xref: /openbmc/linux/drivers/net/dsa/microchip/ksz_common.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Microchip switch driver main logic
3  *
4  * Copyright (C) 2017
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_priv.h"
32 
33 static const struct {
34 	int index;
35 	char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 	{ 0x00, "rx_hi" },
38 	{ 0x01, "rx_undersize" },
39 	{ 0x02, "rx_fragments" },
40 	{ 0x03, "rx_oversize" },
41 	{ 0x04, "rx_jabbers" },
42 	{ 0x05, "rx_symbol_err" },
43 	{ 0x06, "rx_crc_err" },
44 	{ 0x07, "rx_align_err" },
45 	{ 0x08, "rx_mac_ctrl" },
46 	{ 0x09, "rx_pause" },
47 	{ 0x0A, "rx_bcast" },
48 	{ 0x0B, "rx_mcast" },
49 	{ 0x0C, "rx_ucast" },
50 	{ 0x0D, "rx_64_or_less" },
51 	{ 0x0E, "rx_65_127" },
52 	{ 0x0F, "rx_128_255" },
53 	{ 0x10, "rx_256_511" },
54 	{ 0x11, "rx_512_1023" },
55 	{ 0x12, "rx_1024_1522" },
56 	{ 0x13, "rx_1523_2000" },
57 	{ 0x14, "rx_2001" },
58 	{ 0x15, "tx_hi" },
59 	{ 0x16, "tx_late_col" },
60 	{ 0x17, "tx_pause" },
61 	{ 0x18, "tx_bcast" },
62 	{ 0x19, "tx_mcast" },
63 	{ 0x1A, "tx_ucast" },
64 	{ 0x1B, "tx_deferred" },
65 	{ 0x1C, "tx_total_col" },
66 	{ 0x1D, "tx_exc_col" },
67 	{ 0x1E, "tx_single_col" },
68 	{ 0x1F, "tx_mult_col" },
69 	{ 0x80, "rx_total" },
70 	{ 0x81, "tx_total" },
71 	{ 0x82, "rx_discards" },
72 	{ 0x83, "tx_discards" },
73 };
74 
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77 	u8 data;
78 
79 	ksz_read8(dev, addr, &data);
80 	if (set)
81 		data |= bits;
82 	else
83 		data &= ~bits;
84 	ksz_write8(dev, addr, data);
85 }
86 
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89 	u32 data;
90 
91 	ksz_read32(dev, addr, &data);
92 	if (set)
93 		data |= bits;
94 	else
95 		data &= ~bits;
96 	ksz_write32(dev, addr, data);
97 }
98 
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 			 bool set)
101 {
102 	u32 addr;
103 	u8 data;
104 
105 	addr = PORT_CTRL_ADDR(port, offset);
106 	ksz_read8(dev, addr, &data);
107 
108 	if (set)
109 		data |= bits;
110 	else
111 		data &= ~bits;
112 
113 	ksz_write8(dev, addr, data);
114 }
115 
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 			   u32 bits, bool set)
118 {
119 	u32 addr;
120 	u32 data;
121 
122 	addr = PORT_CTRL_ADDR(port, offset);
123 	ksz_read32(dev, addr, &data);
124 
125 	if (set)
126 		data |= bits;
127 	else
128 		data &= ~bits;
129 
130 	ksz_write32(dev, addr, data);
131 }
132 
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135 	u8 data;
136 
137 	do {
138 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 		if (!(data & waiton))
140 			break;
141 		usleep_range(1, 10);
142 	} while (timeout-- > 0);
143 
144 	if (timeout <= 0)
145 		return -ETIMEDOUT;
146 
147 	return 0;
148 }
149 
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152 	struct ksz_device *dev = ds->priv;
153 	int ret;
154 
155 	mutex_lock(&dev->vlan_mutex);
156 
157 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159 
160 	/* wait to be cleared */
161 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 	if (ret < 0) {
163 		dev_dbg(dev->dev, "Failed to read vlan table\n");
164 		goto exit;
165 	}
166 
167 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170 
171 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172 
173 exit:
174 	mutex_unlock(&dev->vlan_mutex);
175 
176 	return ret;
177 }
178 
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181 	struct ksz_device *dev = ds->priv;
182 	int ret;
183 
184 	mutex_lock(&dev->vlan_mutex);
185 
186 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189 
190 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192 
193 	/* wait to be cleared */
194 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 	if (ret < 0) {
196 		dev_dbg(dev->dev, "Failed to write vlan table\n");
197 		goto exit;
198 	}
199 
200 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201 
202 	/* update vlan cache table */
203 	dev->vlan_cache[vid].table[0] = vlan_table[0];
204 	dev->vlan_cache[vid].table[1] = vlan_table[1];
205 	dev->vlan_cache[vid].table[2] = vlan_table[2];
206 
207 exit:
208 	mutex_unlock(&dev->vlan_mutex);
209 
210 	return ret;
211 }
212 
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215 	struct ksz_device *dev = ds->priv;
216 
217 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222 
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225 	struct ksz_device *dev = ds->priv;
226 
227 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232 
