xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 236d93c4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 /* String, offset, and register size in bytes if different from 4 bytes */
28 static const struct mt7530_mib_desc mt7530_mib[] = {
29 	MIB_DESC(1, 0x00, "TxDrop"),
30 	MIB_DESC(1, 0x04, "TxCrcErr"),
31 	MIB_DESC(1, 0x08, "TxUnicast"),
32 	MIB_DESC(1, 0x0c, "TxMulticast"),
33 	MIB_DESC(1, 0x10, "TxBroadcast"),
34 	MIB_DESC(1, 0x14, "TxCollision"),
35 	MIB_DESC(1, 0x18, "TxSingleCollision"),
36 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 	MIB_DESC(1, 0x20, "TxDeferred"),
38 	MIB_DESC(1, 0x24, "TxLateCollision"),
39 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 	MIB_DESC(1, 0x2c, "TxPause"),
41 	MIB_DESC(1, 0x30, "TxPktSz64"),
42 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 	MIB_DESC(2, 0x48, "TxBytes"),
48 	MIB_DESC(1, 0x60, "RxDrop"),
49 	MIB_DESC(1, 0x64, "RxFiltering"),
50 	MIB_DESC(1, 0x68, "RxUnicast"),
51 	MIB_DESC(1, 0x6c, "RxMulticast"),
52 	MIB_DESC(1, 0x70, "RxBroadcast"),
53 	MIB_DESC(1, 0x74, "RxAlignErr"),
54 	MIB_DESC(1, 0x78, "RxCrcErr"),
55 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
56 	MIB_DESC(1, 0x80, "RxFragErr"),
57 	MIB_DESC(1, 0x84, "RxOverSzErr"),
58 	MIB_DESC(1, 0x88, "RxJabberErr"),
59 	MIB_DESC(1, 0x8c, "RxPause"),
60 	MIB_DESC(1, 0x90, "RxPktSz64"),
61 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
62 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
63 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
64 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
65 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
66 	MIB_DESC(2, 0xa8, "RxBytes"),
67 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
68 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
69 	MIB_DESC(1, 0xb8, "RxArlDrop"),
70 };
71 
72 /* Since phy_device has not yet been created and
73  * phy_{read,write}_mmd_indirect is not available, we provide our own
74  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
75  * to complete this function.
76  */
77 static int
78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
79 {
80 	struct mii_bus *bus = priv->bus;
81 	int value, ret;
82 
83 	/* Write the desired MMD Devad */
84 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
85 	if (ret < 0)
86 		goto err;
87 
88 	/* Write the desired MMD register address */
89 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Select the Function : DATA with no post increment */
94 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Read the content of the MMD's selected register */
99 	value = bus->read(bus, 0, MII_MMD_DATA);
100 
101 	return value;
102 err:
103 	dev_err(&bus->dev,  "failed to read mmd register\n");
104 
105 	return ret;
106 }
107 
108 static int
109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
110 			int devad, u32 data)
111 {
112 	struct mii_bus *bus = priv->bus;
113 	int ret;
114 
115 	/* Write the desired MMD Devad */
116 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
117 	if (ret < 0)
118 		goto err;
119 
120 	/* Write the desired MMD register address */
121 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Select the Function : DATA with no post increment */
126 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Write the data into MMD's selected register */
131 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
132 err:
133 	if (ret < 0)
134 		dev_err(&bus->dev,
135 			"failed to write mmd register\n");
136 	return ret;
137 }
138 
139 static void
140 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
141 {
142 	struct mii_bus *bus = priv->bus;
143 
144 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
145 
146 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
147 
148 	mutex_unlock(&bus->mdio_lock);
149 }
150 
151 static void
152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
153 {
154 	struct mii_bus *bus = priv->bus;
155 	u32 val;
156 
157 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
158 
159 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
160 	val &= ~mask;
161 	val |= set;
162 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
163 
164 	mutex_unlock(&bus->mdio_lock);
165 }
166 
167 static void
168 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
169 {
170 	core_rmw(priv, reg, 0, val);
171 }
172 
173 static void
174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
175 {
176 	core_rmw(priv, reg, val, 0);
177 }
178 
179 static int
180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
181 {
182 	struct mii_bus *bus = priv->bus;
183 	u16 page, r, lo, hi;
184 	int ret;
185 
186 	page = (reg >> 6) & 0x3ff;
187 	r  = (reg >> 2) & 0xf;
188 	lo = val & 0xffff;
189 	hi = val >> 16;
190 
191 	/* MT7530 uses 31 as the pseudo port */
192 	ret = bus->write(bus, 0x1f, 0x1f, page);
193 	if (ret < 0)
194 		goto err;
195 
196 	ret = bus->write(bus, 0x1f, r,  lo);
197 	if (ret < 0)
198 		goto err;
199 
200 	ret = bus->write(bus, 0x1f, 0x10, hi);
201 err:
202 	if (ret < 0)
203 		dev_err(&bus->dev,
204 			"failed to write mt7530 register\n");
205 	return ret;
206 }
207 
208 static u32
209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
210 {
211 	struct mii_bus *bus = priv->bus;
212 	u16 page, r, lo, hi;
213 	int ret;
214 
215 	page = (reg >> 6) & 0x3ff;
216 	r = (reg >> 2) & 0xf;
217 
218 	/* MT7530 uses 31 as the pseudo port */
219 	ret = bus->write(bus, 0x1f, 0x1f, page);
220 	if (ret < 0) {
221 		dev_err(&bus->dev,
222 			"failed to read mt7530 register\n");
223 		return ret;
224 	}
225 
226 	lo = bus->read(bus, 0x1f, r);
227 	hi = bus->read(bus, 0x1f, 0x10);
228 
229 	return (hi << 16) | (lo & 0xffff);
230 }
231 
232 static void
233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 
237 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
238 
239 	mt7530_mii_write(priv, reg, val);
240 
241 	mutex_unlock(&bus->mdio_lock);
242 }
243 
244 static u32
245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
246 {
247 	return mt7530_mii_read(p->priv, p->reg);
248 }
249 
250 static u32
251 _mt7530_read(struct mt7530_dummy_poll *p)
252 {
253 	struct mii_bus		*bus = p->priv->bus;
254 	u32 val;
255 
256 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
257 
258 	val = mt7530_mii_read(p->priv, p->reg);
259 
260 	mutex_unlock(&bus->mdio_lock);
261 
262 	return val;
263 }
264 
265 static u32
266 mt7530_read(struct mt7530_priv *priv, u32 reg)
267 {
268 	struct mt7530_dummy_poll p;
269 
270 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
271 	return _mt7530_read(&p);
272 }
273 
274 static void
275 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
276 	   u32 mask, u32 set)
277 {
278 	struct mii_bus *bus = priv->bus;
279 	u32 val;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	val = mt7530_mii_read(priv, reg);
284 	val &= ~mask;
285 	val |= set;
286 	mt7530_mii_write(priv, reg, val);
287 
288 	mutex_unlock(&bus->mdio_lock);
289 }
290 
291 static void
292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
293 {
294 	mt7530_rmw(priv, reg, 0, val);
295 }
296 
297 static void
298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
299 {
300 	mt7530_rmw(priv, reg, val, 0);
301 }
302 
303 static int
304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
305 {
306 	u32 val;
307 	int ret;
308 	struct mt7530_dummy_poll p;
309 
310 	/* Set the command operating upon the MAC address entries */
311 	val = ATC_BUSY | ATC_MAT(0) | cmd;
312 	mt7530_write(priv, MT7530_ATC, val);
313 
314 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
315 	ret = readx_poll_timeout(_mt7530_read, &p, val,
316 				 !(val & ATC_BUSY), 20, 20000);
317 	if (ret < 0) {
318 		dev_err(priv->dev, "reset timeout\n");
319 		return ret;
320 	}
321 
322 	/* Additional sanity for read command if the specified
323 	 * entry is invalid
324 	 */
325 	val = mt7530_read(priv, MT7530_ATC);
326 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
327 		return -EINVAL;
328 
329 	if (rsp)
330 		*rsp = val;
331 
332 	return 0;
333 }
334 
335 static void
336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
337 {
338 	u32 reg[3];
339 	int i;
340 
341 	/* Read from ARL table into an array */
342 	for (i = 0; i < 3; i++) {
343 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
344 
345 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
346 			__func__, __LINE__, i, reg[i]);
347 	}
348 
349 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
350 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
351 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
352 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
353 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
354 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
355 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
356 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
357 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
358 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
359 }
360 
361 static void
362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
363 		 u8 port_mask, const u8 *mac,
364 		 u8 aging, u8 type)
365 {
366 	u32 reg[3] = { 0 };
367 	int i;
368 
369 	reg[1] |= vid & CVID_MASK;
370 	reg[1] |= ATA2_IVL;
371 	reg[1] |= ATA2_FID(FID_BRIDGED);
372 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
373 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
374 	/* STATIC_ENT indicate that entry is static wouldn't
375 	 * be aged out and STATIC_EMP specified as erasing an
376 	 * entry
377 	 */
378 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
379 	reg[1] |= mac[5] << MAC_BYTE_5;
380 	reg[1] |= mac[4] << MAC_BYTE_4;
381 	reg[0] |= mac[3] << MAC_BYTE_3;
382 	reg[0] |= mac[2] << MAC_BYTE_2;
383 	reg[0] |= mac[1] << MAC_BYTE_1;
384 	reg[0] |= mac[0] << MAC_BYTE_0;
385 
386 	/* Write array into the ARL table */
387 	for (i = 0; i < 3; i++)
388 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
389 }
390 
391 /* Setup TX circuit including relevant PAD and driving */
392 static int
393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
394 {
395 	struct mt7530_priv *priv = ds->priv;
396 	u32 ncpo1, ssc_delta, trgint, i, xtal;
397 
398 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
399 
400 	if (xtal == HWTRAP_XTAL_20MHZ) {
401 		dev_err(priv->dev,
402 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
403 			__func__);
404 		return -EINVAL;
405 	}
406 
407 	switch (interface) {
408 	case PHY_INTERFACE_MODE_RGMII:
409 		trgint = 0;
410 		/* PLL frequency: 125MHz */
411 		ncpo1 = 0x0c80;
412 		break;
413 	case PHY_INTERFACE_MODE_TRGMII:
414 		trgint = 1;
415 		if (priv->id == ID_MT7621) {
416 			/* PLL frequency: 150MHz: 1.2GBit */
417 			if (xtal == HWTRAP_XTAL_40MHZ)
418 				ncpo1 = 0x0780;
419 			if (xtal == HWTRAP_XTAL_25MHZ)
420 				ncpo1 = 0x0a00;
421 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0c80;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x1400;
426 		}
427 		break;
428 	default:
429 		dev_err(priv->dev, "xMII interface %d not supported\n",
430 			interface);
431 		return -EINVAL;
432 	}
433 
434 	if (xtal == HWTRAP_XTAL_25MHZ)
435 		ssc_delta = 0x57;
436 	else
437 		ssc_delta = 0x87;
438 
439 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
440 		   P6_INTF_MODE(trgint));
441 
442 	/* Lower Tx Driving for TRGMII path */
443 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
444 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
445 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
446 
447 	/* Disable MT7530 core and TRGMII Tx clocks */
448 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
449 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
450 
451 	/* Setup core clock for MT7530 */
452 	/* Disable PLL */
453 	core_write(priv, CORE_GSWPLL_GRP1, 0);
454 
455 	/* Set core clock into 500Mhz */
456 	core_write(priv, CORE_GSWPLL_GRP2,
457 		   RG_GSWPLL_POSDIV_500M(1) |
458 		   RG_GSWPLL_FBKDIV_500M(25));
459 
460 	/* Enable PLL */
461 	core_write(priv, CORE_GSWPLL_GRP1,
462 		   RG_GSWPLL_EN_PRE |
463 		   RG_GSWPLL_POSDIV_200M(2) |
464 		   RG_GSWPLL_FBKDIV_200M(32));
