENOMEM;
2030 	}
2031 
2032 	/* This register must be set for MT7530 to properly fire interrupts */
2033 	if (priv->id != ID_MT7531)
2034 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2035 
2036 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2037 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2038 	if (ret) {
2039 		irq_domain_remove(priv->irq_domain);
2040 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2041 		return ret;
2042 	}
2043 
2044 	return 0;
2045 }
2046 
2047 static void
2048 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2049 {
2050 	int p;
2051 
2052 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2053 		if (BIT(p) & priv->ds->phys_mii_mask) {
2054 			unsigned int irq;
2055 
2056 			irq = irq_find_mapping(priv->irq_domain, p);
2057 			irq_dispose_mapping(irq);
2058 		}
2059 	}
2060 }
2061 
2062 static void
2063 mt7530_free_irq_common(struct mt7530_priv *priv)
2064 {
2065 	free_irq(priv->irq, priv);
2066 	irq_domain_remove(priv->irq_domain);
2067 }
2068 
2069 static void
2070 mt7530_free_irq(struct mt7530_priv *priv)
2071 {
2072 	mt7530_free_mdio_irq(priv);
2073 	mt7530_free_irq_common(priv);
2074 }
2075 
2076 static int
2077 mt7530_setup_mdio(struct mt7530_priv *priv)
2078 {
2079 	struct dsa_switch *ds = priv->ds;
2080 	struct device *dev = priv->dev;
2081 	struct mii_bus *bus;
2082 	static int idx;
2083 	int ret;
2084 
2085 	bus = devm_mdiobus_alloc(dev);
2086 	if (!bus)
2087 		return -ENOMEM;
2088 
2089 	ds->slave_mii_bus = bus;
2090 	bus->priv = priv;
2091 	bus->name = KBUILD_MODNAME "-mii";
2092 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2093 	bus->read = mt753x_phy_read_c22;
2094 	bus->write = mt753x_phy_write_c22;
2095 	bus->read_c45 = mt753x_phy_read_c45;
2096 	bus->write_c45 = mt753x_phy_write_c45;
2097 	bus->parent = dev;
2098 	bus->phy_mask = ~ds->phys_mii_mask;
2099 
2100 	if (priv->irq)
2101 		mt7530_setup_mdio_irq(priv);
2102 
2103 	ret = devm_mdiobus_register(dev, bus);
2104 	if (ret) {
2105 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2106 		if (priv->irq)
2107 			mt7530_free_mdio_irq(priv);
2108 	}
2109 
2110 	return ret;
2111 }
2112 
2113 static int
2114 mt7530_setup(struct dsa_switch *ds)
2115 {
2116 	struct mt7530_priv *priv = ds->priv;
2117 	struct device_node *dn = NULL;
2118 	struct device_node *phy_node;
2119 	struct device_node *mac_np;
2120 	struct mt7530_dummy_poll p;
2121 	phy_interface_t interface;
2122 	struct dsa_port *cpu_dp;
2123 	u32 id, val;
2124 	int ret, i;
2125 
2126 	/* The parent node of master netdev which holds the common system
2127 	 * controller also is the container for two GMACs nodes representing
2128 	 * as two netdev instances.
2129 	 */
2130 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2131 		dn = cpu_dp->master->dev.of_node->parent;
2132 		/* It doesn't matter which CPU port is found first,
2133 		 * their masters should share the same parent OF node
2134 		 */
2135 		break;
2136 	}
2137 
2138 	if (!dn) {
2139 		dev_err(ds->dev, "parent OF node of DSA master not found");
2140 		return -EINVAL;
2141 	}
2142 
2143 	ds->assisted_learning_on_cpu_port = true;
2144 	ds->mtu_enforcement_ingress = true;
2145 
2146 	if (priv->id == ID_MT7530) {
2147 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2148 		ret = regulator_enable(priv->core_pwr);
2149 		if (ret < 0) {
2150 			dev_err(priv->dev,
2151 				"Failed to enable core power: %d\n", ret);
2152 			return ret;
2153 		}
2154 
2155 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2156 		ret = regulator_enable(priv->io_pwr);
2157 		if (ret < 0) {
2158 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2159 				ret);
2160 			return ret;
2161 		}
2162 	}
2163 
2164 	/* Reset whole chip through gpio pin or memory-mapped registers for
2165 	 * different type of hardware
2166 	 */
2167 	if (priv->mcm) {
2168 		reset_control_assert(priv->rstc);
2169 		usleep_range(1000, 1100);
2170 		reset_control_deassert(priv->rstc);
2171 	} else {
2172 		gpiod_set_value_cansleep(priv->reset, 0);
2173 		usleep_range(1000, 1100);
2174 		gpiod_set_value_cansleep(priv->reset, 1);
2175 	}
2176 
2177 	/* Waiting for MT7530 got to stable */
2178 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2179 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2180 				 20, 1000000);
2181 	if (ret < 0) {
2182 		dev_err(priv->dev, "reset timeout\n");
2183 		return ret;
2184 	}
2185 
2186 	id = mt7530_read(priv, MT7530_CREV);
2187 	id >>= CHIP_NAME_SHIFT;
2188 	if (id != MT7530_ID) {
2189 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2190 		return -ENODEV;
2191 	}
2192 
2193 	/* Reset the switch through internal reset */
2194 	mt7530_write(priv, MT7530_SYS_CTRL,
2195 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2196 		     SYS_CTRL_REG_RST);
2197 
2198 	mt7530_pll_setup(priv);
2199 
2200 	/* Lower Tx driving for TRGMII path */
2201 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2202 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2203 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2204 
2205 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2206 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2207 			   RD_TAP_MASK, RD_TAP(16));
2208 
2209 	/* Enable port 6 */
2210 	val = mt7530_read(priv, MT7530_MHWTRAP);
2211 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2212 	val |= MHWTRAP_MANUAL;
2213 	mt7530_write(priv, MT7530_MHWTRAP, val);
