xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 13a9d0be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 	struct mii_bus *bus = priv->bus;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152 
153 	mutex_unlock(&bus->mdio_lock);
154 }
155 
156 static void
157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158 {
159 	struct mii_bus *bus = priv->bus;
160 	u32 val;
161 
162 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163 
164 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 	val &= ~mask;
166 	val |= set;
167 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168 
169 	mutex_unlock(&bus->mdio_lock);
170 }
171 
172 static void
173 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, 0, val);
176 }
177 
178 static void
179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	core_rmw(priv, reg, val, 0);
182 }
183 
184 static int
185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186 {
187 	struct mii_bus *bus = priv->bus;
188 	u16 page, r, lo, hi;
189 	int ret;
190 
191 	page = (reg >> 6) & 0x3ff;
192 	r  = (reg >> 2) & 0xf;
193 	lo = val & 0xffff;
194 	hi = val >> 16;
195 
196 	/* MT7530 uses 31 as the pseudo port */
197 	ret = bus->write(bus, 0x1f, 0x1f, page);
198 	if (ret < 0)
199 		goto err;
200 
201 	ret = bus->write(bus, 0x1f, r,  lo);
202 	if (ret < 0)
203 		goto err;
204 
205 	ret = bus->write(bus, 0x1f, 0x10, hi);
206 err:
207 	if (ret < 0)
208 		dev_err(&bus->dev,
209 			"failed to write mt7530 register\n");
210 	return ret;
211 }
212 
213 static u32
214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215 {
216 	struct mii_bus *bus = priv->bus;
217 	u16 page, r, lo, hi;
218 	int ret;
219 
220 	page = (reg >> 6) & 0x3ff;
221 	r = (reg >> 2) & 0xf;
222 
223 	/* MT7530 uses 31 as the pseudo port */
224 	ret = bus->write(bus, 0x1f, 0x1f, page);
225 	if (ret < 0) {
226 		dev_err(&bus->dev,
227 			"failed to read mt7530 register\n");
228 		return ret;
229 	}
230 
231 	lo = bus->read(bus, 0x1f, r);
232 	hi = bus->read(bus, 0x1f, 0x10);
233 
234 	return (hi << 16) | (lo & 0xffff);
235 }
236 
237 static void
238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 	struct mii_bus *bus = priv->bus;
241 
242 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243 
244 	mt7530_mii_write(priv, reg, val);
245 
246 	mutex_unlock(&bus->mdio_lock);
247 }
248 
249 static u32
250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251 {
252 	return mt7530_mii_read(p->priv, p->reg);
253 }
254 
255 static u32
256 _mt7530_read(struct mt7530_dummy_poll *p)
257 {
258 	struct mii_bus		*bus = p->priv->bus;
259 	u32 val;
260 
261 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262 
263 	val = mt7530_mii_read(p->priv, p->reg);
264 
265 	mutex_unlock(&bus->mdio_lock);
266 
267 	return val;
268 }
269 
270 static u32
271 mt7530_read(struct mt7530_priv *priv, u32 reg)
272 {
273 	struct mt7530_dummy_poll p;
274 
275 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 	return _mt7530_read(&p);
277 }
278 
279 static void
280 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 	   u32 mask, u32 set)
282 {
283 	struct mii_bus *bus = priv->bus;
284 	u32 val;
285 
286 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287 
288 	val = mt7530_mii_read(priv, reg);
289 	val &= ~mask;
290 	val |= set;
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static void
297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, 0, val);
300 }
301 
302 static void
303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304 {
305 	mt7530_rmw(priv, reg, val, 0);
306 }
307 
308 static int
309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310 {
311 	u32 val;
312 	int ret;
313 	struct mt7530_dummy_poll p;
314 
315 	/* Set the command operating upon the MAC address entries */
316 	val = ATC_BUSY | ATC_MAT(0) | cmd;
317 	mt7530_write(priv, MT7530_ATC, val);
318 
319 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 	ret = readx_poll_timeout(_mt7530_read, &p, val,
321 				 !(val & ATC_BUSY), 20, 20000);
322 	if (ret < 0) {
323 		dev_err(priv->dev, "reset timeout\n");
324 		return ret;
325 	}
326 
327 	/* Additional sanity for read command if the specified
328 	 * entry is invalid
329 	 */
330 	val = mt7530_read(priv, MT7530_ATC);
331 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 		return -EINVAL;
333 
334 	if (rsp)
335 		*rsp = val;
336 
337 	return 0;
338 }
339 
340 static void
341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342 {
343 	u32 reg[3];
344 	int i;
345 
346 	/* Read from ARL table into an array */
347 	for (i = 0; i < 3; i++) {
348 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349 
350 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 			__func__, __LINE__, i, reg[i]);
352 	}
353 
354 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364 }
365 
366 static void
367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 		 u8 port_mask, const u8 *mac,
369 		 u8 aging, u8 type)
370 {
371 	u32 reg[3] = { 0 };
372 	int i;
373 
374 	reg[1] |= vid & CVID_MASK;
375 	reg[1] |= ATA2_IVL;
376 	reg[1] |= ATA2_FID(FID_BRIDGED);
377 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 	/* STATIC_ENT indicate that entry is static wouldn't
380 	 * be aged out and STATIC_EMP specified as erasing an
381 	 * entry
382 	 */
383 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 	reg[1] |= mac[5] << MAC_BYTE_5;
385 	reg[1] |= mac[4] << MAC_BYTE_4;
386 	reg[0] |= mac[3] << MAC_BYTE_3;
387 	reg[0] |= mac[2] << MAC_BYTE_2;
388 	reg[0] |= mac[1] << MAC_BYTE_1;
389 	reg[0] |= mac[0] << MAC_BYTE_0;
390 
391 	/* Write array into the ARL table */
392 	for (i = 0; i < 3; i++)
393 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394 }
395 
396 /* Set up switch core clock for MT7530 */
397 static void mt7530_pll_setup(struct mt7530_priv *priv)
398 {
399 	/* Disable PLL */
400 	core_write(priv, CORE_GSWPLL_GRP1, 0);
401 
402 	/* Set core clock into 500Mhz */
403 	core_write(priv, CORE_GSWPLL_GRP2,
404 		   RG_GSWPLL_POSDIV_500M(1) |
405 		   RG_GSWPLL_FBKDIV_500M(25));
406 
407 	/* Enable PLL */
408 	core_write(priv, CORE_GSWPLL_GRP1,
409 		   RG_GSWPLL_EN_PRE |
410 		   RG_GSWPLL_POSDIV_200M(2) |
411 		   RG_GSWPLL_FBKDIV_200M(32));
412 }
413 
414 /* Setup TX circuit including relevant PAD and driving */
415 static int
416 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
417 {
418 	struct mt7530_priv *priv = ds->priv;
419 	u32 ncpo1, ssc_delta, trgint, i, xtal;
420 
421 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
422 
423 	if (xtal == HWTRAP_XTAL_20MHZ) {
424 		dev_err(priv->dev,
425 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
426 			__func__);
427 		return -EINVAL;
428 	}
429 
430 	switch (interface) {
431 	case PHY_INTERFACE_MODE_RGMII:
432 		trgint = 0;
433 		/* PLL frequency: 125MHz */
434 		ncpo1 = 0x0c80;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (priv->id == ID_MT7621) {
439 			/* PLL frequency: 150MHz: 1.2GBit */
440 			if (xtal == HWTRAP_XTAL_40MHZ)
441 				ncpo1 = 0x0780;
442 			if (xtal == HWTRAP_XTAL_25MHZ)
443 				ncpo1 = 0x0a00;
444 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
445 			if (xtal == HWTRAP_XTAL_40MHZ)
446 				ncpo1 = 0x0c80;
447 			if (xtal == HWTRAP_XTAL_25MHZ)
448 				ncpo1 = 0x1400;
449 		}
450 		break;
451 	default:
452 		dev_err(priv->dev, "xMII interface %d not supported\n",
453 			interface);
454 		return -EINVAL;
455 	}
456 
457 	if (xtal == HWTRAP_XTAL_25MHZ)
458 		ssc_delta = 0x57;
459 	else
460 		ssc_delta = 0x87;
461 
462 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
463 		   P6_INTF_MODE(trgint));
464 
465 	/* Lower Tx Driving for TRGMII path */
466 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
467 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
468 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
469 
470 	/* Disable MT7530 core and TRGMII Tx clocks */
471 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
472 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
473 
474 	/* Setup the MT7530 TRGMII Tx Clock */
475 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
476 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
477 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
478 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
479 	core_write(priv, CORE_PLL_GROUP4,
480 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
481 		   RG_SYSPLL_BIAS_LPF_EN);
482 	core_write(priv, CORE_PLL_GROUP2,
483 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
484 		   RG_SYSPLL_POSDIV(1));
485 	core_write(priv, CORE_PLL_GROUP7,
486 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
487 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
488 
489 	/* Enable MT7530 core and TRGMII Tx clocks */
490 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
491 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
492 
493 	if (!trgint)
494 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
495 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
496 				   RD_TAP_MASK, RD_TAP(16));
497 	return 0;
498 }
499 
500 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
501 {
502 	u32 val;
503 
504 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
505 
506 	return (val & PAD_DUAL_SGMII_EN) != 0;
507 }
508 
509 static int
510 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
511 {
512 	return 0;
513 }
514 
515 static void
516 mt7531_pll_setup(struct mt7530_priv *priv)
517 {
518 	u32 top_sig;
519 	u32 hwstrap;
520 	u32 xtal;
521 	u32 val;
522 
523 	if (mt7531_dual_sgmii_supported(priv))
524 		return;
525 
526 	val = mt7530_read(priv, MT7531_CREV);
527 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
528 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
529 	if ((val & CHIP_REV_M) > 0)
530 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
531 						    HWTRAP_XTAL_FSEL_25MHZ;
532 	else
533 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
534 
535 	/* Step 1 : Disable MT7531 COREPLL */
536 	val = mt7530_read(priv, MT7531_PLLGP_EN);
537 	val &= ~EN_COREPLL;
538 	mt7530_write(priv, MT7531_PLLGP_EN, val);
539 
540 	/* Step 2: switch to XTAL output */
541 	val = mt7530_read(priv, MT7531_PLLGP_EN);
542 	val |= SW_CLKSW;
543 	mt7530_write(priv, MT7531_PLLGP_EN, val);
544 
545 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 	val &= ~RG_COREPLL_EN;
547 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
548 
549 	/* Step 3: disable PLLGP and enable program PLLGP */
550 	val = mt7530_read(priv, MT7531_PLLGP_EN);
551 	val |= SW_PLLGP;
552 	mt7530_write(priv, MT7531_PLLGP_EN, val);
553 
554 	/* Step 4: program COREPLL output frequency to 500MHz */
555 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
556 	val &= ~RG_COREPLL_POSDIV_M;
557 	val |= 2 << RG_COREPLL_POSDIV_S;
558 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
559 	usleep_range(25, 35);
560 
561 	switch (xtal) {
562 	case HWTRAP_XTAL_FSEL_25MHZ:
563 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
564 		val &= ~RG_COREPLL_SDM_PCW_M;
565 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
566 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 		break;
568 	case HWTRAP_XTAL_FSEL_40MHZ:
569 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
570 		val &= ~RG_COREPLL_SDM_PCW_M;
571 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
572 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
573 		break;
574 	}
575 
576 	/* Set feedback divide ratio update signal to high */
577 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
578 	val |= RG_COREPLL_SDM_PCW_CHG;
579 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
580 	/* Wait for at least 16 XTAL clocks */
581 	usleep_range(10, 20);
582 
583 	/* Step 5: set feedback divide ratio update signal to low */
584 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
585 	val &= ~RG_COREPLL_SDM_PCW_CHG;
586 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
587 
588 	/* Enable 325M clock for SGMII */
589 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
590 
591 	/* Enable 250SSC clock for RGMII */
592 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
593 
594 	/* Step 6: Enable MT7531 PLL */
595 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
596 	val |= RG_COREPLL_EN;
597 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
598 
599 	val = mt7530_read(priv, MT7531_PLLGP_EN);
600 	val |= EN_COREPLL;
601 	mt7530_write(priv, MT7531_PLLGP_EN, val);