465 
466 	/* Setup the MT7530 TRGMII Tx Clock */
467 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
468 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
469 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
470 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
471 	core_write(priv, CORE_PLL_GROUP4,
472 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
473 		   RG_SYSPLL_BIAS_LPF_EN);
474 	core_write(priv, CORE_PLL_GROUP2,
475 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
476 		   RG_SYSPLL_POSDIV(1));
477 	core_write(priv, CORE_PLL_GROUP7,
478 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
479 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
480 
481 	/* Enable MT7530 core and TRGMII Tx clocks */
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
604 {
605 	return mdiobus_read_nested(priv->bus, port, regnum);
606 }
607 
608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
609 			    u16 val)
610 {
611 	return mdiobus_write_nested(priv->bus, port, regnum, val);
612 }
613 
614 static int
615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
616 			int regnum)
617 {
618 	struct mii_bus *bus = priv->bus;
619 	struct mt7530_dummy_poll p;
620 	u32 reg, val;
621 	int ret;
622 
623 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624 
625 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
626 
627 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 	if (ret < 0) {
630 		dev_err(priv->dev, "poll timeout\n");
631 		goto out;
632 	}
633 
634 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637 
638 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 	if (ret < 0) {
641 		dev_err(priv->dev, "poll timeout\n");
642 		goto out;
643 	}
644 
645 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 	      MT7531_MDIO_DEV_ADDR(devad);
647 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	ret = val & MT7531_MDIO_RW_DATA_MASK;
657 out:
658 	mutex_unlock(&bus->mdio_lock);
659 
660 	return ret;
661 }
662 
663 static int
664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 			 int regnum, u32 data)
666 {
667 	struct mii_bus *bus = priv->bus;
668 	struct mt7530_dummy_poll p;
669 	u32 val, reg;
670 	int ret;
671 
672 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
673 
674 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
675 
676 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
677 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
678 	if (ret < 0) {
679 		dev_err(priv->dev, "poll timeout\n");
680 		goto out;
681 	}
682 
683 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
684 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
685 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | data;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 out:
706 	mutex_unlock(&bus->mdio_lock);
707 
708 	return ret;
709 }
710 
711 static int
712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
713 {
714 	struct mii_bus *bus = priv->bus;
715 	struct mt7530_dummy_poll p;
716 	int ret;
717 	u32 val;
718 
719 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
720 
721 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
722 
723 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
724 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
725 	if (ret < 0) {
726 		dev_err(priv->dev, "poll timeout\n");
727 		goto out;
728 	}
729 
730 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
731 	      MT7531_MDIO_REG_ADDR(regnum);
732 
733 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
734 
735 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
736 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
737 	if (ret < 0) {
738 		dev_err(priv->dev, "poll timeout\n");
739 		goto out;
740 	}
741 
742 	ret = val & MT7531_MDIO_RW_DATA_MASK;
743 out:
744 	mutex_unlock(&bus->mdio_lock);
745 
746 	return ret;
747 }
748 
749 static int
750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
751 			 u16 data)
752 {
753 	struct mii_bus *bus = priv->bus;
754 	struct mt7530_dummy_poll p;
755 	int ret;
756 	u32 reg;
757 
758 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
759 
760 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
761 
762 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
763 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
764 	if (ret < 0) {
765 		dev_err(priv->dev, "poll timeout\n");
766 		goto out;
767 	}
768 
769 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
770 	      MT7531_MDIO_REG_ADDR(regnum) | data;
771 
772 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
773 
774 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
775 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
776 	if (ret < 0) {
777 		dev_err(priv->dev, "poll timeout\n");
778 		goto out;
779 	}
780 
781 out:
782 	mutex_unlock(&bus->mdio_lock);
783 
784 	return ret;
785 }
786 
787 static int
788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
789 {
790 	int devad;
791 	int ret;
792 
793 	if (regnum & MII_ADDR_C45) {
794 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
795 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
796 					      regnum & MII_REGADDR_C45_MASK);
797 	} else {
798 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
799 	}
800 
801 	return ret;
802 }
803 
804 static int
805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
806 		     u16 data)
807 {
808 	int devad;
809 	int ret;
810 
811 	if (regnum & MII_ADDR_C45) {
812 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
813 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
814 					       regnum & MII_REGADDR_C45_MASK,
815 					       data);
816 	} else {
817 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
818 	}
819 
820 	return ret;
821 }
822 
823 static int
824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
825 {
826 	struct mt7530_priv *priv = bus->priv;
827 
828 	return priv->info->phy_read(priv, port, regnum);
829 }
830 
831 static int
832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_write(priv, port, regnum, val);
837 }
838 
839 static void
840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 		   uint8_t *data)
842 {
843 	int i;
844 
845 	if (stringset != ETH_SS_STATS)
846 		return;
847 
848 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 			ETH_GSTRING_LEN);
851 }
852 
853 static void
854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 			 uint64_t *data)
856 {
857 	struct mt7530_priv *priv = ds->priv;
858 	const struct mt7530_mib_desc *mib;
859 	u32 reg, i;
860 	u64 hi;
861 
862 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 		mib = &mt7530_mib[i];
864 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865 
866 		data[i] = mt7530_read(priv, reg);
867 		if (mib->size == 2) {
868 			hi = mt7530_read(priv, reg + 4);
869 			data[i] |= hi << 32;
870 		}
871 	}
872 }
873 
874 static int
875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876 {
877 	if (sset != ETH_SS_STATS)
878 		return 0;
879 
880 	return ARRAY_SIZE(mt7530_mib);
881 }
882 
883 static int
884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885 {
886 	struct mt7530_priv *priv = ds->priv;
887 	unsigned int secs = msecs / 1000;
888 	unsigned int tmp_age_count;
889 	unsigned int error = -1;
890 	unsigned int age_count;
891 	unsigned int age_unit;
892 
893 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 		return -ERANGE;
896 
897 	/* iterate through all possible age_count to find the closest pair */
898 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900 
901 		if (tmp_age_unit <= AGE_UNIT_MAX) {
902 			unsigned int tmp_error = secs -
903 				(tmp_age_count + 1) * (tmp_age_unit + 1);
904 
905 			/* found a closer pair */
906 			if (error > tmp_error) {
907 				error = tmp_error;
908 				age_count = tmp_age_count;
909 				age_unit = tmp_age_unit;
910 			}
911 
912 			/* found the exact match, so break the loop */
913 			if (!error)
914 				break;
915 		}
916 	}
917 
918 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919 
920 	return 0;
921 }
922 
923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924 {
925 	struct mt7530_priv *priv = ds->priv;
926 	u8 tx_delay = 0;
927 	int val;
928 
929 	mutex_lock(&priv->reg_mutex);
930 
931 	val = mt7530_read(priv, MT7530_MHWTRAP);
932 
933 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935 
936 	switch (priv->p5_intf_sel) {
937 	case P5_INTF_SEL_PHY_P0:
938 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 		val |= MHWTRAP_PHY0_SEL;
940 		fallthrough;
941 	case P5_INTF_SEL_PHY_P4:
942 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944 
945 		/* Setup the MAC by default for the cpu port */
946 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 		break;
948 	case P5_INTF_SEL_GMAC5:
949 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 		val &= ~MHWTRAP_P5_DIS;
951 		break;
952 	case P5_DISABLED:
953 		interface = PHY_INTERFACE_MODE_NA;
954 		break;
955 	default:
956 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 			priv->p5_intf_sel);
958 		goto unlock_exit;
959 	}
960 
961 	/* Setup RGMII settings */
962 	if (phy_interface_mode_is_rgmii(interface)) {
963 		val |= MHWTRAP_P5_RGMII_MODE;
964 
965 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
966 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967 
968 		/* Don't set delay in DSA mode */
969 		if (!dsa_is_dsa_port(priv->ds, 5) &&
970 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
972 			tx_delay = 4; /* n * 0.5 ns */
973 
974 		/* P5 RGMII TX Clock Control: delay x */
975 		mt7530_write(priv, MT7530_P5RGMIITXCR,
976 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977 
978 		/* reduce P5 RGMII Tx driving, 8mA */
979 		mt7530_write(priv, MT7530_IO_DRV_CR,
980 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 	}
982 
983 	mt7530_write(priv, MT7530_MHWTRAP, val);
984 
985 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987 
988 	priv->p5_interface = interface;
989 
990 unlock_exit:
991 	mutex_unlock(&priv->reg_mutex);
992 }
993 
994 static int
995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996 {
997 	struct mt7530_priv *priv = ds->priv;
998 	int ret;
999 
1000 	/* Setup max capability of CPU port at first */
1001 	if (priv->info->cpu_port_config) {
1002 		ret = priv->info->cpu_port_config(ds, port);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Enable Mediatek header mode on the cpu port */
1008 	mt7530_write(priv, MT7530_PVC_P(port),
1009 		     PORT_SPEC_TAG);
1010 
1011 	/* Disable flooding by default */
1012 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014 
1015 	/* Set CPU port number */
1016 	if (priv->id == ID_MT7621)
1017 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018 
1019 	/* CPU port gets connected to all user ports of
1020 	 * the switch.
1021 	 */
1022 	mt7530_write(priv, MT7530_PCR_P(port),
1023 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1024 
1025 	/* Set to fallback mode for independent VLAN learning */
1026 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1027 		   MT7530_PORT_FALLBACK_MODE);
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 mt7530_port_enable(struct dsa_switch *ds, int port,
1034 		   struct phy_device *phy)
1035 {
1036 	struct mt7530_priv *priv = ds->priv;
1037 
1038 	mutex_lock(&priv->reg_mutex);
1039 
1040 	/* Allow the user port gets connected to the cpu port and also
1041 	 * restore the port matrix if the port is the member of a certain
1042 	 * bridge.
1043 	 */
1044 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1045 	priv->ports[port].enable = true;
1046 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1047 		   priv->ports[port].pm);
1048 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1049 
1050 	mutex_unlock(&priv->reg_mutex);
1051 
1052 	return 0;
1053 }
1054 
1055 static void
1056 mt7530_port_disable(struct dsa_switch *ds, int port)
1057 {
1058 	struct mt7530_priv *priv = ds->priv;
1059 
1060 	mutex_lock(&priv->reg_mutex);
1061 
1062 	/* Clear up all port matrix which could be restored in the next
1063 	 * enablement for the port.