2214 
2215 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2216 
2217 	/* Enable and reset MIB counters */
2218 	mt7530_mib_reset(ds);
2219 
2220 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2221 		/* Disable forwarding by default on all ports */
2222 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2223 			   PCR_MATRIX_CLR);
2224 
2225 		/* Disable learning by default on all ports */
2226 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2227 
2228 		if (dsa_is_cpu_port(ds, i)) {
2229 			ret = mt753x_cpu_port_enable(ds, i);
2230 			if (ret)
2231 				return ret;
2232 		} else {
2233 			mt7530_port_disable(ds, i);
2234 
2235 			/* Set default PVID to 0 on all user ports */
2236 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2237 				   G0_PORT_VID_DEF);
2238 		}
2239 		/* Enable consistent egress tag */
2240 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2241 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2242 	}
2243 
2244 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2245 	ret = mt7530_setup_vlan0(priv);
2246 	if (ret)
2247 		return ret;
2248 
2249 	/* Setup port 5 */
2250 	priv->p5_intf_sel = P5_DISABLED;
2251 	interface = PHY_INTERFACE_MODE_NA;
2252 
2253 	if (!dsa_is_unused_port(ds, 5)) {
2254 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2255 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2256 		if (ret && ret != -ENODEV)
2257 			return ret;
2258 	} else {
2259 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2260 		for_each_child_of_node(dn, mac_np) {
2261 			if (!of_device_is_compatible(mac_np,
2262 						     "mediatek,eth-mac"))
2263 				continue;
2264 
2265 			ret = of_property_read_u32(mac_np, "reg", &id);
2266 			if (ret < 0 || id != 1)
2267 				continue;
2268 
2269 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2270 			if (!phy_node)
2271 				continue;
2272 
2273 			if (phy_node->parent == priv->dev->of_node->parent) {
2274 				ret = of_get_phy_mode(mac_np, &interface);
2275 				if (ret && ret != -ENODEV) {
2276 					of_node_put(mac_np);
2277 					of_node_put(phy_node);
2278 					return ret;
2279 				}
2280 				id = of_mdio_parse_addr(ds->dev, phy_node);
2281 				if (id == 0)
2282 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2283 				if (id == 4)
2284 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2285 			}
2286 			of_node_put(mac_np);
2287 			of_node_put(phy_node);
2288 			break;
2289 		}
2290 	}
2291 
2292 #ifdef CONFIG_GPIOLIB
2293 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2294 		ret = mt7530_setup_gpio(priv);
2295 		if (ret)
2296 			return ret;
2297 	}
2298 #endif /* CONFIG_GPIOLIB */
2299 
2300 	mt7530_setup_port5(ds, interface);
2301 
2302 	/* Flush the FDB table */
2303 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2304 	if (ret < 0)
2305 		return ret;
2306 
2307 	return 0;
2308 }
2309 
2310 static int
2311 mt7531_setup(struct dsa_switch *ds)
2312 {
2313 	struct mt7530_priv *priv = ds->priv;
2314 	struct mt7530_dummy_poll p;
2315 	struct dsa_port *cpu_dp;
2316 	u32 val, id;
2317 	int ret, i;
2318 
2319 	/* Reset whole chip through gpio pin or memory-mapped registers for
2320 	 * different type of hardware
2321 	 */
2322 	if (priv->mcm) {
2323 		reset_control_assert(priv->rstc);
2324 		usleep_range(1000, 1100);
2325 		reset_control_deassert(priv->rstc);
2326 	} else {
2327 		gpiod_set_value_cansleep(priv->reset, 0);
2328 		usleep_range(1000, 1100);
2329 		gpiod_set_value_cansleep(priv->reset, 1);
2330 	}
2331 
2332 	/* Waiting for MT7530 got to stable */
2333 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2334 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2335 				 20, 1000000);
2336 	if (ret < 0) {
2337 		dev_err(priv->dev, "reset timeout\n");
2338 		return ret;
2339 	}
2340 
2341 	id = mt7530_read(priv, MT7531_CREV);
2342 	id >>= CHIP_NAME_SHIFT;
2343 
2344 	if (id != MT7531_ID) {
2345 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2346 		return -ENODEV;
2347 	}
2348 
2349 	/* all MACs must be forced link-down before sw reset */
2350 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2351 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2352 
2353 	/* Reset the switch through internal reset */
2354 	mt7530_write(priv, MT7530_SYS_CTRL,
2355 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2356 		     SYS_CTRL_REG_RST);
2357 
2358 	mt7531_pll_setup(priv);
2359 
2360 	if (mt7531_dual_sgmii_supported(priv)) {
2361 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2362 
2363 		/* Let ds->slave_mii_bus be able to access external phy. */
2364 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2365 			   MT7531_EXT_P_MDC_11);
2366 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2367 			   MT7531_EXT_P_MDIO_12);
2368 	} else {
2369 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2370 	}
2371 	dev_dbg(ds->dev, "P5 support %s interface\n",
2372 		p5_intf_modes(priv->p5_intf_sel));
2373 
2374 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2375 		   MT7531_GPIO0_INTERRUPT);
2376 
2377 	/* Let phylink decide the interface later. */
2378 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2379 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2380 
2381 	/* Enable PHY core PLL, since phy_device has not yet been created
2382 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2383 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2384 	 * function.
