xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 19758688)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, trgint, xtal;
422 
423 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424 
425 	if (xtal == HWTRAP_XTAL_20MHZ) {
426 		dev_err(priv->dev,
427 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 			__func__);
429 		return -EINVAL;
430 	}
431 
432 	switch (interface) {
433 	case PHY_INTERFACE_MODE_RGMII:
434 		trgint = 0;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (xtal == HWTRAP_XTAL_25MHZ)
439 			ssc_delta = 0x57;
440 		else
441 			ssc_delta = 0x87;
442 		if (priv->id == ID_MT7621) {
443 			/* PLL frequency: 125MHz: 1.0GBit */
444 			if (xtal == HWTRAP_XTAL_40MHZ)
445 				ncpo1 = 0x0640;
446 			if (xtal == HWTRAP_XTAL_25MHZ)
447 				ncpo1 = 0x0a00;
448 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449 			if (xtal == HWTRAP_XTAL_40MHZ)
450 				ncpo1 = 0x0c80;
451 			if (xtal == HWTRAP_XTAL_25MHZ)
452 				ncpo1 = 0x1400;
453 		}
454 		break;
455 	default:
456 		dev_err(priv->dev, "xMII interface %d not supported\n",
457 			interface);
458 		return -EINVAL;
459 	}
460 
461 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 		   P6_INTF_MODE(trgint));
463 
464 	if (trgint) {
465 		/* Disable the MT7530 TRGMII clocks */
466 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467 
468 		/* Setup the MT7530 TRGMII Tx Clock */
469 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 		core_write(priv, CORE_PLL_GROUP4,
474 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 			   RG_SYSPLL_BIAS_LPF_EN);
476 		core_write(priv, CORE_PLL_GROUP2,
477 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 			   RG_SYSPLL_POSDIV(1));
479 		core_write(priv, CORE_PLL_GROUP7,
480 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 
483 		/* Enable the MT7530 TRGMII clocks */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 	}
486 
487 	return 0;
488 }
489 
490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 	u32 val;
493 
494 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495 
496 	return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498 
499 static int
500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 	return 0;
503 }
504 
505 static void
506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 	u32 top_sig;
509 	u32 hwstrap;
510 	u32 xtal;
511 	u32 val;
512 
513 	if (mt7531_dual_sgmii_supported(priv))
514 		return;
515 
516 	val = mt7530_read(priv, MT7531_CREV);
517 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 	if ((val & CHIP_REV_M) > 0)
520 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 						    HWTRAP_XTAL_FSEL_25MHZ;
522 	else
523 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524 
525 	/* Step 1 : Disable MT7531 COREPLL */
526 	val = mt7530_read(priv, MT7531_PLLGP_EN);
527 	val &= ~EN_COREPLL;
528 	mt7530_write(priv, MT7531_PLLGP_EN, val);
529 
530 	/* Step 2: switch to XTAL output */
531 	val = mt7530_read(priv, MT7531_PLLGP_EN);
532 	val |= SW_CLKSW;
533 	mt7530_write(priv, MT7531_PLLGP_EN, val);
534 
535 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 	val &= ~RG_COREPLL_EN;
537 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
538 
539 	/* Step 3: disable PLLGP and enable program PLLGP */
540 	val = mt7530_read(priv, MT7531_PLLGP_EN);
541 	val |= SW_PLLGP;
542 	mt7530_write(priv, MT7531_PLLGP_EN, val);
543 
544 	/* Step 4: program COREPLL output frequency to 500MHz */
545 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 	val &= ~RG_COREPLL_POSDIV_M;
547 	val |= 2 << RG_COREPLL_POSDIV_S;
548 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 	usleep_range(25, 35);
550 
551 	switch (xtal) {
552 	case HWTRAP_XTAL_FSEL_25MHZ:
553 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 		val &= ~RG_COREPLL_SDM_PCW_M;
555 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 		break;
558 	case HWTRAP_XTAL_FSEL_40MHZ:
559 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 		val &= ~RG_COREPLL_SDM_PCW_M;
561 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 		break;
564 	}
565 
566 	/* Set feedback divide ratio update signal to high */
567 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 	val |= RG_COREPLL_SDM_PCW_CHG;
569 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 	/* Wait for at least 16 XTAL clocks */
571 	usleep_range(10, 20);
572 
573 	/* Step 5: set feedback divide ratio update signal to low */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val &= ~RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 
578 	/* Enable 325M clock for SGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580 
581 	/* Enable 250SSC clock for RGMII */
582 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583 
584 	/* Step 6: Enable MT7531 PLL */
585 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 	val |= RG_COREPLL_EN;
587 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
588 
589 	val = mt7530_read(priv, MT7531_PLLGP_EN);
590 	val |= EN_COREPLL;
591 	mt7530_write(priv, MT7531_PLLGP_EN, val);
592 	usleep_range(25, 35);
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 	return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608 
609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 				u16 val)
611 {
612 	return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614 
615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 			       int devad, int regnum)
617 {
618 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620 
621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 				int regnum, u16 val)
623 {
624 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626 
627 static int
628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 			int regnum)
630 {
631 	struct mt7530_dummy_poll p;
632 	u32 reg, val;
633 	int ret;
634 
635 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636 
637 	mt7530_mutex_lock(priv);
638 
639 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 	if (ret < 0) {
642 		dev_err(priv->dev, "poll timeout\n");
643 		goto out;
644 	}
645 
646 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649 
650 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 	if (ret < 0) {
653 		dev_err(priv->dev, "poll timeout\n");
654 		goto out;
655 	}
656 
657 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 	      MT7531_MDIO_DEV_ADDR(devad);
659 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660 
661 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 	if (ret < 0) {
664 		dev_err(priv->dev, "poll timeout\n");
665 		goto out;
666 	}
667 
668 	ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 	mt7530_mutex_unlock(priv);
671 
672 	return ret;
673 }
674 
675 static int
676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 			 int regnum, u16 data)
678 {
679 	struct mt7530_dummy_poll p;
680 	u32 val, reg;
681 	int ret;
682 
683 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684 
685 	mt7530_mutex_lock(priv);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 	      MT7531_MDIO_DEV_ADDR(devad) | data;
707 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708 
709 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 	if (ret < 0) {
712 		dev_err(priv->dev, "poll timeout\n");
713 		goto out;
714 	}
715 
716 out:
717 	mt7530_mutex_unlock(priv);
718 
719 	return ret;
720 }
721 
722 static int
723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 val;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum);
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 	ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 	mt7530_mutex_unlock(priv);
755 
756 	return ret;
757 }
758 
759 static int
760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 			 u16 data)
762 {
763 	struct mt7530_dummy_poll p;
764 	int ret;
765 	u32 reg;
766 
767 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768 
769 	mt7530_mutex_lock(priv);
770 
771 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 	if (ret < 0) {
774 		dev_err(priv->dev, "poll timeout\n");
775 		goto out;
776 	}
777 
778 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 	      MT7531_MDIO_REG_ADDR(regnum) | data;
780 
781 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782 
783 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 	if (ret < 0) {
786 		dev_err(priv->dev, "poll timeout\n");
787 		goto out;
788 	}
789 
790 out:
791 	mt7530_mutex_unlock(priv);
792 
793 	return ret;
794 }
795 
796 static int
797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 	struct mt7530_priv *priv = bus->priv;
800 
801 	return priv->info->phy_read_c22(priv, port, regnum);
802 }
803 
804 static int
805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 	struct mt7530_priv *priv = bus->priv;
808 
809 	return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811 
812 static int
813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 	struct mt7530_priv *priv = bus->priv;
816 
817 	return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819 
820 static int
821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 		     u16 val)
823 {
824 	struct mt7530_priv *priv = bus->priv;
825 
826 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 			ETH_GSTRING_LEN);
841 }
842 
843 static void
844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 			 uint64_t *data)
846 {
847 	struct mt7530_priv *priv = ds->priv;
848 	const struct mt7530_mib_desc *mib;
849 	u32 reg, i;
850 	u64 hi;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 		mib = &mt7530_mib[i];
854 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855 
856 		data[i] = mt7530_read(priv, reg);
857 		if (mib->size == 2) {
858 			hi = mt7530_read(priv, reg + 4);
859 			data[i] |= hi << 32;
860 		}
861 	}
862 }
863 
864 static int
865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 	if (sset != ETH_SS_STATS)
868 		return 0;
869 
870 	return ARRAY_SIZE(mt7530_mib);
871 }
872 
873 static int
874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 	struct mt7530_priv *priv = ds->priv;
877 	unsigned int secs = msecs / 1000;
878 	unsigned int tmp_age_count;
879 	unsigned int error = -1;
880 	unsigned int age_count;
881 	unsigned int age_unit;
882 
883 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 		return -ERANGE;
886 
887 	/* iterate through all possible age_count to find the closest pair */
888 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890 
891 		if (tmp_age_unit <= AGE_UNIT_MAX) {
892 			unsigned int tmp_error = secs -
893 				(tmp_age_count + 1) * (tmp_age_unit + 1);
894 
895 			/* found a closer pair */
896 			if (error > tmp_error) {
897 				error = tmp_error;
898 				age_count = tmp_age_count;
899 				age_unit = tmp_age_unit;
900 			}
901 
902 			/* found the exact match, so break the loop */
903 			if (!error)
904 				break;
905 		}
906 	}
907 
908 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909 
910 	return 0;
911 }
912 
913 static const char *p5_intf_modes(unsigned int p5_interface)