602 	usleep_range(25, 35);
603 }
604 
605 static void
606 mt7530_mib_reset(struct dsa_switch *ds)
607 {
608 	struct mt7530_priv *priv = ds->priv;
609 
610 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
611 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
612 }
613 
614 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
615 {
616 	return mdiobus_read_nested(priv->bus, port, regnum);
617 }
618 
619 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
620 				u16 val)
621 {
622 	return mdiobus_write_nested(priv->bus, port, regnum, val);
623 }
624 
625 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
626 			       int devad, int regnum)
627 {
628 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
629 }
630 
631 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
632 				int regnum, u16 val)
633 {
634 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
635 }
636 
637 static int
638 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
639 			int regnum)
640 {
641 	struct mii_bus *bus = priv->bus;
642 	struct mt7530_dummy_poll p;
643 	u32 reg, val;
644 	int ret;
645 
646 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
647 
648 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
649 
650 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 	if (ret < 0) {
653 		dev_err(priv->dev, "poll timeout\n");
654 		goto out;
655 	}
656 
657 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
658 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
659 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660 
661 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 	if (ret < 0) {
664 		dev_err(priv->dev, "poll timeout\n");
665 		goto out;
666 	}
667 
668 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
669 	      MT7531_MDIO_DEV_ADDR(devad);
670 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
671 
672 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
673 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
674 	if (ret < 0) {
675 		dev_err(priv->dev, "poll timeout\n");
676 		goto out;
677 	}
678 
679 	ret = val & MT7531_MDIO_RW_DATA_MASK;
680 out:
681 	mutex_unlock(&bus->mdio_lock);
682 
683 	return ret;
684 }
685 
686 static int
687 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
688 			 int regnum, u16 data)
689 {
690 	struct mii_bus *bus = priv->bus;
691 	struct mt7530_dummy_poll p;
692 	u32 val, reg;
693 	int ret;
694 
695 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
696 
697 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
698 
699 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
700 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
701 	if (ret < 0) {
702 		dev_err(priv->dev, "poll timeout\n");
703 		goto out;
704 	}
705 
706 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
707 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
708 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
709 
710 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
711 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
712 	if (ret < 0) {
713 		dev_err(priv->dev, "poll timeout\n");
714 		goto out;
715 	}
716 
717 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
718 	      MT7531_MDIO_DEV_ADDR(devad) | data;
719 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
720 
721 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
722 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
723 	if (ret < 0) {
724 		dev_err(priv->dev, "poll timeout\n");
725 		goto out;
726 	}
727 
728 out:
729 	mutex_unlock(&bus->mdio_lock);
730 
731 	return ret;
732 }
733 
734 static int
735 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
736 {
737 	struct mii_bus *bus = priv->bus;
738 	struct mt7530_dummy_poll p;
739 	int ret;
740 	u32 val;
741 
742 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
743 
744 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
745 
746 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
747 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
748 	if (ret < 0) {
749 		dev_err(priv->dev, "poll timeout\n");
750 		goto out;
751 	}
752 
753 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
754 	      MT7531_MDIO_REG_ADDR(regnum);
755 
756 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
757 
758 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
759 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
760 	if (ret < 0) {
761 		dev_err(priv->dev, "poll timeout\n");
762 		goto out;
763 	}
764 
765 	ret = val & MT7531_MDIO_RW_DATA_MASK;
766 out:
767 	mutex_unlock(&bus->mdio_lock);
768 
769 	return ret;
770 }
771 
772 static int
773 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
774 			 u16 data)
775 {
776 	struct mii_bus *bus = priv->bus;
777 	struct mt7530_dummy_poll p;
778 	int ret;
779 	u32 reg;
780 
781 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
782 
783 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
784 
785 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
786 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
787 	if (ret < 0) {
788 		dev_err(priv->dev, "poll timeout\n");
789 		goto out;
790 	}
791 
792 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
793 	      MT7531_MDIO_REG_ADDR(regnum) | data;
794 
795 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
796 
797 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
798 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
799 	if (ret < 0) {
800 		dev_err(priv->dev, "poll timeout\n");
801 		goto out;
802 	}
803 
804 out:
805 	mutex_unlock(&bus->mdio_lock);
806 
807 	return ret;
808 }
809 
810 static int
811 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
812 {
813 	struct mt7530_priv *priv = bus->priv;
814 
815 	return priv->info->phy_read_c22(priv, port, regnum);
816 }
817 
818 static int
819 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
820 {
821 	struct mt7530_priv *priv = bus->priv;
822 
823 	return priv->info->phy_read_c45(priv, port, devad, regnum);
824 }
825 
826 static int
827 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
828 {
829 	struct mt7530_priv *priv = bus->priv;
830 
831 	return priv->info->phy_write_c22(priv, port, regnum, val);
832 }
833 
834 static int
835 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
836 		     u16 val)
837 {
838 	struct mt7530_priv *priv = bus->priv;
839 
840 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
841 }
842 
843 static void
844 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
845 		   uint8_t *data)
846 {
847 	int i;
848 
849 	if (stringset != ETH_SS_STATS)
850 		return;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
853 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
854 			ETH_GSTRING_LEN);
855 }
856 
857 static void
858 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
859 			 uint64_t *data)
860 {
861 	struct mt7530_priv *priv = ds->priv;
862 	const struct mt7530_mib_desc *mib;
863 	u32 reg, i;
864 	u64 hi;
865 
866 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
867 		mib = &mt7530_mib[i];
868 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
869 
870 		data[i] = mt7530_read(priv, reg);
871 		if (mib->size == 2) {
872 			hi = mt7530_read(priv, reg + 4);
873 			data[i] |= hi << 32;
874 		}
875 	}
876 }
877 
878 static int
879 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
880 {
881 	if (sset != ETH_SS_STATS)
882 		return 0;
883 
884 	return ARRAY_SIZE(mt7530_mib);
885 }
886 
887 static int
888 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
889 {
890 	struct mt7530_priv *priv = ds->priv;
891 	unsigned int secs = msecs / 1000;
892 	unsigned int tmp_age_count;
893 	unsigned int error = -1;
894 	unsigned int age_count;
895 	unsigned int age_unit;
896 
897 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
898 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
899 		return -ERANGE;
900 
901 	/* iterate through all possible age_count to find the closest pair */
902 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
903 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
904 
905 		if (tmp_age_unit <= AGE_UNIT_MAX) {
906 			unsigned int tmp_error = secs -
907 				(tmp_age_count + 1) * (tmp_age_unit + 1);
908 
909 			/* found a closer pair */
910 			if (error > tmp_error) {
911 				error = tmp_error;
912 				age_count = tmp_age_count;
913 				age_unit = tmp_age_unit;
914 			}
915 
916 			/* found the exact match, so break the loop */
917 			if (!error)
918 				break;
919 		}
920 	}
921 
922 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
923 
924 	return 0;
925 }
926 
927 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
928 {
929 	struct mt7530_priv *priv = ds->priv;
930 	u8 tx_delay = 0;
931 	int val;
932 
933 	mutex_lock(&priv->reg_mutex);
934 
935 	val = mt7530_read(priv, MT7530_MHWTRAP);
936 
937 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
938 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
939 
940 	switch (priv->p5_intf_sel) {
941 	case P5_INTF_SEL_PHY_P0:
942 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
943 		val |= MHWTRAP_PHY0_SEL;
944 		fallthrough;
945 	case P5_INTF_SEL_PHY_P4:
946 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
947 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
948 
949 		/* Setup the MAC by default for the cpu port */
950 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
951 		break;
952 	case P5_INTF_SEL_GMAC5:
953 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
954 		val &= ~MHWTRAP_P5_DIS;
955 		break;
956 	case P5_DISABLED:
957 		interface = PHY_INTERFACE_MODE_NA;
958 		break;
959 	default:
960 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
961 			priv->p5_intf_sel);
962 		goto unlock_exit;
963 	}
964 
965 	/* Setup RGMII settings */
966 	if (phy_interface_mode_is_rgmii(interface)) {
967 		val |= MHWTRAP_P5_RGMII_MODE;
968 
969 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
970 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
971 
972 		/* Don't set delay in DSA mode */
973 		if (!dsa_is_dsa_port(priv->ds, 5) &&
974 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
975 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
976 			tx_delay = 4; /* n * 0.5 ns */
977 
978 		/* P5 RGMII TX Clock Control: delay x */
979 		mt7530_write(priv, MT7530_P5RGMIITXCR,
980 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
981 
982 		/* reduce P5 RGMII Tx driving, 8mA */
983 		mt7530_write(priv, MT7530_IO_DRV_CR,
984 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
985 	}
986 
987 	mt7530_write(priv, MT7530_MHWTRAP, val);
988 
989 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
990 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
991 
992 	priv->p5_interface = interface;
993 
994 unlock_exit:
995 	mutex_unlock(&priv->reg_mutex);
996 }
997 
998 static int
999 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1000 {
1001 	struct mt7530_priv *priv = ds->priv;
1002 	int ret;
1003 
1004 	/* Setup max capability of CPU port at first */
1005 	if (priv->info->cpu_port_config) {
1006 		ret = priv->info->cpu_port_config(ds, port);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 
1011 	/* Enable Mediatek header mode on the cpu port */
1012 	mt7530_write(priv, MT7530_PVC_P(port),
1013 		     PORT_SPEC_TAG);
1014 
1015 	/* Disable flooding by default */
1016 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1017 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1018 
1019 	/* Set CPU port number */
1020 	if (priv->id == ID_MT7621)
1021 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1022 
1023 	/* CPU port gets connected to all user ports of
1024 	 * the switch.
1025 	 */
1026 	mt7530_write(priv, MT7530_PCR_P(port),
1027 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1028 
1029 	/* Set to fallback mode for independent VLAN learning */
1030 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1031 		   MT7530_PORT_FALLBACK_MODE);
1032 
1033 	return 0;
1034 }
1035 
1036 static int
1037 mt7530_port_enable(struct dsa_switch *ds, int port,
1038 		   struct phy_device *phy)
1039 {
1040 	struct dsa_port *dp = dsa_to_port(ds, port);
1041 	struct mt7530_priv *priv = ds->priv;
1042 
1043 	mutex_lock(&priv->reg_mutex);
1044 
1045 	/* Allow the user port gets connected to the cpu port and also
1046 	 * restore the port matrix if the port is the member of a certain
1047 	 * bridge.
