xref: /openbmc/linux/drivers/net/dsa/microchip/ksz_common.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * Microchip switch driver main logic
3  *
4  * Copyright (C) 2017
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_priv.h"
32 
33 static const struct {
34 	int index;
35 	char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 	{ 0x00, "rx_hi" },
38 	{ 0x01, "rx_undersize" },
39 	{ 0x02, "rx_fragments" },
40 	{ 0x03, "rx_oversize" },
41 	{ 0x04, "rx_jabbers" },
42 	{ 0x05, "rx_symbol_err" },
43 	{ 0x06, "rx_crc_err" },
44 	{ 0x07, "rx_align_err" },
45 	{ 0x08, "rx_mac_ctrl" },
46 	{ 0x09, "rx_pause" },
47 	{ 0x0A, "rx_bcast" },
48 	{ 0x0B, "rx_mcast" },
49 	{ 0x0C, "rx_ucast" },
50 	{ 0x0D, "rx_64_or_less" },
51 	{ 0x0E, "rx_65_127" },
52 	{ 0x0F, "rx_128_255" },
53 	{ 0x10, "rx_256_511" },
54 	{ 0x11, "rx_512_1023" },
55 	{ 0x12, "rx_1024_1522" },
56 	{ 0x13, "rx_1523_2000" },
57 	{ 0x14, "rx_2001" },
58 	{ 0x15, "tx_hi" },
59 	{ 0x16, "tx_late_col" },
60 	{ 0x17, "tx_pause" },
61 	{ 0x18, "tx_bcast" },
62 	{ 0x19, "tx_mcast" },
63 	{ 0x1A, "tx_ucast" },
64 	{ 0x1B, "tx_deferred" },
65 	{ 0x1C, "tx_total_col" },
66 	{ 0x1D, "tx_exc_col" },
67 	{ 0x1E, "tx_single_col" },
68 	{ 0x1F, "tx_mult_col" },
69 	{ 0x80, "rx_total" },
70 	{ 0x81, "tx_total" },
71 	{ 0x82, "rx_discards" },
72 	{ 0x83, "tx_discards" },
73 };
74 
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77 	u8 data;
78 
79 	ksz_read8(dev, addr, &data);
80 	if (set)
81 		data |= bits;
82 	else
83 		data &= ~bits;
84 	ksz_write8(dev, addr, data);
85 }
86 
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89 	u32 data;
90 
91 	ksz_read32(dev, addr, &data);
92 	if (set)
93 		data |= bits;
94 	else
95 		data &= ~bits;
96 	ksz_write32(dev, addr, data);
97 }
98 
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 			 bool set)
101 {
102 	u32 addr;
103 	u8 data;
104 
105 	addr = PORT_CTRL_ADDR(port, offset);
106 	ksz_read8(dev, addr, &data);
107 
108 	if (set)
109 		data |= bits;
110 	else
111 		data &= ~bits;
112 
113 	ksz_write8(dev, addr, data);
114 }
115 
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 			   u32 bits, bool set)
118 {
119 	u32 addr;
120 	u32 data;
121 
122 	addr = PORT_CTRL_ADDR(port, offset);
123 	ksz_read32(dev, addr, &data);
124 
125 	if (set)
126 		data |= bits;
127 	else
128 		data &= ~bits;
129 
130 	ksz_write32(dev, addr, data);
131 }
132 
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135 	u8 data;
136 
137 	do {
138 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 		if (!(data & waiton))
140 			break;
141 		usleep_range(1, 10);
142 	} while (timeout-- > 0);
143 
144 	if (timeout <= 0)
145 		return -ETIMEDOUT;
146 
147 	return 0;
148 }
149 
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152 	struct ksz_device *dev = ds->priv;
153 	int ret;
154 
155 	mutex_lock(&dev->vlan_mutex);
156 
157 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159 
160 	/* wait to be cleared */
161 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 	if (ret < 0) {
163 		dev_dbg(dev->dev, "Failed to read vlan table\n");
164 		goto exit;
165 	}
166 
167 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170 
171 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172 
173 exit:
174 	mutex_unlock(&dev->vlan_mutex);
175 
176 	return ret;
177 }
178 
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181 	struct ksz_device *dev = ds->priv;
182 	int ret;
183 
184 	mutex_lock(&dev->vlan_mutex);
185 
186 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189 
190 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192 
193 	/* wait to be cleared */
194 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 	if (ret < 0) {
196 		dev_dbg(dev->dev, "Failed to write vlan table\n");
197 		goto exit;
198 	}
199 
200 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201 
202 	/* update vlan cache table */
203 	dev->vlan_cache[vid].table[0] = vlan_table[0];
204 	dev->vlan_cache[vid].table[1] = vlan_table[1];
205 	dev->vlan_cache[vid].table[2] = vlan_table[2];
206 
207 exit:
208 	mutex_unlock(&dev->vlan_mutex);
209 
210 	return ret;
211 }
212 
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215 	struct ksz_device *dev = ds->priv;
216 
217 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222 
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225 	struct ksz_device *dev = ds->priv;
226 