914 {
915 	switch (p5_interface) {
916 	case P5_DISABLED:
917 		return "DISABLED";
918 	case P5_INTF_SEL_PHY_P0:
919 		return "PHY P0";
920 	case P5_INTF_SEL_PHY_P4:
921 		return "PHY P4";
922 	case P5_INTF_SEL_GMAC5:
923 		return "GMAC5";
924 	case P5_INTF_SEL_GMAC5_SGMII:
925 		return "GMAC5_SGMII";
926 	default:
927 		return "unknown";
928 	}
929 }
930 
931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 	struct mt7530_priv *priv = ds->priv;
934 	u8 tx_delay = 0;
935 	int val;
936 
937 	mutex_lock(&priv->reg_mutex);
938 
939 	val = mt7530_read(priv, MT7530_MHWTRAP);
940 
941 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943 
944 	switch (priv->p5_intf_sel) {
945 	case P5_INTF_SEL_PHY_P0:
946 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 		val |= MHWTRAP_PHY0_SEL;
948 		fallthrough;
949 	case P5_INTF_SEL_PHY_P4:
950 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952 
953 		/* Setup the MAC by default for the cpu port */
954 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 		break;
956 	case P5_INTF_SEL_GMAC5:
957 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 		val &= ~MHWTRAP_P5_DIS;
959 		break;
960 	case P5_DISABLED:
961 		interface = PHY_INTERFACE_MODE_NA;
962 		break;
963 	default:
964 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 			priv->p5_intf_sel);
966 		goto unlock_exit;
967 	}
968 
969 	/* Setup RGMII settings */
970 	if (phy_interface_mode_is_rgmii(interface)) {
971 		val |= MHWTRAP_P5_RGMII_MODE;
972 
973 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
974 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975 
976 		/* Don't set delay in DSA mode */
977 		if (!dsa_is_dsa_port(priv->ds, 5) &&
978 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
980 			tx_delay = 4; /* n * 0.5 ns */
981 
982 		/* P5 RGMII TX Clock Control: delay x */
983 		mt7530_write(priv, MT7530_P5RGMIITXCR,
984 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985 
986 		/* reduce P5 RGMII Tx driving, 8mA */
987 		mt7530_write(priv, MT7530_IO_DRV_CR,
988 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 	}
990 
991 	mt7530_write(priv, MT7530_MHWTRAP, val);
992 
993 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995 
996 	priv->p5_interface = interface;
997 
998 unlock_exit:
999 	mutex_unlock(&priv->reg_mutex);
1000 }
1001 
1002 static void
1003 mt753x_trap_frames(struct mt7530_priv *priv)
1004 {
1005 	/* Trap BPDUs to the CPU port(s) */
1006 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1007 		   MT753X_BPDU_CPU_ONLY);
1008 
1009 	/* Trap 802.1X PAE frames to the CPU port(s) */
1010 	mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK,
1011 		   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY));
1012 
1013 	/* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
1014 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
1015 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
1016 }
1017 
1018 static int
1019 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1020 {
1021 	struct mt7530_priv *priv = ds->priv;
1022 	int ret;
1023 
1024 	/* Setup max capability of CPU port at first */
1025 	if (priv->info->cpu_port_config) {
1026 		ret = priv->info->cpu_port_config(ds, port);
1027 		if (ret)
1028 			return ret;
1029 	}
1030 
1031 	/* Enable Mediatek header mode on the cpu port */
1032 	mt7530_write(priv, MT7530_PVC_P(port),
1033 		     PORT_SPEC_TAG);
1034 
1035 	/* Enable flooding on the CPU port */
1036 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1037 		   UNU_FFP(BIT(port)));
1038 
1039 	/* Set CPU port number */
1040 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1041 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1042 
1043 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1044 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1045 	 * is affine to the inbound user port.
1046 	 */
1047 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1048 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1049 
1050 	/* CPU port gets connected to all user ports of
1051 	 * the switch.
1052 	 */
1053 	mt7530_write(priv, MT7530_PCR_P(port),
1054 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1055 
1056 	/* Set to fallback mode for independent VLAN learning */
1057 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1058 		   MT7530_PORT_FALLBACK_MODE);
1059 
1060 	return 0;
1061 }
1062 
1063 static int
1064 mt7530_port_enable(struct dsa_switch *ds, int port,
1065 		   struct phy_device *phy)
1066 {
1067 	struct dsa_port *dp = dsa_to_port(ds, port);
1068 	struct mt7530_priv *priv = ds->priv;
1069 
1070 	mutex_lock(&priv->reg_mutex);
1071 
1072 	/* Allow the user port gets connected to the cpu port and also
1073 	 * restore the port matrix if the port is the member of a certain
1074 	 * bridge.
1075 	 */
1076 	if (dsa_port_is_user(dp)) {
1077 		struct dsa_port *cpu_dp = dp->cpu_dp;
1078 
1079 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1080 	}
1081 	priv->ports[port].enable = true;
1082 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1083 		   priv->ports[port].pm);
1084 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1085 
1086 	mutex_unlock(&priv->reg_mutex);
1087 
1088 	return 0;
1089 }
1090 
1091 static void
1092 mt7530_port_disable(struct dsa_switch *ds, int port)
1093 {
1094 	struct mt7530_priv *priv = ds->priv;
1095 
1096 	mutex_lock(&priv->reg_mutex);
1097 
1098 	/* Clear up all port matrix which could be restored in the next
1099 	 * enablement for the port.
1100 	 */
1101 	priv->ports[port].enable = false;
1102 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1103 		   PCR_MATRIX_CLR);
1104 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1105 
1106 	mutex_unlock(&priv->reg_mutex);
1107 }
1108 
1109 static int
1110 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1111 {
1112 	struct mt7530_priv *priv = ds->priv;
1113 	int length;
1114 	u32 val;
1115 
1116 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1117 	 * largest MTU of the slave ports. Because the switch only has a global
1118 	 * RX length register, only allowing CPU port here is enough.
1119 	 */
1120 	if (!dsa_is_cpu_port(ds, port))
1121 		return 0;
1122 
1123 	mt7530_mutex_lock(priv);
1124 
1125 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1126 	val &= ~MAX_RX_PKT_LEN_MASK;
1127 
1128 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1129 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1130 	if (length <= 1522) {
1131 		val |= MAX_RX_PKT_LEN_1522;
1132 	} else if (length <= 1536) {
1133 		val |= MAX_RX_PKT_LEN_1536;
1134 	} else if (length <= 1552) {
1135 		val |= MAX_RX_PKT_LEN_1552;
1136 	} else {
1137 		val &= ~MAX_RX_JUMBO_MASK;
1138 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1139 		val |= MAX_RX_PKT_LEN_JUMBO;
1140 	}
1141 
1142 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1143 
1144 	mt7530_mutex_unlock(priv);
1145 
1146 	return 0;
1147 }
1148 
1149 static int
1150 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1151 {
1152 	return MT7530_MAX_MTU;
1153 }
1154 
1155 static void
1156 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1157 {
1158 	struct mt7530_priv *priv = ds->priv;
1159 	u32 stp_state;
1160 
1161 	switch (state) {
1162 	case BR_STATE_DISABLED:
1163 		stp_state = MT7530_STP_DISABLED;
1164 		break;
1165 	case BR_STATE_BLOCKING:
1166 		stp_state = MT7530_STP_BLOCKING;
1167 		break;
1168 	case BR_STATE_LISTENING:
1169 		stp_state = MT7530_STP_LISTENING;
1170 		break;
1171 	case BR_STATE_LEARNING:
1172 		stp_state = MT7530_STP_LEARNING;
1173 		break;
1174 	case BR_STATE_FORWARDING:
1175 	default:
1176 		stp_state = MT7530_STP_FORWARDING;
1177 		break;
1178 	}
1179 
1180 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1181 		   FID_PST(FID_BRIDGED, stp_state));
1182 }
1183 
1184 static int
1185 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1186 			     struct switchdev_brport_flags flags,
1187 			     struct netlink_ext_ack *extack)
1188 {
1189 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1190 			   BR_BCAST_FLOOD))
1191 		return -EINVAL;
1192 
1193 	return 0;
1194 }
1195 
1196 static int
1197 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1198 			 struct switchdev_brport_flags flags,
1199 			 struct netlink_ext_ack *extack)
1200 {
1201 	struct mt7530_priv *priv = ds->priv;
1202 
1203 	if (flags.mask & BR_LEARNING)
1204 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1205 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1206 
1207 	if (flags.mask & BR_FLOOD)
1208 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1209 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1210 
1211 	if (flags.mask & BR_MCAST_FLOOD)
1212 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1213 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1214 
1215 	if (flags.mask & BR_BCAST_FLOOD)
1216 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1217 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1218 
1219 	return 0;
1220 }
1221 
1222 static int
1223 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1224 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1225 			struct netlink_ext_ack *extack)
1226 {
1227 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1228 	struct dsa_port *cpu_dp = dp->cpu_dp;
1229 	u32 port_bitmap = BIT(cpu_dp->index);
1230 	struct mt7530_priv *priv = ds->priv;
1231 
1232 	mutex_lock(&priv->reg_mutex);
1233 
1234 	dsa_switch_for_each_user_port(other_dp, ds) {
1235 		int other_port = other_dp->index;
1236 
1237 		if (dp == other_dp)
1238 			continue;
1239 
1240 		/* Add this port to the port matrix of the other ports in the
1241 		 * same bridge. If the port is disabled, port matrix is kept
1242 		 * and not being setup until the port becomes enabled.
1243 		 */
1244 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1245 			continue;
1246 
1247 		if (priv->ports[other_port].enable)
1248 			mt7530_set(priv, MT7530_PCR_P(other_port),
1249 				   PCR_MATRIX(BIT(port)));
1250 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1251 
1252 		port_bitmap |= BIT(other_port);
1253 	}
1254 
1255 	/* Add the all other ports to this port matrix. */
1256 	if (priv->ports[port].enable)
1257 		mt7530_rmw(priv, MT7530_PCR_P(port),
1258 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1259 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1260 
1261 	/* Set to fallback mode for independent VLAN learning */
1262 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1263 		   MT7530_PORT_FALLBACK_MODE);
1264 
1265 	mutex_unlock(&priv->reg_mutex);
1266 
1267 	return 0;
1268 }
1269 
1270 static void
1271 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1272 {
1273 	struct mt7530_priv *priv = ds->priv;
1274 	bool all_user_ports_removed = true;
1275 	int i;
1276 
1277 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1278 	 * bridge. Don't set standalone ports to fallback mode.