2385 	 */
2386 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2387 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2388 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2389 	val &= ~MT7531_PHY_PLL_OFF;
2390 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2391 				 CORE_PLL_GROUP4, val);
2392 
2393 	/* BPDU to CPU port */
2394 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2395 		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2396 			   BIT(cpu_dp->index));
2397 		break;
2398 	}
2399 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2400 		   MT753X_BPDU_CPU_ONLY);
2401 
2402 	/* Enable and reset MIB counters */
2403 	mt7530_mib_reset(ds);
2404 
2405 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2406 		/* Disable forwarding by default on all ports */
2407 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2408 			   PCR_MATRIX_CLR);
2409 
2410 		/* Disable learning by default on all ports */
2411 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2412 
2413 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2414 
2415 		if (dsa_is_cpu_port(ds, i)) {
2416 			ret = mt753x_cpu_port_enable(ds, i);
2417 			if (ret)
2418 				return ret;
2419 		} else {
2420 			mt7530_port_disable(ds, i);
2421 
2422 			/* Set default PVID to 0 on all user ports */
2423 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2424 				   G0_PORT_VID_DEF);
2425 		}
2426 
2427 		/* Enable consistent egress tag */
2428 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2429 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2430 	}
2431 
2432 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2433 	ret = mt7530_setup_vlan0(priv);
2434 	if (ret)
2435 		return ret;
2436 
2437 	ds->assisted_learning_on_cpu_port = true;
2438 	ds->mtu_enforcement_ingress = true;
2439 
2440 	/* Flush the FDB table */
2441 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2442 	if (ret < 0)
2443 		return ret;
2444 
2445 	return 0;
2446 }
2447 
2448 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2449 				     struct phylink_config *config)
2450 {
2451 	switch (port) {
2452 	case 0 ... 4: /* Internal phy */
2453 		__set_bit(PHY_INTERFACE_MODE_GMII,
2454 			  config->supported_interfaces);
2455 		break;
2456 
2457 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2458 		phy_interface_set_rgmii(config->supported_interfaces);
2459 		__set_bit(PHY_INTERFACE_MODE_MII,
2460 			  config->supported_interfaces);
2461 		__set_bit(PHY_INTERFACE_MODE_GMII,
2462 			  config->supported_interfaces);
2463 		break;
2464 
2465 	case 6: /* 1st cpu port */
2466 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2467 			  config->supported_interfaces);
2468 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2469 			  config->supported_interfaces);
2470 		break;
2471 	}
2472 }
2473 
2474 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2475 {
2476 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2477 }
2478 
2479 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2480 				     struct phylink_config *config)
2481 {
2482 	struct mt7530_priv *priv = ds->priv;
2483 
2484 	switch (port) {
2485 	case 0 ... 4: /* Internal phy */
2486 		__set_bit(PHY_INTERFACE_MODE_GMII,
2487 			  config->supported_interfaces);
2488 		break;
2489 
2490 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2491 		if (mt7531_is_rgmii_port(priv, port)) {
2492 			phy_interface_set_rgmii(config->supported_interfaces);
2493 			break;
2494 		}
2495 		fallthrough;
2496 
2497 	case 6: /* 1st cpu port supports sgmii/8023z only */
2498 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2499 			  config->supported_interfaces);
2500 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2501 			  config->supported_interfaces);
2502 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2503 			  config->supported_interfaces);
2504 
2505 		config->mac_capabilities |= MAC_2500FD;
2506 		break;
2507 	}
2508 }
2509 
2510 static int
2511 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2512 {
2513 	struct mt7530_priv *priv = ds->priv;
2514 
2515 	return priv->info->pad_setup(ds, state->interface);
2516 }
2517 
2518 static int
2519 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2520 		  phy_interface_t interface)
2521 {
2522 	struct mt7530_priv *priv = ds->priv;
2523 
2524 	/* Only need to setup port5. */
2525 	if (port != 5)
2526 		return 0;
2527 
2528 	mt7530_setup_port5(priv->ds, interface);
2529 
2530 	return 0;
2531 }
2532 
2533 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2534 			      phy_interface_t interface,
2535 			      struct phy_device *phydev)
2536 {
2537 	u32 val;
2538 
2539 	if (!mt7531_is_rgmii_port(priv, port)) {
2540 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2541 			port);
2542 		return -EINVAL;
2543 	}
2544 
2545 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2546 	val |= GP_CLK_EN;
2547 	val &= ~GP_MODE_MASK;
2548 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2549 	val &= ~CLK_SKEW_IN_MASK;
2550 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2551 	val &= ~CLK_SKEW_OUT_MASK;
2552 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2553 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2554 
2555 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2556 	if (!phydev || phy_driver_is_genphy(phydev)) {
2557 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2558 		switch (interface) {
2559 		case PHY_INTERFACE_MODE_RGMII:
2560 			val |= TXCLK_NO_REVERSE;
2561 			val |= RXCLK_NO_DELAY;
2562 			break;
2563 		case PHY_INTERFACE_MODE_RGMII_RXID:
2564 			val |= TXCLK_NO_REVERSE;
2565 			break;