1048 	 */
1049 	if (dsa_port_is_user(dp)) {
1050 		struct dsa_port *cpu_dp = dp->cpu_dp;
1051 
1052 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1053 	}
1054 	priv->ports[port].enable = true;
1055 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1056 		   priv->ports[port].pm);
1057 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1058 
1059 	mutex_unlock(&priv->reg_mutex);
1060 
1061 	return 0;
1062 }
1063 
1064 static void
1065 mt7530_port_disable(struct dsa_switch *ds, int port)
1066 {
1067 	struct mt7530_priv *priv = ds->priv;
1068 
1069 	mutex_lock(&priv->reg_mutex);
1070 
1071 	/* Clear up all port matrix which could be restored in the next
1072 	 * enablement for the port.
1073 	 */
1074 	priv->ports[port].enable = false;
1075 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1076 		   PCR_MATRIX_CLR);
1077 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1078 
1079 	mutex_unlock(&priv->reg_mutex);
1080 }
1081 
1082 static int
1083 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1084 {
1085 	struct mt7530_priv *priv = ds->priv;
1086 	struct mii_bus *bus = priv->bus;
1087 	int length;
1088 	u32 val;
1089 
1090 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1091 	 * largest MTU of the slave ports. Because the switch only has a global
1092 	 * RX length register, only allowing CPU port here is enough.
1093 	 */
1094 	if (!dsa_is_cpu_port(ds, port))
1095 		return 0;
1096 
1097 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1098 
1099 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1100 	val &= ~MAX_RX_PKT_LEN_MASK;
1101 
1102 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1103 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1104 	if (length <= 1522) {
1105 		val |= MAX_RX_PKT_LEN_1522;
1106 	} else if (length <= 1536) {
1107 		val |= MAX_RX_PKT_LEN_1536;
1108 	} else if (length <= 1552) {
1109 		val |= MAX_RX_PKT_LEN_1552;
1110 	} else {
1111 		val &= ~MAX_RX_JUMBO_MASK;
1112 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1113 		val |= MAX_RX_PKT_LEN_JUMBO;
1114 	}
1115 
1116 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1117 
1118 	mutex_unlock(&bus->mdio_lock);
1119 
1120 	return 0;
1121 }
1122 
1123 static int
1124 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1125 {
1126 	return MT7530_MAX_MTU;
1127 }
1128 
1129 static void
1130 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1131 {
1132 	struct mt7530_priv *priv = ds->priv;
1133 	u32 stp_state;
1134 
1135 	switch (state) {
1136 	case BR_STATE_DISABLED:
1137 		stp_state = MT7530_STP_DISABLED;
1138 		break;
1139 	case BR_STATE_BLOCKING:
1140 		stp_state = MT7530_STP_BLOCKING;
1141 		break;
1142 	case BR_STATE_LISTENING:
1143 		stp_state = MT7530_STP_LISTENING;
1144 		break;
1145 	case BR_STATE_LEARNING:
1146 		stp_state = MT7530_STP_LEARNING;
1147 		break;
1148 	case BR_STATE_FORWARDING:
1149 	default:
1150 		stp_state = MT7530_STP_FORWARDING;
1151 		break;
1152 	}
1153 
1154 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1155 		   FID_PST(FID_BRIDGED, stp_state));
1156 }
1157 
1158 static int
1159 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1160 			     struct switchdev_brport_flags flags,
1161 			     struct netlink_ext_ack *extack)
1162 {
1163 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1164 			   BR_BCAST_FLOOD))
1165 		return -EINVAL;
1166 
1167 	return 0;
1168 }
1169 
1170 static int
1171 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1172 			 struct switchdev_brport_flags flags,
1173 			 struct netlink_ext_ack *extack)
1174 {
1175 	struct mt7530_priv *priv = ds->priv;
1176 
1177 	if (flags.mask & BR_LEARNING)
1178 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1179 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1180 
1181 	if (flags.mask & BR_FLOOD)
1182 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1183 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1184 
1185 	if (flags.mask & BR_MCAST_FLOOD)
1186 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1187 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1188 
1189 	if (flags.mask & BR_BCAST_FLOOD)
1190 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1191 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1192 
1193 	return 0;
1194 }
1195 
1196 static int
1197 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1198 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1199 			struct netlink_ext_ack *extack)
1200 {
1201 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1202 	struct dsa_port *cpu_dp = dp->cpu_dp;
1203 	u32 port_bitmap = BIT(cpu_dp->index);
1204 	struct mt7530_priv *priv = ds->priv;
1205 
1206 	mutex_lock(&priv->reg_mutex);
1207 
1208 	dsa_switch_for_each_user_port(other_dp, ds) {
1209 		int other_port = other_dp->index;
1210 
1211 		if (dp == other_dp)
1212 			continue;
1213 
1214 		/* Add this port to the port matrix of the other ports in the
1215 		 * same bridge. If the port is disabled, port matrix is kept
1216 		 * and not being setup until the port becomes enabled.
1217 		 */
1218 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1219 			continue;
1220 
1221 		if (priv->ports[other_port].enable)
1222 			mt7530_set(priv, MT7530_PCR_P(other_port),
1223 				   PCR_MATRIX(BIT(port)));
1224 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1225 
1226 		port_bitmap |= BIT(other_port);
1227 	}
1228 
1229 	/* Add the all other ports to this port matrix. */
1230 	if (priv->ports[port].enable)
1231 		mt7530_rmw(priv, MT7530_PCR_P(port),
1232 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1233 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1234 
1235 	/* Set to fallback mode for independent VLAN learning */
1236 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1237 		   MT7530_PORT_FALLBACK_MODE);
1238 
1239 	mutex_unlock(&priv->reg_mutex);
1240 
1241 	return 0;
1242 }
1243 
1244 static void
1245 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1246 {
1247 	struct mt7530_priv *priv = ds->priv;
1248 	bool all_user_ports_removed = true;
1249 	int i;
1250 
1251 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1252 	 * bridge. Don't set standalone ports to fallback mode.
1253 	 */
1254 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1255 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1256 			   MT7530_PORT_FALLBACK_MODE);
1257 
1258 	mt7530_rmw(priv, MT7530_PVC_P(port),
1259 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1260 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1261 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1262 		   MT7530_VLAN_ACC_ALL);
1263 
1264 	/* Set PVID to 0 */
1265 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1266 		   G0_PORT_VID_DEF);
1267 
1268 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1269 		if (dsa_is_user_port(ds, i) &&
1270 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1271 			all_user_ports_removed = false;
1272 			break;
1273 		}
1274 	}
1275 
1276 	/* CPU port also does the same thing until all user ports belonging to
1277 	 * the CPU port get out of VLAN filtering mode.
1278 	 */
1279 	if (all_user_ports_removed) {
1280 		struct dsa_port *dp = dsa_to_port(ds, port);
1281 		struct dsa_port *cpu_dp = dp->cpu_dp;
1282 
1283 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1284 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1285 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1286 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1287 	}
1288 }
1289 
1290 static void
1291 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1292 {
1293 	struct mt7530_priv *priv = ds->priv;
1294 
1295 	/* Trapped into security mode allows packet forwarding through VLAN
1296 	 * table lookup.
1297 	 */
1298 	if (dsa_is_user_port(ds, port)) {
1299 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1300 			   MT7530_PORT_SECURITY_MODE);
1301 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1302 			   G0_PORT_VID(priv->ports[port].pvid));
1303 
1304 		/* Only accept tagged frames if PVID is not set */
1305 		if (!priv->ports[port].pvid)
1306 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1307 				   MT7530_VLAN_ACC_TAGGED);
1308 
1309 		/* Set the port as a user port which is to be able to recognize
1310 		 * VID from incoming packets before fetching entry within the
1311 		 * VLAN table.
1312 		 */
1313 		mt7530_rmw(priv, MT7530_PVC_P(port),
1314 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1315 			   VLAN_ATTR(MT7530_VLAN_USER) |
1316 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1317 	} else {
1318 		/* Also set CPU ports to the "user" VLAN port attribute, to
1319 		 * allow VLAN classification, but keep the EG_TAG attribute as
1320 		 * "consistent" (i.o.w. don't change its value) for packets
1321 		 * received by the switch from the CPU, so that tagged packets
1322 		 * are forwarded to user ports as tagged, and untagged as
1323 		 * untagged.
1324 		 */
1325 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1326 			   VLAN_ATTR(MT7530_VLAN_USER));
1327 	}
1328 }
1329 
1330 static void
1331 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1332 			 struct dsa_bridge bridge)
1333 {
1334 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1335 	struct dsa_port *cpu_dp = dp->cpu_dp;
1336 	struct mt7530_priv *priv = ds->priv;
1337 
1338 	mutex_lock(&priv->reg_mutex);
1339 
1340 	dsa_switch_for_each_user_port(other_dp, ds) {
1341 		int other_port = other_dp->index;
1342 
1343 		if (dp == other_dp)
1344 			continue;
1345 
1346 		/* Remove this port from the port matrix of the other ports
1347 		 * in the same bridge. If the port is disabled, port matrix
1348 		 * is kept and not being setup until the port becomes enabled.
1349 		 */
1350 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1351 			continue;
1352 
1353 		if (priv->ports[other_port].enable)
1354 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1355 				     PCR_MATRIX(BIT(port)));
1356 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1357 	}
1358 
1359 	/* Set the cpu port to be the only one in the port matrix of
1360 	 * this port.
1361 	 */
1362 	if (priv->ports[port].enable)
1363 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1364 			   PCR_MATRIX(BIT(cpu_dp->index)));
1365 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1366 
1367 	/* When a port is removed from the bridge, the port would be set up
1368 	 * back to the default as is at initial boot which is a VLAN-unaware
1369 	 * port.