1279 	 */
1280 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1281 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1282 			   MT7530_PORT_FALLBACK_MODE);
1283 
1284 	mt7530_rmw(priv, MT7530_PVC_P(port),
1285 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1286 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1287 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1288 		   MT7530_VLAN_ACC_ALL);
1289 
1290 	/* Set PVID to 0 */
1291 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1292 		   G0_PORT_VID_DEF);
1293 
1294 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1295 		if (dsa_is_user_port(ds, i) &&
1296 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1297 			all_user_ports_removed = false;
1298 			break;
1299 		}
1300 	}
1301 
1302 	/* CPU port also does the same thing until all user ports belonging to
1303 	 * the CPU port get out of VLAN filtering mode.
1304 	 */
1305 	if (all_user_ports_removed) {
1306 		struct dsa_port *dp = dsa_to_port(ds, port);
1307 		struct dsa_port *cpu_dp = dp->cpu_dp;
1308 
1309 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1310 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1311 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1312 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1313 	}
1314 }
1315 
1316 static void
1317 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1318 {
1319 	struct mt7530_priv *priv = ds->priv;
1320 
1321 	/* Trapped into security mode allows packet forwarding through VLAN
1322 	 * table lookup.
1323 	 */
1324 	if (dsa_is_user_port(ds, port)) {
1325 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1326 			   MT7530_PORT_SECURITY_MODE);
1327 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1328 			   G0_PORT_VID(priv->ports[port].pvid));
1329 
1330 		/* Only accept tagged frames if PVID is not set */
1331 		if (!priv->ports[port].pvid)
1332 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1333 				   MT7530_VLAN_ACC_TAGGED);
1334 
1335 		/* Set the port as a user port which is to be able to recognize
1336 		 * VID from incoming packets before fetching entry within the
1337 		 * VLAN table.
1338 		 */
1339 		mt7530_rmw(priv, MT7530_PVC_P(port),
1340 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1341 			   VLAN_ATTR(MT7530_VLAN_USER) |
1342 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1343 	} else {
1344 		/* Also set CPU ports to the "user" VLAN port attribute, to
1345 		 * allow VLAN classification, but keep the EG_TAG attribute as
1346 		 * "consistent" (i.o.w. don't change its value) for packets
1347 		 * received by the switch from the CPU, so that tagged packets
1348 		 * are forwarded to user ports as tagged, and untagged as
1349 		 * untagged.
1350 		 */
1351 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1352 			   VLAN_ATTR(MT7530_VLAN_USER));
1353 	}
1354 }
1355 
1356 static void
1357 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1358 			 struct dsa_bridge bridge)
1359 {
1360 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1361 	struct dsa_port *cpu_dp = dp->cpu_dp;
1362 	struct mt7530_priv *priv = ds->priv;
1363 
1364 	mutex_lock(&priv->reg_mutex);
1365 
1366 	dsa_switch_for_each_user_port(other_dp, ds) {
1367 		int other_port = other_dp->index;
1368 
1369 		if (dp == other_dp)
1370 			continue;
1371 
1372 		/* Remove this port from the port matrix of the other ports
1373 		 * in the same bridge. If the port is disabled, port matrix
1374 		 * is kept and not being setup until the port becomes enabled.
1375 		 */
1376 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1377 			continue;
1378 
1379 		if (priv->ports[other_port].enable)
1380 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1381 				     PCR_MATRIX(BIT(port)));
1382 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1383 	}
1384 
1385 	/* Set the cpu port to be the only one in the port matrix of
1386 	 * this port.
1387 	 */
1388 	if (priv->ports[port].enable)
1389 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1390 			   PCR_MATRIX(BIT(cpu_dp->index)));
1391 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1392 
1393 	/* When a port is removed from the bridge, the port would be set up
1394 	 * back to the default as is at initial boot which is a VLAN-unaware
1395 	 * port.
1396 	 */
1397 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1398 		   MT7530_PORT_MATRIX_MODE);
1399 
1400 	mutex_unlock(&priv->reg_mutex);
1401 }
1402 
1403 static int
1404 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1405 		    const unsigned char *addr, u16 vid,
1406 		    struct dsa_db db)
1407 {
1408 	struct mt7530_priv *priv = ds->priv;
1409 	int ret;
1410 	u8 port_mask = BIT(port);
1411 
1412 	mutex_lock(&priv->reg_mutex);
1413 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1414 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1415 	mutex_unlock(&priv->reg_mutex);
1416 
1417 	return ret;
1418 }
1419 
1420 static int
1421 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1422 		    const unsigned char *addr, u16 vid,
1423 		    struct dsa_db db)
1424 {
1425 	struct mt7530_priv *priv = ds->priv;
1426 	int ret;
1427 	u8 port_mask = BIT(port);
1428 
1429 	mutex_lock(&priv->reg_mutex);
1430 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1431 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1432 	mutex_unlock(&priv->reg_mutex);
1433 
1434 	return ret;
1435 }
1436 
1437 static int
1438 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1439 		     dsa_fdb_dump_cb_t *cb, void *data)
1440 {
1441 	struct mt7530_priv *priv = ds->priv;
1442 	struct mt7530_fdb _fdb = { 0 };
1443 	int cnt = MT7530_NUM_FDB_RECORDS;
1444 	int ret = 0;
1445 	u32 rsp = 0;
1446 
1447 	mutex_lock(&priv->reg_mutex);
1448 
1449 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1450 	if (ret < 0)
1451 		goto err;
1452 
1453 	do {
1454 		if (rsp & ATC_SRCH_HIT) {
1455 			mt7530_fdb_read(priv, &_fdb);
1456 			if (_fdb.port_mask & BIT(port)) {
1457 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1458 					 data);
1459 				if (ret < 0)
1460 					break;
1461 			}
1462 		}
1463 	} while (--cnt &&
1464 		 !(rsp & ATC_SRCH_END) &&
1465 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1466 err:
1467 	mutex_unlock(&priv->reg_mutex);
1468 
1469 	return 0;
1470 }
1471 
1472 static int
1473 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1474 		    const struct switchdev_obj_port_mdb *mdb,
1475 		    struct dsa_db db)
1476 {
1477 	struct mt7530_priv *priv = ds->priv;
1478 	const u8 *addr = mdb->addr;
1479 	u16 vid = mdb->vid;
1480 	u8 port_mask = 0;
1481 	int ret;
1482 
1483 	mutex_lock(&priv->reg_mutex);
1484 
1485 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1486 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1487 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1488 			    & PORT_MAP_MASK;
1489 
1490 	port_mask |= BIT(port);
1491 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1492 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1493 
1494 	mutex_unlock(&priv->reg_mutex);
1495 
1496 	return ret;
1497 }
1498 
1499 static int
1500 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1501 		    const struct switchdev_obj_port_mdb *mdb,
1502 		    struct dsa_db db)
1503 {
1504 	struct mt7530_priv *priv = ds->priv;
1505 	const u8 *addr = mdb->addr;
1506 	u16 vid = mdb->vid;
1507 	u8 port_mask = 0;
1508 	int ret;
1509 
1510 	mutex_lock(&priv->reg_mutex);
1511 
1512 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1513 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1514 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1515 			    & PORT_MAP_MASK;
1516 
1517 	port_mask &= ~BIT(port);
1518 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1519 			 port_mask ? STATIC_ENT : STATIC_EMP);
1520 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1521 
1522 	mutex_unlock(&priv->reg_mutex);
1523 
1524 	return ret;
1525 }
1526 
1527 static int
1528 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1529 {
1530 	struct mt7530_dummy_poll p;
1531 	u32 val;
1532 	int ret;
1533 
1534 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1535 	mt7530_write(priv, MT7530_VTCR, val);
1536 
1537 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1538 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1539 				 !(val & VTCR_BUSY), 20, 20000);
1540 	if (ret < 0) {
1541 		dev_err(priv->dev, "poll timeout\n");
1542 		return ret;
1543 	}
1544 
1545 	val = mt7530_read(priv, MT7530_VTCR);
1546 	if (val & VTCR_INVALID) {
1547 		dev_err(priv->dev, "read VTCR invalid\n");
1548 		return -EINVAL;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int
1555 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1556 			   struct netlink_ext_ack *extack)
1557 {
1558 	struct dsa_port *dp = dsa_to_port(ds, port);
1559 	struct dsa_port *cpu_dp = dp->cpu_dp;
1560 
1561 	if (vlan_filtering) {
1562 		/* The port is being kept as VLAN-unaware port when bridge is
1563 		 * set up with vlan_filtering not being set, Otherwise, the
1564 		 * port and the corresponding CPU port is required the setup
1565 		 * for becoming a VLAN-aware port.
1566 		 */
1567 		mt7530_port_set_vlan_aware(ds, port);
1568 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1569 	} else {
1570 		mt7530_port_set_vlan_unaware(ds, port);
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static void
1577 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1578 		   struct mt7530_hw_vlan_entry *entry)
1579 {
1580 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1581 	u8 new_members;
1582 	u32 val;
1583 
1584 	new_members = entry->old_members | BIT(entry->port);
1585 
1586 	/* Validate the entry with independent learning, create egress tag per
1587 	 * VLAN and joining the port as one of the port members.
1588 	 */
1589 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1590 	      VLAN_VALID;
1591 	mt7530_write(priv, MT7530_VAWD1, val);
1592 
1593 	/* Decide whether adding tag or not for those outgoing packets from the
1594 	 * port inside the VLAN.
1595 	 * CPU port is always taken as a tagged port for serving more than one
1596 	 * VLANs across and also being applied with egress type stack mode for
1597 	 * that VLAN tags would be appended after hardware special tag used as
1598 	 * DSA tag.