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235 	u32 data;
236 
237 	do {
238 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 		if (!(data & waiton))
240 			break;
241 		usleep_range(1, 10);
242 	} while (timeout-- > 0);
243 
244 	if (timeout <= 0)
245 		return -ETIMEDOUT;
246 
247 	return 0;
248 }
249 
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252 	u32 data;
253 
254 	do {
255 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 		if (!(data & waiton))
257 			break;
258 		usleep_range(1, 10);
259 	} while (timeout-- > 0);
260 
261 	if (timeout <= 0)
262 		return -ETIMEDOUT;
263 
264 	return 0;
265 }
266 
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269 	struct ksz_device *dev = ds->priv;
270 	u8 data8;
271 	u16 data16;
272 	u32 data32;
273 
274 	/* reset switch */
275 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276 
277 	/* turn off SPI DO Edge select */
278 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281 
282 	/* default configuration */
283 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287 
288 	/* disable interrupts */
289 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292 
293 	/* set broadcast storm protection 10% rate */
294 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 	data16 &= ~BROADCAST_STORM_RATE;
296 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298 
299 	return 0;
300 }
301 
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304 	u8 data8;
305 	u16 data16;
306 
307 	/* enable tag tail for host port */
308 	if (cpu_port)
309 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 			     true);
311 
312 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313 
314 	/* set back pressure */
315 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316 
317 	/* set flow control */
318 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320 
321 	/* enable broadcast storm limit */
322 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323 
324 	/* disable DiffServ priority */
325 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326 
327 	/* replace priority */
328 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 		     false);
330 	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 		       MTI_PVID_REPLACE, false);
332 
333 	/* enable 802.1p priority */
334 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335 
336 	/* configure MAC to 1G & RGMII mode */
337 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 	data8 |= PORT_RGMII_ID_EG_ENABLE;
339 	data8 &= ~PORT_MII_NOT_1GBIT;
340 	data8 &= ~PORT_MII_SEL_M;
341 	data8 |= PORT_RGMII_SEL;
342 	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343 
344 	/* clear pending interrupts */
345 	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347 
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350 	struct ksz_device *dev = ds->priv;
351 	int i;
352 
353 	ds->num_ports = dev->port_cnt;
354 
355 	for (i = 0; i < ds->num_ports; i++) {
356 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 			dev->cpu_port = i;
358 
359 			/* enable cpu port */
360 			port_setup(dev, i, true);
361 		}
362 	}
363 }
364 
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367 	struct ksz_device *dev = ds->priv;
368 	int ret = 0;
369 
370 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 				       dev->num_vlans, GFP_KERNEL);
372 	if (!dev->vlan_cache)
373 		return -ENOMEM;
374 
375 	ret = ksz_reset_switch(ds);
376 	if (ret) {
377 		dev_err(ds->dev, "failed to reset switch\n");
378 		return ret;
379 	}
380 
381 	/* accept packet up to 2000bytes */
382 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383 
384 	ksz_config_cpu_port(ds);
385 
386 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387 
388 	/* queue based egress rate limit */
389 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390 
391 	/* start switch */
392 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393 
394 	return 0;
395 }
396 
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398 						  int port)
399 {
400 	return DSA_TAG_PROTO_KSZ;
401 }
402 
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405 	struct ksz_device *dev = ds->priv;
406 	u16 val = 0;
407 
408 	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409 
410 	return val;
411 }
412 
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415 	struct ksz_device *dev = ds->priv;
416 
417 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418 