1370 	 */
1371 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1372 		   MT7530_PORT_MATRIX_MODE);
1373 
1374 	mutex_unlock(&priv->reg_mutex);
1375 }
1376 
1377 static int
1378 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1379 		    const unsigned char *addr, u16 vid,
1380 		    struct dsa_db db)
1381 {
1382 	struct mt7530_priv *priv = ds->priv;
1383 	int ret;
1384 	u8 port_mask = BIT(port);
1385 
1386 	mutex_lock(&priv->reg_mutex);
1387 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1388 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1389 	mutex_unlock(&priv->reg_mutex);
1390 
1391 	return ret;
1392 }
1393 
1394 static int
1395 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1396 		    const unsigned char *addr, u16 vid,
1397 		    struct dsa_db db)
1398 {
1399 	struct mt7530_priv *priv = ds->priv;
1400 	int ret;
1401 	u8 port_mask = BIT(port);
1402 
1403 	mutex_lock(&priv->reg_mutex);
1404 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1405 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1406 	mutex_unlock(&priv->reg_mutex);
1407 
1408 	return ret;
1409 }
1410 
1411 static int
1412 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1413 		     dsa_fdb_dump_cb_t *cb, void *data)
1414 {
1415 	struct mt7530_priv *priv = ds->priv;
1416 	struct mt7530_fdb _fdb = { 0 };
1417 	int cnt = MT7530_NUM_FDB_RECORDS;
1418 	int ret = 0;
1419 	u32 rsp = 0;
1420 
1421 	mutex_lock(&priv->reg_mutex);
1422 
1423 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1424 	if (ret < 0)
1425 		goto err;
1426 
1427 	do {
1428 		if (rsp & ATC_SRCH_HIT) {
1429 			mt7530_fdb_read(priv, &_fdb);
1430 			if (_fdb.port_mask & BIT(port)) {
1431 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1432 					 data);
1433 				if (ret < 0)
1434 					break;
1435 			}
1436 		}
1437 	} while (--cnt &&
1438 		 !(rsp & ATC_SRCH_END) &&
1439 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1440 err:
1441 	mutex_unlock(&priv->reg_mutex);
1442 
1443 	return 0;
1444 }
1445 
1446 static int
1447 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1448 		    const struct switchdev_obj_port_mdb *mdb,
1449 		    struct dsa_db db)
1450 {
1451 	struct mt7530_priv *priv = ds->priv;
1452 	const u8 *addr = mdb->addr;
1453 	u16 vid = mdb->vid;
1454 	u8 port_mask = 0;
1455 	int ret;
1456 
1457 	mutex_lock(&priv->reg_mutex);
1458 
1459 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1460 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1461 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1462 			    & PORT_MAP_MASK;
1463 
1464 	port_mask |= BIT(port);
1465 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1466 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1467 
1468 	mutex_unlock(&priv->reg_mutex);
1469 
1470 	return ret;
1471 }
1472 
1473 static int
1474 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1475 		    const struct switchdev_obj_port_mdb *mdb,
1476 		    struct dsa_db db)
1477 {
1478 	struct mt7530_priv *priv = ds->priv;
1479 	const u8 *addr = mdb->addr;
1480 	u16 vid = mdb->vid;
1481 	u8 port_mask = 0;
1482 	int ret;
1483 
1484 	mutex_lock(&priv->reg_mutex);
1485 
1486 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1487 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1488 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1489 			    & PORT_MAP_MASK;
1490 
1491 	port_mask &= ~BIT(port);
1492 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1493 			 port_mask ? STATIC_ENT : STATIC_EMP);
1494 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1495 
1496 	mutex_unlock(&priv->reg_mutex);
1497 
1498 	return ret;
1499 }
1500 
1501 static int
1502 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1503 {
1504 	struct mt7530_dummy_poll p;
1505 	u32 val;
1506 	int ret;
1507 
1508 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1509 	mt7530_write(priv, MT7530_VTCR, val);
1510 
1511 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1512 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1513 				 !(val & VTCR_BUSY), 20, 20000);
1514 	if (ret < 0) {
1515 		dev_err(priv->dev, "poll timeout\n");
1516 		return ret;
1517 	}
1518 
1519 	val = mt7530_read(priv, MT7530_VTCR);
1520 	if (val & VTCR_INVALID) {
1521 		dev_err(priv->dev, "read VTCR invalid\n");
1522 		return -EINVAL;
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 static int
1529 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1530 			   struct netlink_ext_ack *extack)
1531 {
1532 	struct dsa_port *dp = dsa_to_port(ds, port);
1533 	struct dsa_port *cpu_dp = dp->cpu_dp;
1534 
1535 	if (vlan_filtering) {
1536 		/* The port is being kept as VLAN-unaware port when bridge is
1537 		 * set up with vlan_filtering not being set, Otherwise, the
1538 		 * port and the corresponding CPU port is required the setup
1539 		 * for becoming a VLAN-aware port.
1540 		 */
1541 		mt7530_port_set_vlan_aware(ds, port);
1542 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1543 	} else {
1544 		mt7530_port_set_vlan_unaware(ds, port);
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static void
1551 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1552 		   struct mt7530_hw_vlan_entry *entry)
1553 {
1554 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1555 	u8 new_members;
1556 	u32 val;
1557 
1558 	new_members = entry->old_members | BIT(entry->port);
1559 
1560 	/* Validate the entry with independent learning, create egress tag per
1561 	 * VLAN and joining the port as one of the port members.
1562 	 */
1563 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1564 	      VLAN_VALID;
1565 	mt7530_write(priv, MT7530_VAWD1, val);
1566 
1567 	/* Decide whether adding tag or not for those outgoing packets from the
1568 	 * port inside the VLAN.
1569 	 * CPU port is always taken as a tagged port for serving more than one
1570 	 * VLANs across and also being applied with egress type stack mode for
1571 	 * that VLAN tags would be appended after hardware special tag used as
1572 	 * DSA tag.
1573 	 */
1574 	if (dsa_port_is_cpu(dp))
1575 		val = MT7530_VLAN_EGRESS_STACK;
1576 	else if (entry->untagged)
1577 		val = MT7530_VLAN_EGRESS_UNTAG;
1578 	else
1579 		val = MT7530_VLAN_EGRESS_TAG;
1580 	mt7530_rmw(priv, MT7530_VAWD2,
1581 		   ETAG_CTRL_P_MASK(entry->port),
1582 		   ETAG_CTRL_P(entry->port, val));
1583 }
1584 
1585 static void
1586 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1587 		   struct mt7530_hw_vlan_entry *entry)
1588 {
1589 	u8 new_members;
1590 	u32 val;
1591 
1592 	new_members = entry->old_members & ~BIT(entry->port);
1593 
1594 	val = mt7530_read(priv, MT7530_VAWD1);
1595 	if (!(val & VLAN_VALID)) {
1596 		dev_err(priv->dev,
1597 			"Cannot be deleted due to invalid entry\n");
1598 		return;
1599 	}
1600 
1601 	if (new_members) {
1602 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1603 		      VLAN_VALID;
1604 		mt7530_write(priv, MT7530_VAWD1, val);
1605 	} else {
1606 		mt7530_write(priv, MT7530_VAWD1, 0);
1607 		mt7530_write(priv, MT7530_VAWD2, 0);
1608 	}
1609 }
1610 
1611 static void
1612 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1613 		      struct mt7530_hw_vlan_entry *entry,
1614 		      mt7530_vlan_op vlan_op)
1615 {
1616 	u32 val;
1617 
1618 	/* Fetch entry */
1619 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1620 
1621 	val = mt7530_read(priv, MT7530_VAWD1);
1622 
1623 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1624 
1625 	/* Manipulate entry */
1626 	vlan_op(priv, entry);
1627 
1628 	/* Flush result to hardware */
1629 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1630 }
1631 
1632 static int
1633 mt7530_setup_vlan0(struct mt7530_priv *priv)
1634 {
1635 	u32 val;
1636 
1637 	/* Validate the entry with independent learning, keep the original
1638 	 * ingress tag attribute.
1639 	 */
1640 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1641 	      VLAN_VALID;
1642 	mt7530_write(priv, MT7530_VAWD1, val);
1643 
1644 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1645 }
1646 
1647 static int
1648 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1649 		     const struct switchdev_obj_port_vlan *vlan,
1650 		     struct netlink_ext_ack *extack)
1651 {
1652 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1653 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1654 	struct mt7530_hw_vlan_entry new_entry;
1655 	struct mt7530_priv *priv = ds->priv;
1656 
1657 	mutex_lock(&priv->reg_mutex);
1658 
1659 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1660 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1661 
1662 	if (pvid) {
1663 		priv->ports[port].pvid = vlan->vid;
1664 
1665 		/* Accept all frames if PVID is set */
1666 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1667 			   MT7530_VLAN_ACC_ALL);
1668 
1669 		/* Only configure PVID if VLAN filtering is enabled */
1670 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1671 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1672 				   G0_PORT_VID_MASK,
1673 				   G0_PORT_VID(vlan->vid));
1674 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1675 		/* This VLAN is overwritten without PVID, so unset it */
1676 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1677 
1678 		/* Only accept tagged frames if the port is VLAN-aware */
1679 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1680 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1681 				   MT7530_VLAN_ACC_TAGGED);
1682 
1683 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1684 			   G0_PORT_VID_DEF);
1685 	}
1686 
1687 	mutex_unlock(&priv->reg_mutex);
1688 
1689 	return 0;
1690 }
1691 
1692 static int
1693 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1694 		     const struct switchdev_obj_port_vlan *vlan)
1695 {
1696 	struct mt7530_hw_vlan_entry target_entry;
1697 	struct mt7530_priv *priv = ds->priv;
1698 
1699 	mutex_lock(&priv->reg_mutex);
1700 
1701 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1702 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1703 			      mt7530_hw_vlan_del);
1704 
1705 	/* PVID is being restored to the default whenever the PVID port
1706 	 * is being removed from the VLAN.
1707 	 */
1708 	if (priv->ports[port].pvid == vlan->vid) {
1709 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1710 
1711 		/* Only accept tagged frames if the port is VLAN-aware */
1712 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1713 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1714 				   MT7530_VLAN_ACC_TAGGED);
1715 
1716 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1717 			   G0_PORT_VID_DEF);
1718 	}
1719 
1720 
1721 	mutex_unlock(&priv->reg_mutex);
1722 
1723 	return 0;
1724 }
1725 
1726 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1727 {
1728 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1729 				   MIRROR_PORT(val);
1730 }
1731 
1732 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1733 {
1734 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1735 				   MIRROR_PORT(val);
1736 }
1737 
1738 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1739 				  struct dsa_mall_mirror_tc_entry *mirror,
1740 				  bool ingress, struct netlink_ext_ack *extack)