1599 	 */
1600 	if (dsa_port_is_cpu(dp))
1601 		val = MT7530_VLAN_EGRESS_STACK;
1602 	else if (entry->untagged)
1603 		val = MT7530_VLAN_EGRESS_UNTAG;
1604 	else
1605 		val = MT7530_VLAN_EGRESS_TAG;
1606 	mt7530_rmw(priv, MT7530_VAWD2,
1607 		   ETAG_CTRL_P_MASK(entry->port),
1608 		   ETAG_CTRL_P(entry->port, val));
1609 }
1610 
1611 static void
1612 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1613 		   struct mt7530_hw_vlan_entry *entry)
1614 {
1615 	u8 new_members;
1616 	u32 val;
1617 
1618 	new_members = entry->old_members & ~BIT(entry->port);
1619 
1620 	val = mt7530_read(priv, MT7530_VAWD1);
1621 	if (!(val & VLAN_VALID)) {
1622 		dev_err(priv->dev,
1623 			"Cannot be deleted due to invalid entry\n");
1624 		return;
1625 	}
1626 
1627 	if (new_members) {
1628 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1629 		      VLAN_VALID;
1630 		mt7530_write(priv, MT7530_VAWD1, val);
1631 	} else {
1632 		mt7530_write(priv, MT7530_VAWD1, 0);
1633 		mt7530_write(priv, MT7530_VAWD2, 0);
1634 	}
1635 }
1636 
1637 static void
1638 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1639 		      struct mt7530_hw_vlan_entry *entry,
1640 		      mt7530_vlan_op vlan_op)
1641 {
1642 	u32 val;
1643 
1644 	/* Fetch entry */
1645 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1646 
1647 	val = mt7530_read(priv, MT7530_VAWD1);
1648 
1649 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1650 
1651 	/* Manipulate entry */
1652 	vlan_op(priv, entry);
1653 
1654 	/* Flush result to hardware */
1655 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1656 }
1657 
1658 static int
1659 mt7530_setup_vlan0(struct mt7530_priv *priv)
1660 {
1661 	u32 val;
1662 
1663 	/* Validate the entry with independent learning, keep the original
1664 	 * ingress tag attribute.
1665 	 */
1666 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1667 	      VLAN_VALID;
1668 	mt7530_write(priv, MT7530_VAWD1, val);
1669 
1670 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1671 }
1672 
1673 static int
1674 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1675 		     const struct switchdev_obj_port_vlan *vlan,
1676 		     struct netlink_ext_ack *extack)
1677 {
1678 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1679 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1680 	struct mt7530_hw_vlan_entry new_entry;
1681 	struct mt7530_priv *priv = ds->priv;
1682 
1683 	mutex_lock(&priv->reg_mutex);
1684 
1685 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1686 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1687 
1688 	if (pvid) {
1689 		priv->ports[port].pvid = vlan->vid;
1690 
1691 		/* Accept all frames if PVID is set */
1692 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1693 			   MT7530_VLAN_ACC_ALL);
1694 
1695 		/* Only configure PVID if VLAN filtering is enabled */
1696 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1697 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1698 				   G0_PORT_VID_MASK,
1699 				   G0_PORT_VID(vlan->vid));
1700 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1701 		/* This VLAN is overwritten without PVID, so unset it */
1702 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1703 
1704 		/* Only accept tagged frames if the port is VLAN-aware */
1705 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1706 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1707 				   MT7530_VLAN_ACC_TAGGED);
1708 
1709 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1710 			   G0_PORT_VID_DEF);
1711 	}
1712 
1713 	mutex_unlock(&priv->reg_mutex);
1714 
1715 	return 0;
1716 }
1717 
1718 static int
1719 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1720 		     const struct switchdev_obj_port_vlan *vlan)
1721 {
1722 	struct mt7530_hw_vlan_entry target_entry;
1723 	struct mt7530_priv *priv = ds->priv;
1724 
1725 	mutex_lock(&priv->reg_mutex);
1726 
1727 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1728 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1729 			      mt7530_hw_vlan_del);
1730 
1731 	/* PVID is being restored to the default whenever the PVID port
1732 	 * is being removed from the VLAN.
1733 	 */
1734 	if (priv->ports[port].pvid == vlan->vid) {
1735 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1736 
1737 		/* Only accept tagged frames if the port is VLAN-aware */
1738 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1739 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1740 				   MT7530_VLAN_ACC_TAGGED);
1741 
1742 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1743 			   G0_PORT_VID_DEF);
1744 	}
1745 
1746 
1747 	mutex_unlock(&priv->reg_mutex);
1748 
1749 	return 0;
1750 }
1751 
1752 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1753 {
1754 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1755 				   MIRROR_PORT(val);
1756 }
1757 
1758 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1759 {
1760 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1761 				   MIRROR_PORT(val);
1762 }
1763 
1764 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1765 				  struct dsa_mall_mirror_tc_entry *mirror,
1766 				  bool ingress, struct netlink_ext_ack *extack)
1767 {
1768 	struct mt7530_priv *priv = ds->priv;
1769 	int monitor_port;
1770 	u32 val;
1771 
1772 	/* Check for existent entry */
1773 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1774 		return -EEXIST;
1775 
1776 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1777 
1778 	/* MT7530 only supports one monitor port */
1779 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1780 	if (val & MT753X_MIRROR_EN(priv->id) &&
1781 	    monitor_port != mirror->to_local_port)
1782 		return -EEXIST;
1783 
1784 	val |= MT753X_MIRROR_EN(priv->id);
1785 	val &= ~MT753X_MIRROR_MASK(priv->id);
1786 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1787 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1788 
1789 	val = mt7530_read(priv, MT7530_PCR_P(port));
1790 	if (ingress) {
1791 		val |= PORT_RX_MIR;
1792 		priv->mirror_rx |= BIT(port);
1793 	} else {
1794 		val |= PORT_TX_MIR;
1795 		priv->mirror_tx |= BIT(port);
1796 	}
1797 	mt7530_write(priv, MT7530_PCR_P(port), val);
1798 
1799 	return 0;
1800 }
1801 
1802 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1803 				   struct dsa_mall_mirror_tc_entry *mirror)
1804 {
1805 	struct mt7530_priv *priv = ds->priv;
1806 	u32 val;
1807 
1808 	val = mt7530_read(priv, MT7530_PCR_P(port));
1809 	if (mirror->ingress) {
1810 		val &= ~PORT_RX_MIR;
1811 		priv->mirror_rx &= ~BIT(port);
1812 	} else {
1813 		val &= ~PORT_TX_MIR;
1814 		priv->mirror_tx &= ~BIT(port);
1815 	}
1816 	mt7530_write(priv, MT7530_PCR_P(port), val);
1817 
1818 	if (!priv->mirror_rx && !priv->mirror_tx) {
1819 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1820 		val &= ~MT753X_MIRROR_EN(priv->id);
1821 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1822 	}
1823 }
1824 
1825 static enum dsa_tag_protocol
1826 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1827 		     enum dsa_tag_protocol mp)
1828 {
1829 	return DSA_TAG_PROTO_MTK;
1830 }
1831 
1832 #ifdef CONFIG_GPIOLIB
1833 static inline u32
1834 mt7530_gpio_to_bit(unsigned int offset)
1835 {
1836 	/* Map GPIO offset to register bit
1837 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1838 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1839 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1840 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1841 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1842 	 */
1843 	return BIT(offset + offset / 3);
1844 }
1845 
1846 static int
1847 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1848 {
1849 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1850 	u32 bit = mt7530_gpio_to_bit(offset);
1851 
1852 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1853 }
1854 
1855 static void
1856 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1857 {
1858 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1859 	u32 bit = mt7530_gpio_to_bit(offset);
1860 
1861 	if (value)
1862 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1863 	else
1864 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1865 }
1866 
1867 static int
1868 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1869 {
1870 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1871 	u32 bit = mt7530_gpio_to_bit(offset);
1872 
1873 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1874 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1875 }
1876 
1877 static int
1878 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1879 {
1880 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1881 	u32 bit = mt7530_gpio_to_bit(offset);
1882 
1883 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1884 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1885 