227 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232 
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235 	u32 data;
236 
237 	do {
238 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 		if (!(data & waiton))
240 			break;
241 		usleep_range(1, 10);
242 	} while (timeout-- > 0);
243 
244 	if (timeout <= 0)
245 		return -ETIMEDOUT;
246 
247 	return 0;
248 }
249 
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252 	u32 data;
253 
254 	do {
255 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 		if (!(data & waiton))
257 			break;
258 		usleep_range(1, 10);
259 	} while (timeout-- > 0);
260 
261 	if (timeout <= 0)
262 		return -ETIMEDOUT;
263 
264 	return 0;
265 }
266 
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269 	struct ksz_device *dev = ds->priv;
270 	u8 data8;
271 	u16 data16;
272 	u32 data32;
273 
274 	/* reset switch */
275 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276 
277 	/* turn off SPI DO Edge select */
278 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281 
282 	/* default configuration */
283 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287 
288 	/* disable interrupts */
289 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292 
293 	/* set broadcast storm protection 10% rate */
294 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 	data16 &= ~BROADCAST_STORM_RATE;
296 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298 
299 	return 0;
300 }
301 
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304 	u8 data8;
305 	u16 data16;
306 
307 	/* enable tag tail for host port */
308 	if (cpu_port)
309 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 			     true);
311 
312 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313 
314 	/* set back pressure */
315 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316 
317 	/* set flow control */
318 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320 
321 	/* enable broadcast storm limit */
322 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323 
324 	/* disable DiffServ priority */
325 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326 
327 	/* replace priority */
328 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 		     false);
330 	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 		       MTI_PVID_REPLACE, false);
332 
333 	/* enable 802.1p priority */
334 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335 
336 	/* configure MAC to 1G & RGMII mode */
337 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 	data8 |= PORT_RGMII_ID_EG_ENABLE;
339 	data8 &= ~PORT_MII_NOT_1GBIT;
340 	data8 &= ~PORT_MII_SEL_M;
341 	data8 |= PORT_RGMII_SEL;
342 	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343 
344 	/* clear pending interrupts */
345 	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347 
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350 	struct ksz_device *dev = ds->priv;
351 	int i;
352 
353 	ds->num_ports = dev->port_cnt;
354 
355 	for (i = 0; i < ds->num_ports; i++) {
356 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 			dev->cpu_port = i;
358 
359 			/* enable cpu port */
360 			port_setup(dev, i, true);
361 		}
362 	}
363 }
364 
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367 	struct ksz_device *dev = ds->priv;
368 	int ret = 0;
369 
370 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 				       dev->num_vlans, GFP_KERNEL);
372 	if (!dev->vlan_cache)
373 		return -ENOMEM;
374 
375 	ret = ksz_reset_switch(ds);
376 	if (ret) {
377 		dev_err(ds->dev, "failed to reset switch\n");
378 		return ret;
379 	}
380 
381 	/* accept packet up to 2000bytes */
382 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383 
384 	ksz_config_cpu_port(ds);
385 
386 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387 
388 	/* queue based egress rate limit */
389 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390 
391 	/* start switch */
392 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393 
394 	return 0;
395 }
396 
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398 						  int port)
399 {
400 	return DSA_TAG_PROTO_KSZ;
401 }
402 
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405 	struct ksz_device *dev = ds->priv;
406 	u16 val = 0;
407 
408 	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409 
410 	return val;
411 }
412 
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415 	struct ksz_device *dev = ds->priv;
416 