1741 {
1742 	struct mt7530_priv *priv = ds->priv;
1743 	int monitor_port;
1744 	u32 val;
1745 
1746 	/* Check for existent entry */
1747 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1748 		return -EEXIST;
1749 
1750 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1751 
1752 	/* MT7530 only supports one monitor port */
1753 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1754 	if (val & MT753X_MIRROR_EN(priv->id) &&
1755 	    monitor_port != mirror->to_local_port)
1756 		return -EEXIST;
1757 
1758 	val |= MT753X_MIRROR_EN(priv->id);
1759 	val &= ~MT753X_MIRROR_MASK(priv->id);
1760 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1761 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1762 
1763 	val = mt7530_read(priv, MT7530_PCR_P(port));
1764 	if (ingress) {
1765 		val |= PORT_RX_MIR;
1766 		priv->mirror_rx |= BIT(port);
1767 	} else {
1768 		val |= PORT_TX_MIR;
1769 		priv->mirror_tx |= BIT(port);
1770 	}
1771 	mt7530_write(priv, MT7530_PCR_P(port), val);
1772 
1773 	return 0;
1774 }
1775 
1776 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1777 				   struct dsa_mall_mirror_tc_entry *mirror)
1778 {
1779 	struct mt7530_priv *priv = ds->priv;
1780 	u32 val;
1781 
1782 	val = mt7530_read(priv, MT7530_PCR_P(port));
1783 	if (mirror->ingress) {
1784 		val &= ~PORT_RX_MIR;
1785 		priv->mirror_rx &= ~BIT(port);
1786 	} else {
1787 		val &= ~PORT_TX_MIR;
1788 		priv->mirror_tx &= ~BIT(port);
1789 	}
1790 	mt7530_write(priv, MT7530_PCR_P(port), val);
1791 
1792 	if (!priv->mirror_rx && !priv->mirror_tx) {
1793 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1794 		val &= ~MT753X_MIRROR_EN(priv->id);
1795 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1796 	}
1797 }
1798 
1799 static enum dsa_tag_protocol
1800 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1801 		     enum dsa_tag_protocol mp)
1802 {
1803 	return DSA_TAG_PROTO_MTK;
1804 }
1805 
1806 #ifdef CONFIG_GPIOLIB
1807 static inline u32
1808 mt7530_gpio_to_bit(unsigned int offset)
1809 {
1810 	/* Map GPIO offset to register bit
1811 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1812 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1813 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1814 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1815 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1816 	 */
1817 	return BIT(offset + offset / 3);
1818 }
1819 
1820 static int
1821 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1822 {
1823 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1824 	u32 bit = mt7530_gpio_to_bit(offset);
1825 
1826 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1827 }
1828 
1829 static void
1830 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1831 {
1832 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1833 	u32 bit = mt7530_gpio_to_bit(offset);
1834 
1835 	if (value)
1836 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1837 	else
1838 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1839 }
1840 
1841 static int
1842 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1843 {
1844 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1845 	u32 bit = mt7530_gpio_to_bit(offset);
1846 
1847 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1848 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1849 }
1850 
1851 static int
1852 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1853 {
1854 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1855 	u32 bit = mt7530_gpio_to_bit(offset);
1856 
1857 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1858 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1859 
1860 	return 0;
1861 }
1862 
1863 static int
1864 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1865 {
1866 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1867 	u32 bit = mt7530_gpio_to_bit(offset);
1868 
1869 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1870 
1871 	if (value)
1872 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1873 	else
1874 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1875 
1876 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1877 
1878 	return 0;
1879 }
1880 
1881 static int
1882 mt7530_setup_gpio(struct mt7530_priv *priv)
1883 {
1884 	struct device *dev = priv->dev;
1885 	struct gpio_chip *gc;
1886 
1887 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1888 	if (!gc)
1889 		return -ENOMEM;
1890 
1891 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1892 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1893 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1894 
1895 	gc->label = "mt7530";
1896 	gc->parent = dev;
1897 	gc->owner = THIS_MODULE;
1898 	gc->get_direction = mt7530_gpio_get_direction;
1899 	gc->direction_input = mt7530_gpio_direction_input;
1900 	gc->direction_output = mt7530_gpio_direction_output;
1901 	gc->get = mt7530_gpio_get;
1902 	gc->set = mt7530_gpio_set;
1903 	gc->base = -1;
1904 	gc->ngpio = 15;
1905 	gc->can_sleep = true;
1906 
1907 	return devm_gpiochip_add_data(dev, gc, priv);
1908 }
1909 #endif /* CONFIG_GPIOLIB */
1910 
1911 static irqreturn_t
1912 mt7530_irq_thread_fn(int irq, void *dev_id)
1913 {
1914 	struct mt7530_priv *priv = dev_id;
1915 	bool handled = false;
1916 	u32 val;
1917 	int p;
1918 
1919 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1920 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1921 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1922 	mutex_unlock(&priv->bus->mdio_lock);
1923 
1924 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1925 		if (BIT(p) & val) {
1926 			unsigned int irq;
1927 
1928 			irq = irq_find_mapping(priv->irq_domain, p);
1929 			handle_nested_irq(irq);
1930 			handled = true;
1931 		}
1932 	}
1933 
1934 	return IRQ_RETVAL(handled);
1935 }
1936 
1937 static void
1938 mt7530_irq_mask(struct irq_data *d)
1939 {
1940 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1941 
1942 	priv->irq_enable &= ~BIT(d->hwirq);
1943 }
1944 
1945 static void
1946 mt7530_irq_unmask(struct irq_data *d)
1947 {
1948 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1949 
1950 	priv->irq_enable |= BIT(d->hwirq);
1951 }
1952 
1953 static void
1954 mt7530_irq_bus_lock(struct irq_data *d)
1955 {
1956 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1957 
1958 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1959 }
1960 
1961 static void
1962 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1963 {
1964 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1965 
1966 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1967 	mutex_unlock(&priv->bus->mdio_lock);
1968 }
1969 
1970 static struct irq_chip mt7530_irq_chip = {
1971 	.name = KBUILD_MODNAME,
1972 	.irq_mask = mt7530_irq_mask,
1973 	.irq_unmask = mt7530_irq_unmask,
1974 	.irq_bus_lock = mt7530_irq_bus_lock,
1975 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1976 };
1977 
1978 static int
1979 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1980 	       irq_hw_number_t hwirq)
1981 {
1982 	irq_set_chip_data(irq, domain->host_data);
1983 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1984 	irq_set_nested_thread(irq, true);
1985 	irq_set_noprobe(irq);
1986 
1987 	return 0;
1988 }
1989 
1990 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1991 	.map = mt7530_irq_map,
1992 	.xlate = irq_domain_xlate_onecell,
1993 };
1994 
1995 static void
1996 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1997 {
1998 	struct dsa_switch *ds = priv->ds;
1999 	int p;
2000 
2001 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2002 		if (BIT(p) & ds->phys_mii_mask) {
2003 			unsigned int irq;
2004 
2005 			irq = irq_create_mapping(priv->irq_domain, p);
2006 			ds->slave_mii_bus->irq[p] = irq;
2007 		}
2008 	}
2009 }
2010 
2011 static int
2012 mt7530_setup_irq(struct mt7530_priv *priv)
2013 {
2014 	struct device *dev = priv->dev;
2015 	struct device_node *np = dev->of_node;
2016 	int ret;
2017 
2018 	if (!of_property_read_bool(np, "interrupt-controller")) {
2019 		dev_info(dev, "no interrupt support\n");
2020 		return 0;
2021 	}
2022 
2023 	priv->irq = of_irq_get(np, 0);
2024 	if (priv->irq <= 0) {
2025 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2026 		return priv->irq ? : -EINVAL;
2027 	}
2028 
2029 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2030 						 &mt7530_irq_domain_ops, priv);
2031 	if (!priv->irq_domain) {
2032 		dev_err(dev, "failed to create IRQ domain\n");
2033 		return -ENOMEM;
2034 	}
2035 
2036 	/* This register must be set for MT7530 to properly fire interrupts */
2037 	if (priv->id != ID_MT7531)
2038 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2039 
2040 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2041 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2042 	if (ret) {
2043 		irq_domain_remove(priv->irq_domain);
2044 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2045 		return ret;
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 static void
2052 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2053 {
2054 	int p;
2055 
2056 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2057 		if (BIT(p) & priv->ds->phys_mii_mask) {
2058 			unsigned int irq;
2059 
2060 			irq = irq_find_mapping(priv->irq_domain, p);
2061 			irq_dispose_mapping(irq);
2062 		}
2063 	}
2064 }
2065 
2066 static void
2067 mt7530_free_irq_common(struct mt7530_priv *priv)
2068 {
2069 	free_irq(priv->irq, priv);
2070 	irq_domain_remove(priv->irq_domain);
2071 }
2072 
2073 static void
2074 mt7530_free_irq(struct mt7530_priv *priv)
2075 {
2076 	mt7530_free_mdio_irq(priv);
2077 	mt7530_free_irq_common(priv);
2078 }
2079 
2080 static int
2081 mt7530_setup_mdio(struct mt7530_priv *priv)
2082 {
2083 	struct dsa_switch *ds = priv->ds;
2084 	struct device *dev = priv->dev;
2085 	struct mii_bus *bus;
2086 	static int idx;
2087 	int ret;
2088 
2089 	bus = devm_mdiobus_alloc(dev);
2090 	if (!bus)
2091 		return -ENOMEM;
2092 
2093 	ds->slave_mii_bus = bus;
2094 	bus->priv = priv;
2095 	bus->name = KBUILD_MODNAME "-mii";
2096 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2097 	bus->read = mt753x_phy_read_c22;
2098 	bus->write = mt753x_phy_write_c22;
2099 	bus->read_c45 = mt753x_phy_read_c45;
2100 	bus->write_c45 = mt753x_phy_write_c45;
2101 	bus->parent = dev;
2102 	bus->phy_mask = ~ds->phys_mii_mask;
2103 
2104 	if (priv->irq)
2105 		mt7530_setup_mdio_irq(priv);
2106 
2107 	ret = devm_mdiobus_register(dev, bus);
2108 	if (ret) {
2109 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2110 		if (priv->irq)
2111 			mt7530_free_mdio_irq(priv);
2112 	}
2113 
2114 	return ret;
2115 }
2116 
2117 static int
2118 mt7530_setup(struct dsa_switch *ds)
2119 {
2120 	struct mt7530_priv *priv = ds->priv;
2121 	struct device_node *dn = NULL;
2122 	struct device_node *phy_node;
2123 	struct device_node *mac_np;
2124 	struct mt7530_dummy_poll p;
2125 	phy_interface_t interface;
2126 	struct dsa_port *cpu_dp;
2127 	u32 id, val;
2128 	int ret, i;
2129 
2130 	/* The parent node of master netdev which holds the common system
2131 	 * controller also is the container for two GMACs nodes representing
2132 	 * as two netdev instances.