1886 	return 0;
1887 }
1888 
1889 static int
1890 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1891 {
1892 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1893 	u32 bit = mt7530_gpio_to_bit(offset);
1894 
1895 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1896 
1897 	if (value)
1898 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1899 	else
1900 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1901 
1902 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1903 
1904 	return 0;
1905 }
1906 
1907 static int
1908 mt7530_setup_gpio(struct mt7530_priv *priv)
1909 {
1910 	struct device *dev = priv->dev;
1911 	struct gpio_chip *gc;
1912 
1913 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1914 	if (!gc)
1915 		return -ENOMEM;
1916 
1917 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1918 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1919 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1920 
1921 	gc->label = "mt7530";
1922 	gc->parent = dev;
1923 	gc->owner = THIS_MODULE;
1924 	gc->get_direction = mt7530_gpio_get_direction;
1925 	gc->direction_input = mt7530_gpio_direction_input;
1926 	gc->direction_output = mt7530_gpio_direction_output;
1927 	gc->get = mt7530_gpio_get;
1928 	gc->set = mt7530_gpio_set;
1929 	gc->base = -1;
1930 	gc->ngpio = 15;
1931 	gc->can_sleep = true;
1932 
1933 	return devm_gpiochip_add_data(dev, gc, priv);
1934 }
1935 #endif /* CONFIG_GPIOLIB */
1936 
1937 static irqreturn_t
1938 mt7530_irq_thread_fn(int irq, void *dev_id)
1939 {
1940 	struct mt7530_priv *priv = dev_id;
1941 	bool handled = false;
1942 	u32 val;
1943 	int p;
1944 
1945 	mt7530_mutex_lock(priv);
1946 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1947 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1948 	mt7530_mutex_unlock(priv);
1949 
1950 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1951 		if (BIT(p) & val) {
1952 			unsigned int irq;
1953 
1954 			irq = irq_find_mapping(priv->irq_domain, p);
1955 			handle_nested_irq(irq);
1956 			handled = true;
1957 		}
1958 	}
1959 
1960 	return IRQ_RETVAL(handled);
1961 }
1962 
1963 static void
1964 mt7530_irq_mask(struct irq_data *d)
1965 {
1966 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1967 
1968 	priv->irq_enable &= ~BIT(d->hwirq);
1969 }
1970 
1971 static void
1972 mt7530_irq_unmask(struct irq_data *d)
1973 {
1974 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1975 
1976 	priv->irq_enable |= BIT(d->hwirq);
1977 }
1978 
1979 static void
1980 mt7530_irq_bus_lock(struct irq_data *d)
1981 {
1982 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1983 
1984 	mt7530_mutex_lock(priv);
1985 }
1986 
1987 static void
1988 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1989 {
1990 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1991 
1992 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1993 	mt7530_mutex_unlock(priv);
1994 }
1995 
1996 static struct irq_chip mt7530_irq_chip = {
1997 	.name = KBUILD_MODNAME,
1998 	.irq_mask = mt7530_irq_mask,
1999 	.irq_unmask = mt7530_irq_unmask,
2000 	.irq_bus_lock = mt7530_irq_bus_lock,
2001 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2002 };
2003 
2004 static int
2005 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2006 	       irq_hw_number_t hwirq)
2007 {
2008 	irq_set_chip_data(irq, domain->host_data);
2009 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2010 	irq_set_nested_thread(irq, true);
2011 	irq_set_noprobe(irq);
2012 
2013 	return 0;
2014 }
2015 
2016 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2017 	.map = mt7530_irq_map,
2018 	.xlate = irq_domain_xlate_onecell,
2019 };
2020 
2021 static void
2022 mt7988_irq_mask(struct irq_data *d)
2023 {
2024 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2025 
2026 	priv->irq_enable &= ~BIT(d->hwirq);
2027 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2028 }
2029 
2030 static void
2031 mt7988_irq_unmask(struct irq_data *d)
2032 {
2033 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2034 
2035 	priv->irq_enable |= BIT(d->hwirq);
2036 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2037 }
2038 
2039 static struct irq_chip mt7988_irq_chip = {
2040 	.name = KBUILD_MODNAME,
2041 	.irq_mask = mt7988_irq_mask,
2042 	.irq_unmask = mt7988_irq_unmask,
2043 };
2044 
2045 static int
2046 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2047 	       irq_hw_number_t hwirq)
2048 {
2049 	irq_set_chip_data(irq, domain->host_data);
2050 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2051 	irq_set_nested_thread(irq, true);
2052 	irq_set_noprobe(irq);
2053 
2054 	return 0;
2055 }
2056 
2057 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2058 	.map = mt7988_irq_map,
2059 	.xlate = irq_domain_xlate_onecell,
2060 };
2061 
2062 static void
2063 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2064 {
2065 	struct dsa_switch *ds = priv->ds;
2066 	int p;
2067 
2068 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2069 		if (BIT(p) & ds->phys_mii_mask) {
2070 			unsigned int irq;
2071 
2072 			irq = irq_create_mapping(priv->irq_domain, p);
2073 			ds->slave_mii_bus->irq[p] = irq;
2074 		}
2075 	}
2076 }
2077 
2078 static int
2079 mt7530_setup_irq(struct mt7530_priv *priv)
2080 {
2081 	struct device *dev = priv->dev;
2082 	struct device_node *np = dev->of_node;
2083 	int ret;
2084 
2085 	if (!of_property_read_bool(np, "interrupt-controller")) {
2086 		dev_info(dev, "no interrupt support\n");
2087 		return 0;
2088 	}
2089 
2090 	priv->irq = of_irq_get(np, 0);
2091 	if (priv->irq <= 0) {
2092 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2093 		return priv->irq ? : -EINVAL;
2094 	}
2095 
2096 	if (priv->id == ID_MT7988)
2097 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2098 							 &mt7988_irq_domain_ops,
2099 							 priv);
2100 	else
2101 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2102 							 &mt7530_irq_domain_ops,
2103 							 priv);
2104 
2105 	if (!priv->irq_domain) {
2106 		dev_err(dev, "failed to create IRQ domain\n");
2107 		return -ENOMEM;
2108 	}
2109 
2110 	/* This register must be set for MT7530 to properly fire interrupts */
2111 	if (priv->id != ID_MT7531)
2112 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2113 
2114 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2115 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2116 	if (ret) {
2117 		irq_domain_remove(priv->irq_domain);
2118 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2119 		return ret;
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 static void
2126 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2127 {
2128 	int p;
2129 
2130 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2131 		if (BIT(p) & priv->ds->phys_mii_mask) {
2132 			unsigned int irq;
2133 
2134 			irq = irq_find_mapping(priv->irq_domain, p);
2135 			irq_dispose_mapping(irq);
2136 		}
2137 	}
2138 }
2139 
2140 static void
2141 mt7530_free_irq_common(struct mt7530_priv *priv)
2142 {
2143 	free_irq(priv->irq, priv);
2144 	irq_domain_remove(priv->irq_domain);
2145 }
2146 
2147 static void
2148 mt7530_free_irq(struct mt7530_priv *priv)
2149 {
2150 	mt7530_free_mdio_irq(priv);
2151 	mt7530_free_irq_common(priv);
2152 }
2153 
2154 static int
2155 mt7530_setup_mdio(struct mt7530_priv *priv)
2156 {
2157 	struct dsa_switch *ds = priv->ds;
2158 	struct device *dev = priv->dev;
2159 	struct mii_bus *bus;
2160 	static int idx;
2161 	int ret;
2162 
2163 	bus = devm_mdiobus_alloc(dev);
2164 	if (!bus)
2165 		return -ENOMEM;
2166 
2167 	ds->slave_mii_bus = bus;
2168 	bus->priv = priv;
2169 	bus->name = KBUILD_MODNAME "-mii";
2170 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2171 	bus->read = mt753x_phy_read_c22;
2172 	bus->write = mt753x_phy_write_c22;
2173 	bus->read_c45 = mt753x_phy_read_c45;
2174 	bus->write_c45 = mt753x_phy_write_c45;
2175 	bus->parent = dev;
2176 	bus->phy_mask = ~ds->phys_mii_mask;
2177 
2178 	if (priv->irq)
2179 		mt7530_setup_mdio_irq(priv);
2180 
2181 	ret = devm_mdiobus_register(dev, bus);
2182 	if (ret) {
2183 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2184 		if (priv->irq)
2185 			mt7530_free_mdio_irq(priv);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 static int
2192 mt7530_setup(struct dsa_switch *ds)
2193 {
2194 	struct mt7530_priv *priv = ds->priv;
2195 	struct device_node *dn = NULL;
2196 	struct device_node *phy_node;
2197 	struct device_node *mac_np;
2198 	struct mt7530_dummy_poll p;
2199 	phy_interface_t interface;
2200 	struct dsa_port *cpu_dp;
2201 	u32 id, val;
2202 	int ret, i;
2203 
2204 	/* The parent node of master netdev which holds the common system
2205 	 * controller also is the container for two GMACs nodes representing
2206 	 * as two netdev instances.