419 	return 0;
420 }
421 
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423 			   struct phy_device *phy)
424 {
425 	struct ksz_device *dev = ds->priv;
426 
427 	/* setup slave port */
428 	port_setup(dev, port, false);
429 
430 	return 0;
431 }
432 
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434 			     struct phy_device *phy)
435 {
436 	struct ksz_device *dev = ds->priv;
437 
438 	/* there is no port disable */
439 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441 
442 static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
443 {
444 	if (sset != ETH_SS_STATS)
445 		return 0;
446 
447 	return TOTAL_SWITCH_COUNTER_NUM;
448 }
449 
450 static void ksz_get_strings(struct dsa_switch *ds, int port,
451 			    u32 stringset, uint8_t *buf)
452 {
453 	int i;
454 
455 	if (stringset != ETH_SS_STATS)
456 		return;
457 
458 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
459 		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
460 		       ETH_GSTRING_LEN);
461 	}
462 }
463 
464 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
465 				  uint64_t *buf)
466 {
467 	struct ksz_device *dev = ds->priv;
468 	int i;
469 	u32 data;
470 	int timeout;
471 
472 	mutex_lock(&dev->stats_mutex);
473 
474 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
475 		data = MIB_COUNTER_READ;
476 		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
477 		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
478 
479 		timeout = 1000;
480 		do {
481 			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
482 				    &data);
483 			usleep_range(1, 10);
484 			if (!(data & MIB_COUNTER_READ))
485 				break;
486 		} while (timeout-- > 0);
487 
488 		/* failed to read MIB. get out of loop */
489 		if (!timeout) {
490 			dev_dbg(dev->dev, "Failed to get MIB\n");
491 			break;
492 		}
493 
494 		/* count resets upon read */
495 		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
496 
497 		dev->mib_value[i] += (uint64_t)data;
498 		buf[i] = dev->mib_value[i];
499 	}
500 
501 	mutex_unlock(&dev->stats_mutex);
502 }
503 
504 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
505 {
506 	struct ksz_device *dev = ds->priv;
507 	u8 data;
508 
509 	ksz_pread8(dev, port, P_STP_CTRL, &data);
510 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511 
512 	switch (state) {
513 	case BR_STATE_DISABLED:
514 		data |= PORT_LEARN_DISABLE;
515 		break;
516 	case BR_STATE_LISTENING:
517 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
518 		break;
519 	case BR_STATE_LEARNING:
520 		data |= PORT_RX_ENABLE;
521 		break;
522 	case BR_STATE_FORWARDING:
523 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
524 		break;
525 	case BR_STATE_BLOCKING:
526 		data |= PORT_LEARN_DISABLE;
527 		break;
528 	default:
529 		dev_err(ds->dev, "invalid STP state: %d\n", state);
530 		return;
531 	}
532 
533 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
534 }
535 
536 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
537 {
538 	struct ksz_device *dev = ds->priv;
539 	u8 data8;
540 
541 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
542 	data8 |= SW_FAST_AGING;
543 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
544 
545 	data8 &= ~SW_FAST_AGING;
546 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
547 }
548 
549 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
550 {
551 	struct ksz_device *dev = ds->priv;
552 
553 	if (flag) {
554 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 			     PORT_VLAN_LOOKUP_VID_0, true);
556 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
557 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
558 	} else {
559 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
560 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
561 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
562 			     PORT_VLAN_LOOKUP_VID_0, false);
563 	}
564 
565 	return 0;
566 }
567 
568 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
569 				 const struct switchdev_obj_port_vlan *vlan)
570 {
571 	/* nothing needed */
572 
573 	return 0;
574 }
575 
576 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
577 			      const struct switchdev_obj_port_vlan *vlan)
578 {
579 	struct ksz_device *dev = ds->priv;
580 	u32 vlan_table[3];
581 	u16 vid;
582 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
583 
584 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
585 		if (get_vlan_table(ds, vid, vlan_table)) {