1064 	 */
1065 	priv->ports[port].enable = false;
1066 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1067 		   PCR_MATRIX_CLR);
1068 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1069 
1070 	mutex_unlock(&priv->reg_mutex);
1071 }
1072 
1073 static int
1074 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1075 {
1076 	struct mt7530_priv *priv = ds->priv;
1077 	struct mii_bus *bus = priv->bus;
1078 	int length;
1079 	u32 val;
1080 
1081 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1082 	 * largest MTU of the slave ports. Because the switch only has a global
1083 	 * RX length register, only allowing CPU port here is enough.
1084 	 */
1085 	if (!dsa_is_cpu_port(ds, port))
1086 		return 0;
1087 
1088 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1089 
1090 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1091 	val &= ~MAX_RX_PKT_LEN_MASK;
1092 
1093 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1094 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1095 	if (length <= 1522) {
1096 		val |= MAX_RX_PKT_LEN_1522;
1097 	} else if (length <= 1536) {
1098 		val |= MAX_RX_PKT_LEN_1536;
1099 	} else if (length <= 1552) {
1100 		val |= MAX_RX_PKT_LEN_1552;
1101 	} else {
1102 		val &= ~MAX_RX_JUMBO_MASK;
1103 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1104 		val |= MAX_RX_PKT_LEN_JUMBO;
1105 	}
1106 
1107 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1108 
1109 	mutex_unlock(&bus->mdio_lock);
1110 
1111 	return 0;
1112 }
1113 
1114 static int
1115 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1116 {
1117 	return MT7530_MAX_MTU;
1118 }
1119 
1120 static void
1121 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1122 {
1123 	struct mt7530_priv *priv = ds->priv;
1124 	u32 stp_state;
1125 
1126 	switch (state) {
1127 	case BR_STATE_DISABLED:
1128 		stp_state = MT7530_STP_DISABLED;
1129 		break;
1130 	case BR_STATE_BLOCKING:
1131 		stp_state = MT7530_STP_BLOCKING;
1132 		break;
1133 	case BR_STATE_LISTENING:
1134 		stp_state = MT7530_STP_LISTENING;
1135 		break;
1136 	case BR_STATE_LEARNING:
1137 		stp_state = MT7530_STP_LEARNING;
1138 		break;
1139 	case BR_STATE_FORWARDING:
1140 	default:
1141 		stp_state = MT7530_STP_FORWARDING;
1142 		break;
1143 	}
1144 
1145 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1146 		   FID_PST(FID_BRIDGED, stp_state));
1147 }
1148 
1149 static int
1150 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1151 			     struct switchdev_brport_flags flags,
1152 			     struct netlink_ext_ack *extack)
1153 {
1154 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1155 			   BR_BCAST_FLOOD))
1156 		return -EINVAL;
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1163 			 struct switchdev_brport_flags flags,
1164 			 struct netlink_ext_ack *extack)
1165 {
1166 	struct mt7530_priv *priv = ds->priv;
1167 
1168 	if (flags.mask & BR_LEARNING)
1169 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1170 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1171 
1172 	if (flags.mask & BR_FLOOD)
1173 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1174 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1175 
1176 	if (flags.mask & BR_MCAST_FLOOD)
1177 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1178 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1179 
1180 	if (flags.mask & BR_BCAST_FLOOD)
1181 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1182 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1183 
1184 	return 0;
1185 }
1186 
1187 static int
1188 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1189 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1190 			struct netlink_ext_ack *extack)
1191 {
1192 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1193 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1194 	struct mt7530_priv *priv = ds->priv;
1195 
1196 	mutex_lock(&priv->reg_mutex);
1197 
1198 	dsa_switch_for_each_user_port(other_dp, ds) {
1199 		int other_port = other_dp->index;
1200 
1201 		if (dp == other_dp)
1202 			continue;
1203 
1204 		/* Add this port to the port matrix of the other ports in the
1205 		 * same bridge. If the port is disabled, port matrix is kept
1206 		 * and not being setup until the port becomes enabled.
1207 		 */
1208 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1209 			continue;
1210 
1211 		if (priv->ports[other_port].enable)
1212 			mt7530_set(priv, MT7530_PCR_P(other_port),
1213 				   PCR_MATRIX(BIT(port)));
1214 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1215 
1216 		port_bitmap |= BIT(other_port);
1217 	}
1218 
1219 	/* Add the all other ports to this port matrix. */
1220 	if (priv->ports[port].enable)
1221 		mt7530_rmw(priv, MT7530_PCR_P(port),
1222 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1223 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1224 
1225 	/* Set to fallback mode for independent VLAN learning */
1226 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1227 		   MT7530_PORT_FALLBACK_MODE);
1228 
1229 	mutex_unlock(&priv->reg_mutex);
1230 
1231 	return 0;
1232 }
1233 
1234 static void
1235 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1236 {
1237 	struct mt7530_priv *priv = ds->priv;
1238 	bool all_user_ports_removed = true;
1239 	int i;
1240 
1241 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1242 	 * bridge. Don't set standalone ports to fallback mode.
1243 	 */
1244 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1245 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1246 			   MT7530_PORT_FALLBACK_MODE);
1247 
1248 	mt7530_rmw(priv, MT7530_PVC_P(port),
1249 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1250 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1251 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1252 		   MT7530_VLAN_ACC_ALL);
1253 
1254 	/* Set PVID to 0 */
1255 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1256 		   G0_PORT_VID_DEF);
1257 
1258 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1259 		if (dsa_is_user_port(ds, i) &&
1260 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1261 			all_user_ports_removed = false;
1262 			break;
1263 		}
1264 	}
1265 
1266 	/* CPU port also does the same thing until all user ports belonging to
1267 	 * the CPU port get out of VLAN filtering mode.
1268 	 */
1269 	if (all_user_ports_removed) {
1270 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1271 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1272 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1273 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1274 	}
1275 }
1276 
1277 static void
1278 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1279 {
1280 	struct mt7530_priv *priv = ds->priv;
1281 
1282 	/* Trapped into security mode allows packet forwarding through VLAN
1283 	 * table lookup.
1284 	 */
1285 	if (dsa_is_user_port(ds, port)) {
1286 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1287 			   MT7530_PORT_SECURITY_MODE);
1288 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1289 			   G0_PORT_VID(priv->ports[port].pvid));
1290 
1291 		/* Only accept tagged frames if PVID is not set */
1292 		if (!priv->ports[port].pvid)
1293 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1294 				   MT7530_VLAN_ACC_TAGGED);
1295 	}
1296 
1297 	/* Set the port as a user port which is to be able to recognize VID
1298 	 * from incoming packets before fetching entry within the VLAN table.
1299 	 */
1300 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1301 		   VLAN_ATTR(MT7530_VLAN_USER) |
1302 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1303 }
1304 
1305 static void
1306 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1307 			 struct dsa_bridge bridge)
1308 {
1309 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1310 	struct mt7530_priv *priv = ds->priv;
1311 
1312 	mutex_lock(&priv->reg_mutex);
1313 
1314 	dsa_switch_for_each_user_port(other_dp, ds) {
1315 		int other_port = other_dp->index;
1316 
1317 		if (dp == other_dp)
1318 			continue;
1319 
1320 		/* Remove this port from the port matrix of the other ports
1321 		 * in the same bridge. If the port is disabled, port matrix
1322 		 * is kept and not being setup until the port becomes enabled.
1323 		 */
1324 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1325 			continue;
1326 
1327 		if (priv->ports[other_port].enable)
1328 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1329 				     PCR_MATRIX(BIT(port)));
1330 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1331 	}
1332 
1333 	/* Set the cpu port to be the only one in the port matrix of
1334 	 * this port.
1335 	 */
1336 	if (priv->ports[port].enable)
1337 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1338 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1339 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1340 
1341 	/* When a port is removed from the bridge, the port would be set up
1342 	 * back to the default as is at initial boot which is a VLAN-unaware
1343 	 * port.
1344 	 */
1345 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1346 		   MT7530_PORT_MATRIX_MODE);
1347 
1348 	mutex_unlock(&priv->reg_mutex);
1349 }
1350 
1351 static int
1352 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1353 		    const unsigned char *addr, u16 vid,
1354 		    struct dsa_db db)
1355 {
1356 	struct mt7530_priv *priv = ds->priv;
1357 	int ret;
1358 	u8 port_mask = BIT(port);
1359 
1360 	mutex_lock(&priv->reg_mutex);
1361 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1362 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1363 	mutex_unlock(&priv->reg_mutex);
1364 
1365 	return ret;
1366 }
1367 
1368 static int
1369 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1370 		    const unsigned char *addr, u16 vid,
1371 		    struct dsa_db db)
1372 {
1373 	struct mt7530_priv *priv = ds->priv;
1374 	int ret;
1375 	u8 port_mask = BIT(port);
1376 
1377 	mutex_lock(&priv->reg_mutex);
1378 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1379 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1380 	mutex_unlock(&priv->reg_mutex);
1381 
1382 	return ret;
1383 }
1384 
1385 static int
1386 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1387 		     dsa_fdb_dump_cb_t *cb, void *data)
1388 {
1389 	struct mt7530_priv *priv = ds->priv;
1390 	struct mt7530_fdb _fdb = { 0 };
1391 	int cnt = MT7530_NUM_FDB_RECORDS;
1392 	int ret = 0;
1393 	u32 rsp = 0;
1394 
1395 	mutex_lock(&priv->reg_mutex);
1396 
1397 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1398 	if (ret < 0)
1399 		goto err;
1400 
1401 	do {
1402 		if (rsp & ATC_SRCH_HIT) {
1403 			mt7530_fdb_read(priv, &_fdb);
1404 			if (_fdb.port_mask & BIT(port)) {
1405 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1406 					 data);
1407 				if (ret < 0)
1408 					break;
1409 			}
1410 		}
1411 	} while (--cnt &&
1412 		 !(rsp & ATC_SRCH_END) &&
1413 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1414 err:
1415 	mutex_unlock(&priv->reg_mutex);
1416 
1417 	return 0;
1418 }
1419 
1420 static int
1421 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1422 		    const struct switchdev_obj_port_mdb *mdb,
1423 		    struct dsa_db db)
1424 {
1425 	struct mt7530_priv *priv = ds->priv;
1426 	const u8 *addr = mdb->addr;
1427 	u16 vid = mdb->vid;
1428 	u8 port_mask = 0;
1429 	int ret;
1430 
1431 	mutex_lock(&priv->reg_mutex);
1432 
1433 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1434 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1435 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1436 			    & PORT_MAP_MASK;
1437 
1438 	port_mask |= BIT(port);
1439 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1440 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1441 
1442 	mutex_unlock(&priv->reg_mutex);
1443 
1444 	return ret;
1445 }
1446 
1447 static int
1448 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1449 		    const struct switchdev_obj_port_mdb *mdb,
1450 		    struct dsa_db db)
1451 {
1452 	struct mt7530_priv *priv = ds->priv;
1453 	const u8 *addr = mdb->addr;
1454 	u16 vid = mdb->vid;
1455 	u8 port_mask = 0;
1456 	int ret;
1457 
1458 	mutex_lock(&priv->reg_mutex);
1459 
1460 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1461 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1462 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1463 			    & PORT_MAP_MASK;
1464 
1465 	port_mask &= ~BIT(port);
1466 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1467 			 port_mask ? STATIC_ENT : STATIC_EMP);
1468 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1469 
1470 	mutex_unlock(&priv->reg_mutex);
1471 
1472 	return ret;
1473 }
1474 
1475 static int
1476 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1477 {
1478 	struct mt7530_dummy_poll p;
1479 	u32 val;
1480 	int ret;
1481 
1482 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1483 	mt7530_write(priv, MT7530_VTCR, val);
1484 
1485 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1486 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1487 				 !(val & VTCR_BUSY), 20, 20000);
1488 	if (ret < 0) {
1489 		dev_err(priv->dev, "poll timeout\n");
1490 		return ret;
1491 	}
1492 
1493 	val = mt7530_read(priv, MT7530_VTCR);
1494 	if (val & VTCR_INVALID) {
1495 		dev_err(priv->dev, "read VTCR invalid\n");
1496 		return -EINVAL;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 static int
1503 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1504 			   struct netlink_ext_ack *extack)
1505 {
1506 	if (vlan_filtering) {
1507 		/* The port is being kept as VLAN-unaware port when bridge is
1508 		 * set up with vlan_filtering not being set, Otherwise, the
1509 		 * port and the corresponding CPU port is required the setup
1510 		 * for becoming a VLAN-aware port.