2566 		case PHY_INTERFACE_MODE_RGMII_TXID:
2567 			val |= RXCLK_NO_DELAY;
2568 			break;
2569 		case PHY_INTERFACE_MODE_RGMII_ID:
2570 			break;
2571 		default:
2572 			return -EINVAL;
2573 		}
2574 	}
2575 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2576 
2577 	return 0;
2578 }
2579 
2580 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2581 			       phy_interface_t interface, int speed, int duplex)
2582 {
2583 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2584 	int port = pcs_to_mt753x_pcs(pcs)->port;
2585 	unsigned int val;
2586 
2587 	/* For adjusting speed and duplex of SGMII force mode. */
2588 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2589 	    phylink_autoneg_inband(mode))
2590 		return;
2591 
2592 	/* SGMII force mode setting */
2593 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2594 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2595 
2596 	switch (speed) {
2597 	case SPEED_10:
2598 		val |= MT7531_SGMII_FORCE_SPEED_10;
2599 		break;
2600 	case SPEED_100:
2601 		val |= MT7531_SGMII_FORCE_SPEED_100;
2602 		break;
2603 	case SPEED_1000:
2604 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2605 		break;
2606 	}
2607 
2608 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2609 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2610 	 *
2611 	 * The speed check is unnecessary as the MAC capabilities apply
2612 	 * this restriction. --rmk
2613 	 */
2614 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2615 	    duplex != DUPLEX_FULL)
2616 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2617 
2618 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2619 }
2620 
2621 static bool mt753x_is_mac_port(u32 port)
2622 {
2623 	return (port == 5 || port == 6);
2624 }
2625 
2626 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2627 					 phy_interface_t interface)
2628 {
2629 	u32 val;
2630 
2631 	if (!mt753x_is_mac_port(port))
2632 		return -EINVAL;
2633 
2634 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2635 		   MT7531_SGMII_PHYA_PWD);
2636 
2637 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2638 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2639 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2640 	 * encoding.
2641 	 */
2642 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2643 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2644 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2645 
2646 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2647 
2648 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2649 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2650 	 */
2651 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2652 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2653 		   MT7531_SGMII_FORCE_SPEED_1000);
2654 
2655 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2656 
2657 	return 0;
2658 }
2659 
2660 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2661 				      phy_interface_t interface)
2662 {
2663 	if (!mt753x_is_mac_port(port))
2664 		return -EINVAL;
2665 
2666 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2667 		   MT7531_SGMII_PHYA_PWD);
2668 
2669 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2670 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2671 
2672 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2673 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2674 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2675 
2676 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2677 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2678 
2679 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2680 
2681 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2682 
2683 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2684 
2685 	return 0;
2686 }
2687 
2688 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2689 {
2690 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2691 	int port = pcs_to_mt753x_pcs(pcs)->port;
2692 	u32 val;
2693 
2694 	/* Only restart AN when AN is enabled */
2695 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2696 	if (val & MT7531_SGMII_AN_ENABLE) {
2697 		val |= MT7531_SGMII_AN_RESTART;
2698 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2699 	}
2700 }
2701 
2702 static int
2703 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2704 		  phy_interface_t interface)
2705 {
2706 	struct mt7530_priv *priv = ds->priv;
2707 	struct phy_device *phydev;
2708 	struct dsa_port *dp;
2709 
2710 	if (!mt753x_is_mac_port(port)) {
2711 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2712 		return -EINVAL;
2713 	}
2714 
2715 	switch (interface) {
2716 	case PHY_INTERFACE_MODE_RGMII:
2717 	case PHY_INTERFACE_MODE_RGMII_ID:
2718 	case PHY_INTERFACE_MODE_RGMII_RXID:
2719 	case PHY_INTERFACE_MODE_RGMII_TXID:
2720 		dp = dsa_to_port(ds, port);
2721 		phydev = dp->slave->phydev;
2722 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2723 	case PHY_INTERFACE_MODE_SGMII:
2724 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2725 	case PHY_INTERFACE_MODE_NA:
2726 	case PHY_INTERFACE_MODE_1000BASEX:
2727 	case PHY_INTERFACE_MODE_2500BASEX:
2728 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2729 	default:
2730 		return -EINVAL;
2731 	}
2732 
2733 	return -EINVAL;
2734 }
2735 
2736 static int
2737 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2738 		  const struct phylink_link_state *state)
2739 {
2740 	struct mt7530_priv *priv = ds->priv;
2741 
2742 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2743 }
2744 
2745 static struct phylink_pcs *