586 			dev_dbg(dev->dev, "Failed to get vlan table\n");
587 			return;
588 		}
589 
590 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
591 		if (untagged)
592 			vlan_table[1] |= BIT(port);
593 		else
594 			vlan_table[1] &= ~BIT(port);
595 		vlan_table[1] &= ~(BIT(dev->cpu_port));
596 
597 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
598 
599 		if (set_vlan_table(ds, vid, vlan_table)) {
600 			dev_dbg(dev->dev, "Failed to set vlan table\n");
601 			return;
602 		}
603 
604 		/* change PVID */
605 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
606 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
607 	}
608 }
609 
610 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
611 			     const struct switchdev_obj_port_vlan *vlan)
612 {
613 	struct ksz_device *dev = ds->priv;
614 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
615 	u32 vlan_table[3];
616 	u16 vid;
617 	u16 pvid;
618 
619 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
620 	pvid = pvid & 0xFFF;
621 
622 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
623 		if (get_vlan_table(ds, vid, vlan_table)) {
624 			dev_dbg(dev->dev, "Failed to get vlan table\n");
625 			return -ETIMEDOUT;
626 		}
627 
628 		vlan_table[2] &= ~BIT(port);
629 
630 		if (pvid == vid)
631 			pvid = 1;
632 
633 		if (untagged)
634 			vlan_table[1] &= ~BIT(port);
635 
636 		if (set_vlan_table(ds, vid, vlan_table)) {
637 			dev_dbg(dev->dev, "Failed to set vlan table\n");
638 			return -ETIMEDOUT;
639 		}
640 	}
641 
642 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
643 
644 	return 0;
645 }
646 
647 struct alu_struct {
648 	/* entry 1 */
649 	u8	is_static:1;
650 	u8	is_src_filter:1;
651 	u8	is_dst_filter:1;
652 	u8	prio_age:3;
653 	u32	_reserv_0_1:23;
654 	u8	mstp:3;
655 	/* entry 2 */
656 	u8	is_override:1;
657 	u8	is_use_fid:1;
658 	u32	_reserv_1_1:23;
659 	u8	port_forward:7;
660 	/* entry 3 & 4*/
661 	u32	_reserv_2_1:9;
662 	u8	fid:7;
663 	u8	mac[ETH_ALEN];
664 };
665 
666 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
667 			    const unsigned char *addr, u16 vid)
668 {
669 	struct ksz_device *dev = ds->priv;
670 	u32 alu_table[4];
671 	u32 data;
672 	int ret = 0;
673 
674 	mutex_lock(&dev->alu_mutex);
675 
676 	/* find any entry with mac & vid */
677 	data = vid << ALU_FID_INDEX_S;
678 	data |= ((addr[0] << 8) | addr[1]);
679 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
680 
681 	data = ((addr[2] << 24) | (addr[3] << 16));
682 	data |= ((addr[4] << 8) | addr[5]);
683 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
684 
685 	/* start read operation */
686 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
687 
688 	/* wait to be finished */
689 	ret = wait_alu_ready(dev, ALU_START, 1000);
690 	if (ret < 0) {
691 		dev_dbg(dev->dev, "Failed to read ALU\n");
692 		goto exit;
693 	}
694 
695 	/* read ALU entry */
696 	read_table(ds, alu_table);
697 
698 	/* update ALU entry */
699 	alu_table[0] = ALU_V_STATIC_VALID;
700 	alu_table[1] |= BIT(port);
701 	if (vid)
702 		alu_table[1] |= ALU_V_USE_FID;
703 	alu_table[2] = (vid << ALU_V_FID_S);
704 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
705 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
706 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
707 
708 	write_table(ds, alu_table);
709 
710 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
711 
712 	/* wait to be finished */
713 	ret = wait_alu_ready(dev, ALU_START, 1000);
714 	if (ret < 0)
715 		dev_dbg(dev->dev, "Failed to write ALU\n");
716 
717 exit:
718 	mutex_unlock(&dev->alu_mutex);
719 
720 	return ret;
721 }
722 
723 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
724 			    const unsigned char *addr, u16 vid)
725 {
726 	struct ksz_device *dev = ds->priv;
727 	u32 alu_table[4];
728 	u32 data;
729 	int ret = 0;
730 
731 	mutex_lock(&dev->alu_mutex);
732 
733 	/* read any entry with mac & vid */
734 	data = vid << ALU_FID_INDEX_S;
735 	data |= ((addr[0] << 8) | addr[1]);
736 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
737 
738 	data = ((addr[2] << 24) | (addr[3] << 16));
739 	data |= ((addr[4] << 8) | addr[5]);
740 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
741 
742 	/* start read operation */
743 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
744 
745 	/* wait to be finished */
746 	ret = wait_alu_ready(dev, ALU_START, 1000);
747 	if (ret < 0) {
748 		dev_dbg(dev->dev, "Failed to read ALU\n");