1511 		 */
1512 		mt7530_port_set_vlan_aware(ds, port);
1513 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1514 	} else {
1515 		mt7530_port_set_vlan_unaware(ds, port);
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 static void
1522 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1523 		   struct mt7530_hw_vlan_entry *entry)
1524 {
1525 	u8 new_members;
1526 	u32 val;
1527 
1528 	new_members = entry->old_members | BIT(entry->port) |
1529 		      BIT(MT7530_CPU_PORT);
1530 
1531 	/* Validate the entry with independent learning, create egress tag per
1532 	 * VLAN and joining the port as one of the port members.
1533 	 */
1534 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1535 	      VLAN_VALID;
1536 	mt7530_write(priv, MT7530_VAWD1, val);
1537 
1538 	/* Decide whether adding tag or not for those outgoing packets from the
1539 	 * port inside the VLAN.
1540 	 */
1541 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1542 				MT7530_VLAN_EGRESS_TAG;
1543 	mt7530_rmw(priv, MT7530_VAWD2,
1544 		   ETAG_CTRL_P_MASK(entry->port),
1545 		   ETAG_CTRL_P(entry->port, val));
1546 
1547 	/* CPU port is always taken as a tagged port for serving more than one
1548 	 * VLANs across and also being applied with egress type stack mode for
1549 	 * that VLAN tags would be appended after hardware special tag used as
1550 	 * DSA tag.
1551 	 */
1552 	mt7530_rmw(priv, MT7530_VAWD2,
1553 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1554 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1555 			       MT7530_VLAN_EGRESS_STACK));
1556 }
1557 
1558 static void
1559 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1560 		   struct mt7530_hw_vlan_entry *entry)
1561 {
1562 	u8 new_members;
1563 	u32 val;
1564 
1565 	new_members = entry->old_members & ~BIT(entry->port);
1566 
1567 	val = mt7530_read(priv, MT7530_VAWD1);
1568 	if (!(val & VLAN_VALID)) {
1569 		dev_err(priv->dev,
1570 			"Cannot be deleted due to invalid entry\n");
1571 		return;
1572 	}
1573 
1574 	/* If certain member apart from CPU port is still alive in the VLAN,
1575 	 * the entry would be kept valid. Otherwise, the entry is got to be
1576 	 * disabled.
1577 	 */
1578 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1579 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1580 		      VLAN_VALID;
1581 		mt7530_write(priv, MT7530_VAWD1, val);
1582 	} else {
1583 		mt7530_write(priv, MT7530_VAWD1, 0);
1584 		mt7530_write(priv, MT7530_VAWD2, 0);
1585 	}
1586 }
1587 
1588 static void
1589 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1590 		      struct mt7530_hw_vlan_entry *entry,
1591 		      mt7530_vlan_op vlan_op)
1592 {
1593 	u32 val;
1594 
1595 	/* Fetch entry */
1596 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1597 
1598 	val = mt7530_read(priv, MT7530_VAWD1);
1599 
1600 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1601 
1602 	/* Manipulate entry */
1603 	vlan_op(priv, entry);
1604 
1605 	/* Flush result to hardware */
1606 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1607 }
1608 
1609 static int
1610 mt7530_setup_vlan0(struct mt7530_priv *priv)
1611 {
1612 	u32 val;
1613 
1614 	/* Validate the entry with independent learning, keep the original
1615 	 * ingress tag attribute.
1616 	 */
1617 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1618 	      VLAN_VALID;
1619 	mt7530_write(priv, MT7530_VAWD1, val);
1620 
1621 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1622 }
1623 
1624 static int
1625 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1626 		     const struct switchdev_obj_port_vlan *vlan,
1627 		     struct netlink_ext_ack *extack)
1628 {
1629 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1630 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1631 	struct mt7530_hw_vlan_entry new_entry;
1632 	struct mt7530_priv *priv = ds->priv;
1633 
1634 	mutex_lock(&priv->reg_mutex);
1635 
1636 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1637 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1638 
1639 	if (pvid) {
1640 		priv->ports[port].pvid = vlan->vid;
1641 
1642 		/* Accept all frames if PVID is set */
1643 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1644 			   MT7530_VLAN_ACC_ALL);
1645 
1646 		/* Only configure PVID if VLAN filtering is enabled */
1647 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1648 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1649 				   G0_PORT_VID_MASK,
1650 				   G0_PORT_VID(vlan->vid));
1651 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1652 		/* This VLAN is overwritten without PVID, so unset it */
1653 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1654 
1655 		/* Only accept tagged frames if the port is VLAN-aware */
1656 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1657 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1658 				   MT7530_VLAN_ACC_TAGGED);
1659 
1660 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1661 			   G0_PORT_VID_DEF);
1662 	}
1663 
1664 	mutex_unlock(&priv->reg_mutex);
1665 
1666 	return 0;
1667 }
1668 
1669 static int
1670 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1671 		     const struct switchdev_obj_port_vlan *vlan)
1672 {
1673 	struct mt7530_hw_vlan_entry target_entry;
1674 	struct mt7530_priv *priv = ds->priv;
1675 
1676 	mutex_lock(&priv->reg_mutex);
1677 
1678 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1679 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1680 			      mt7530_hw_vlan_del);
1681 
1682 	/* PVID is being restored to the default whenever the PVID port
1683 	 * is being removed from the VLAN.
1684 	 */
1685 	if (priv->ports[port].pvid == vlan->vid) {
1686 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1687 
1688 		/* Only accept tagged frames if the port is VLAN-aware */
1689 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1690 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1691 				   MT7530_VLAN_ACC_TAGGED);
1692 
1693 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1694 			   G0_PORT_VID_DEF);
1695 	}
1696 
1697 
1698 	mutex_unlock(&priv->reg_mutex);
1699 
1700 	return 0;
1701 }
1702 
1703 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1704 {
1705 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1706 				   MIRROR_PORT(val);
1707 }
1708 
1709 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1710 {
1711 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1712 				   MIRROR_PORT(val);
1713 }
1714 
1715 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1716 				  struct dsa_mall_mirror_tc_entry *mirror,
1717 				  bool ingress, struct netlink_ext_ack *extack)
1718 {
1719 	struct mt7530_priv *priv = ds->priv;
1720 	int monitor_port;
1721 	u32 val;
1722 
1723 	/* Check for existent entry */
1724 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1725 		return -EEXIST;
1726 
1727 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1728 
1729 	/* MT7530 only supports one monitor port */
1730 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1731 	if (val & MT753X_MIRROR_EN(priv->id) &&
1732 	    monitor_port != mirror->to_local_port)
1733 		return -EEXIST;
1734 
1735 	val |= MT753X_MIRROR_EN(priv->id);
1736 	val &= ~MT753X_MIRROR_MASK(priv->id);
1737 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1738 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1739 
1740 	val = mt7530_read(priv, MT7530_PCR_P(port));
1741 	if (ingress) {
1742 		val |= PORT_RX_MIR;
1743 		priv->mirror_rx |= BIT(port);
1744 	} else {
1745 		val |= PORT_TX_MIR;
1746 		priv->mirror_tx |= BIT(port);
1747 	}
1748 	mt7530_write(priv, MT7530_PCR_P(port), val);
1749 
1750 	return 0;
1751 }
1752 
1753 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1754 				   struct dsa_mall_mirror_tc_entry *mirror)
1755 {
1756 	struct mt7530_priv *priv = ds->priv;
1757 	u32 val;
1758 
1759 	val = mt7530_read(priv, MT7530_PCR_P(port));
1760 	if (mirror->ingress) {
1761 		val &= ~PORT_RX_MIR;
1762 		priv->mirror_rx &= ~BIT(port);
1763 	} else {
1764 		val &= ~PORT_TX_MIR;
1765 		priv->mirror_tx &= ~BIT(port);
1766 	}
1767 	mt7530_write(priv, MT7530_PCR_P(port), val);
1768 
1769 	if (!priv->mirror_rx && !priv->mirror_tx) {
1770 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1771 		val &= ~MT753X_MIRROR_EN(priv->id);
1772 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1773 	}
1774 }
1775 
1776 static enum dsa_tag_protocol
1777 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1778 		     enum dsa_tag_protocol mp)
1779 {
1780 	return DSA_TAG_PROTO_MTK;
1781 }
1782 
1783 #ifdef CONFIG_GPIOLIB
1784 static inline u32
1785 mt7530_gpio_to_bit(unsigned int offset)
1786 {
1787 	/* Map GPIO offset to register bit
1788 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1789 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1790 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1791 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1792 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1793 	 */
1794 	return BIT(offset + offset / 3);
1795 }
1796 
1797 static int
1798 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1799 {
1800 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1801 	u32 bit = mt7530_gpio_to_bit(offset);
1802 
1803 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1804 }
1805 
1806 static void
1807 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1808 {
1809 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1810 	u32 bit = mt7530_gpio_to_bit(offset);
1811 
1812 	if (value)
1813 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1814 	else
1815 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1816 }
1817 
1818 static int
1819 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1820 {
1821 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1822 	u32 bit = mt7530_gpio_to_bit(offset);
1823 
1824 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1825 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1826 }
1827 
1828 static int
1829 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1830 {
1831 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1832 	u32 bit = mt7530_gpio_to_bit(offset);
1833 
1834 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1835 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1836 
1837 	return 0;
1838 }
1839 
1840 static int
1841 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1842 {
1843 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1844 	u32 bit = mt7530_gpio_to_bit(offset);
1845 
1846 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1847 
1848 	if (value)
1849 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1850 	else
1851 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1852 
1853 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1854 
1855 	return 0;
1856 }
1857 
1858 static int
1859 mt7530_setup_gpio(struct mt7530_priv *priv)
1860 {
1861 	struct device *dev = priv->dev;
1862 	struct gpio_chip *gc;
1863 
1864 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1865 	if (!gc)
1866 		return -ENOMEM;
1867 