2746 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2747 			      phy_interface_t interface)
2748 {
2749 	struct mt7530_priv *priv = ds->priv;
2750 
2751 	switch (interface) {
2752 	case PHY_INTERFACE_MODE_TRGMII:
2753 	case PHY_INTERFACE_MODE_SGMII:
2754 	case PHY_INTERFACE_MODE_1000BASEX:
2755 	case PHY_INTERFACE_MODE_2500BASEX:
2756 		return &priv->pcs[port].pcs;
2757 
2758 	default:
2759 		return NULL;
2760 	}
2761 }
2762 
2763 static void
2764 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2765 			  const struct phylink_link_state *state)
2766 {
2767 	struct mt7530_priv *priv = ds->priv;
2768 	u32 mcr_cur, mcr_new;
2769 
2770 	switch (port) {
2771 	case 0 ... 4: /* Internal phy */
2772 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2773 			goto unsupported;
2774 		break;
2775 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2776 		if (priv->p5_interface == state->interface)
2777 			break;
2778 
2779 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2780 			goto unsupported;
2781 
2782 		if (priv->p5_intf_sel != P5_DISABLED)
2783 			priv->p5_interface = state->interface;
2784 		break;
2785 	case 6: /* 1st cpu port */
2786 		if (priv->p6_interface == state->interface)
2787 			break;
2788 
2789 		mt753x_pad_setup(ds, state);
2790 
2791 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2792 			goto unsupported;
2793 
2794 		priv->p6_interface = state->interface;
2795 		break;
2796 	default:
2797 unsupported:
2798 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2799 			__func__, phy_modes(state->interface), port);
2800 		return;
2801 	}
2802 
2803 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2804 	mcr_new = mcr_cur;
2805 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2806 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2807 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2808 
2809 	/* Are we connected to external phy */
2810 	if (port == 5 && dsa_is_user_port(ds, 5))
2811 		mcr_new |= PMCR_EXT_PHY;
2812 
2813 	if (mcr_new != mcr_cur)
2814 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2815 }
2816 
2817 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2818 					 unsigned int mode,
2819 					 phy_interface_t interface)
2820 {
2821 	struct mt7530_priv *priv = ds->priv;
2822 
2823 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2824 }
2825 
2826 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2827 				       unsigned int mode,
2828 				       phy_interface_t interface,
2829 				       int speed, int duplex)
2830 {
2831 	if (pcs->ops->pcs_link_up)
2832 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2833 }
2834 
2835 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2836 				       unsigned int mode,
2837 				       phy_interface_t interface,
2838 				       struct phy_device *phydev,
2839 				       int speed, int duplex,
2840 				       bool tx_pause, bool rx_pause)
2841 {
2842 	struct mt7530_priv *priv = ds->priv;
2843 	u32 mcr;
2844 
2845 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2846 
2847 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2848 	 * variants.
2849 	 */
2850 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2851 	    (phy_interface_mode_is_8023z(interface))) {
2852 		speed = SPEED_1000;
2853 		duplex = DUPLEX_FULL;
2854 	}
2855 
2856 	switch (speed) {
2857 	case SPEED_1000:
2858 		mcr |= PMCR_FORCE_SPEED_1000;
2859 		break;
2860 	case SPEED_100:
2861 		mcr |= PMCR_FORCE_SPEED_100;
2862 		break;
2863 	}
2864 	if (duplex == DUPLEX_FULL) {
2865 		mcr |= PMCR_FORCE_FDX;
2866 		if (tx_pause)
2867 			mcr |= PMCR_TX_FC_EN;
2868 		if (rx_pause)
2869 			mcr |= PMCR_RX_FC_EN;
2870 	}
2871 
2872 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2873 		switch (speed) {
2874 		case SPEED_1000:
2875 			mcr |= PMCR_FORCE_EEE1G;
2876 			break;
2877 		case SPEED_100:
2878 			mcr |= PMCR_FORCE_EEE100;
2879 			break;
2880 		}
2881 	}
2882 
2883 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2884 }
2885 
2886 static int
2887 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2888 {
2889 	struct mt7530_priv *priv = ds->priv;
2890 	phy_interface_t interface;
2891 	int speed;
2892 	int ret;
2893 
2894 	switch (port) {
2895 	case 5:
2896 		if (mt7531_is_rgmii_port(priv, port))
2897 			interface = PHY_INTERFACE_MODE_RGMII;
2898 		else
2899 			interface = PHY_INTERFACE_MODE_2500BASEX;
2900 
2901 		priv->p5_interface = interface;
2902 		break;
2903 	case 6:
2904 		interface = PHY_INTERFACE_MODE_2500BASEX;
2905 
2906 		priv->p6_interface = interface;
2907 		break;
2908 	default:
2909 		return -EINVAL;
2910 	}
2911 
2912 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2913 		speed = SPEED_2500;
2914 	else
2915 		speed = SPEED_1000;
2916 
2917 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2918 	if (ret)
2919 		return ret;
2920 	mt7530_write(priv, MT7530_PMCR_P(port),
2921 		     PMCR_CPU_PORT_SETTING(priv->id));
2922 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2923 				   interface, speed, DUPLEX_FULL);
2924 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2925 				   speed, DUPLEX_FULL, true, true);
2926 
2927 	return 0;
2928 }
2929 
2930 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2931 				    struct phylink_config *config)
2932 {
2933 	struct mt7530_priv *priv = ds->priv;
2934 
2935 	/* This switch only supports full-duplex at 1Gbps */
2936 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2937 				   MAC_10 | MAC_100 | MAC_1000FD;
2938 
2939 	/* This driver does not make use of the speed, duplex, pause or the
2940 	 * advertisement in its mac_config, so it is safe to mark this driver
2941 	 * as non-legacy.