2133 	 */
2134 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2135 		dn = cpu_dp->master->dev.of_node->parent;
2136 		/* It doesn't matter which CPU port is found first,
2137 		 * their masters should share the same parent OF node
2138 		 */
2139 		break;
2140 	}
2141 
2142 	if (!dn) {
2143 		dev_err(ds->dev, "parent OF node of DSA master not found");
2144 		return -EINVAL;
2145 	}
2146 
2147 	ds->assisted_learning_on_cpu_port = true;
2148 	ds->mtu_enforcement_ingress = true;
2149 
2150 	if (priv->id == ID_MT7530) {
2151 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2152 		ret = regulator_enable(priv->core_pwr);
2153 		if (ret < 0) {
2154 			dev_err(priv->dev,
2155 				"Failed to enable core power: %d\n", ret);
2156 			return ret;
2157 		}
2158 
2159 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2160 		ret = regulator_enable(priv->io_pwr);
2161 		if (ret < 0) {
2162 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2163 				ret);
2164 			return ret;
2165 		}
2166 	}
2167 
2168 	/* Reset whole chip through gpio pin or memory-mapped registers for
2169 	 * different type of hardware
2170 	 */
2171 	if (priv->mcm) {
2172 		reset_control_assert(priv->rstc);
2173 		usleep_range(1000, 1100);
2174 		reset_control_deassert(priv->rstc);
2175 	} else {
2176 		gpiod_set_value_cansleep(priv->reset, 0);
2177 		usleep_range(1000, 1100);
2178 		gpiod_set_value_cansleep(priv->reset, 1);
2179 	}
2180 
2181 	/* Waiting for MT7530 got to stable */
2182 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2183 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2184 				 20, 1000000);
2185 	if (ret < 0) {
2186 		dev_err(priv->dev, "reset timeout\n");
2187 		return ret;
2188 	}
2189 
2190 	id = mt7530_read(priv, MT7530_CREV);
2191 	id >>= CHIP_NAME_SHIFT;
2192 	if (id != MT7530_ID) {
2193 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2194 		return -ENODEV;
2195 	}
2196 
2197 	/* Reset the switch through internal reset */
2198 	mt7530_write(priv, MT7530_SYS_CTRL,
2199 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2200 		     SYS_CTRL_REG_RST);
2201 
2202 	mt7530_pll_setup(priv);
2203 
2204 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2205 	val = mt7530_read(priv, MT7530_MHWTRAP);
2206 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2207 	val |= MHWTRAP_MANUAL;
2208 	mt7530_write(priv, MT7530_MHWTRAP, val);
2209 
2210 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2211 
2212 	/* Enable and reset MIB counters */
2213 	mt7530_mib_reset(ds);
2214 
2215 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2216 		/* Disable forwarding by default on all ports */
2217 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2218 			   PCR_MATRIX_CLR);
2219 
2220 		/* Disable learning by default on all ports */
2221 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2222 
2223 		if (dsa_is_cpu_port(ds, i)) {
2224 			ret = mt753x_cpu_port_enable(ds, i);
2225 			if (ret)
2226 				return ret;
2227 		} else {
2228 			mt7530_port_disable(ds, i);
2229 
2230 			/* Set default PVID to 0 on all user ports */
2231 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2232 				   G0_PORT_VID_DEF);
2233 		}
2234 		/* Enable consistent egress tag */
2235 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2236 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2237 	}
2238 
2239 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2240 	ret = mt7530_setup_vlan0(priv);
2241 	if (ret)
2242 		return ret;
2243 
2244 	/* Setup port 5 */
2245 	priv->p5_intf_sel = P5_DISABLED;
2246 	interface = PHY_INTERFACE_MODE_NA;
2247 
2248 	if (!dsa_is_unused_port(ds, 5)) {
2249 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2250 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2251 		if (ret && ret != -ENODEV)
2252 			return ret;
2253 	} else {
2254 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2255 		for_each_child_of_node(dn, mac_np) {
2256 			if (!of_device_is_compatible(mac_np,
2257 						     "mediatek,eth-mac"))
2258 				continue;
2259 
2260 			ret = of_property_read_u32(mac_np, "reg", &id);
2261 			if (ret < 0 || id != 1)
2262 				continue;
2263 
2264 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2265 			if (!phy_node)
2266 				continue;
2267 
2268 			if (phy_node->parent == priv->dev->of_node->parent) {
2269 				ret = of_get_phy_mode(mac_np, &interface);
2270 				if (ret && ret != -ENODEV) {
2271 					of_node_put(mac_np);
2272 					of_node_put(phy_node);
2273 					return ret;
2274 				}
2275 				id = of_mdio_parse_addr(ds->dev, phy_node);
2276 				if (id == 0)
2277 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2278 				if (id == 4)
2279 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2280 			}
2281 			of_node_put(mac_np);
2282 			of_node_put(phy_node);
2283 			break;
2284 		}
2285 	}
2286 
2287 #ifdef CONFIG_GPIOLIB
2288 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2289 		ret = mt7530_setup_gpio(priv);
2290 		if (ret)
2291 			return ret;
2292 	}
2293 #endif /* CONFIG_GPIOLIB */
2294 
2295 	mt7530_setup_port5(ds, interface);
2296 
2297 	/* Flush the FDB table */
2298 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2299 	if (ret < 0)
2300 		return ret;
2301 
2302 	return 0;
2303 }
2304 
2305 static int
2306 mt7531_setup(struct dsa_switch *ds)
2307 {
2308 	struct mt7530_priv *priv = ds->priv;
2309 	struct mt7530_dummy_poll p;
2310 	struct dsa_port *cpu_dp;
2311 	u32 val, id;
2312 	int ret, i;
2313 
2314 	/* Reset whole chip through gpio pin or memory-mapped registers for
2315 	 * different type of hardware
2316 	 */
2317 	if (priv->mcm) {
2318 		reset_control_assert(priv->rstc);
2319 		usleep_range(1000, 1100);
2320 		reset_control_deassert(priv->rstc);
2321 	} else {
2322 		gpiod_set_value_cansleep(priv->reset, 0);
2323 		usleep_range(1000, 1100);
2324 		gpiod_set_value_cansleep(priv->reset, 1);
2325 	}
2326 
2327 	/* Waiting for MT7530 got to stable */
2328 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2329 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2330 				 20, 1000000);
2331 	if (ret < 0) {
2332 		dev_err(priv->dev, "reset timeout\n");
2333 		return ret;
2334 	}
2335 
2336 	id = mt7530_read(priv, MT7531_CREV);
2337 	id >>= CHIP_NAME_SHIFT;
2338 
2339 	if (id != MT7531_ID) {
2340 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2341 		return -ENODEV;
2342 	}
2343 
2344 	/* all MACs must be forced link-down before sw reset */
2345 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2346 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2347 
2348 	/* Reset the switch through internal reset */
2349 	mt7530_write(priv, MT7530_SYS_CTRL,
2350 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2351 		     SYS_CTRL_REG_RST);
2352 
2353 	mt7531_pll_setup(priv);
2354 
2355 	if (mt7531_dual_sgmii_supported(priv)) {
2356 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2357 
2358 		/* Let ds->slave_mii_bus be able to access external phy. */
2359 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2360 			   MT7531_EXT_P_MDC_11);
2361 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2362 			   MT7531_EXT_P_MDIO_12);
2363 	} else {
2364 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2365 	}
2366 	dev_dbg(ds->dev, "P5 support %s interface\n",
2367 		p5_intf_modes(priv->p5_intf_sel));
2368 
2369 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2370 		   MT7531_GPIO0_INTERRUPT);
2371 
2372 	/* Let phylink decide the interface later. */
2373 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2374 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2375 
2376 	/* Enable PHY core PLL, since phy_device has not yet been created
2377 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2378 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2379 	 * function.
2380 	 */
2381 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2382 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2383 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2384 	val &= ~MT7531_PHY_PLL_OFF;
2385 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2386 				 CORE_PLL_GROUP4, val);
2387 
2388 	/* BPDU to CPU port */
2389 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2390 		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2391 			   BIT(cpu_dp->index));
2392 		break;
2393 	}
2394 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2395 		   MT753X_BPDU_CPU_ONLY);
2396 
2397 	/* Enable and reset MIB counters */
2398 	mt7530_mib_reset(ds);
2399 
2400 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2401 		/* Disable forwarding by default on all ports */
2402 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2403 			   PCR_MATRIX_CLR);
2404 
2405 		/* Disable learning by default on all ports */
2406 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2407 
2408 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2409 
2410 		if (dsa_is_cpu_port(ds, i)) {
2411 			ret = mt753x_cpu_port_enable(ds, i);
2412 			if (ret)
2413 				return ret;
2414 		} else {
2415 			mt7530_port_disable(ds, i);
2416 
2417 			/* Set default PVID to 0 on all user ports */
2418 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2419 				   G0_PORT_VID_DEF);
2420 		}
2421 
2422 		/* Enable consistent egress tag */
2423 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2424 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2425 	}
2426 
2427 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2428 	ret = mt7530_setup_vlan0(priv);
2429 	if (ret)
2430 		return ret;
2431 
2432 	ds->assisted_learning_on_cpu_port = true;
2433 	ds->mtu_enforcement_ingress = true;
2434 
2435 	/* Flush the FDB table */
2436 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2437 	if (ret < 0)
2438 		return ret;
2439 
2440 	return 0;
2441 }
2442 
2443 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2444 				     struct phylink_config *config)
2445 {
2446 	switch (port) {
2447 	case 0 ... 4: /* Internal phy */
2448 		__set_bit(PHY_INTERFACE_MODE_GMII,
2449 			  config->supported_interfaces);
2450 		break;
2451 
2452 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2453 		phy_interface_set_rgmii(config->supported_interfaces);
2454 		__set_bit(PHY_INTERFACE_MODE_MII,
2455 			  config->supported_interfaces);
2456 		__set_bit(PHY_INTERFACE_MODE_GMII,
2457 			  config->supported_interfaces);
2458 		break;
2459 
2460 	case 6: /* 1st cpu port */
2461 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2462 			  config->supported_interfaces);
2463 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2464 			  config->supported_interfaces);
2465 		break;
2466 	}
2467 }
2468 
2469 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2470 {
2471 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2472 }
2473 
2474 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2475 				     struct phylink_config *config)
2476 {
2477 	struct mt7530_priv *priv = ds->priv;
2478 
2479 	switch (port) {
2480 	case 0 ... 4: /* Internal phy */
2481 		__set_bit(PHY_INTERFACE_MODE_GMII,
2482 			  config->supported_interfaces);
2483 		break;
2484 
2485 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2486 		if (mt7531_is_rgmii_port(priv, port)) {
2487 			phy_interface_set_rgmii(config->supported_interfaces);
2488 			break;
2489 		}
2490 		fallthrough;
2491 
2492 	case 6: /* 1st cpu port supports sgmii/8023z only */
2493 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2494 			  config->supported_interfaces);
2495 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2496 			  config->supported_interfaces);
2497 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2498 			  config->supported_interfaces);
2499 
2500 		config->mac_capabilities |= MAC_2500FD;
2501 		break;
2502 	}
2503 }
2504 
2505 static int
2506 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2507 {
2508 	struct mt7530_priv *priv = ds->priv;
2509 
2510 	return priv->info->pad_setup(ds, state->interface);
2511 }
2512 
2513 static int
2514 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2515 		  phy_interface_t interface)
2516 {
2517 	struct mt7530_priv *priv = ds->priv;
2518 
2519 	/* Only need to setup port5. */
2520 	if (port != 5)
2521 		return 0;
2522 
2523 	mt7530_setup_port5(priv->ds, interface);
2524 
2525 	return 0;
2526 }
2527 
2528 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2529 			      phy_interface_t interface,
2530 			      struct phy_device *phydev)
2531 {
2532 	u32 val;
2533 
2534 	if (!mt7531_is_rgmii_port(priv, port)) {
2535 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2536 			port);
2537 		return -EINVAL;
2538 	}
2539 
2540 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2541 	val |= GP_CLK_EN;
2542 	val &= ~GP_MODE_MASK;
2543 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2544 	val &= ~CLK_SKEW_IN_MASK;
2545 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2546 	val &= ~CLK_SKEW_OUT_MASK;
2547 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2548 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2549 
2550 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2551 	if (!phydev || phy_driver_is_genphy(phydev)) {
2552 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2553 		switch (interface) {
2554 		case PHY_INTERFACE_MODE_RGMII:
2555 			val |= TXCLK_NO_REVERSE;
2556 			val |= RXCLK_NO_DELAY;
2557 			break;
2558 		case PHY_INTERFACE_MODE_RGMII_RXID:
2559 			val |= TXCLK_NO_REVERSE;
2560 			break;
2561 		case PHY_INTERFACE_MODE_RGMII_TXID:
2562 			val |= RXCLK_NO_DELAY;
2563 			break;
2564 		case PHY_INTERFACE_MODE_RGMII_ID:
2565 			break;
2566 		default:
2567 			return -EINVAL;
2568 		}
2569 	}
2570 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2571 
2572 	return 0;
2573 }
2574 
2575 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2576 			       phy_interface_t interface, int speed, int duplex)
2577 {
2578 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2579 	int port = pcs_to_mt753x_pcs(pcs)->port;
2580 	unsigned int val;
2581 
2582 	/* For adjusting speed and duplex of SGMII force mode. */
2583 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2584 	    phylink_autoneg_inband(mode))
2585 		return;
2586 
2587 	/* SGMII force mode setting */
2588 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2589 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2590 
2591 	switch (speed) {
2592 	case SPEED_10:
2593 		val |= MT7531_SGMII_FORCE_SPEED_10;
2594 		break;
2595 	case SPEED_100:
2596 		val |= MT7531_SGMII_FORCE_SPEED_100;
2597 		break;
2598 	case SPEED_1000:
2599 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2600 		break;
2601 	}
2602 
2603 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2604 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2605 	 *
2606 	 * The speed check is unnecessary as the MAC capabilities apply
2607 	 * this restriction. --rmk
2608 	 */
2609 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2610 	    duplex != DUPLEX_FULL)
2611 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2612 
2613 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2614 }
2615 
2616 static bool mt753x_is_mac_port(u32 port)
2617 {
2618 	return (port == 5 || port == 6);
2619 }
2620 
2621 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2622 					 phy_interface_t interface)
2623 {
2624 	u32 val;
2625 
2626 	if (!mt753x_is_mac_port(port))
2627 		return -EINVAL;
2628 
2629 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2630 		   MT7531_SGMII_PHYA_PWD);
2631 
2632 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2633 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2634 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2635 	 * encoding.