1868 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1869 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1870 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1871 
1872 	gc->label = "mt7530";
1873 	gc->parent = dev;
1874 	gc->owner = THIS_MODULE;
1875 	gc->get_direction = mt7530_gpio_get_direction;
1876 	gc->direction_input = mt7530_gpio_direction_input;
1877 	gc->direction_output = mt7530_gpio_direction_output;
1878 	gc->get = mt7530_gpio_get;
1879 	gc->set = mt7530_gpio_set;
1880 	gc->base = -1;
1881 	gc->ngpio = 15;
1882 	gc->can_sleep = true;
1883 
1884 	return devm_gpiochip_add_data(dev, gc, priv);
1885 }
1886 #endif /* CONFIG_GPIOLIB */
1887 
1888 static irqreturn_t
1889 mt7530_irq_thread_fn(int irq, void *dev_id)
1890 {
1891 	struct mt7530_priv *priv = dev_id;
1892 	bool handled = false;
1893 	u32 val;
1894 	int p;
1895 
1896 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1897 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1898 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1899 	mutex_unlock(&priv->bus->mdio_lock);
1900 
1901 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1902 		if (BIT(p) & val) {
1903 			unsigned int irq;
1904 
1905 			irq = irq_find_mapping(priv->irq_domain, p);
1906 			handle_nested_irq(irq);
1907 			handled = true;
1908 		}
1909 	}
1910 
1911 	return IRQ_RETVAL(handled);
1912 }
1913 
1914 static void
1915 mt7530_irq_mask(struct irq_data *d)
1916 {
1917 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1918 
1919 	priv->irq_enable &= ~BIT(d->hwirq);
1920 }
1921 
1922 static void
1923 mt7530_irq_unmask(struct irq_data *d)
1924 {
1925 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1926 
1927 	priv->irq_enable |= BIT(d->hwirq);
1928 }
1929 
1930 static void
1931 mt7530_irq_bus_lock(struct irq_data *d)
1932 {
1933 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1934 
1935 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1936 }
1937 
1938 static void
1939 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1940 {
1941 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1942 
1943 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1944 	mutex_unlock(&priv->bus->mdio_lock);
1945 }
1946 
1947 static struct irq_chip mt7530_irq_chip = {
1948 	.name = KBUILD_MODNAME,
1949 	.irq_mask = mt7530_irq_mask,
1950 	.irq_unmask = mt7530_irq_unmask,
1951 	.irq_bus_lock = mt7530_irq_bus_lock,
1952 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1953 };
1954 
1955 static int
1956 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1957 	       irq_hw_number_t hwirq)
1958 {
1959 	irq_set_chip_data(irq, domain->host_data);
1960 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1961 	irq_set_nested_thread(irq, true);
1962 	irq_set_noprobe(irq);
1963 
1964 	return 0;
1965 }
1966 
1967 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1968 	.map = mt7530_irq_map,
1969 	.xlate = irq_domain_xlate_onecell,
1970 };
1971 
1972 static void
1973 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1974 {
1975 	struct dsa_switch *ds = priv->ds;
1976 	int p;
1977 
1978 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1979 		if (BIT(p) & ds->phys_mii_mask) {
1980 			unsigned int irq;
1981 
1982 			irq = irq_create_mapping(priv->irq_domain, p);
1983 			ds->slave_mii_bus->irq[p] = irq;
1984 		}
1985 	}
1986 }
1987 
1988 static int
1989 mt7530_setup_irq(struct mt7530_priv *priv)
1990 {
1991 	struct device *dev = priv->dev;
1992 	struct device_node *np = dev->of_node;
1993 	int ret;
1994 
1995 	if (!of_property_read_bool(np, "interrupt-controller")) {
1996 		dev_info(dev, "no interrupt support\n");
1997 		return 0;
1998 	}
1999 
2000 	priv->irq = of_irq_get(np, 0);
2001 	if (priv->irq <= 0) {
2002 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2003 		return priv->irq ? : -EINVAL;
2004 	}
2005 
2006 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2007 						 &mt7530_irq_domain_ops, priv);
2008 	if (!priv->irq_domain) {
2009 		dev_err(dev, "failed to create IRQ domain\n");
2010 		return -ENOMEM;
2011 	}
2012 
2013 	/* This register must be set for MT7530 to properly fire interrupts */
2014 	if (priv->id != ID_MT7531)
2015 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2016 
2017 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2018 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2019 	if (ret) {
2020 		irq_domain_remove(priv->irq_domain);
2021 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2022 		return ret;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 static void
2029 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2030 {
2031 	int p;
2032 
2033 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2034 		if (BIT(p) & priv->ds->phys_mii_mask) {
2035 			unsigned int irq;
2036 
2037 			irq = irq_find_mapping(priv->irq_domain, p);
2038 			irq_dispose_mapping(irq);
2039 		}
2040 	}
2041 }
2042 
2043 static void
2044 mt7530_free_irq_common(struct mt7530_priv *priv)
2045 {
2046 	free_irq(priv->irq, priv);
2047 	irq_domain_remove(priv->irq_domain);
2048 }
2049 
2050 static void
2051 mt7530_free_irq(struct mt7530_priv *priv)
2052 {
2053 	mt7530_free_mdio_irq(priv);
2054 	mt7530_free_irq_common(priv);
2055 }
2056 
2057 static int
2058 mt7530_setup_mdio(struct mt7530_priv *priv)
2059 {
2060 	struct dsa_switch *ds = priv->ds;
2061 	struct device *dev = priv->dev;
2062 	struct mii_bus *bus;
2063 	static int idx;
2064 	int ret;
2065 
2066 	bus = devm_mdiobus_alloc(dev);
2067 	if (!bus)
2068 		return -ENOMEM;
2069 
2070 	ds->slave_mii_bus = bus;
2071 	bus->priv = priv;
2072 	bus->name = KBUILD_MODNAME "-mii";
2073 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2074 	bus->read = mt753x_phy_read;
2075 	bus->write = mt753x_phy_write;
2076 	bus->parent = dev;
2077 	bus->phy_mask = ~ds->phys_mii_mask;
2078 
2079 	if (priv->irq)
2080 		mt7530_setup_mdio_irq(priv);
2081 
2082 	ret = devm_mdiobus_register(dev, bus);
2083 	if (ret) {
2084 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2085 		if (priv->irq)
2086 			mt7530_free_mdio_irq(priv);
2087 	}
2088 
2089 	return ret;
2090 }
2091 
2092 static int
2093 mt7530_setup(struct dsa_switch *ds)
2094 {
2095 	struct mt7530_priv *priv = ds->priv;
2096 	struct device_node *phy_node;
2097 	struct device_node *mac_np;
2098 	struct mt7530_dummy_poll p;
2099 	phy_interface_t interface;
2100 	struct device_node *dn;
2101 	u32 id, val;
2102 	int ret, i;
2103 
2104 	/* The parent node of master netdev which holds the common system
2105 	 * controller also is the container for two GMACs nodes representing
2106 	 * as two netdev instances.
2107 	 */
2108 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2109 	ds->assisted_learning_on_cpu_port = true;
2110 	ds->mtu_enforcement_ingress = true;
2111 
2112 	if (priv->id == ID_MT7530) {
2113 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2114 		ret = regulator_enable(priv->core_pwr);
2115 		if (ret < 0) {
2116 			dev_err(priv->dev,
2117 				"Failed to enable core power: %d\n", ret);
2118 			return ret;
2119 		}
2120 
2121 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2122 		ret = regulator_enable(priv->io_pwr);
2123 		if (ret < 0) {
2124 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2125 				ret);
2126 			return ret;
2127 		}
2128 	}
2129 
2130 	/* Reset whole chip through gpio pin or memory-mapped registers for
2131 	 * different type of hardware
2132 	 */
2133 	if (priv->mcm) {
2134 		reset_control_assert(priv->rstc);
2135 		usleep_range(1000, 1100);
2136 		reset_control_deassert(priv->rstc);
2137 	} else {
2138 		gpiod_set_value_cansleep(priv->reset, 0);
2139 		usleep_range(1000, 1100);
2140 		gpiod_set_value_cansleep(priv->reset, 1);
2141 	}
2142 
2143 	/* Waiting for MT7530 got to stable */
2144 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2145 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2146 				 20, 1000000);
2147 	if (ret < 0) {
2148 		dev_err(priv->dev, "reset timeout\n");
2149 		return ret;
2150 	}
2151 
2152 	id = mt7530_read(priv, MT7530_CREV);
2153 	id >>= CHIP_NAME_SHIFT;
2154 	if (id != MT7530_ID) {
2155 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2156 		return -ENODEV;
2157 	}
2158 
2159 	/* Reset the switch through internal reset */
2160 	mt7530_write(priv, MT7530_SYS_CTRL,
2161 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2162 		     SYS_CTRL_REG_RST);
2163 
2164 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2165 	val = mt7530_read(priv, MT7530_MHWTRAP);
2166 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2167 	val |= MHWTRAP_MANUAL;
2168 	mt7530_write(priv, MT7530_MHWTRAP, val);
2169 
2170 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2171 
2172 	/* Enable and reset MIB counters */
2173 	mt7530_mib_reset(ds);
2174 
2175 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2176 		/* Disable forwarding by default on all ports */
2177 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2178 			   PCR_MATRIX_CLR);
2179 
2180 		/* Disable learning by default on all ports */
2181 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2182 
2183 		if (dsa_is_cpu_port(ds, i)) {
2184 			ret = mt753x_cpu_port_enable(ds, i);
2185 			if (ret)
2186 				return ret;
2187 		} else {
2188 			mt7530_port_disable(ds, i);
2189 
2190 			/* Set default PVID to 0 on all user ports */
2191 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2192 				   G0_PORT_VID_DEF);
2193 		}
2194 		/* Enable consistent egress tag */
2195 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2196 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2197 	}
2198 
2199 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2200 	ret = mt7530_setup_vlan0(priv);
2201 	if (ret)
2202 		return ret;
2203 
2204 	/* Setup port 5 */
2205 	priv->p5_intf_sel = P5_DISABLED;
2206 	interface = PHY_INTERFACE_MODE_NA;
2207 
2208 	if (!dsa_is_unused_port(ds, 5)) {
2209 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2210 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2211 		if (ret && ret != -ENODEV)
2212 			return ret;
2213 	} else {
2214 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2215 		for_each_child_of_node(dn, mac_np) {
2216 			if (!of_device_is_compatible(mac_np,
2217 						     "mediatek,eth-mac"))
2218 				continue;
2219 
2220 			ret = of_property_read_u32(mac_np, "reg", &id);
2221 			if (ret < 0 || id != 1)
2222 				continue;
2223 
2224 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2225 			if (!phy_node)
2226 				continue;
2227 
2228 			if (phy_node->parent == priv->dev->of_node->parent) {
2229 				ret = of_get_phy_mode(mac_np, &interface);
2230 				if (ret && ret != -ENODEV) {
2231 					of_node_put(mac_np);
2232 					of_node_put(phy_node);
2233 					return ret;
2234 				}
2235 				id = of_mdio_parse_addr(ds->dev, phy_node);
2236 				if (id == 0)
2237 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2238 				if (id == 4)
2239 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2240 			}
2241 			of_node_put(mac_np);
2242 			of_node_put(phy_node);
2243 			break;
2244 		}
2245 	}
2246 
2247 #ifdef CONFIG_GPIOLIB