417 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418 
419 	return 0;
420 }
421 
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423 			   struct phy_device *phy)
424 {
425 	struct ksz_device *dev = ds->priv;
426 
427 	/* setup slave port */
428 	port_setup(dev, port, false);
429 
430 	return 0;
431 }
432 
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434 			     struct phy_device *phy)
435 {
436 	struct ksz_device *dev = ds->priv;
437 
438 	/* there is no port disable */
439 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441 
442 static int ksz_sset_count(struct dsa_switch *ds, int port)
443 {
444 	return TOTAL_SWITCH_COUNTER_NUM;
445 }
446 
447 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
448 {
449 	int i;
450 
451 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
452 		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
453 		       ETH_GSTRING_LEN);
454 	}
455 }
456 
457 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
458 				  uint64_t *buf)
459 {
460 	struct ksz_device *dev = ds->priv;
461 	int i;
462 	u32 data;
463 	int timeout;
464 
465 	mutex_lock(&dev->stats_mutex);
466 
467 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
468 		data = MIB_COUNTER_READ;
469 		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
470 		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
471 
472 		timeout = 1000;
473 		do {
474 			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
475 				    &data);
476 			usleep_range(1, 10);
477 			if (!(data & MIB_COUNTER_READ))
478 				break;
479 		} while (timeout-- > 0);
480 
481 		/* failed to read MIB. get out of loop */
482 		if (!timeout) {
483 			dev_dbg(dev->dev, "Failed to get MIB\n");
484 			break;
485 		}
486 
487 		/* count resets upon read */
488 		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
489 
490 		dev->mib_value[i] += (uint64_t)data;
491 		buf[i] = dev->mib_value[i];
492 	}
493 
494 	mutex_unlock(&dev->stats_mutex);
495 }
496 
497 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
498 {
499 	struct ksz_device *dev = ds->priv;
500 	u8 data;
501 
502 	ksz_pread8(dev, port, P_STP_CTRL, &data);
503 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
504 
505 	switch (state) {
506 	case BR_STATE_DISABLED:
507 		data |= PORT_LEARN_DISABLE;
508 		break;
509 	case BR_STATE_LISTENING:
510 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511 		break;
512 	case BR_STATE_LEARNING:
513 		data |= PORT_RX_ENABLE;
514 		break;
515 	case BR_STATE_FORWARDING:
516 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
517 		break;
518 	case BR_STATE_BLOCKING:
519 		data |= PORT_LEARN_DISABLE;
520 		break;
521 	default:
522 		dev_err(ds->dev, "invalid STP state: %d\n", state);
523 		return;
524 	}
525 
526 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
527 }
528 
529 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
530 {
531 	struct ksz_device *dev = ds->priv;
532 	u8 data8;
533 
534 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
535 	data8 |= SW_FAST_AGING;
536 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
537 
538 	data8 &= ~SW_FAST_AGING;
539 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
540 }
541 
542 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
543 {
544 	struct ksz_device *dev = ds->priv;
545 
546 	if (flag) {
547 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
548 			     PORT_VLAN_LOOKUP_VID_0, true);
549 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
550 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
551 	} else {
552 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
553 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
554 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 			     PORT_VLAN_LOOKUP_VID_0, false);
556 	}
557 
558 	return 0;
559 }
560 
561 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
562 				 const struct switchdev_obj_port_vlan *vlan)
563 {
564 	/* nothing needed */
565 
566 	return 0;
567 }
568 
569 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
570 			      const struct switchdev_obj_port_vlan *vlan)
571 {
572 	struct ksz_device *dev = ds->priv;
573 	u32 vlan_table[3];
574 	u16 vid;
575 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
576 
577 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
578 		if (get_vlan_table(ds, vid, vlan_table)) {
579 			dev_dbg(dev->dev, "Failed to get vlan table\n");
580 			return;