2942 	 */
2943 	config->legacy_pre_march2020 = false;
2944 
2945 	priv->info->mac_port_get_caps(ds, port, config);
2946 }
2947 
2948 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2949 			       unsigned long *supported,
2950 			       const struct phylink_link_state *state)
2951 {
2952 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2953 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2954 	    phy_interface_mode_is_8023z(state->interface))
2955 		phylink_clear(supported, Autoneg);
2956 
2957 	return 0;
2958 }
2959 
2960 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2961 				 struct phylink_link_state *state)
2962 {
2963 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2964 	int port = pcs_to_mt753x_pcs(pcs)->port;
2965 	u32 pmsr;
2966 
2967 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2968 
2969 	state->link = (pmsr & PMSR_LINK);
2970 	state->an_complete = state->link;
2971 	state->duplex = !!(pmsr & PMSR_DPX);
2972 
2973 	switch (pmsr & PMSR_SPEED_MASK) {
2974 	case PMSR_SPEED_10:
2975 		state->speed = SPEED_10;
2976 		break;
2977 	case PMSR_SPEED_100:
2978 		state->speed = SPEED_100;
2979 		break;
2980 	case PMSR_SPEED_1000:
2981 		state->speed = SPEED_1000;
2982 		break;
2983 	default:
2984 		state->speed = SPEED_UNKNOWN;
2985 		break;
2986 	}
2987 
2988 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2989 	if (pmsr & PMSR_RX_FC)
2990 		state->pause |= MLO_PAUSE_RX;
2991 	if (pmsr & PMSR_TX_FC)
2992 		state->pause |= MLO_PAUSE_TX;
2993 }
2994 
2995 static int
2996 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2997 			      struct phylink_link_state *state)
2998 {
2999 	u32 status, val;
3000 	u16 config_reg;
3001 
3002 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3003 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
3004 	state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE);
3005 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3006 	    (status & MT7531_SGMII_AN_ENABLE)) {
3007 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3008 		config_reg = val >> 16;
3009 
3010 		switch (config_reg & LPA_SGMII_SPD_MASK) {
3011 		case LPA_SGMII_1000:
3012 			state->speed = SPEED_1000;
3013 			break;
3014 		case LPA_SGMII_100:
3015 			state->speed = SPEED_100;
3016 			break;
3017 		case LPA_SGMII_10:
3018 			state->speed = SPEED_10;
3019 			break;
3020 		default:
3021 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3022 			state->link = false;
3023 			return -EINVAL;
3024 		}
3025 
3026 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3027 			state->duplex = DUPLEX_FULL;
3028 		else
3029 			state->duplex = DUPLEX_HALF;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 static void
3036 mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port,
3037 				  struct phylink_link_state *state)
3038 {
3039 	unsigned int val;
3040 
3041 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3042 	state->link = !!(val & MT7531_SGMII_LINK_STATUS);
3043 	if (!state->link)
3044 		return;
3045 
3046 	state->an_complete = state->link;
3047 
3048 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3049 		state->speed = SPEED_2500;
3050 	else
3051 		state->speed = SPEED_1000;
3052 
3053 	state->duplex = DUPLEX_FULL;
3054 	state->pause = MLO_PAUSE_NONE;
3055 }
3056 
3057 static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3058 				 struct phylink_link_state *state)
3059 {
3060 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3061 	int port = pcs_to_mt753x_pcs(pcs)->port;
3062 
3063 	if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3064 		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3065 		return;
3066 	} else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) ||
3067 		   (state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3068 		mt7531_sgmii_pcs_get_state_inband(priv, port, state);
3069 		return;
3070 	}
3071 
3072 	state->link = false;
3073 }
3074 
3075 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3076 			     phy_interface_t interface,
3077 			     const unsigned long *advertising,
3078 			     bool permit_pause_to_mac)
3079 {
3080 	return 0;
3081 }
3082 
3083 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3084 {
3085 }
3086 
3087 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3088 	.pcs_validate = mt753x_pcs_validate,
3089 	.pcs_get_state = mt7530_pcs_get_state,
3090 	.pcs_config = mt753x_pcs_config,
3091 	.pcs_an_restart = mt7530_pcs_an_restart,
3092 };
3093 
3094 static const struct phylink_pcs_ops mt7531_pcs_ops = {
3095 	.pcs_validate = mt753x_pcs_validate,
3096 	.pcs_get_state = mt7531_pcs_get_state,
3097 	.pcs_config = mt753x_pcs_config,
3098 	.pcs_an_restart = mt7531_pcs_an_restart,
3099 	.pcs_link_up = mt7531_pcs_link_up,
3100 };
3101 
3102 static int
3103 mt753x_setup(struct dsa_switch *ds)
3104 {
3105 	struct mt7530_priv *priv = ds->priv;
3106 	int i, ret;
3107 
3108 	/* Initialise the PCS devices */
3109 	for (i = 0; i < priv->ds->num_ports; i++) {
3110 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3111 		priv->pcs[i].priv = priv;
3112 		priv->pcs[i].port = i;
3113 		if (mt753x_is_mac_port(i))
3114 			priv->pcs[i].pcs.poll = 1;
3115 	}
3116 
3117 	ret = priv->info->sw_setup(ds);
3118 	if (ret)