2248 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2249 		ret = mt7530_setup_gpio(priv);
2250 		if (ret)
2251 			return ret;
2252 	}
2253 #endif /* CONFIG_GPIOLIB */
2254 
2255 	mt7530_setup_port5(ds, interface);
2256 
2257 	/* Flush the FDB table */
2258 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2259 	if (ret < 0)
2260 		return ret;
2261 
2262 	return 0;
2263 }
2264 
2265 static int
2266 mt7531_setup(struct dsa_switch *ds)
2267 {
2268 	struct mt7530_priv *priv = ds->priv;
2269 	struct mt7530_dummy_poll p;
2270 	u32 val, id;
2271 	int ret, i;
2272 
2273 	/* Reset whole chip through gpio pin or memory-mapped registers for
2274 	 * different type of hardware
2275 	 */
2276 	if (priv->mcm) {
2277 		reset_control_assert(priv->rstc);
2278 		usleep_range(1000, 1100);
2279 		reset_control_deassert(priv->rstc);
2280 	} else {
2281 		gpiod_set_value_cansleep(priv->reset, 0);
2282 		usleep_range(1000, 1100);
2283 		gpiod_set_value_cansleep(priv->reset, 1);
2284 	}
2285 
2286 	/* Waiting for MT7530 got to stable */
2287 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2288 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2289 				 20, 1000000);
2290 	if (ret < 0) {
2291 		dev_err(priv->dev, "reset timeout\n");
2292 		return ret;
2293 	}
2294 
2295 	id = mt7530_read(priv, MT7531_CREV);
2296 	id >>= CHIP_NAME_SHIFT;
2297 
2298 	if (id != MT7531_ID) {
2299 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2300 		return -ENODEV;
2301 	}
2302 
2303 	/* Reset the switch through internal reset */
2304 	mt7530_write(priv, MT7530_SYS_CTRL,
2305 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2306 		     SYS_CTRL_REG_RST);
2307 
2308 	if (mt7531_dual_sgmii_supported(priv)) {
2309 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2310 
2311 		/* Let ds->slave_mii_bus be able to access external phy. */
2312 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2313 			   MT7531_EXT_P_MDC_11);
2314 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2315 			   MT7531_EXT_P_MDIO_12);
2316 	} else {
2317 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2318 	}
2319 	dev_dbg(ds->dev, "P5 support %s interface\n",
2320 		p5_intf_modes(priv->p5_intf_sel));
2321 
2322 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2323 		   MT7531_GPIO0_INTERRUPT);
2324 
2325 	/* Let phylink decide the interface later. */
2326 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2327 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2328 
2329 	/* Enable PHY core PLL, since phy_device has not yet been created
2330 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2331 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2332 	 * function.
2333 	 */
2334 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2335 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2336 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2337 	val &= ~MT7531_PHY_PLL_OFF;
2338 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2339 				 CORE_PLL_GROUP4, val);
2340 
2341 	/* BPDU to CPU port */
2342 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2343 		   BIT(MT7530_CPU_PORT));
2344 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2345 		   MT753X_BPDU_CPU_ONLY);
2346 
2347 	/* Enable and reset MIB counters */
2348 	mt7530_mib_reset(ds);
2349 
2350 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2351 		/* Disable forwarding by default on all ports */
2352 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2353 			   PCR_MATRIX_CLR);
2354 
2355 		/* Disable learning by default on all ports */
2356 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2357 
2358 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2359 
2360 		if (dsa_is_cpu_port(ds, i)) {
2361 			ret = mt753x_cpu_port_enable(ds, i);
2362 			if (ret)
2363 				return ret;
2364 		} else {
2365 			mt7530_port_disable(ds, i);
2366 
2367 			/* Set default PVID to 0 on all user ports */
2368 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2369 				   G0_PORT_VID_DEF);
2370 		}
2371 
2372 		/* Enable consistent egress tag */
2373 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2374 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2375 	}
2376 
2377 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2378 	ret = mt7530_setup_vlan0(priv);
2379 	if (ret)
2380 		return ret;
2381 
2382 	ds->assisted_learning_on_cpu_port = true;
2383 	ds->mtu_enforcement_ingress = true;
2384 
2385 	/* Flush the FDB table */
2386 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2387 	if (ret < 0)
2388 		return ret;
2389 
2390 	return 0;
2391 }
2392 
2393 static bool
2394 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2395 			  const struct phylink_link_state *state)
2396 {
2397 	struct mt7530_priv *priv = ds->priv;
2398 
2399 	switch (port) {
2400 	case 0 ... 4: /* Internal phy */
2401 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2402 			return false;
2403 		break;
2404 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2405 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2406 		    state->interface != PHY_INTERFACE_MODE_MII &&
2407 		    state->interface != PHY_INTERFACE_MODE_GMII)
2408 			return false;
2409 		break;
2410 	case 6: /* 1st cpu port */
2411 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2412 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2413 			return false;
2414 		break;
2415 	default:
2416 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2417 			port);
2418 		return false;
2419 	}
2420 
2421 	return true;
2422 }
2423 
2424 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2425 {
2426 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2427 }
2428 
2429 static bool
2430 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2431 			  const struct phylink_link_state *state)
2432 {
2433 	struct mt7530_priv *priv = ds->priv;
2434 
2435 	switch (port) {
2436 	case 0 ... 4: /* Internal phy */
2437 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2438 			return false;
2439 		break;
2440 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2441 		if (mt7531_is_rgmii_port(priv, port))
2442 			return phy_interface_mode_is_rgmii(state->interface);
2443 		fallthrough;
2444 	case 6: /* 1st cpu port supports sgmii/8023z only */
2445 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2446 		    !phy_interface_mode_is_8023z(state->interface))
2447 			return false;
2448 		break;
2449 	default:
2450 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2451 			port);
2452 		return false;
2453 	}
2454 
2455 	return true;
2456 }
2457 
2458 static bool
2459 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2460 			  const struct phylink_link_state *state)
2461 {
2462 	struct mt7530_priv *priv = ds->priv;
2463 
2464 	return priv->info->phy_mode_supported(ds, port, state);
2465 }
2466 
2467 static int
2468 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2469 {
2470 	struct mt7530_priv *priv = ds->priv;
2471 
2472 	return priv->info->pad_setup(ds, state->interface);
2473 }
2474 
2475 static int
2476 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2477 		  phy_interface_t interface)
2478 {
2479 	struct mt7530_priv *priv = ds->priv;
2480 
2481 	/* Only need to setup port5. */
2482 	if (port != 5)
2483 		return 0;
2484 
2485 	mt7530_setup_port5(priv->ds, interface);
2486 
2487 	return 0;
2488 }
2489 
2490 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2491 			      phy_interface_t interface,
2492 			      struct phy_device *phydev)
2493 {
2494 	u32 val;
2495 
2496 	if (!mt7531_is_rgmii_port(priv, port)) {
2497 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2498 			port);
2499 		return -EINVAL;
2500 	}
2501 
2502 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2503 	val |= GP_CLK_EN;
2504 	val &= ~GP_MODE_MASK;
2505 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2506 	val &= ~CLK_SKEW_IN_MASK;
2507 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2508 	val &= ~CLK_SKEW_OUT_MASK;
2509 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2510 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2511 
2512 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2513 	if (!phydev || phy_driver_is_genphy(phydev)) {
2514 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2515 		switch (interface) {
2516 		case PHY_INTERFACE_MODE_RGMII:
2517 			val |= TXCLK_NO_REVERSE;
2518 			val |= RXCLK_NO_DELAY;
2519 			break;
2520 		case PHY_INTERFACE_MODE_RGMII_RXID:
2521 			val |= TXCLK_NO_REVERSE;
2522 			break;
2523 		case PHY_INTERFACE_MODE_RGMII_TXID:
2524 			val |= RXCLK_NO_DELAY;
2525 			break;
2526 		case PHY_INTERFACE_MODE_RGMII_ID:
2527 			break;
2528 		default:
2529 			return -EINVAL;
2530 		}
2531 	}
2532 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2533 
2534 	return 0;
2535 }
2536 
2537 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2538 				  unsigned long *supported)
2539 {
2540 	/* Port5 supports ethier RGMII or SGMII.
2541 	 * Port6 supports SGMII only.
2542 	 */
2543 	switch (port) {
2544 	case 5:
2545 		if (mt7531_is_rgmii_port(priv, port))
2546 			break;
2547 		fallthrough;
2548 	case 6:
2549 		phylink_set(supported, 1000baseX_Full);
2550 		phylink_set(supported, 2500baseX_Full);
2551 		phylink_set(supported, 2500baseT_Full);
2552 	}
2553 }
2554 
2555 static void
2556 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2557 			   unsigned int mode, phy_interface_t interface,
2558 			   int speed, int duplex)
2559 {
2560 	struct mt7530_priv *priv = ds->priv;
2561 	unsigned int val;
2562 
2563 	/* For adjusting speed and duplex of SGMII force mode. */
2564 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2565 	    phylink_autoneg_inband(mode))
2566 		return;
2567 
2568 	/* SGMII force mode setting */
2569 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2570 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2571 
2572 	switch (speed) {
2573 	case SPEED_10:
2574 		val |= MT7531_SGMII_FORCE_SPEED_10;
2575 		break;
2576 	case SPEED_100:
2577 		val |= MT7531_SGMII_FORCE_SPEED_100;
2578 		break;
2579 	case SPEED_1000:
2580 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2581 		break;
2582 	}
2583 
2584 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2585 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2586 	 */
2587 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2588 	    duplex != DUPLEX_FULL)
2589 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2590 
2591 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2592 }
2593 
2594 static bool mt753x_is_mac_port(u32 port)
2595 {
2596 	return (port == 5 || port == 6);
2597 }
2598 
2599 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2600 					 phy_interface_t interface)
2601 {
2602 	u32 val;
2603 
2604 	if (!mt753x_is_mac_port(port))
2605 		return -EINVAL;
2606 
2607 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2608 		   MT7531_SGMII_PHYA_PWD);
2609 
2610 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2611 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2612 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2613 	 * encoding.
