1 /*
2  * Microchip switch driver main logic
3  *
4  * Copyright (C) 2017
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/gpio.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_data/microchip-ksz.h>
25 #include <linux/phy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_bridge.h>
28 #include <net/dsa.h>
29 #include <net/switchdev.h>
30 
31 #include "ksz_priv.h"
32 
33 static const struct {
34 	int index;
35 	char string[ETH_GSTRING_LEN];
36 } mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
37 	{ 0x00, "rx_hi" },
38 	{ 0x01, "rx_undersize" },
39 	{ 0x02, "rx_fragments" },
40 	{ 0x03, "rx_oversize" },
41 	{ 0x04, "rx_jabbers" },
42 	{ 0x05, "rx_symbol_err" },
43 	{ 0x06, "rx_crc_err" },
44 	{ 0x07, "rx_align_err" },
45 	{ 0x08, "rx_mac_ctrl" },
46 	{ 0x09, "rx_pause" },
47 	{ 0x0A, "rx_bcast" },
48 	{ 0x0B, "rx_mcast" },
49 	{ 0x0C, "rx_ucast" },
50 	{ 0x0D, "rx_64_or_less" },
51 	{ 0x0E, "rx_65_127" },
52 	{ 0x0F, "rx_128_255" },
53 	{ 0x10, "rx_256_511" },
54 	{ 0x11, "rx_512_1023" },
55 	{ 0x12, "rx_1024_1522" },
56 	{ 0x13, "rx_1523_2000" },
57 	{ 0x14, "rx_2001" },
58 	{ 0x15, "tx_hi" },
59 	{ 0x16, "tx_late_col" },
60 	{ 0x17, "tx_pause" },
61 	{ 0x18, "tx_bcast" },
62 	{ 0x19, "tx_mcast" },
63 	{ 0x1A, "tx_ucast" },
64 	{ 0x1B, "tx_deferred" },
65 	{ 0x1C, "tx_total_col" },
66 	{ 0x1D, "tx_exc_col" },
67 	{ 0x1E, "tx_single_col" },
68 	{ 0x1F, "tx_mult_col" },
69 	{ 0x80, "rx_total" },
70 	{ 0x81, "tx_total" },
71 	{ 0x82, "rx_discards" },
72 	{ 0x83, "tx_discards" },
73 };
74 
75 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
76 {
77 	u8 data;
78 
79 	ksz_read8(dev, addr, &data);
80 	if (set)
81 		data |= bits;
82 	else
83 		data &= ~bits;
84 	ksz_write8(dev, addr, data);
85 }
86 
87 static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
88 {
89 	u32 data;
90 
91 	ksz_read32(dev, addr, &data);
92 	if (set)
93 		data |= bits;
94 	else
95 		data &= ~bits;
96 	ksz_write32(dev, addr, data);
97 }
98 
99 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
100 			 bool set)
101 {
102 	u32 addr;
103 	u8 data;
104 
105 	addr = PORT_CTRL_ADDR(port, offset);
106 	ksz_read8(dev, addr, &data);
107 
108 	if (set)
109 		data |= bits;
110 	else
111 		data &= ~bits;
112 
113 	ksz_write8(dev, addr, data);
114 }
115 
116 static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
117 			   u32 bits, bool set)
118 {
119 	u32 addr;
120 	u32 data;
121 
122 	addr = PORT_CTRL_ADDR(port, offset);
123 	ksz_read32(dev, addr, &data);
124 
125 	if (set)
126 		data |= bits;
127 	else
128 		data &= ~bits;
129 
130 	ksz_write32(dev, addr, data);
131 }
132 
133 static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
134 {
135 	u8 data;
136 
137 	do {
138 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
139 		if (!(data & waiton))
140 			break;
141 		usleep_range(1, 10);
142 	} while (timeout-- > 0);
143 
144 	if (timeout <= 0)
145 		return -ETIMEDOUT;
146 
147 	return 0;
148 }
149 
150 static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
151 {
152 	struct ksz_device *dev = ds->priv;
153 	int ret;
154 
155 	mutex_lock(&dev->vlan_mutex);
156 
157 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
158 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
159 
160 	/* wait to be cleared */
161 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
162 	if (ret < 0) {
163 		dev_dbg(dev->dev, "Failed to read vlan table\n");
164 		goto exit;
165 	}
166 
167 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
168 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
169 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
170 
171 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
172 
173 exit:
174 	mutex_unlock(&dev->vlan_mutex);
175 
176 	return ret;
177 }
178 
179 static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
180 {
181 	struct ksz_device *dev = ds->priv;
182 	int ret;
183 
184 	mutex_lock(&dev->vlan_mutex);
185 
186 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
187 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
188 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
189 
190 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
191 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
192 
193 	/* wait to be cleared */
194 	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
195 	if (ret < 0) {
196 		dev_dbg(dev->dev, "Failed to write vlan table\n");
197 		goto exit;
198 	}
199 
200 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
201 
202 	/* update vlan cache table */
203 	dev->vlan_cache[vid].table[0] = vlan_table[0];
204 	dev->vlan_cache[vid].table[1] = vlan_table[1];
205 	dev->vlan_cache[vid].table[2] = vlan_table[2];
206 
207 exit:
208 	mutex_unlock(&dev->vlan_mutex);
209 
210 	return ret;
211 }
212 