3119 		return ret;
3120 
3121 	ret = mt7530_setup_irq(priv);
3122 	if (ret)
3123 		return ret;
3124 
3125 	ret = mt7530_setup_mdio(priv);
3126 	if (ret && priv->irq)
3127 		mt7530_free_irq_common(priv);
3128 
3129 	return ret;
3130 }
3131 
3132 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3133 			      struct ethtool_eee *e)
3134 {
3135 	struct mt7530_priv *priv = ds->priv;
3136 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3137 
3138 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3139 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3140 
3141 	return 0;
3142 }
3143 
3144 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3145 			      struct ethtool_eee *e)
3146 {
3147 	struct mt7530_priv *priv = ds->priv;
3148 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3149 
3150 	if (e->tx_lpi_timer > 0xFFF)
3151 		return -EINVAL;
3152 
3153 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3154 	if (!e->tx_lpi_enabled)
3155 		/* Force LPI Mode without a delay */
3156 		set |= LPI_MODE_EN;
3157 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3158 
3159 	return 0;
3160 }
3161 
3162 static const struct dsa_switch_ops mt7530_switch_ops = {
3163 	.get_tag_protocol	= mtk_get_tag_protocol,
3164 	.setup			= mt753x_setup,
3165 	.get_strings		= mt7530_get_strings,
3166 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3167 	.get_sset_count		= mt7530_get_sset_count,
3168 	.set_ageing_time	= mt7530_set_ageing_time,
3169 	.port_enable		= mt7530_port_enable,
3170 	.port_disable		= mt7530_port_disable,
3171 	.port_change_mtu	= mt7530_port_change_mtu,
3172 	.port_max_mtu		= mt7530_port_max_mtu,
3173 	.port_stp_state_set	= mt7530_stp_state_set,
3174 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3175 	.port_bridge_flags	= mt7530_port_bridge_flags,
3176 	.port_bridge_join	= mt7530_port_bridge_join,
3177 	.port_bridge_leave	= mt7530_port_bridge_leave,
3178 	.port_fdb_add		= mt7530_port_fdb_add,
3179 	.port_fdb_del		= mt7530_port_fdb_del,
3180 	.port_fdb_dump		= mt7530_port_fdb_dump,
3181 	.port_mdb_add		= mt7530_port_mdb_add,
3182 	.port_mdb_del		= mt7530_port_mdb_del,
3183 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3184 	.port_vlan_add		= mt7530_port_vlan_add,
3185 	.port_vlan_del		= mt7530_port_vlan_del,
3186 	.port_mirror_add	= mt753x_port_mirror_add,
3187 	.port_mirror_del	= mt753x_port_mirror_del,
3188 	.phylink_get_caps	= mt753x_phylink_get_caps,
3189 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3190 	.phylink_mac_config	= mt753x_phylink_mac_config,
3191 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3192 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3193 	.get_mac_eee		= mt753x_get_mac_eee,
3194 	.set_mac_eee		= mt753x_set_mac_eee,
3195 };
3196 
3197 static const struct mt753x_info mt753x_table[] = {
3198 	[ID_MT7621] = {
3199 		.id = ID_MT7621,
3200 		.pcs_ops = &mt7530_pcs_ops,
3201 		.sw_setup = mt7530_setup,
3202 		.phy_read_c22 = mt7530_phy_read_c22,
3203 		.phy_write_c22 = mt7530_phy_write_c22,
3204 		.phy_read_c45 = mt7530_phy_read_c45,
3205 		.phy_write_c45 = mt7530_phy_write_c45,
3206 		.pad_setup = mt7530_pad_clk_setup,
3207 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3208 		.mac_port_config = mt7530_mac_config,
3209 	},
3210 	[ID_MT7530] = {
3211 		.id = ID_MT7530,
3212 		.pcs_ops = &mt7530_pcs_ops,
3213 		.sw_setup = mt7530_setup,
3214 		.phy_read_c22 = mt7530_phy_read_c22,
3215 		.phy_write_c22 = mt7530_phy_write_c22,
3216 		.phy_read_c45 = mt7530_phy_read_c45,
3217 		.phy_write_c45 = mt7530_phy_write_c45,
3218 		.pad_setup = mt7530_pad_clk_setup,
3219 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3220 		.mac_port_config = mt7530_mac_config,
3221 	},
3222 	[ID_MT7531] = {
3223 		.id = ID_MT7531,
3224 		.pcs_ops = &mt7531_pcs_ops,
3225 		.sw_setup = mt7531_setup,
3226 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3227 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3228 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3229 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3230 		.pad_setup = mt7531_pad_setup,
3231 		.cpu_port_config = mt7531_cpu_port_config,
3232 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3233 		.mac_port_config = mt7531_mac_config,
3234 	},
3235 };
3236 
3237 static const struct of_device_id mt7530_of_match[] = {
3238 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3239 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3240 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3241 	{ /* sentinel */ },
3242 };
3243 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3244 
3245 static int
3246 mt7530_probe(struct mdio_device *mdiodev)
3247 {
3248 	struct mt7530_priv *priv;
3249 	struct device_node *dn;
3250 
3251 	dn = mdiodev->dev.of_node;
3252 
3253 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3254 	if (!priv)
3255 		return -ENOMEM;
3256 
3257 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3258 	if (!priv->ds)
3259 		return -ENOMEM;
3260 
3261 	priv->ds->dev = &mdiodev->dev;
3262 	priv->ds->num_ports = MT7530_NUM_PORTS;
3263 
3264 	/* Use medatek,mcm property to distinguish hardware type that would
3265 	 * casues a little bit differences on power-on sequence.