581 		}
582 
583 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
584 		if (untagged)
585 			vlan_table[1] |= BIT(port);
586 		else
587 			vlan_table[1] &= ~BIT(port);
588 		vlan_table[1] &= ~(BIT(dev->cpu_port));
589 
590 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
591 
592 		if (set_vlan_table(ds, vid, vlan_table)) {
593 			dev_dbg(dev->dev, "Failed to set vlan table\n");
594 			return;
595 		}
596 
597 		/* change PVID */
598 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
599 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
600 	}
601 }
602 
603 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
604 			     const struct switchdev_obj_port_vlan *vlan)
605 {
606 	struct ksz_device *dev = ds->priv;
607 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
608 	u32 vlan_table[3];
609 	u16 vid;
610 	u16 pvid;
611 
612 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
613 	pvid = pvid & 0xFFF;
614 
615 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
616 		if (get_vlan_table(ds, vid, vlan_table)) {
617 			dev_dbg(dev->dev, "Failed to get vlan table\n");
618 			return -ETIMEDOUT;
619 		}
620 
621 		vlan_table[2] &= ~BIT(port);
622 
623 		if (pvid == vid)
624 			pvid = 1;
625 
626 		if (untagged)
627 			vlan_table[1] &= ~BIT(port);
628 
629 		if (set_vlan_table(ds, vid, vlan_table)) {
630 			dev_dbg(dev->dev, "Failed to set vlan table\n");
631 			return -ETIMEDOUT;
632 		}
633 	}
634 
635 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
636 
637 	return 0;
638 }
639 
640 struct alu_struct {
641 	/* entry 1 */
642 	u8	is_static:1;
643 	u8	is_src_filter:1;
644 	u8	is_dst_filter:1;
645 	u8	prio_age:3;
646 	u32	_reserv_0_1:23;
647 	u8	mstp:3;
648 	/* entry 2 */
649 	u8	is_override:1;
650 	u8	is_use_fid:1;
651 	u32	_reserv_1_1:23;
652 	u8	port_forward:7;
653 	/* entry 3 & 4*/
654 	u32	_reserv_2_1:9;
655 	u8	fid:7;
656 	u8	mac[ETH_ALEN];
657 };
658 
659 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
660 			    const unsigned char *addr, u16 vid)
661 {
662 	struct ksz_device *dev = ds->priv;
663 	u32 alu_table[4];
664 	u32 data;
665 	int ret = 0;
666 
667 	mutex_lock(&dev->alu_mutex);
668 
669 	/* find any entry with mac & vid */
670 	data = vid << ALU_FID_INDEX_S;
671 	data |= ((addr[0] << 8) | addr[1]);
672 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
673 
674 	data = ((addr[2] << 24) | (addr[3] << 16));
675 	data |= ((addr[4] << 8) | addr[5]);
676 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
677 
678 	/* start read operation */
679 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
680 
681 	/* wait to be finished */
682 	ret = wait_alu_ready(dev, ALU_START, 1000);
683 	if (ret < 0) {
684 		dev_dbg(dev->dev, "Failed to read ALU\n");
685 		goto exit;
686 	}
687 
688 	/* read ALU entry */
689 	read_table(ds, alu_table);
690 
691 	/* update ALU entry */
692 	alu_table[0] = ALU_V_STATIC_VALID;
693 	alu_table[1] |= BIT(port);
694 	if (vid)
695 		alu_table[1] |= ALU_V_USE_FID;
696 	alu_table[2] = (vid << ALU_V_FID_S);
697 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
698 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
699 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
700 
701 	write_table(ds, alu_table);
702 
703 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
704 
705 	/* wait to be finished */
706 	ret = wait_alu_ready(dev, ALU_START, 1000);
707 	if (ret < 0)
708 		dev_dbg(dev->dev, "Failed to write ALU\n");
709 
710 exit:
711 	mutex_unlock(&dev->alu_mutex);
712 
713 	return ret;
714 }
715 
716 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
717 			    const unsigned char *addr, u16 vid)
718 {
719 	struct ksz_device *dev = ds->priv;
720 	u32 alu_table[4];
721 	u32 data;
722 	int ret = 0;
723 
724 	mutex_lock(&dev->alu_mutex);
725 
726 	/* read any entry with mac & vid */
727 	data = vid << ALU_FID_INDEX_S;
728 	data |= ((addr[0] << 8) | addr[1]);
729 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
730 
731 	data = ((addr[2] << 24) | (addr[3] << 16));
732 	data |= ((addr[4] << 8) | addr[5]);
733 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
734 
735 	/* start read operation */
736 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
737 
738 	/* wait to be finished */
739 	ret = wait_alu_ready(dev, ALU_START, 1000);
740 	if (ret < 0) {
741 		dev_dbg(dev->dev, "Failed to read ALU\n");
742 		goto exit;
743 	}
744 