213 static void read_table(struct dsa_switch *ds, u32 *table)
214 {
215 	struct ksz_device *dev = ds->priv;
216 
217 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
218 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
219 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
220 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
221 }
222 
223 static void write_table(struct dsa_switch *ds, u32 *table)
224 {
225 	struct ksz_device *dev = ds->priv;
226 
227 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
228 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
229 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
230 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
231 }
232 
233 static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
234 {
235 	u32 data;
236 
237 	do {
238 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
239 		if (!(data & waiton))
240 			break;
241 		usleep_range(1, 10);
242 	} while (timeout-- > 0);
243 
244 	if (timeout <= 0)
245 		return -ETIMEDOUT;
246 
247 	return 0;
248 }
249 
250 static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
251 {
252 	u32 data;
253 
254 	do {
255 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
256 		if (!(data & waiton))
257 			break;
258 		usleep_range(1, 10);
259 	} while (timeout-- > 0);
260 
261 	if (timeout <= 0)
262 		return -ETIMEDOUT;
263 
264 	return 0;
265 }
266 
267 static int ksz_reset_switch(struct dsa_switch *ds)
268 {
269 	struct ksz_device *dev = ds->priv;
270 	u8 data8;
271 	u16 data16;
272 	u32 data32;
273 
274 	/* reset switch */
275 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
276 
277 	/* turn off SPI DO Edge select */
278 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
279 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
280 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
281 
282 	/* default configuration */
283 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
284 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
285 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
286 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
287 
288 	/* disable interrupts */
289 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
290 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
291 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
292 
293 	/* set broadcast storm protection 10% rate */
294 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
295 	data16 &= ~BROADCAST_STORM_RATE;
296 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
297 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
298 
299 	return 0;
300 }
301 
302 static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
303 {
304 	u8 data8;
305 	u16 data16;
306 
307 	/* enable tag tail for host port */
308 	if (cpu_port)
309 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
310 			     true);
311 
312 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
313 
314 	/* set back pressure */
315 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
316 
317 	/* set flow control */
318 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
319 		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
320 
321 	/* enable broadcast storm limit */
322 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
323 
324 	/* disable DiffServ priority */
325 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
326 
327 	/* replace priority */
328 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
329 		     false);
330 	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
331 		       MTI_PVID_REPLACE, false);
332 
333 	/* enable 802.1p priority */
334 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
335 
336 	/* configure MAC to 1G & RGMII mode */
337 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
338 	data8 |= PORT_RGMII_ID_EG_ENABLE;
339 	data8 &= ~PORT_MII_NOT_1GBIT;
340 	data8 &= ~PORT_MII_SEL_M;
341 	data8 |= PORT_RGMII_SEL;
342 	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
343 
344 	/* clear pending interrupts */
345 	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
346 }
347 
348 static void ksz_config_cpu_port(struct dsa_switch *ds)
349 {
350 	struct ksz_device *dev = ds->priv;
351 	int i;
352 
353 	ds->num_ports = dev->port_cnt;
354 
355 	for (i = 0; i < ds->num_ports; i++) {
356 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
357 			dev->cpu_port = i;
358 
359 			/* enable cpu port */
360 			port_setup(dev, i, true);
361 		}
362 	}
363 }
364 
365 static int ksz_setup(struct dsa_switch *ds)
366 {
367 	struct ksz_device *dev = ds->priv;
368 	int ret = 0;
369 
370 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
371 				       dev->num_vlans, GFP_KERNEL);
372 	if (!dev->vlan_cache)
373 		return -ENOMEM;
374 
375 	ret = ksz_reset_switch(ds);
376 	if (ret) {