2636 	 */
2637 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2638 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2639 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2640 
2641 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2642 
2643 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2644 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2645 	 */
2646 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2647 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2648 		   MT7531_SGMII_FORCE_SPEED_1000);
2649 
2650 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2651 
2652 	return 0;
2653 }
2654 
2655 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2656 				      phy_interface_t interface)
2657 {
2658 	if (!mt753x_is_mac_port(port))
2659 		return -EINVAL;
2660 
2661 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2662 		   MT7531_SGMII_PHYA_PWD);
2663 
2664 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2665 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2666 
2667 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2668 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2669 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2670 
2671 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2672 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2673 
2674 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2675 
2676 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2677 
2678 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2679 
2680 	return 0;
2681 }
2682 
2683 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2684 {
2685 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2686 	int port = pcs_to_mt753x_pcs(pcs)->port;
2687 	u32 val;
2688 
2689 	/* Only restart AN when AN is enabled */
2690 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2691 	if (val & MT7531_SGMII_AN_ENABLE) {
2692 		val |= MT7531_SGMII_AN_RESTART;
2693 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2694 	}
2695 }
2696 
2697 static int
2698 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2699 		  phy_interface_t interface)
2700 {
2701 	struct mt7530_priv *priv = ds->priv;
2702 	struct phy_device *phydev;
2703 	struct dsa_port *dp;
2704 
2705 	if (!mt753x_is_mac_port(port)) {
2706 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2707 		return -EINVAL;
2708 	}
2709 
2710 	switch (interface) {
2711 	case PHY_INTERFACE_MODE_RGMII:
2712 	case PHY_INTERFACE_MODE_RGMII_ID:
2713 	case PHY_INTERFACE_MODE_RGMII_RXID:
2714 	case PHY_INTERFACE_MODE_RGMII_TXID:
2715 		dp = dsa_to_port(ds, port);
2716 		phydev = dp->slave->phydev;
2717 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2718 	case PHY_INTERFACE_MODE_SGMII:
2719 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2720 	case PHY_INTERFACE_MODE_NA:
2721 	case PHY_INTERFACE_MODE_1000BASEX:
2722 	case PHY_INTERFACE_MODE_2500BASEX:
2723 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2724 	default:
2725 		return -EINVAL;
2726 	}
2727 
2728 	return -EINVAL;
2729 }
2730 
2731 static int
2732 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2733 		  const struct phylink_link_state *state)
2734 {
2735 	struct mt7530_priv *priv = ds->priv;
2736 
2737 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2738 }
2739 
2740 static struct phylink_pcs *
2741 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2742 			      phy_interface_t interface)
2743 {
2744 	struct mt7530_priv *priv = ds->priv;
2745 
2746 	switch (interface) {
2747 	case PHY_INTERFACE_MODE_TRGMII:
2748 	case PHY_INTERFACE_MODE_SGMII:
2749 	case PHY_INTERFACE_MODE_1000BASEX:
2750 	case PHY_INTERFACE_MODE_2500BASEX:
2751 		return &priv->pcs[port].pcs;
2752 
2753 	default:
2754 		return NULL;
2755 	}
2756 }
2757 
2758 static void
2759 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2760 			  const struct phylink_link_state *state)
2761 {
2762 	struct mt7530_priv *priv = ds->priv;
2763 	u32 mcr_cur, mcr_new;
2764 
2765 	switch (port) {
2766 	case 0 ... 4: /* Internal phy */
2767 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2768 			goto unsupported;
2769 		break;
2770 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2771 		if (priv->p5_interface == state->interface)
2772 			break;
2773 
2774 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2775 			goto unsupported;
2776 
2777 		if (priv->p5_intf_sel != P5_DISABLED)
2778 			priv->p5_interface = state->interface;
2779 		break;
2780 	case 6: /* 1st cpu port */
2781 		if (priv->p6_interface == state->interface)
2782 			break;
2783 
2784 		mt753x_pad_setup(ds, state);
2785 
2786 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2787 			goto unsupported;
2788 
2789 		priv->p6_interface = state->interface;
2790 		break;
2791 	default:
2792 unsupported:
2793 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2794 			__func__, phy_modes(state->interface), port);
2795 		return;
2796 	}
2797 
2798 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2799 	mcr_new = mcr_cur;
2800 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2801 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2802 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2803 
2804 	/* Are we connected to external phy */
2805 	if (port == 5 && dsa_is_user_port(ds, 5))
2806 		mcr_new |= PMCR_EXT_PHY;
2807 
2808 	if (mcr_new != mcr_cur)
2809 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2810 }
2811 
2812 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2813 					 unsigned int mode,
2814 					 phy_interface_t interface)
2815 {
2816 	struct mt7530_priv *priv = ds->priv;
2817 
2818 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2819 }
2820 
2821 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2822 				       unsigned int mode,
2823 				       phy_interface_t interface,
2824 				       int speed, int duplex)
2825 {
2826 	if (pcs->ops->pcs_link_up)
2827 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2828 }
2829 
2830 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2831 				       unsigned int mode,
2832 				       phy_interface_t interface,
2833 				       struct phy_device *phydev,
2834 				       int speed, int duplex,
2835 				       bool tx_pause, bool rx_pause)
2836 {
2837 	struct mt7530_priv *priv = ds->priv;
2838 	u32 mcr;
2839 
2840 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2841 
2842 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2843 	 * variants.
2844 	 */
2845 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2846 	    (phy_interface_mode_is_8023z(interface))) {
2847 		speed = SPEED_1000;
2848 		duplex = DUPLEX_FULL;
2849 	}
2850 
2851 	switch (speed) {
2852 	case SPEED_1000:
2853 		mcr |= PMCR_FORCE_SPEED_1000;
2854 		break;
2855 	case SPEED_100:
2856 		mcr |= PMCR_FORCE_SPEED_100;
2857 		break;
2858 	}
2859 	if (duplex == DUPLEX_FULL) {
2860 		mcr |= PMCR_FORCE_FDX;
2861 		if (tx_pause)
2862 			mcr |= PMCR_TX_FC_EN;
2863 		if (rx_pause)
2864 			mcr |= PMCR_RX_FC_EN;
2865 	}
2866 
2867 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2868 		switch (speed) {
2869 		case SPEED_1000:
2870 			mcr |= PMCR_FORCE_EEE1G;
2871 			break;
2872 		case SPEED_100:
2873 			mcr |= PMCR_FORCE_EEE100;
2874 			break;
2875 		}
2876 	}
2877 
2878 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2879 }
2880 
2881 static int
2882 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2883 {
2884 	struct mt7530_priv *priv = ds->priv;
2885 	phy_interface_t interface;
2886 	int speed;
2887 	int ret;
2888 
2889 	switch (port) {
2890 	case 5:
2891 		if (mt7531_is_rgmii_port(priv, port))
2892 			interface = PHY_INTERFACE_MODE_RGMII;
2893 		else
2894 			interface = PHY_INTERFACE_MODE_2500BASEX;
2895 
2896 		priv->p5_interface = interface;
2897 		break;
2898 	case 6:
2899 		interface = PHY_INTERFACE_MODE_2500BASEX;
2900 
2901 		priv->p6_interface = interface;
2902 		break;
2903 	default:
2904 		return -EINVAL;
2905 	}
2906 
2907 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2908 		speed = SPEED_2500;
2909 	else
2910 		speed = SPEED_1000;
2911 
2912 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2913 	if (ret)
2914 		return ret;
2915 	mt7530_write(priv, MT7530_PMCR_P(port),
2916 		     PMCR_CPU_PORT_SETTING(priv->id));
2917 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2918 				   interface, speed, DUPLEX_FULL);
2919 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2920 				   speed, DUPLEX_FULL, true, true);
2921 
2922 	return 0;
2923 }
2924 
2925 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2926 				    struct phylink_config *config)
2927 {
2928 	struct mt7530_priv *priv = ds->priv;
2929 
2930 	/* This switch only supports full-duplex at 1Gbps */
2931 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2932 				   MAC_10 | MAC_100 | MAC_1000FD;
2933 
2934 	/* This driver does not make use of the speed, duplex, pause or the
2935 	 * advertisement in its mac_config, so it is safe to mark this driver
2936 	 * as non-legacy.