745 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
746 	if (alu_table[0] & ALU_V_STATIC_VALID) {
747 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
748 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
749 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
750 
751 		/* clear forwarding port */
752 		alu_table[2] &= ~BIT(port);
753 
754 		/* if there is no port to forward, clear table */
755 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
756 			alu_table[0] = 0;
757 			alu_table[1] = 0;
758 			alu_table[2] = 0;
759 			alu_table[3] = 0;
760 		}
761 	} else {
762 		alu_table[0] = 0;
763 		alu_table[1] = 0;
764 		alu_table[2] = 0;
765 		alu_table[3] = 0;
766 	}
767 
768 	write_table(ds, alu_table);
769 
770 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
771 
772 	/* wait to be finished */
773 	ret = wait_alu_ready(dev, ALU_START, 1000);
774 	if (ret < 0)
775 		dev_dbg(dev->dev, "Failed to write ALU\n");
776 
777 exit:
778 	mutex_unlock(&dev->alu_mutex);
779 
780 	return ret;
781 }
782 
783 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
784 {
785 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
786 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
787 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
788 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
789 			ALU_V_PRIO_AGE_CNT_M;
790 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
791 
792 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
793 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
794 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
795 
796 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
797 
798 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
799 	alu->mac[1] = alu_table[2] & 0xFF;
800 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
801 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
802 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
803 	alu->mac[5] = alu_table[3] & 0xFF;
804 }
805 
806 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
807 			     dsa_fdb_dump_cb_t *cb, void *data)
808 {
809 	struct ksz_device *dev = ds->priv;
810 	int ret = 0;
811 	u32 ksz_data;
812 	u32 alu_table[4];
813 	struct alu_struct alu;
814 	int timeout;
815 
816 	mutex_lock(&dev->alu_mutex);
817 
818 	/* start ALU search */
819 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
820 
821 	do {
822 		timeout = 1000;
823 		do {
824 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
825 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
826 				break;
827 			usleep_range(1, 10);
828 		} while (timeout-- > 0);
829 
830 		if (!timeout) {
831 			dev_dbg(dev->dev, "Failed to search ALU\n");
832 			ret = -ETIMEDOUT;
833 			goto exit;
834 		}
835 
836 		/* read ALU table */
837 		read_table(ds, alu_table);
838 
839 		convert_alu(&alu, alu_table);
840 
841 		if (alu.port_forward & BIT(port)) {
842 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
843 			if (ret)
844 				goto exit;
845 		}
846 	} while (ksz_data & ALU_START);
847 
848 exit:
849 
850 	/* stop ALU search */
851 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
852 
853 	mutex_unlock(&dev->alu_mutex);
854 
855 	return ret;
856 }
857 
858 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
859 				const struct switchdev_obj_port_mdb *mdb)
860 {
861 	/* nothing to do */
862 	return 0;
863 }
864 
865 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
866 			     const struct switchdev_obj_port_mdb *mdb)
867 {
868 	struct ksz_device *dev = ds->priv;
869 	u32 static_table[4];
870 	u32 data;
871 	int index;
872 	u32 mac_hi, mac_lo;
873 
874 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
875 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
876 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
877 
878 	mutex_lock(&dev->alu_mutex);
879 
880 	for (index = 0; index < dev->num_statics; index++) {
881 		/* find empty slot first */
882 		data = (index << ALU_STAT_INDEX_S) |
883 			ALU_STAT_READ | ALU_STAT_START;
884 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
885 
886 		/* wait to be finished */
887 		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
888 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
889 			goto exit;
890 		}
891 
892 		/* read ALU static table */
893 		read_table(ds, static_table);
894 
895 		if (static_table[0] & ALU_V_STATIC_VALID) {
896 			/* check this has same vid & mac address */