3266 	 */
3267 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3268 	if (priv->mcm) {
3269 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3270 
3271 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3272 		if (IS_ERR(priv->rstc)) {
3273 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3274 			return PTR_ERR(priv->rstc);
3275 		}
3276 	}
3277 
3278 	/* Get the hardware identifier from the devicetree node.
3279 	 * We will need it for some of the clock and regulator setup.
3280 	 */
3281 	priv->info = of_device_get_match_data(&mdiodev->dev);
3282 	if (!priv->info)
3283 		return -EINVAL;
3284 
3285 	/* Sanity check if these required device operations are filled
3286 	 * properly.
3287 	 */
3288 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3289 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3290 	    !priv->info->mac_port_get_caps ||
3291 	    !priv->info->mac_port_config)
3292 		return -EINVAL;
3293 
3294 	priv->id = priv->info->id;
3295 
3296 	if (priv->id == ID_MT7530) {
3297 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3298 		if (IS_ERR(priv->core_pwr))
3299 			return PTR_ERR(priv->core_pwr);
3300 
3301 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3302 		if (IS_ERR(priv->io_pwr))
3303 			return PTR_ERR(priv->io_pwr);
3304 	}
3305 
3306 	/* Not MCM that indicates switch works as the remote standalone
3307 	 * integrated circuit so the GPIO pin would be used to complete
3308 	 * the reset, otherwise memory-mapped register accessing used
3309 	 * through syscon provides in the case of MCM.
3310 	 */
3311 	if (!priv->mcm) {
3312 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3313 						      GPIOD_OUT_LOW);
3314 		if (IS_ERR(priv->reset)) {
3315 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3316 			return PTR_ERR(priv->reset);
3317 		}
3318 	}
3319 
3320 	priv->bus = mdiodev->bus;
3321 	priv->dev = &mdiodev->dev;
3322 	priv->ds->priv = priv;
3323 	priv->ds->ops = &mt7530_switch_ops;
3324 	mutex_init(&priv->reg_mutex);
3325 	dev_set_drvdata(&mdiodev->dev, priv);
3326 
3327 	return dsa_register_switch(priv->ds);
3328 }
3329 
3330 static void
3331 mt7530_remove(struct mdio_device *mdiodev)
3332 {
3333 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3334 	int ret = 0;
3335 
3336 	if (!priv)
3337 		return;
3338 
3339 	ret = regulator_disable(priv->core_pwr);
3340 	if (ret < 0)
3341 		dev_err(priv->dev,
3342 			"Failed to disable core power: %d\n", ret);
3343 
3344 	ret = regulator_disable(priv->io_pwr);
3345 	if (ret < 0)
3346 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3347 			ret);
3348 
3349 	if (priv->irq)
3350 		mt7530_free_irq(priv);
3351 
3352 	dsa_unregister_switch(priv->ds);
3353 	mutex_destroy(&priv->reg_mutex);
3354 }
3355 
3356 static void mt7530_shutdown(struct mdio_device *mdiodev)
3357 {
3358 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3359 
3360 	if (!priv)
3361 		return;
3362 
3363 	dsa_switch_shutdown(priv->ds);
3364 
3365 	dev_set_drvdata(&mdiodev->dev, NULL);
3366 }
3367 
3368 static struct mdio_driver mt7530_mdio_driver = {
3369 	.probe  = mt7530_probe,
3370 	.remove = mt7530_remove,
3371 	.shutdown = mt7530_shutdown,
3372 	.mdiodrv.driver = {
3373 		.name = "mt7530",
3374 		.of_match_table = mt7530_of_match,
3375 	},
3376 };
3377 
3378 mdio_module_driver(mt7530_mdio_driver);
3379 
3380 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3381 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3382 MODULE_LICENSE("GPL");
3383