2614 	 */
2615 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2616 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2617 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2618 
2619 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2620 
2621 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2622 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2623 	 */
2624 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2625 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2626 		   MT7531_SGMII_FORCE_SPEED_1000);
2627 
2628 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2629 
2630 	return 0;
2631 }
2632 
2633 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2634 				      phy_interface_t interface)
2635 {
2636 	if (!mt753x_is_mac_port(port))
2637 		return -EINVAL;
2638 
2639 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2640 		   MT7531_SGMII_PHYA_PWD);
2641 
2642 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2643 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2644 
2645 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2646 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2647 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2648 
2649 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2650 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2651 
2652 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2653 
2654 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2655 
2656 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2657 
2658 	return 0;
2659 }
2660 
2661 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2662 {
2663 	struct mt7530_priv *priv = ds->priv;
2664 	u32 val;
2665 
2666 	/* Only restart AN when AN is enabled */
2667 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2668 	if (val & MT7531_SGMII_AN_ENABLE) {
2669 		val |= MT7531_SGMII_AN_RESTART;
2670 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2671 	}
2672 }
2673 
2674 static int
2675 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2676 		  phy_interface_t interface)
2677 {
2678 	struct mt7530_priv *priv = ds->priv;
2679 	struct phy_device *phydev;
2680 	struct dsa_port *dp;
2681 
2682 	if (!mt753x_is_mac_port(port)) {
2683 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2684 		return -EINVAL;
2685 	}
2686 
2687 	switch (interface) {
2688 	case PHY_INTERFACE_MODE_RGMII:
2689 	case PHY_INTERFACE_MODE_RGMII_ID:
2690 	case PHY_INTERFACE_MODE_RGMII_RXID:
2691 	case PHY_INTERFACE_MODE_RGMII_TXID:
2692 		dp = dsa_to_port(ds, port);
2693 		phydev = dp->slave->phydev;
2694 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2695 	case PHY_INTERFACE_MODE_SGMII:
2696 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2697 	case PHY_INTERFACE_MODE_NA:
2698 	case PHY_INTERFACE_MODE_1000BASEX:
2699 	case PHY_INTERFACE_MODE_2500BASEX:
2700 		if (phylink_autoneg_inband(mode))
2701 			return -EINVAL;
2702 
2703 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2704 	default:
2705 		return -EINVAL;
2706 	}
2707 
2708 	return -EINVAL;
2709 }
2710 
2711 static int
2712 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2713 		  const struct phylink_link_state *state)
2714 {
2715 	struct mt7530_priv *priv = ds->priv;
2716 
2717 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2718 }
2719 
2720 static void
2721 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2722 			  const struct phylink_link_state *state)
2723 {
2724 	struct mt7530_priv *priv = ds->priv;
2725 	u32 mcr_cur, mcr_new;
2726 
2727 	if (!mt753x_phy_mode_supported(ds, port, state))
2728 		goto unsupported;
2729 
2730 	switch (port) {
2731 	case 0 ... 4: /* Internal phy */
2732 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2733 			goto unsupported;
2734 		break;
2735 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2736 		if (priv->p5_interface == state->interface)
2737 			break;
2738 
2739 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2740 			goto unsupported;
2741 
2742 		if (priv->p5_intf_sel != P5_DISABLED)
2743 			priv->p5_interface = state->interface;
2744 		break;
2745 	case 6: /* 1st cpu port */
2746 		if (priv->p6_interface == state->interface)
2747 			break;
2748 
2749 		mt753x_pad_setup(ds, state);
2750 
2751 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2752 			goto unsupported;
2753 
2754 		priv->p6_interface = state->interface;
2755 		break;
2756 	default:
2757 unsupported:
2758 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2759 			__func__, phy_modes(state->interface), port);
2760 		return;
2761 	}
2762 
2763 	if (phylink_autoneg_inband(mode) &&
2764 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2765 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2766 			__func__);
2767 		return;
2768 	}
2769 
2770 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2771 	mcr_new = mcr_cur;
2772 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2773 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2774 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2775 
2776 	/* Are we connected to external phy */
2777 	if (port == 5 && dsa_is_user_port(ds, 5))
2778 		mcr_new |= PMCR_EXT_PHY;
2779 
2780 	if (mcr_new != mcr_cur)
2781 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2782 }
2783 
2784 static void
2785 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2786 {
2787 	struct mt7530_priv *priv = ds->priv;
2788 
2789 	if (!priv->info->mac_pcs_an_restart)
2790 		return;
2791 
2792 	priv->info->mac_pcs_an_restart(ds, port);
2793 }
2794 
2795 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2796 					 unsigned int mode,
2797 					 phy_interface_t interface)
2798 {
2799 	struct mt7530_priv *priv = ds->priv;
2800 
2801 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2802 }
2803 
2804 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2805 				   unsigned int mode, phy_interface_t interface,
2806 				   int speed, int duplex)
2807 {
2808 	struct mt7530_priv *priv = ds->priv;
2809 
2810 	if (!priv->info->mac_pcs_link_up)
2811 		return;
2812 
2813 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2814 }
2815 
2816 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2817 				       unsigned int mode,
2818 				       phy_interface_t interface,
2819 				       struct phy_device *phydev,
2820 				       int speed, int duplex,
2821 				       bool tx_pause, bool rx_pause)
2822 {
2823 	struct mt7530_priv *priv = ds->priv;
2824 	u32 mcr;
2825 
2826 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2827 
2828 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2829 
2830 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2831 	 * variants.
2832 	 */
2833 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2834 	    (phy_interface_mode_is_8023z(interface))) {
2835 		speed = SPEED_1000;
2836 		duplex = DUPLEX_FULL;
2837 	}
2838 
2839 	switch (speed) {
2840 	case SPEED_1000:
2841 		mcr |= PMCR_FORCE_SPEED_1000;
2842 		break;
2843 	case SPEED_100:
2844 		mcr |= PMCR_FORCE_SPEED_100;
2845 		break;
2846 	}
2847 	if (duplex == DUPLEX_FULL) {
2848 		mcr |= PMCR_FORCE_FDX;
2849 		if (tx_pause)
2850 			mcr |= PMCR_TX_FC_EN;
2851 		if (rx_pause)
2852 			mcr |= PMCR_RX_FC_EN;
2853 	}
2854 
2855 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2856 		switch (speed) {
2857 		case SPEED_1000:
2858 			mcr |= PMCR_FORCE_EEE1G;
2859 			break;
2860 		case SPEED_100:
2861 			mcr |= PMCR_FORCE_EEE100;
2862 			break;
2863 		}
2864 	}
2865 
2866 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2867 }
2868 
2869 static int
2870 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2871 {
2872 	struct mt7530_priv *priv = ds->priv;
2873 	phy_interface_t interface;
2874 	int speed;
2875 	int ret;
2876 
2877 	switch (port) {
2878 	case 5:
2879 		if (mt7531_is_rgmii_port(priv, port))
2880 			interface = PHY_INTERFACE_MODE_RGMII;
2881 		else
2882 			interface = PHY_INTERFACE_MODE_2500BASEX;
2883 
2884 		priv->p5_interface = interface;
2885 		break;
2886 	case 6:
2887 		interface = PHY_INTERFACE_MODE_2500BASEX;
2888 
2889 		mt7531_pad_setup(ds, interface);
2890 
2891 		priv->p6_interface = interface;
2892 		break;
2893 	default:
2894 		return -EINVAL;
2895 	}
2896 
2897 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2898 		speed = SPEED_2500;
2899 	else
2900 		speed = SPEED_1000;
2901 
2902 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2903 	if (ret)
2904 		return ret;
2905 	mt7530_write(priv, MT7530_PMCR_P(port),
2906 		     PMCR_CPU_PORT_SETTING(priv->id));
2907 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2908 				   speed, DUPLEX_FULL, true, true);
2909 
2910 	return 0;
2911 }
2912 
2913 static void
2914 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2915 			 unsigned long *supported)
2916 {
2917 	if (port == 5)
2918 		phylink_set(supported, 1000baseX_Full);
2919 }
2920 
2921 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2922 				     unsigned long *supported)
2923 {
2924 	struct mt7530_priv *priv = ds->priv;
2925 
2926 	mt7531_sgmii_validate(priv, port, supported);
2927 }
2928 
2929 static void
2930 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2931 			unsigned long *supported,
2932 			struct phylink_link_state *state)
2933 {
2934 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2935 	struct mt7530_priv *priv = ds->priv;
2936 
2937 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2938 	    !mt753x_phy_mode_supported(ds, port, state)) {
2939 		linkmode_zero(supported);
2940 		return;
2941 	}
2942 
2943 	phylink_set_port_modes(mask);
2944 
2945 	if (state->interface != PHY_INTERFACE_MODE_TRGMII &&
2946 	    !phy_interface_mode_is_8023z(state->interface)) {
2947 		phylink_set(mask, 10baseT_Half);
2948 		phylink_set(mask, 10baseT_Full);
2949 		phylink_set(mask, 100baseT_Half);
2950 		phylink_set(mask, 100baseT_Full);
2951 		phylink_set(mask, Autoneg);
2952 	}
2953 
2954 	/* This switch only supports 1G full-duplex. */
2955 	if (state->interface != PHY_INTERFACE_MODE_MII)
2956 		phylink_set(mask, 1000baseT_Full);
2957 
2958 	priv->info->mac_port_validate(ds, port, mask);
2959 
2960 	phylink_set(mask, Pause);
2961 	phylink_set(mask, Asym_Pause);
2962 
2963 	linkmode_and(supported, supported, mask);
2964 	linkmode_and(state->advertising, state->advertising, mask);
2965 
2966 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2967 	 * to advertise both, only report advertising at 2500BaseX.