2937 	 */
2938 	config->legacy_pre_march2020 = false;
2939 
2940 	priv->info->mac_port_get_caps(ds, port, config);
2941 }
2942 
2943 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2944 			       unsigned long *supported,
2945 			       const struct phylink_link_state *state)
2946 {
2947 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2948 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2949 	    phy_interface_mode_is_8023z(state->interface))
2950 		phylink_clear(supported, Autoneg);
2951 
2952 	return 0;
2953 }
2954 
2955 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2956 				 struct phylink_link_state *state)
2957 {
2958 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2959 	int port = pcs_to_mt753x_pcs(pcs)->port;
2960 	u32 pmsr;
2961 
2962 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2963 
2964 	state->link = (pmsr & PMSR_LINK);
2965 	state->an_complete = state->link;
2966 	state->duplex = !!(pmsr & PMSR_DPX);
2967 
2968 	switch (pmsr & PMSR_SPEED_MASK) {
2969 	case PMSR_SPEED_10:
2970 		state->speed = SPEED_10;
2971 		break;
2972 	case PMSR_SPEED_100:
2973 		state->speed = SPEED_100;
2974 		break;
2975 	case PMSR_SPEED_1000:
2976 		state->speed = SPEED_1000;
2977 		break;
2978 	default:
2979 		state->speed = SPEED_UNKNOWN;
2980 		break;
2981 	}
2982 
2983 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2984 	if (pmsr & PMSR_RX_FC)
2985 		state->pause |= MLO_PAUSE_RX;
2986 	if (pmsr & PMSR_TX_FC)
2987 		state->pause |= MLO_PAUSE_TX;
2988 }
2989 
2990 static int
2991 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2992 			      struct phylink_link_state *state)
2993 {
2994 	u32 status, val;
2995 	u16 config_reg;
2996 
2997 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2998 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2999 	state->an_complete = !!(status & MT7531_SGMII_AN_COMPLETE);
3000 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3001 	    (status & MT7531_SGMII_AN_ENABLE)) {
3002 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3003 		config_reg = val >> 16;
3004 
3005 		switch (config_reg & LPA_SGMII_SPD_MASK) {
3006 		case LPA_SGMII_1000:
3007 			state->speed = SPEED_1000;
3008 			break;
3009 		case LPA_SGMII_100:
3010 			state->speed = SPEED_100;
3011 			break;
3012 		case LPA_SGMII_10:
3013 			state->speed = SPEED_10;
3014 			break;
3015 		default:
3016 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3017 			state->link = false;
3018 			return -EINVAL;
3019 		}
3020 
3021 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3022 			state->duplex = DUPLEX_FULL;
3023 		else
3024 			state->duplex = DUPLEX_HALF;
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 static void
3031 mt7531_sgmii_pcs_get_state_inband(struct mt7530_priv *priv, int port,
3032 				  struct phylink_link_state *state)
3033 {
3034 	unsigned int val;
3035 
3036 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3037 	state->link = !!(val & MT7531_SGMII_LINK_STATUS);
3038 	if (!state->link)
3039 		return;
3040 
3041 	state->an_complete = state->link;
3042 
3043 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3044 		state->speed = SPEED_2500;
3045 	else
3046 		state->speed = SPEED_1000;
3047 
3048 	state->duplex = DUPLEX_FULL;
3049 	state->pause = MLO_PAUSE_NONE;
3050 }
3051 
3052 static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3053 				 struct phylink_link_state *state)
3054 {
3055 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3056 	int port = pcs_to_mt753x_pcs(pcs)->port;
3057 
3058 	if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3059 		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3060 		return;
3061 	} else if ((state->interface == PHY_INTERFACE_MODE_1000BASEX) ||
3062 		   (state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3063 		mt7531_sgmii_pcs_get_state_inband(priv, port, state);
3064 		return;
3065 	}
3066 
3067 	state->link = false;
3068 }
3069 
3070 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3071 			     phy_interface_t interface,
3072 			     const unsigned long *advertising,
3073 			     bool permit_pause_to_mac)
3074 {
3075 	return 0;
3076 }
3077 
3078 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3079 {
3080 }
3081 
3082 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3083 	.pcs_validate = mt753x_pcs_validate,
3084 	.pcs_get_state = mt7530_pcs_get_state,
3085 	.pcs_config = mt753x_pcs_config,
3086 	.pcs_an_restart = mt7530_pcs_an_restart,
3087 };
3088 
3089 static const struct phylink_pcs_ops mt7531_pcs_ops = {
3090 	.pcs_validate = mt753x_pcs_validate,
3091 	.pcs_get_state = mt7531_pcs_get_state,
3092 	.pcs_config = mt753x_pcs_config,
3093 	.pcs_an_restart = mt7531_pcs_an_restart,
3094 	.pcs_link_up = mt7531_pcs_link_up,
3095 };
3096 
3097 static int
3098 mt753x_setup(struct dsa_switch *ds)
3099 {
3100 	struct mt7530_priv *priv = ds->priv;
3101 	int i, ret;
3102 
3103 	/* Initialise the PCS devices */
3104 	for (i = 0; i < priv->ds->num_ports; i++) {
3105 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3106 		priv->pcs[i].priv = priv;
3107 		priv->pcs[i].port = i;
3108 		if (mt753x_is_mac_port(i))
3109 			priv->pcs[i].pcs.poll = 1;
3110 	}
3111 
3112 	ret = priv->info->sw_setup(ds);
3113 	if (ret)
3114 		return ret;
3115 
3116 	ret = mt7530_setup_irq(priv);
3117 	if (ret)
3118 		return ret;
3119 
3120 	ret = mt7530_setup_mdio(priv);
3121 	if (ret && priv->irq)
3122 		mt7530_free_irq_common(priv);
3123 
3124 	return ret;
3125 }
3126 
3127 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3128 			      struct ethtool_eee *e)
3129 {
3130 	struct mt7530_priv *priv = ds->priv;
3131 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3132 
3133 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3134 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3135 
3136 	return 0;
3137 }
3138 
3139 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3140 			      struct ethtool_eee *e)
3141 {
3142 	struct mt7530_priv *priv = ds->priv;
3143 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3144 
3145 	if (e->tx_lpi_timer > 0xFFF)
3146 		return -EINVAL;
3147 
3148 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3149 	if (!e->tx_lpi_enabled)
3150 		/* Force LPI Mode without a delay */
3151 		set |= LPI_MODE_EN;
3152 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3153 
3154 	return 0;
3155 }
3156 
3157 static const struct dsa_switch_ops mt7530_switch_ops = {
3158 	.get_tag_protocol	= mtk_get_tag_protocol,
3159 	.setup			= mt753x_setup,
3160 	.get_strings		= mt7530_get_strings,
3161 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3162 	.get_sset_count		= mt7530_get_sset_count,
3163 	.set_ageing_time	= mt7530_set_ageing_time,
3164 	.port_enable		= mt7530_port_enable,
3165 	.port_disable		= mt7530_port_disable,
3166 	.port_change_mtu	= mt7530_port_change_mtu,
3167 	.port_max_mtu		= mt7530_port_max_mtu,
3168 	.port_stp_state_set	= mt7530_stp_state_set,
3169 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3170 	.port_bridge_flags	= mt7530_port_bridge_flags,
3171 	.port_bridge_join	= mt7530_port_bridge_join,
3172 	.port_bridge_leave	= mt7530_port_bridge_leave,
3173 	.port_fdb_add		= mt7530_port_fdb_add,
3174 	.port_fdb_del		= mt7530_port_fdb_del,
3175 	.port_fdb_dump		= mt7530_port_fdb_dump,
3176 	.port_mdb_add		= mt7530_port_mdb_add,
3177 	.port_mdb_del		= mt7530_port_mdb_del,
3178 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3179 	.port_vlan_add		= mt7530_port_vlan_add,
3180 	.port_vlan_del		= mt7530_port_vlan_del,
3181 	.port_mirror_add	= mt753x_port_mirror_add,
3182 	.port_mirror_del	= mt753x_port_mirror_del,
3183 	.phylink_get_caps	= mt753x_phylink_get_caps,
3184 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3185 	.phylink_mac_config	= mt753x_phylink_mac_config,
3186 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3187 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3188 	.get_mac_eee		= mt753x_get_mac_eee,
3189 	.set_mac_eee		= mt753x_set_mac_eee,
3190 };
3191 
3192 static const struct mt753x_info mt753x_table[] = {
3193 	[ID_MT7621] = {
3194 		.id = ID_MT7621,
3195 		.pcs_ops = &mt7530_pcs_ops,
3196 		.sw_setup = mt7530_setup,
3197 		.phy_read_c22 = mt7530_phy_read_c22,
3198 		.phy_write_c22 = mt7530_phy_write_c22,
3199 		.phy_read_c45 = mt7530_phy_read_c45,
3200 		.phy_write_c45 = mt7530_phy_write_c45,
3201 		.pad_setup = mt7530_pad_clk_setup,
3202 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3203 		.mac_port_config = mt7530_mac_config,
3204 	},
3205 	[ID_MT7530] = {
3206 		.id = ID_MT7530,
3207 		.pcs_ops = &mt7530_pcs_ops,
3208 		.sw_setup = mt7530_setup,
3209 		.phy_read_c22 = mt7530_phy_read_c22,
3210 		.phy_write_c22 = mt7530_phy_write_c22,
3211 		.phy_read_c45 = mt7530_phy_read_c45,
3212 		.phy_write_c45 = mt7530_phy_write_c45,
3213 		.pad_setup = mt7530_pad_clk_setup,
3214 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3215 		.mac_port_config = mt7530_mac_config,
3216 	},
3217 	[ID_MT7531] = {
3218 		.id = ID_MT7531,
3219 		.pcs_ops = &mt7531_pcs_ops,
3220 		.sw_setup = mt7531_setup,
3221 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3222 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3223 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3224 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3225 		.pad_setup = mt7531_pad_setup,
3226 		.cpu_port_config = mt7531_cpu_port_config,
3227 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3228 		.mac_port_config = mt7531_mac_config,
3229 	},
3230 };
3231 
3232 static const struct of_device_id mt7530_of_match[] = {
3233 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3234 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3235 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3236 	{ /* sentinel */ },
3237 };
3238 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3239 
3240 static int
3241 mt7530_probe(struct mdio_device *mdiodev)
3242 {
3243 	struct mt7530_priv *priv;
3244 	struct device_node *dn;
3245 
3246 	dn = mdiodev->dev.of_node;
3247 
3248 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3249 	if (!priv)
3250 		return -ENOMEM;
3251 
3252 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3253 	if (!priv->ds)
3254 		return -ENOMEM;
3255 
3256 	priv->ds->dev = &mdiodev->dev;
3257 	priv->ds->num_ports = MT7530_NUM_PORTS;
3258 
3259 	/* Use medatek,mcm property to distinguish hardware type that would
3260 	 * casues a little bit differences on power-on sequence.
3261 	 */
3262 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3263 	if (priv->mcm) {
3264 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3265 
3266 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3267 		if (IS_ERR(priv->rstc)) {
3268 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3269 			return PTR_ERR(priv->rstc);
3270 		}
3271 	}
3272 
3273 	/* Get the hardware identifier from the devicetree node.
3274 	 * We will need it for some of the clock and regulator setup.
3275 	 */
3276 	priv->info = of_device_get_match_data(&mdiodev->dev);
3277 	if (!priv->info)
3278 		return -EINVAL;
3279 
3280 	/* Sanity check if these required device operations are filled
3281 	 * properly.
3282 	 */
3283 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3284 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3285 	    !priv->info->mac_port_get_caps ||
3286 	    !priv->info->mac_port_config)
3287 		return -EINVAL;
3288 
3289 	priv->id = priv->info->id;
3290 
3291 	if (priv->id == ID_MT7530) {
3292 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3293 		if (IS_ERR(priv->core_pwr))
3294 			return PTR_ERR(priv->core_pwr);
3295 
3296 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3297 		if (IS_ERR(priv->io_pwr))
3298 			return PTR_ERR(priv->io_pwr);
3299 	}
3300 
3301 	/* Not MCM that indicates switch works as the remote standalone
3302 	 * integrated circuit so the GPIO pin would be used to complete
3303 	 * the reset, otherwise memory-mapped register accessing used
3304 	 * through syscon provides in the case of MCM.
3305 	 */
3306 	if (!priv->mcm) {
3307 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3308 						      GPIOD_OUT_LOW);
3309 		if (IS_ERR(priv->reset)) {
3310 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3311 			return PTR_ERR(priv->reset);
3312 		}
3313 	}
3314 
3315 	priv->bus = mdiodev->bus;
3316 	priv->dev = &mdiodev->dev;
3317 	priv->ds->priv = priv;
3318 	priv->ds->ops = &mt7530_switch_ops;
3319 	mutex_init(&priv->reg_mutex);
3320 	dev_set_drvdata(&mdiodev->dev, priv);
3321 
3322 	return dsa_register_switch(priv->ds);
3323 }
3324 
3325 static void
3326 mt7530_remove(struct mdio_device *mdiodev)
3327 {
3328 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3329 	int ret = 0;
3330 
3331 	if (!priv)
3332 		return;
3333 
3334 	ret = regulator_disable(priv->core_pwr);
3335 	if (ret < 0)
3336 		dev_err(priv->dev,
3337 			"Failed to disable core power: %d\n", ret);
3338 
3339 	ret = regulator_disable(priv->io_pwr);
3340 	if (ret < 0)
3341 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3342 			ret);
3343 
3344 	if (priv->irq)
3345 		mt7530_free_irq(priv);
3346 
3347 	dsa_unregister_switch(priv->ds);
3348 	mutex_destroy(&priv->reg_mutex);
3349 }
3350 
3351 static void mt7530_shutdown(struct mdio_device *mdiodev)
3352 {
3353 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3354 
3355 	if (!priv)
3356 		return;
3357 
3358 	dsa_switch_shutdown(priv->ds);
3359 
3360 	dev_set_drvdata(&mdiodev->dev, NULL);
3361 }
3362 
3363 static struct mdio_driver mt7530_mdio_driver = {
3364 	.probe  = mt7530_probe,
3365 	.remove = mt7530_remove,
3366 	.shutdown = mt7530_shutdown,
3367 	.mdiodrv.driver = {
3368 		.name = "mt7530",
3369 		.of_match_table = mt7530_of_match,
3370 	},
3371 };
3372 
3373 mdio_module_driver(mt7530_mdio_driver);
3374 
3375 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3376 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3377 MODULE_LICENSE("GPL");
3378