897 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
898 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
899 			    (static_table[3] == mac_lo)) {
900 				/* found matching one */
901 				break;
902 			}
903 		} else {
904 			/* found empty one */
905 			break;
906 		}
907 	}
908 
909 	/* no available entry */
910 	if (index == dev->num_statics)
911 		goto exit;
912 
913 	/* add entry */
914 	static_table[0] = ALU_V_STATIC_VALID;
915 	static_table[1] |= BIT(port);
916 	if (mdb->vid)
917 		static_table[1] |= ALU_V_USE_FID;
918 	static_table[2] = (mdb->vid << ALU_V_FID_S);
919 	static_table[2] |= mac_hi;
920 	static_table[3] = mac_lo;
921 
922 	write_table(ds, static_table);
923 
924 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
925 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
926 
927 	/* wait to be finished */
928 	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
929 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
930 
931 exit:
932 	mutex_unlock(&dev->alu_mutex);
933 }
934 
935 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
936 			    const struct switchdev_obj_port_mdb *mdb)
937 {
938 	struct ksz_device *dev = ds->priv;
939 	u32 static_table[4];
940 	u32 data;
941 	int index;
942 	int ret = 0;
943 	u32 mac_hi, mac_lo;
944 
945 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
946 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
947 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
948 
949 	mutex_lock(&dev->alu_mutex);
950 
951 	for (index = 0; index < dev->num_statics; index++) {
952 		/* find empty slot first */
953 		data = (index << ALU_STAT_INDEX_S) |
954 			ALU_STAT_READ | ALU_STAT_START;
955 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
956 
957 		/* wait to be finished */
958 		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
959 		if (ret < 0) {
960 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
961 			goto exit;
962 		}
963 
964 		/* read ALU static table */
965 		read_table(ds, static_table);
966 
967 		if (static_table[0] & ALU_V_STATIC_VALID) {
968 			/* check this has same vid & mac address */
969 
970 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
971 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
972 			    (static_table[3] == mac_lo)) {
973 				/* found matching one */
974 				break;
975 			}
976 		}
977 	}
978 
979 	/* no available entry */
980 	if (index == dev->num_statics) {
981 		ret = -EINVAL;
982 		goto exit;
983 	}
984 
985 	/* clear port */
986 	static_table[1] &= ~BIT(port);
987 
988 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
989 		/* delete entry */
990 		static_table[0] = 0;
991 		static_table[1] = 0;
992 		static_table[2] = 0;
993 		static_table[3] = 0;
994 	}
995 
996 	write_table(ds, static_table);
997 
998 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
999 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1000 
1001 	/* wait to be finished */
1002 	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1003 	if (ret < 0)
1004 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1005 
1006 exit:
1007 	mutex_unlock(&dev->alu_mutex);
1008 
1009 	return ret;
1010 }
1011 
1012 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1013 			       struct dsa_mall_mirror_tc_entry *mirror,
1014 			       bool ingress)
1015 {
1016 	struct ksz_device *dev = ds->priv;
1017 
1018 	if (ingress)
1019 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1020 	else
1021 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1022 
1023 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1024 
1025 	/* configure mirror port */
1026 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1027 		     PORT_MIRROR_SNIFFER, true);
1028 
1029 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1030 
1031 	return 0;
1032 }
1033 
1034 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1035 				struct dsa_mall_mirror_tc_entry *mirror)
1036 {
1037 	struct ksz_device *dev = ds->priv;
1038 	u8 data;
1039 
1040 	if (mirror->ingress)
1041 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1042 	else
1043 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1044 
1045 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1046 
1047 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1048 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1049 			     PORT_MIRROR_SNIFFER, false);
1050 }
1051 