2968 	 */
2969 	phylink_helper_basex_speed(state);
2970 }
2971 
2972 static int
2973 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2974 			      struct phylink_link_state *state)
2975 {
2976 	struct mt7530_priv *priv = ds->priv;
2977 	u32 pmsr;
2978 
2979 	if (port < 0 || port >= MT7530_NUM_PORTS)
2980 		return -EINVAL;
2981 
2982 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2983 
2984 	state->link = (pmsr & PMSR_LINK);
2985 	state->an_complete = state->link;
2986 	state->duplex = !!(pmsr & PMSR_DPX);
2987 
2988 	switch (pmsr & PMSR_SPEED_MASK) {
2989 	case PMSR_SPEED_10:
2990 		state->speed = SPEED_10;
2991 		break;
2992 	case PMSR_SPEED_100:
2993 		state->speed = SPEED_100;
2994 		break;
2995 	case PMSR_SPEED_1000:
2996 		state->speed = SPEED_1000;
2997 		break;
2998 	default:
2999 		state->speed = SPEED_UNKNOWN;
3000 		break;
3001 	}
3002 
3003 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3004 	if (pmsr & PMSR_RX_FC)
3005 		state->pause |= MLO_PAUSE_RX;
3006 	if (pmsr & PMSR_TX_FC)
3007 		state->pause |= MLO_PAUSE_TX;
3008 
3009 	return 1;
3010 }
3011 
3012 static int
3013 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
3014 			      struct phylink_link_state *state)
3015 {
3016 	u32 status, val;
3017 	u16 config_reg;
3018 
3019 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3020 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
3021 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3022 	    (status & MT7531_SGMII_AN_ENABLE)) {
3023 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3024 		config_reg = val >> 16;
3025 
3026 		switch (config_reg & LPA_SGMII_SPD_MASK) {
3027 		case LPA_SGMII_1000:
3028 			state->speed = SPEED_1000;
3029 			break;
3030 		case LPA_SGMII_100:
3031 			state->speed = SPEED_100;
3032 			break;
3033 		case LPA_SGMII_10:
3034 			state->speed = SPEED_10;
3035 			break;
3036 		default:
3037 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3038 			state->link = false;
3039 			return -EINVAL;
3040 		}
3041 
3042 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3043 			state->duplex = DUPLEX_FULL;
3044 		else
3045 			state->duplex = DUPLEX_HALF;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static int
3052 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
3053 			      struct phylink_link_state *state)
3054 {
3055 	struct mt7530_priv *priv = ds->priv;
3056 
3057 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
3058 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
3059 
3060 	return -EOPNOTSUPP;
3061 }
3062 
3063 static int
3064 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
3065 			      struct phylink_link_state *state)
3066 {
3067 	struct mt7530_priv *priv = ds->priv;
3068 
3069 	return priv->info->mac_port_get_state(ds, port, state);
3070 }
3071 
3072 static int
3073 mt753x_setup(struct dsa_switch *ds)
3074 {
3075 	struct mt7530_priv *priv = ds->priv;
3076 	int ret = priv->info->sw_setup(ds);
3077 
3078 	if (ret)
3079 		return ret;
3080 
3081 	ret = mt7530_setup_irq(priv);
3082 	if (ret)
3083 		return ret;
3084 
3085 	ret = mt7530_setup_mdio(priv);
3086 	if (ret && priv->irq)
3087 		mt7530_free_irq_common(priv);
3088 
3089 	return ret;
3090 }
3091 
3092 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3093 			      struct ethtool_eee *e)
3094 {
3095 	struct mt7530_priv *priv = ds->priv;
3096 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3097 
3098 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3099 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3100 
3101 	return 0;
3102 }
3103 
3104 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3105 			      struct ethtool_eee *e)
3106 {
3107 	struct mt7530_priv *priv = ds->priv;
3108 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3109 
3110 	if (e->tx_lpi_timer > 0xFFF)
3111 		return -EINVAL;
3112 
3113 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3114 	if (!e->tx_lpi_enabled)
3115 		/* Force LPI Mode without a delay */
3116 		set |= LPI_MODE_EN;
3117 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3118 
3119 	return 0;
3120 }
3121 
3122 static const struct dsa_switch_ops mt7530_switch_ops = {
3123 	.get_tag_protocol	= mtk_get_tag_protocol,
3124 	.setup			= mt753x_setup,
3125 	.get_strings		= mt7530_get_strings,
3126 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3127 	.get_sset_count		= mt7530_get_sset_count,
3128 	.set_ageing_time	= mt7530_set_ageing_time,
3129 	.port_enable		= mt7530_port_enable,
3130 	.port_disable		= mt7530_port_disable,
3131 	.port_change_mtu	= mt7530_port_change_mtu,
3132 	.port_max_mtu		= mt7530_port_max_mtu,
3133 	.port_stp_state_set	= mt7530_stp_state_set,
3134 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3135 	.port_bridge_flags	= mt7530_port_bridge_flags,
3136 	.port_bridge_join	= mt7530_port_bridge_join,
3137 	.port_bridge_leave	= mt7530_port_bridge_leave,
3138 	.port_fdb_add		= mt7530_port_fdb_add,
3139 	.port_fdb_del		= mt7530_port_fdb_del,
3140 	.port_fdb_dump		= mt7530_port_fdb_dump,
3141 	.port_mdb_add		= mt7530_port_mdb_add,
3142 	.port_mdb_del		= mt7530_port_mdb_del,
3143 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3144 	.port_vlan_add		= mt7530_port_vlan_add,
3145 	.port_vlan_del		= mt7530_port_vlan_del,
3146 	.port_mirror_add	= mt753x_port_mirror_add,
3147 	.port_mirror_del	= mt753x_port_mirror_del,
3148 	.phylink_validate	= mt753x_phylink_validate,
3149 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
3150 	.phylink_mac_config	= mt753x_phylink_mac_config,
3151 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
3152 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3153 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3154 	.get_mac_eee		= mt753x_get_mac_eee,
3155 	.set_mac_eee		= mt753x_set_mac_eee,
3156 };
3157 
3158 static const struct mt753x_info mt753x_table[] = {
3159 	[ID_MT7621] = {
3160 		.id = ID_MT7621,
3161 		.sw_setup = mt7530_setup,
3162 		.phy_read = mt7530_phy_read,
3163 		.phy_write = mt7530_phy_write,
3164 		.pad_setup = mt7530_pad_clk_setup,
3165 		.phy_mode_supported = mt7530_phy_mode_supported,
3166 		.mac_port_validate = mt7530_mac_port_validate,
3167 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3168 		.mac_port_config = mt7530_mac_config,
3169 	},
3170 	[ID_MT7530] = {
3171 		.id = ID_MT7530,
3172 		.sw_setup = mt7530_setup,
3173 		.phy_read = mt7530_phy_read,
3174 		.phy_write = mt7530_phy_write,
3175 		.pad_setup = mt7530_pad_clk_setup,
3176 		.phy_mode_supported = mt7530_phy_mode_supported,
3177 		.mac_port_validate = mt7530_mac_port_validate,
3178 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3179 		.mac_port_config = mt7530_mac_config,
3180 	},
3181 	[ID_MT7531] = {
3182 		.id = ID_MT7531,
3183 		.sw_setup = mt7531_setup,
3184 		.phy_read = mt7531_ind_phy_read,
3185 		.phy_write = mt7531_ind_phy_write,
3186 		.pad_setup = mt7531_pad_setup,
3187 		.cpu_port_config = mt7531_cpu_port_config,
3188 		.phy_mode_supported = mt7531_phy_mode_supported,
3189 		.mac_port_validate = mt7531_mac_port_validate,
3190 		.mac_port_get_state = mt7531_phylink_mac_link_state,
3191 		.mac_port_config = mt7531_mac_config,
3192 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
3193 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
3194 	},
3195 };
3196 
3197 static const struct of_device_id mt7530_of_match[] = {
3198 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3199 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3200 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3201 	{ /* sentinel */ },
3202 };
3203 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3204 
3205 static int
3206 mt7530_probe(struct mdio_device *mdiodev)
3207 {
3208 	struct mt7530_priv *priv;
3209 	struct device_node *dn;
3210 
3211 	dn = mdiodev->dev.of_node;
3212 
3213 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3214 	if (!priv)
3215 		return -ENOMEM;
3216 
3217 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3218 	if (!priv->ds)
3219 		return -ENOMEM;
3220 
3221 	priv->ds->dev = &mdiodev->dev;
3222 	priv->ds->num_ports = MT7530_NUM_PORTS;
3223 
3224 	/* Use medatek,mcm property to distinguish hardware type that would
3225 	 * casues a little bit differences on power-on sequence.
3226 	 */
3227 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3228 	if (priv->mcm) {
3229 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3230 
3231 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3232 		if (IS_ERR(priv->rstc)) {
3233 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3234 			return PTR_ERR(priv->rstc);
3235 		}
3236 	}
3237 
3238 	/* Get the hardware identifier from the devicetree node.
3239 	 * We will need it for some of the clock and regulator setup.
3240 	 */
3241 	priv->info = of_device_get_match_data(&mdiodev->dev);
3242 	if (!priv->info)
3243 		return -EINVAL;
3244 
3245 	/* Sanity check if these required device operations are filled
3246 	 * properly.
3247 	 */
3248 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3249 	    !priv->info->phy_read || !priv->info->phy_write ||
3250 	    !priv->info->phy_mode_supported ||
3251 	    !priv->info->mac_port_validate ||
3252 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3253 		return -EINVAL;
3254 
3255 	priv->id = priv->info->id;
3256 
3257 	if (priv->id == ID_MT7530) {
3258 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3259 		if (IS_ERR(priv->core_pwr))
3260 			return PTR_ERR(priv->core_pwr);
3261 
3262 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3263 		if (IS_ERR(priv->io_pwr))
3264 			return PTR_ERR(priv->io_pwr);
3265 	}
3266 
3267 	/* Not MCM that indicates switch works as the remote standalone
3268 	 * integrated circuit so the GPIO pin would be used to complete
3269 	 * the reset, otherwise memory-mapped register accessing used
3270 	 * through syscon provides in the case of MCM.
3271 	 */
3272 	if (!priv->mcm) {
3273 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3274 						      GPIOD_OUT_LOW);
3275 		if (IS_ERR(priv->reset)) {
3276 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3277 			return PTR_ERR(priv->reset);
3278 		}
3279 	}
3280 
3281 	priv->bus = mdiodev->bus;
3282 	priv->dev = &mdiodev->dev;
3283 	priv->ds->priv = priv;
3284 	priv->ds->ops = &mt7530_switch_ops;
3285 	mutex_init(&priv->reg_mutex);
3286 	dev_set_drvdata(&mdiodev->dev, priv);
3287 
3288 	return dsa_register_switch(priv->ds);
3289 }
3290 
3291 static void
3292 mt7530_remove(struct mdio_device *mdiodev)
3293 {
3294 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3295 	int ret = 0;
3296 
3297 	if (!priv)
3298 		return;
3299 
3300 	ret = regulator_disable(priv->core_pwr);
3301 	if (ret < 0)
3302 		dev_err(priv->dev,
3303 			"Failed to disable core power: %d\n", ret);
3304 
3305 	ret = regulator_disable(priv->io_pwr);
3306 	if (ret < 0)
3307 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3308 			ret);
3309 
3310 	if (priv->irq)
3311 		mt7530_free_irq(priv);
3312 
3313 	dsa_unregister_switch(priv->ds);
3314 	mutex_destroy(&priv->reg_mutex);
3315 
3316 	dev_set_drvdata(&mdiodev->dev, NULL);
3317 }
3318 
3319 static void mt7530_shutdown(struct mdio_device *mdiodev)
3320 {
3321 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3322 
3323 	if (!priv)
3324 		return;
3325 
3326 	dsa_switch_shutdown(priv->ds);
3327 
3328 	dev_set_drvdata(&mdiodev->dev, NULL);
3329 }
3330 
3331 static struct mdio_driver mt7530_mdio_driver = {
3332 	.probe  = mt7530_probe,
3333 	.remove = mt7530_remove,
3334 	.shutdown = mt7530_shutdown,
3335 	.mdiodrv.driver = {
3336 		.name = "mt7530",
3337 		.of_match_table = mt7530_of_match,
3338 	},
3339 };
3340 
3341 mdio_module_driver(mt7530_mdio_driver);
3342 
3343 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3344 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3345 MODULE_LICENSE("GPL");
3346