2207 	 */
2208 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2209 		dn = cpu_dp->master->dev.of_node->parent;
2210 		/* It doesn't matter which CPU port is found first,
2211 		 * their masters should share the same parent OF node
2212 		 */
2213 		break;
2214 	}
2215 
2216 	if (!dn) {
2217 		dev_err(ds->dev, "parent OF node of DSA master not found");
2218 		return -EINVAL;
2219 	}
2220 
2221 	ds->assisted_learning_on_cpu_port = true;
2222 	ds->mtu_enforcement_ingress = true;
2223 
2224 	if (priv->id == ID_MT7530) {
2225 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2226 		ret = regulator_enable(priv->core_pwr);
2227 		if (ret < 0) {
2228 			dev_err(priv->dev,
2229 				"Failed to enable core power: %d\n", ret);
2230 			return ret;
2231 		}
2232 
2233 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2234 		ret = regulator_enable(priv->io_pwr);
2235 		if (ret < 0) {
2236 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2237 				ret);
2238 			return ret;
2239 		}
2240 	}
2241 
2242 	/* Reset whole chip through gpio pin or memory-mapped registers for
2243 	 * different type of hardware
2244 	 */
2245 	if (priv->mcm) {
2246 		reset_control_assert(priv->rstc);
2247 		usleep_range(1000, 1100);
2248 		reset_control_deassert(priv->rstc);
2249 	} else {
2250 		gpiod_set_value_cansleep(priv->reset, 0);
2251 		usleep_range(1000, 1100);
2252 		gpiod_set_value_cansleep(priv->reset, 1);
2253 	}
2254 
2255 	/* Waiting for MT7530 got to stable */
2256 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2257 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2258 				 20, 1000000);
2259 	if (ret < 0) {
2260 		dev_err(priv->dev, "reset timeout\n");
2261 		return ret;
2262 	}
2263 
2264 	id = mt7530_read(priv, MT7530_CREV);
2265 	id >>= CHIP_NAME_SHIFT;
2266 	if (id != MT7530_ID) {
2267 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2268 		return -ENODEV;
2269 	}
2270 
2271 	/* Reset the switch through internal reset */
2272 	mt7530_write(priv, MT7530_SYS_CTRL,
2273 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2274 		     SYS_CTRL_REG_RST);
2275 
2276 	mt7530_pll_setup(priv);
2277 
2278 	/* Lower Tx driving for TRGMII path */
2279 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2280 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2281 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2282 
2283 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2284 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2285 			   RD_TAP_MASK, RD_TAP(16));
2286 
2287 	/* Enable port 6 */
2288 	val = mt7530_read(priv, MT7530_MHWTRAP);
2289 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2290 	val |= MHWTRAP_MANUAL;
2291 	mt7530_write(priv, MT7530_MHWTRAP, val);
2292 
2293 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2294 
2295 	mt753x_trap_frames(priv);
2296 
2297 	/* Enable and reset MIB counters */
2298 	mt7530_mib_reset(ds);
2299 
2300 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2301 		/* Disable forwarding by default on all ports */
2302 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2303 			   PCR_MATRIX_CLR);
2304 
2305 		/* Disable learning by default on all ports */
2306 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2307 
2308 		if (dsa_is_cpu_port(ds, i)) {
2309 			ret = mt753x_cpu_port_enable(ds, i);
2310 			if (ret)
2311 				return ret;
2312 		} else {
2313 			mt7530_port_disable(ds, i);
2314 
2315 			/* Set default PVID to 0 on all user ports */
2316 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2317 				   G0_PORT_VID_DEF);
2318 		}
2319 		/* Enable consistent egress tag */
2320 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2321 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2322 	}
2323 
2324 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2325 	ret = mt7530_setup_vlan0(priv);
2326 	if (ret)
2327 		return ret;
2328 
2329 	/* Setup port 5 */
2330 	priv->p5_intf_sel = P5_DISABLED;
2331 	interface = PHY_INTERFACE_MODE_NA;
2332 
2333 	if (!dsa_is_unused_port(ds, 5)) {
2334 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2335 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2336 		if (ret && ret != -ENODEV)
2337 			return ret;
2338 	} else {
2339 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2340 		for_each_child_of_node(dn, mac_np) {
2341 			if (!of_device_is_compatible(mac_np,
2342 						     "mediatek,eth-mac"))
2343 				continue;
2344 
2345 			ret = of_property_read_u32(mac_np, "reg", &id);
2346 			if (ret < 0 || id != 1)
2347 				continue;
2348 
2349 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2350 			if (!phy_node)
2351 				continue;
2352 
2353 			if (phy_node->parent == priv->dev->of_node->parent) {
2354 				ret = of_get_phy_mode(mac_np, &interface);
2355 				if (ret && ret != -ENODEV) {
2356 					of_node_put(mac_np);
2357 					of_node_put(phy_node);
2358 					return ret;
2359 				}
2360 				id = of_mdio_parse_addr(ds->dev, phy_node);
2361 				if (id == 0)
2362 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2363 				if (id == 4)
2364 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2365 			}
2366 			of_node_put(mac_np);
2367 			of_node_put(phy_node);
2368 			break;
2369 		}
2370 	}
2371 
2372 #ifdef CONFIG_GPIOLIB
2373 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2374 		ret = mt7530_setup_gpio(priv);
2375 		if (ret)
2376 			return ret;
2377 	}
2378 #endif /* CONFIG_GPIOLIB */
2379 
2380 	mt7530_setup_port5(ds, interface);
2381 
2382 	/* Flush the FDB table */
2383 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2384 	if (ret < 0)
2385 		return ret;
2386 
2387 	return 0;
2388 }
2389 
2390 static int
2391 mt7531_setup_common(struct dsa_switch *ds)
2392 {
2393 	struct mt7530_priv *priv = ds->priv;
2394 	int ret, i;
2395 
2396 	mt753x_trap_frames(priv);
2397 
2398 	/* Enable and reset MIB counters */
2399 	mt7530_mib_reset(ds);
2400 
2401 	/* Disable flooding on all ports */
2402 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2403 		     UNU_FFP_MASK);
2404 
2405 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2406 		/* Disable forwarding by default on all ports */
2407 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2408 			   PCR_MATRIX_CLR);
2409 
2410 		/* Disable learning by default on all ports */
2411 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2412 
2413 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2414 
2415 		if (dsa_is_cpu_port(ds, i)) {
2416 			ret = mt753x_cpu_port_enable(ds, i);
2417 			if (ret)
2418 				return ret;
2419 		} else {
2420 			mt7530_port_disable(ds, i);
2421 
2422 			/* Set default PVID to 0 on all user ports */
2423 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2424 				   G0_PORT_VID_DEF);
2425 		}
2426 
2427 		/* Enable consistent egress tag */
2428 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2429 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2430 	}
2431 
2432 	/* Flush the FDB table */
2433 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2434 	if (ret < 0)
2435 		return ret;
2436 
2437 	return 0;
2438 }
2439 
2440 static int
2441 mt7531_setup(struct dsa_switch *ds)
2442 {
2443 	struct mt7530_priv *priv = ds->priv;
2444 	struct mt7530_dummy_poll p;
2445 	u32 val, id;
2446 	int ret, i;
2447 
2448 	/* Reset whole chip through gpio pin or memory-mapped registers for
2449 	 * different type of hardware
2450 	 */
2451 	if (priv->mcm) {
2452 		reset_control_assert(priv->rstc);
2453 		usleep_range(1000, 1100);
2454 		reset_control_deassert(priv->rstc);
2455 	} else {
2456 		gpiod_set_value_cansleep(priv->reset, 0);
2457 		usleep_range(1000, 1100);
2458 		gpiod_set_value_cansleep(priv->reset, 1);
2459 	}
2460 
2461 	/* Waiting for MT7530 got to stable */
2462 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2463 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2464 				 20, 1000000);
2465 	if (ret < 0) {
2466 		dev_err(priv->dev, "reset timeout\n");
2467 		return ret;
2468 	}
2469 
2470 	id = mt7530_read(priv, MT7531_CREV);
2471 	id >>= CHIP_NAME_SHIFT;
2472 
2473 	if (id != MT7531_ID) {
2474 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2475 		return -ENODEV;
2476 	}
2477 
2478 	/* all MACs must be forced link-down before sw reset */
2479 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2480 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2481 
2482 	/* Reset the switch through internal reset */
2483 	mt7530_write(priv, MT7530_SYS_CTRL,
2484 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2485 		     SYS_CTRL_REG_RST);
2486 
2487 	mt7531_pll_setup(priv);
2488 
2489 	if (mt7531_dual_sgmii_supported(priv)) {
2490 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2491 
2492 		/* Let ds->slave_mii_bus be able to access external phy. */
2493 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2494 			   MT7531_EXT_P_MDC_11);
2495 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2496 			   MT7531_EXT_P_MDIO_12);
2497 	} else {
2498 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2499 	}
2500 	dev_dbg(ds->dev, "P5 support %s interface\n",
2501 		p5_intf_modes(priv->p5_intf_sel));
2502 
2503 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2504 		   MT7531_GPIO0_INTERRUPT);
2505 
2506 	/* Let phylink decide the interface later. */
2507 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2508 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2509 
2510 	/* Enable PHY core PLL, since phy_device has not yet been created
2511 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2512 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2513 	 * function.
2514 	 */
2515 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2516 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2517 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2518 	val &= ~MT7531_PHY_PLL_OFF;
2519 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2520 				 CORE_PLL_GROUP4, val);
2521 
2522 	mt7531_setup_common(ds);
2523 
2524 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2525 	ret = mt7530_setup_vlan0(priv);
2526 	if (ret)
2527 		return ret;
2528 
2529 	ds->assisted_learning_on_cpu_port = true;
2530 	ds->mtu_enforcement_ingress = true;
2531 
2532 	return 0;
2533 }
2534 
2535 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2536 				     struct phylink_config *config)
2537 {
2538 	switch (port) {
2539 	case 0 ... 4: /* Internal phy */
2540 		__set_bit(PHY_INTERFACE_MODE_GMII,
2541 			  config->supported_interfaces);
2542 		break;
2543 
2544 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2545 		phy_interface_set_rgmii(config->supported_interfaces);
2546 		__set_bit(PHY_INTERFACE_MODE_MII,
2547 			  config->supported_interfaces);