749 		goto exit;
750 	}
751 
752 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
753 	if (alu_table[0] & ALU_V_STATIC_VALID) {
754 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
755 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
756 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
757 
758 		/* clear forwarding port */
759 		alu_table[2] &= ~BIT(port);
760 
761 		/* if there is no port to forward, clear table */
762 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
763 			alu_table[0] = 0;
764 			alu_table[1] = 0;
765 			alu_table[2] = 0;
766 			alu_table[3] = 0;
767 		}
768 	} else {
769 		alu_table[0] = 0;
770 		alu_table[1] = 0;
771 		alu_table[2] = 0;
772 		alu_table[3] = 0;
773 	}
774 
775 	write_table(ds, alu_table);
776 
777 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
778 
779 	/* wait to be finished */
780 	ret = wait_alu_ready(dev, ALU_START, 1000);
781 	if (ret < 0)
782 		dev_dbg(dev->dev, "Failed to write ALU\n");
783 
784 exit:
785 	mutex_unlock(&dev->alu_mutex);
786 
787 	return ret;
788 }
789 
790 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
791 {
792 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
793 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
794 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
795 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
796 			ALU_V_PRIO_AGE_CNT_M;
797 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
798 
799 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
800 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
801 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
802 
803 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
804 
805 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
806 	alu->mac[1] = alu_table[2] & 0xFF;
807 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
808 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
809 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
810 	alu->mac[5] = alu_table[3] & 0xFF;
811 }
812 
813 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
814 			     dsa_fdb_dump_cb_t *cb, void *data)
815 {
816 	struct ksz_device *dev = ds->priv;
817 	int ret = 0;
818 	u32 ksz_data;
819 	u32 alu_table[4];
820 	struct alu_struct alu;
821 	int timeout;
822 
823 	mutex_lock(&dev->alu_mutex);
824 
825 	/* start ALU search */
826 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
827 
828 	do {
829 		timeout = 1000;
830 		do {
831 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
832 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
833 				break;
834 			usleep_range(1, 10);
835 		} while (timeout-- > 0);
836 
837 		if (!timeout) {
838 			dev_dbg(dev->dev, "Failed to search ALU\n");
839 			ret = -ETIMEDOUT;
840 			goto exit;
841 		}
842 
843 		/* read ALU table */
844 		read_table(ds, alu_table);
845 
846 		convert_alu(&alu, alu_table);
847 
848 		if (alu.port_forward & BIT(port)) {
849 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
850 			if (ret)
851 				goto exit;
852 		}
853 	} while (ksz_data & ALU_START);
854 
855 exit:
856 
857 	/* stop ALU search */
858 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
859 
860 	mutex_unlock(&dev->alu_mutex);
861 
862 	return ret;
863 }
864 
865 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
866 				const struct switchdev_obj_port_mdb *mdb)
867 {
868 	/* nothing to do */
869 	return 0;
870 }
871 
872 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
873 			     const struct switchdev_obj_port_mdb *mdb)
874 {
875 	struct ksz_device *dev = ds->priv;
876 	u32 static_table[4];
877 	u32 data;
878 	int index;
879 	u32 mac_hi, mac_lo;
880 
881 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
882 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
883 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
884 
885 	mutex_lock(&dev->alu_mutex);
886 
887 	for (index = 0; index < dev->num_statics; index++) {
888 		/* find empty slot first */
889 		data = (index << ALU_STAT_INDEX_S) |
890 			ALU_STAT_READ | ALU_STAT_START;
891 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
892 
893 		/* wait to be finished */
894 		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
895 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
896 			goto exit;
897 		}
898 
899 		/* read ALU static table */
900 		read_table(ds, static_table);
901 
902 		if (static_table[0] & ALU_V_STATIC_VALID) {