1052 static const struct dsa_switch_ops ksz_switch_ops = {
1053 	.get_tag_protocol	= ksz_get_tag_protocol,
1054 	.setup			= ksz_setup,
1055 	.phy_read		= ksz_phy_read16,
1056 	.phy_write		= ksz_phy_write16,
1057 	.port_enable		= ksz_enable_port,
1058 	.port_disable		= ksz_disable_port,
1059 	.get_strings		= ksz_get_strings,
1060 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1061 	.get_sset_count		= ksz_sset_count,
1062 	.port_stp_state_set	= ksz_port_stp_state_set,
1063 	.port_fast_age		= ksz_port_fast_age,
1064 	.port_vlan_filtering	= ksz_port_vlan_filtering,
1065 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1066 	.port_vlan_add		= ksz_port_vlan_add,
1067 	.port_vlan_del		= ksz_port_vlan_del,
1068 	.port_fdb_dump		= ksz_port_fdb_dump,
1069 	.port_fdb_add		= ksz_port_fdb_add,
1070 	.port_fdb_del		= ksz_port_fdb_del,
1071 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1072 	.port_mdb_add           = ksz_port_mdb_add,
1073 	.port_mdb_del           = ksz_port_mdb_del,
1074 	.port_mirror_add	= ksz_port_mirror_add,
1075 	.port_mirror_del	= ksz_port_mirror_del,
1076 };
1077 
1078 struct ksz_chip_data {
1079 	u32 chip_id;
1080 	const char *dev_name;
1081 	int num_vlans;
1082 	int num_alus;
1083 	int num_statics;
1084 	int cpu_ports;
1085 	int port_cnt;
1086 };
1087 
1088 static const struct ksz_chip_data ksz_switch_chips[] = {
1089 	{
1090 		.chip_id = 0x00947700,
1091 		.dev_name = "KSZ9477",
1092 		.num_vlans = 4096,
1093 		.num_alus = 4096,
1094 		.num_statics = 16,
1095 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1096 		.port_cnt = 7,		/* total physical port count */
1097 	},
1098 };
1099 
1100 static int ksz_switch_init(struct ksz_device *dev)
1101 {
1102 	int i;
1103 
1104 	mutex_init(&dev->reg_mutex);
1105 	mutex_init(&dev->stats_mutex);
1106 	mutex_init(&dev->alu_mutex);
1107 	mutex_init(&dev->vlan_mutex);
1108 
1109 	dev->ds->ops = &ksz_switch_ops;
1110 
1111 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1112 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1113 
1114 		if (dev->chip_id == chip->chip_id) {
1115 			dev->name = chip->dev_name;
1116 			dev->num_vlans = chip->num_vlans;
1117 			dev->num_alus = chip->num_alus;
1118 			dev->num_statics = chip->num_statics;
1119 			dev->port_cnt = chip->port_cnt;
1120 			dev->cpu_ports = chip->cpu_ports;
1121 
1122 			break;
1123 		}
1124 	}
1125 
1126 	/* no switch found */
1127 	if (!dev->port_cnt)
1128 		return -ENODEV;
1129 
1130 	return 0;
1131 }
1132 
1133 struct ksz_device *ksz_switch_alloc(struct device *base,
1134 				    const struct ksz_io_ops *ops,
1135 				    void *priv)
1136 {
1137 	struct dsa_switch *ds;
1138 	struct ksz_device *swdev;
1139 
1140 	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1141 	if (!ds)
1142 		return NULL;
1143 
1144 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1145 	if (!swdev)
1146 		return NULL;
1147 
1148 	ds->priv = swdev;
1149 	swdev->dev = base;
1150 
1151 	swdev->ds = ds;
1152 	swdev->priv = priv;
1153 	swdev->ops = ops;
1154 
1155 	return swdev;
1156 }
1157 EXPORT_SYMBOL(ksz_switch_alloc);
1158 
1159 int ksz_switch_detect(struct ksz_device *dev)
1160 {
1161 	u8 data8;
1162 	u32 id32;
1163 	int ret;
1164 
1165 	/* turn off SPI DO Edge select */
1166 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1167 	if (ret)
1168 		return ret;
1169 
1170 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1171 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1172 	if (ret)
1173 		return ret;
1174 
1175 	/* read chip id */
1176 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1177 	if (ret)
1178 		return ret;
1179 
1180 	dev->chip_id = id32;
1181 
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL(ksz_switch_detect);
1185 
1186 int ksz_switch_register(struct ksz_device *dev)
1187 {
1188 	int ret;
1189 
1190 	if (dev->pdata)
1191 		dev->chip_id = dev->pdata->chip_id;
1192 
1193 	if (ksz_switch_detect(dev))
1194 		return -EINVAL;
1195 
1196 	ret = ksz_switch_init(dev);
1197 	if (ret)
1198 		return ret;
1199 
1200 	return dsa_register_switch(dev->ds);
1201 }
1202 EXPORT_SYMBOL(ksz_switch_register);
1203 
1204 void ksz_switch_remove(struct ksz_device *dev)
1205 {
1206 	dsa_unregister_switch(dev->ds);
1207 }
1208 EXPORT_SYMBOL(ksz_switch_remove);
1209 
1210 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1211 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1212 MODULE_LICENSE("GPL");
1213