2548 		__set_bit(PHY_INTERFACE_MODE_GMII,
2549 			  config->supported_interfaces);
2550 		break;
2551 
2552 	case 6: /* 1st cpu port */
2553 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2554 			  config->supported_interfaces);
2555 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2556 			  config->supported_interfaces);
2557 		break;
2558 	}
2559 }
2560 
2561 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2562 {
2563 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2564 }
2565 
2566 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2567 				     struct phylink_config *config)
2568 {
2569 	struct mt7530_priv *priv = ds->priv;
2570 
2571 	switch (port) {
2572 	case 0 ... 4: /* Internal phy */
2573 		__set_bit(PHY_INTERFACE_MODE_GMII,
2574 			  config->supported_interfaces);
2575 		break;
2576 
2577 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2578 		if (mt7531_is_rgmii_port(priv, port)) {
2579 			phy_interface_set_rgmii(config->supported_interfaces);
2580 			break;
2581 		}
2582 		fallthrough;
2583 
2584 	case 6: /* 1st cpu port supports sgmii/8023z only */
2585 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2586 			  config->supported_interfaces);
2587 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2588 			  config->supported_interfaces);
2589 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2590 			  config->supported_interfaces);
2591 
2592 		config->mac_capabilities |= MAC_2500FD;
2593 		break;
2594 	}
2595 }
2596 
2597 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2598 				     struct phylink_config *config)
2599 {
2600 	phy_interface_zero(config->supported_interfaces);
2601 
2602 	switch (port) {
2603 	case 0 ... 4: /* Internal phy */
2604 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2605 			  config->supported_interfaces);
2606 		break;
2607 
2608 	case 6:
2609 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2610 			  config->supported_interfaces);
2611 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2612 					   MAC_10000FD;
2613 	}
2614 }
2615 
2616 static int
2617 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2618 {
2619 	struct mt7530_priv *priv = ds->priv;
2620 
2621 	return priv->info->pad_setup(ds, state->interface);
2622 }
2623 
2624 static int
2625 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2626 		  phy_interface_t interface)
2627 {
2628 	struct mt7530_priv *priv = ds->priv;
2629 
2630 	/* Only need to setup port5. */
2631 	if (port != 5)
2632 		return 0;
2633 
2634 	mt7530_setup_port5(priv->ds, interface);
2635 
2636 	return 0;
2637 }
2638 
2639 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2640 			      phy_interface_t interface,
2641 			      struct phy_device *phydev)
2642 {
2643 	u32 val;
2644 
2645 	if (!mt7531_is_rgmii_port(priv, port)) {
2646 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2647 			port);
2648 		return -EINVAL;
2649 	}
2650 
2651 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2652 	val |= GP_CLK_EN;
2653 	val &= ~GP_MODE_MASK;
2654 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2655 	val &= ~CLK_SKEW_IN_MASK;
2656 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2657 	val &= ~CLK_SKEW_OUT_MASK;
2658 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2659 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2660 
2661 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2662 	if (!phydev || phy_driver_is_genphy(phydev)) {
2663 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2664 		switch (interface) {
2665 		case PHY_INTERFACE_MODE_RGMII:
2666 			val |= TXCLK_NO_REVERSE;
2667 			val |= RXCLK_NO_DELAY;
2668 			break;
2669 		case PHY_INTERFACE_MODE_RGMII_RXID:
2670 			val |= TXCLK_NO_REVERSE;
2671 			break;
2672 		case PHY_INTERFACE_MODE_RGMII_TXID:
2673 			val |= RXCLK_NO_DELAY;
2674 			break;
2675 		case PHY_INTERFACE_MODE_RGMII_ID:
2676 			break;
2677 		default:
2678 			return -EINVAL;
2679 		}
2680 	}
2681 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2682 
2683 	return 0;
2684 }
2685 
2686 static bool mt753x_is_mac_port(u32 port)
2687 {
2688 	return (port == 5 || port == 6);
2689 }
2690 
2691 static int
2692 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2693 		  phy_interface_t interface)
2694 {
2695 	if (dsa_is_cpu_port(ds, port) &&
2696 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2697 		return 0;
2698 
2699 	return -EINVAL;
2700 }
2701 
2702 static int
2703 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2704 		  phy_interface_t interface)
2705 {
2706 	struct mt7530_priv *priv = ds->priv;
2707 	struct phy_device *phydev;
2708 	struct dsa_port *dp;
2709 
2710 	if (!mt753x_is_mac_port(port)) {
2711 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2712 		return -EINVAL;
2713 	}
2714 
2715 	switch (interface) {
2716 	case PHY_INTERFACE_MODE_RGMII:
2717 	case PHY_INTERFACE_MODE_RGMII_ID:
2718 	case PHY_INTERFACE_MODE_RGMII_RXID:
2719 	case PHY_INTERFACE_MODE_RGMII_TXID:
2720 		dp = dsa_to_port(ds, port);
2721 		phydev = dp->slave->phydev;
2722 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2723 	case PHY_INTERFACE_MODE_SGMII:
2724 	case PHY_INTERFACE_MODE_NA:
2725 	case PHY_INTERFACE_MODE_1000BASEX:
2726 	case PHY_INTERFACE_MODE_2500BASEX:
2727 		/* handled in SGMII PCS driver */
2728 		return 0;
2729 	default:
2730 		return -EINVAL;
2731 	}
2732 
2733 	return -EINVAL;
2734 }
2735 
2736 static int
2737 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2738 		  const struct phylink_link_state *state)
2739 {
2740 	struct mt7530_priv *priv = ds->priv;
2741 
2742 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2743 }
2744 
2745 static struct phylink_pcs *
2746 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2747 			      phy_interface_t interface)
2748 {
2749 	struct mt7530_priv *priv = ds->priv;
2750 
2751 	switch (interface) {
2752 	case PHY_INTERFACE_MODE_TRGMII:
2753 		return &priv->pcs[port].pcs;
2754 	case PHY_INTERFACE_MODE_SGMII:
2755 	case PHY_INTERFACE_MODE_1000BASEX:
2756 	case PHY_INTERFACE_MODE_2500BASEX:
2757 		return priv->ports[port].sgmii_pcs;
2758 	default:
2759 		return NULL;
2760 	}
2761 }
2762 
2763 static void
2764 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2765 			  const struct phylink_link_state *state)
2766 {
2767 	struct mt7530_priv *priv = ds->priv;
2768 	u32 mcr_cur, mcr_new;
2769 
2770 	switch (port) {
2771 	case 0 ... 4: /* Internal phy */
2772 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2773 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2774 			goto unsupported;
2775 		break;
2776 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2777 		if (priv->p5_interface == state->interface)
2778 			break;
2779 
2780 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2781 			goto unsupported;
2782 
2783 		if (priv->p5_intf_sel != P5_DISABLED)
2784 			priv->p5_interface = state->interface;
2785 		break;
2786 	case 6: /* 1st cpu port */
2787 		if (priv->p6_interface == state->interface)
2788 			break;
2789 
2790 		mt753x_pad_setup(ds, state);
2791 
2792 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2793 			goto unsupported;
2794 
2795 		priv->p6_interface = state->interface;
2796 		break;
2797 	default:
2798 unsupported:
2799 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2800 			__func__, phy_modes(state->interface), port);
2801 		return;
2802 	}
2803 
2804 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2805 	mcr_new = mcr_cur;
2806 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2807 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2808 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2809 
2810 	/* Are we connected to external phy */
2811 	if (port == 5 && dsa_is_user_port(ds, 5))
2812 		mcr_new |= PMCR_EXT_PHY;
2813 
2814 	if (mcr_new != mcr_cur)
2815 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2816 }
2817 
2818 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2819 					 unsigned int mode,
2820 					 phy_interface_t interface)
2821 {
2822 	struct mt7530_priv *priv = ds->priv;
2823 
2824 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2825 }
2826 
2827 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2828 				       unsigned int mode,
2829 				       phy_interface_t interface,
2830 				       int speed, int duplex)
2831 {
2832 	if (pcs->ops->pcs_link_up)
2833 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2834 }
2835 
2836 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2837 				       unsigned int mode,
2838 				       phy_interface_t interface,
2839 				       struct phy_device *phydev,
2840 				       int speed, int duplex,
2841 				       bool tx_pause, bool rx_pause)
2842 {
2843 	struct mt7530_priv *priv = ds->priv;
2844 	u32 mcr;
2845 
2846 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2847 
2848 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2849 	 * variants.
2850 	 */
2851 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2852 	    (phy_interface_mode_is_8023z(interface))) {
2853 		speed = SPEED_1000;
2854 		duplex = DUPLEX_FULL;
2855 	}
2856 
2857 	switch (speed) {
2858 	case SPEED_1000:
2859 		mcr |= PMCR_FORCE_SPEED_1000;
2860 		break;
2861 	case SPEED_100:
2862 		mcr |= PMCR_FORCE_SPEED_100;
2863 		break;
2864 	}
2865 	if (duplex == DUPLEX_FULL) {
2866 		mcr |= PMCR_FORCE_FDX;
2867 		if (tx_pause)
2868 			mcr |= PMCR_TX_FC_EN;
2869 		if (rx_pause)
2870 			mcr |= PMCR_RX_FC_EN;
2871 	}
2872 
2873 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2874 		switch (speed) {
2875 		case SPEED_1000:
2876 			mcr |= PMCR_FORCE_EEE1G;
2877 			break;
2878 		case SPEED_100:
2879 			mcr |= PMCR_FORCE_EEE100;
2880 			break;
2881 		}
2882 	}
2883 
2884 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2885 }
2886 
2887 static int
2888 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2889 {
2890 	struct mt7530_priv *priv = ds->priv;
2891 	phy_interface_t interface;
2892 	int speed;
2893 	int ret;
2894 
2895 	switch (port) {
2896 	case 5:
2897 		if (mt7531_is_rgmii_port(priv, port))
2898 			interface = PHY_INTERFACE_MODE_RGMII;
2899 		else
2900 			interface = PHY_INTERFACE_MODE_2500BASEX;
2901 
2902 		priv->p5_interface = interface;
2903 		break;
2904 	case 6:
2905 		interface = PHY_INTERFACE_MODE_2500BASEX;
2906 
2907 		priv->p6_interface = interface;
2908 		break;
2909 	default:
2910 		return -EINVAL;
2911 	}
2912 
2913 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2914 		speed = SPEED_2500;
2915 	else
2916 		speed = SPEED_1000;
2917 
2918 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2919 	if (ret)
2920 		return ret;
2921 	mt7530_write(priv, MT7530_PMCR_P(port),
2922 		     PMCR_CPU_PORT_SETTING(priv->id));