903 			/* check this has same vid & mac address */
904 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
905 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
906 			    (static_table[3] == mac_lo)) {
907 				/* found matching one */
908 				break;
909 			}
910 		} else {
911 			/* found empty one */
912 			break;
913 		}
914 	}
915 
916 	/* no available entry */
917 	if (index == dev->num_statics)
918 		goto exit;
919 
920 	/* add entry */
921 	static_table[0] = ALU_V_STATIC_VALID;
922 	static_table[1] |= BIT(port);
923 	if (mdb->vid)
924 		static_table[1] |= ALU_V_USE_FID;
925 	static_table[2] = (mdb->vid << ALU_V_FID_S);
926 	static_table[2] |= mac_hi;
927 	static_table[3] = mac_lo;
928 
929 	write_table(ds, static_table);
930 
931 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
932 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
933 
934 	/* wait to be finished */
935 	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
936 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
937 
938 exit:
939 	mutex_unlock(&dev->alu_mutex);
940 }
941 
942 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
943 			    const struct switchdev_obj_port_mdb *mdb)
944 {
945 	struct ksz_device *dev = ds->priv;
946 	u32 static_table[4];
947 	u32 data;
948 	int index;
949 	int ret = 0;
950 	u32 mac_hi, mac_lo;
951 
952 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
953 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
954 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
955 
956 	mutex_lock(&dev->alu_mutex);
957 
958 	for (index = 0; index < dev->num_statics; index++) {
959 		/* find empty slot first */
960 		data = (index << ALU_STAT_INDEX_S) |
961 			ALU_STAT_READ | ALU_STAT_START;
962 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
963 
964 		/* wait to be finished */
965 		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
966 		if (ret < 0) {
967 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
968 			goto exit;
969 		}
970 
971 		/* read ALU static table */
972 		read_table(ds, static_table);
973 
974 		if (static_table[0] & ALU_V_STATIC_VALID) {
975 			/* check this has same vid & mac address */
976 
977 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
978 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
979 			    (static_table[3] == mac_lo)) {
980 				/* found matching one */
981 				break;
982 			}
983 		}
984 	}
985 
986 	/* no available entry */
987 	if (index == dev->num_statics) {
988 		ret = -EINVAL;
989 		goto exit;
990 	}
991 
992 	/* clear port */
993 	static_table[1] &= ~BIT(port);
994 
995 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
996 		/* delete entry */
997 		static_table[0] = 0;
998 		static_table[1] = 0;
999 		static_table[2] = 0;
1000 		static_table[3] = 0;
1001 	}
1002 
1003 	write_table(ds, static_table);
1004 
1005 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1006 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1007 
1008 	/* wait to be finished */
1009 	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1010 	if (ret < 0)
1011 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1012 
1013 exit:
1014 	mutex_unlock(&dev->alu_mutex);
1015 
1016 	return ret;
1017 }
1018 
1019 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1020 			       struct dsa_mall_mirror_tc_entry *mirror,
1021 			       bool ingress)
1022 {
1023 	struct ksz_device *dev = ds->priv;
1024 
1025 	if (ingress)
1026 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1027 	else
1028 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1029 
1030 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1031 
1032 	/* configure mirror port */
1033 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1034 		     PORT_MIRROR_SNIFFER, true);
1035 
1036 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1037 
1038 	return 0;
1039 }
1040 
1041 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1042 				struct dsa_mall_mirror_tc_entry *mirror)
1043 {
1044 	struct ksz_device *dev = ds->priv;
1045 	u8 data;
1046 
1047 	if (mirror->ingress)
1048 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1049 	else
1050 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1051 
1052 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1053 
1054 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1055 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1056 			     PORT_MIRROR_SNIFFER, false);
1057 }