2923 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2924 				   interface, speed, DUPLEX_FULL);
2925 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2926 				   speed, DUPLEX_FULL, true, true);
2927 
2928 	return 0;
2929 }
2930 
2931 static int
2932 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2933 {
2934 	struct mt7530_priv *priv = ds->priv;
2935 
2936 	mt7530_write(priv, MT7530_PMCR_P(port),
2937 		     PMCR_CPU_PORT_SETTING(priv->id));
2938 
2939 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2940 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2941 				   SPEED_10000, DUPLEX_FULL, true, true);
2942 
2943 	return 0;
2944 }
2945 
2946 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2947 				    struct phylink_config *config)
2948 {
2949 	struct mt7530_priv *priv = ds->priv;
2950 
2951 	/* This switch only supports full-duplex at 1Gbps */
2952 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2953 				   MAC_10 | MAC_100 | MAC_1000FD;
2954 
2955 	priv->info->mac_port_get_caps(ds, port, config);
2956 }
2957 
2958 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2959 			       unsigned long *supported,
2960 			       const struct phylink_link_state *state)
2961 {
2962 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2963 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2964 	    phy_interface_mode_is_8023z(state->interface))
2965 		phylink_clear(supported, Autoneg);
2966 
2967 	return 0;
2968 }
2969 
2970 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2971 				 struct phylink_link_state *state)
2972 {
2973 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2974 	int port = pcs_to_mt753x_pcs(pcs)->port;
2975 	u32 pmsr;
2976 
2977 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2978 
2979 	state->link = (pmsr & PMSR_LINK);
2980 	state->an_complete = state->link;
2981 	state->duplex = !!(pmsr & PMSR_DPX);
2982 
2983 	switch (pmsr & PMSR_SPEED_MASK) {
2984 	case PMSR_SPEED_10:
2985 		state->speed = SPEED_10;
2986 		break;
2987 	case PMSR_SPEED_100:
2988 		state->speed = SPEED_100;
2989 		break;
2990 	case PMSR_SPEED_1000:
2991 		state->speed = SPEED_1000;
2992 		break;
2993 	default:
2994 		state->speed = SPEED_UNKNOWN;
2995 		break;
2996 	}
2997 
2998 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2999 	if (pmsr & PMSR_RX_FC)
3000 		state->pause |= MLO_PAUSE_RX;
3001 	if (pmsr & PMSR_TX_FC)
3002 		state->pause |= MLO_PAUSE_TX;
3003 }
3004 
3005 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3006 			     phy_interface_t interface,
3007 			     const unsigned long *advertising,
3008 			     bool permit_pause_to_mac)
3009 {
3010 	return 0;
3011 }
3012 
3013 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3014 {
3015 }
3016 
3017 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3018 	.pcs_validate = mt753x_pcs_validate,
3019 	.pcs_get_state = mt7530_pcs_get_state,
3020 	.pcs_config = mt753x_pcs_config,
3021 	.pcs_an_restart = mt7530_pcs_an_restart,
3022 };
3023 
3024 static int
3025 mt753x_setup(struct dsa_switch *ds)
3026 {
3027 	struct mt7530_priv *priv = ds->priv;
3028 	int i, ret;
3029 
3030 	/* Initialise the PCS devices */
3031 	for (i = 0; i < priv->ds->num_ports; i++) {
3032 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3033 		priv->pcs[i].pcs.neg_mode = true;
3034 		priv->pcs[i].priv = priv;
3035 		priv->pcs[i].port = i;
3036 	}
3037 
3038 	ret = priv->info->sw_setup(ds);
3039 	if (ret)
3040 		return ret;
3041 
3042 	ret = mt7530_setup_irq(priv);
3043 	if (ret)
3044 		return ret;
3045 
3046 	ret = mt7530_setup_mdio(priv);
3047 	if (ret && priv->irq)
3048 		mt7530_free_irq_common(priv);
3049 
3050 	if (priv->create_sgmii) {
3051 		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3052 		if (ret && priv->irq)
3053 			mt7530_free_irq(priv);
3054 	}
3055 
3056 	return ret;
3057 }
3058 
3059 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3060 			      struct ethtool_eee *e)
3061 {
3062 	struct mt7530_priv *priv = ds->priv;
3063 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3064 
3065 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3066 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3067 
3068 	return 0;
3069 }
3070 
3071 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3072 			      struct ethtool_eee *e)
3073 {
3074 	struct mt7530_priv *priv = ds->priv;
3075 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3076 
3077 	if (e->tx_lpi_timer > 0xFFF)
3078 		return -EINVAL;
3079 
3080 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3081 	if (!e->tx_lpi_enabled)
3082 		/* Force LPI Mode without a delay */
3083 		set |= LPI_MODE_EN;
3084 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3085 
3086 	return 0;
3087 }
3088 
3089 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3090 {
3091 	return 0;
3092 }
3093 
3094 static int mt7988_setup(struct dsa_switch *ds)
3095 {
3096 	struct mt7530_priv *priv = ds->priv;
3097 
3098 	/* Reset the switch */
3099 	reset_control_assert(priv->rstc);
3100 	usleep_range(20, 50);
3101 	reset_control_deassert(priv->rstc);
3102 	usleep_range(20, 50);
3103 
3104 	/* Reset the switch PHYs */
3105 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3106 
3107 	return mt7531_setup_common(ds);
3108 }
3109 
3110 const struct dsa_switch_ops mt7530_switch_ops = {
3111 	.get_tag_protocol	= mtk_get_tag_protocol,
3112 	.setup			= mt753x_setup,
3113 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3114 	.get_strings		= mt7530_get_strings,
3115 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3116 	.get_sset_count		= mt7530_get_sset_count,
3117 	.set_ageing_time	= mt7530_set_ageing_time,
3118 	.port_enable		= mt7530_port_enable,
3119 	.port_disable		= mt7530_port_disable,
3120 	.port_change_mtu	= mt7530_port_change_mtu,
3121 	.port_max_mtu		= mt7530_port_max_mtu,
3122 	.port_stp_state_set	= mt7530_stp_state_set,
3123 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3124 	.port_bridge_flags	= mt7530_port_bridge_flags,
3125 	.port_bridge_join	= mt7530_port_bridge_join,
3126 	.port_bridge_leave	= mt7530_port_bridge_leave,
3127 	.port_fdb_add		= mt7530_port_fdb_add,
3128 	.port_fdb_del		= mt7530_port_fdb_del,
3129 	.port_fdb_dump		= mt7530_port_fdb_dump,
3130 	.port_mdb_add		= mt7530_port_mdb_add,
3131 	.port_mdb_del		= mt7530_port_mdb_del,
3132 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3133 	.port_vlan_add		= mt7530_port_vlan_add,
3134 	.port_vlan_del		= mt7530_port_vlan_del,
3135 	.port_mirror_add	= mt753x_port_mirror_add,
3136 	.port_mirror_del	= mt753x_port_mirror_del,
3137 	.phylink_get_caps	= mt753x_phylink_get_caps,
3138 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3139 	.phylink_mac_config	= mt753x_phylink_mac_config,
3140 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3141 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3142 	.get_mac_eee		= mt753x_get_mac_eee,
3143 	.set_mac_eee		= mt753x_set_mac_eee,
3144 };
3145 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3146 
3147 const struct mt753x_info mt753x_table[] = {
3148 	[ID_MT7621] = {
3149 		.id = ID_MT7621,
3150 		.pcs_ops = &mt7530_pcs_ops,
3151 		.sw_setup = mt7530_setup,
3152 		.phy_read_c22 = mt7530_phy_read_c22,
3153 		.phy_write_c22 = mt7530_phy_write_c22,
3154 		.phy_read_c45 = mt7530_phy_read_c45,
3155 		.phy_write_c45 = mt7530_phy_write_c45,
3156 		.pad_setup = mt7530_pad_clk_setup,
3157 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3158 		.mac_port_config = mt7530_mac_config,
3159 	},
3160 	[ID_MT7530] = {
3161 		.id = ID_MT7530,
3162 		.pcs_ops = &mt7530_pcs_ops,
3163 		.sw_setup = mt7530_setup,
3164 		.phy_read_c22 = mt7530_phy_read_c22,
3165 		.phy_write_c22 = mt7530_phy_write_c22,
3166 		.phy_read_c45 = mt7530_phy_read_c45,
3167 		.phy_write_c45 = mt7530_phy_write_c45,
3168 		.pad_setup = mt7530_pad_clk_setup,
3169 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3170 		.mac_port_config = mt7530_mac_config,
3171 	},
3172 	[ID_MT7531] = {
3173 		.id = ID_MT7531,
3174 		.pcs_ops = &mt7530_pcs_ops,
3175 		.sw_setup = mt7531_setup,
3176 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3177 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3178 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3179 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3180 		.pad_setup = mt7531_pad_setup,
3181 		.cpu_port_config = mt7531_cpu_port_config,
3182 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3183 		.mac_port_config = mt7531_mac_config,
3184 	},
3185 	[ID_MT7988] = {
3186 		.id = ID_MT7988,
3187 		.pcs_ops = &mt7530_pcs_ops,
3188 		.sw_setup = mt7988_setup,
3189 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3190 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3191 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3192 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3193 		.pad_setup = mt7988_pad_setup,
3194 		.cpu_port_config = mt7988_cpu_port_config,
3195 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3196 		.mac_port_config = mt7988_mac_config,
3197 	},
3198 };
3199 EXPORT_SYMBOL_GPL(mt753x_table);
3200 
3201 int
3202 mt7530_probe_common(struct mt7530_priv *priv)
3203 {
3204 	struct device *dev = priv->dev;
3205 
3206 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3207 	if (!priv->ds)
3208 		return -ENOMEM;
3209 
3210 	priv->ds->dev = dev;
3211 	priv->ds->num_ports = MT7530_NUM_PORTS;
3212 
3213 	/* Get the hardware identifier from the devicetree node.
3214 	 * We will need it for some of the clock and regulator setup.
3215 	 */
3216 	priv->info = of_device_get_match_data(dev);
3217 	if (!priv->info)
3218 		return -EINVAL;
3219 
3220 	/* Sanity check if these required device operations are filled
3221 	 * properly.
3222 	 */
3223 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3224 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3225 	    !priv->info->mac_port_get_caps ||
3226 	    !priv->info->mac_port_config)
3227 		return -EINVAL;
3228 
3229 	priv->id = priv->info->id;
3230 	priv->dev = dev;
3231 	priv->ds->priv = priv;
3232 	priv->ds->ops = &mt7530_switch_ops;
3233 	mutex_init(&priv->reg_mutex);
3234 	dev_set_drvdata(dev, priv);
3235 
3236 	return 0;
3237 }
3238 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3239 
3240 void
3241 mt7530_remove_common(struct mt7530_priv *priv)
3242 {
3243 	if (priv->irq)
3244 		mt7530_free_irq(priv);
3245 
3246 	dsa_unregister_switch(priv->ds);
3247 
3248 	mutex_destroy(&priv->reg_mutex);
3249 }
3250 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3251 
3252 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3253 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3254 MODULE_LICENSE("GPL");
3255