1058 
1059 static const struct dsa_switch_ops ksz_switch_ops = {
1060 	.get_tag_protocol	= ksz_get_tag_protocol,
1061 	.setup			= ksz_setup,
1062 	.phy_read		= ksz_phy_read16,
1063 	.phy_write		= ksz_phy_write16,
1064 	.port_enable		= ksz_enable_port,
1065 	.port_disable		= ksz_disable_port,
1066 	.get_strings		= ksz_get_strings,
1067 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1068 	.get_sset_count		= ksz_sset_count,
1069 	.port_stp_state_set	= ksz_port_stp_state_set,
1070 	.port_fast_age		= ksz_port_fast_age,
1071 	.port_vlan_filtering	= ksz_port_vlan_filtering,
1072 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1073 	.port_vlan_add		= ksz_port_vlan_add,
1074 	.port_vlan_del		= ksz_port_vlan_del,
1075 	.port_fdb_dump		= ksz_port_fdb_dump,
1076 	.port_fdb_add		= ksz_port_fdb_add,
1077 	.port_fdb_del		= ksz_port_fdb_del,
1078 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1079 	.port_mdb_add           = ksz_port_mdb_add,
1080 	.port_mdb_del           = ksz_port_mdb_del,
1081 	.port_mirror_add	= ksz_port_mirror_add,
1082 	.port_mirror_del	= ksz_port_mirror_del,
1083 };
1084 
1085 struct ksz_chip_data {
1086 	u32 chip_id;
1087 	const char *dev_name;
1088 	int num_vlans;
1089 	int num_alus;
1090 	int num_statics;
1091 	int cpu_ports;
1092 	int port_cnt;
1093 };
1094 
1095 static const struct ksz_chip_data ksz_switch_chips[] = {
1096 	{
1097 		.chip_id = 0x00947700,
1098 		.dev_name = "KSZ9477",
1099 		.num_vlans = 4096,
1100 		.num_alus = 4096,
1101 		.num_statics = 16,
1102 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1103 		.port_cnt = 7,		/* total physical port count */
1104 	},
1105 };
1106 
1107 static int ksz_switch_init(struct ksz_device *dev)
1108 {
1109 	int i;
1110 
1111 	mutex_init(&dev->reg_mutex);
1112 	mutex_init(&dev->stats_mutex);
1113 	mutex_init(&dev->alu_mutex);
1114 	mutex_init(&dev->vlan_mutex);
1115 
1116 	dev->ds->ops = &ksz_switch_ops;
1117 
1118 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1119 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1120 
1121 		if (dev->chip_id == chip->chip_id) {
1122 			dev->name = chip->dev_name;
1123 			dev->num_vlans = chip->num_vlans;
1124 			dev->num_alus = chip->num_alus;
1125 			dev->num_statics = chip->num_statics;
1126 			dev->port_cnt = chip->port_cnt;
1127 			dev->cpu_ports = chip->cpu_ports;
1128 
1129 			break;
1130 		}
1131 	}
1132 
1133 	/* no switch found */
1134 	if (!dev->port_cnt)
1135 		return -ENODEV;
1136 
1137 	return 0;
1138 }
1139 
1140 struct ksz_device *ksz_switch_alloc(struct device *base,
1141 				    const struct ksz_io_ops *ops,
1142 				    void *priv)
1143 {
1144 	struct dsa_switch *ds;
1145 	struct ksz_device *swdev;
1146 
1147 	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1148 	if (!ds)
1149 		return NULL;
1150 
1151 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1152 	if (!swdev)
1153 		return NULL;
1154 
1155 	ds->priv = swdev;
1156 	swdev->dev = base;
1157 
1158 	swdev->ds = ds;
1159 	swdev->priv = priv;
1160 	swdev->ops = ops;
1161 
1162 	return swdev;
1163 }
1164 EXPORT_SYMBOL(ksz_switch_alloc);
1165 
1166 int ksz_switch_detect(struct ksz_device *dev)
1167 {
1168 	u8 data8;
1169 	u32 id32;
1170 	int ret;
1171 
1172 	/* turn off SPI DO Edge select */
1173 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1174 	if (ret)
1175 		return ret;
1176 
1177 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1178 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1179 	if (ret)
1180 		return ret;
1181 
1182 	/* read chip id */
1183 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1184 	if (ret)
1185 		return ret;
1186 
1187 	dev->chip_id = id32;
1188 
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL(ksz_switch_detect);
1192 
1193 int ksz_switch_register(struct ksz_device *dev)
1194 {
1195 	int ret;
1196 
1197 	if (dev->pdata)
1198 		dev->chip_id = dev->pdata->chip_id;
1199 
1200 	if (ksz_switch_detect(dev))
1201 		return -EINVAL;
1202 
1203 	ret = ksz_switch_init(dev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	return dsa_register_switch(dev->ds);
1208 }
1209 EXPORT_SYMBOL(ksz_switch_register);
1210 
1211 void ksz_switch_remove(struct ksz_device *dev)
1212 {
1213 	dsa_unregister_switch(dev->ds);
1214 }
1215 EXPORT_SYMBOL(ksz_switch_remove);
1216 
1217 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1218 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1219 MODULE_LICENSE("GPL");
1220