377 		dev_err(ds->dev, "failed to reset switch\n");
378 		return ret;
379 	}
380 
381 	/* accept packet up to 2000bytes */
382 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
383 
384 	ksz_config_cpu_port(ds);
385 
386 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
387 
388 	/* queue based egress rate limit */
389 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
390 
391 	/* start switch */
392 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
393 
394 	return 0;
395 }
396 
397 static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
398 						  int port)
399 {
400 	return DSA_TAG_PROTO_KSZ;
401 }
402 
403 static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
404 {
405 	struct ksz_device *dev = ds->priv;
406 	u16 val = 0;
407 
408 	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
409 
410 	return val;
411 }
412 
413 static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
414 {
415 	struct ksz_device *dev = ds->priv;
416 
417 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
418 
419 	return 0;
420 }
421 
422 static int ksz_enable_port(struct dsa_switch *ds, int port,
423 			   struct phy_device *phy)
424 {
425 	struct ksz_device *dev = ds->priv;
426 
427 	/* setup slave port */
428 	port_setup(dev, port, false);
429 
430 	return 0;
431 }
432 
433 static void ksz_disable_port(struct dsa_switch *ds, int port,
434 			     struct phy_device *phy)
435 {
436 	struct ksz_device *dev = ds->priv;
437 
438 	/* there is no port disable */
439 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
440 }
441 
442 static int ksz_sset_count(struct dsa_switch *ds)
443 {
444 	return TOTAL_SWITCH_COUNTER_NUM;
445 }
446 
447 static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
448 {
449 	int i;
450 
451 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
452 		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
453 		       ETH_GSTRING_LEN);
454 	}
455 }
456 
457 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
458 				  uint64_t *buf)
459 {
460 	struct ksz_device *dev = ds->priv;
461 	int i;
462 	u32 data;
463 	int timeout;
464 
465 	mutex_lock(&dev->stats_mutex);
466 
467 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
468 		data = MIB_COUNTER_READ;
469 		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
470 		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
471 
472 		timeout = 1000;
473 		do {
474 			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
475 				    &data);
476 			usleep_range(1, 10);
477 			if (!(data & MIB_COUNTER_READ))
478 				break;
479 		} while (timeout-- > 0);
480 
481 		/* failed to read MIB. get out of loop */
482 		if (!timeout) {
483 			dev_dbg(dev->dev, "Failed to get MIB\n");
484 			break;
485 		}
486 
487 		/* count resets upon read */
488 		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
489 
490 		dev->mib_value[i] += (uint64_t)data;
491 		buf[i] = dev->mib_value[i];
492 	}
493 
494 	mutex_unlock(&dev->stats_mutex);
495 }
496 
497 static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
498 {
499 	struct ksz_device *dev = ds->priv;
500 	u8 data;
501 
502 	ksz_pread8(dev, port, P_STP_CTRL, &data);
503 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
504 
505 	switch (state) {
506 	case BR_STATE_DISABLED:
507 		data |= PORT_LEARN_DISABLE;
508 		break;
509 	case BR_STATE_LISTENING:
510 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
511 		break;
512 	case BR_STATE_LEARNING:
513 		data |= PORT_RX_ENABLE;
514 		break;
515 	case BR_STATE_FORWARDING:
516 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
517 		break;
518 	case BR_STATE_BLOCKING:
519 		data |= PORT_LEARN_DISABLE;
520 		break;
521 	default:
522 		dev_err(ds->dev, "invalid STP state: %d\n", state);
523 		return;
524 	}
525 
526 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
527 }
528 
529 static void ksz_port_fast_age(struct dsa_switch *ds, int port)
530 {
531 	struct ksz_device *dev = ds->priv;
532 	u8 data8;
533 
534 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
535 	data8 |= SW_FAST_AGING;
536 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
537 
538 	data8 &= ~SW_FAST_AGING;
539 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
540 }
541 
542 static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
543 {
544 	struct ksz_device *dev = ds->priv;
545 
546 	if (flag) {
547 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
548 			     PORT_VLAN_LOOKUP_VID_0, true);
549 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
550 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
551 	} else {
552 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
553 		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
554 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
555 			     PORT_VLAN_LOOKUP_VID_0, false);
556 	}
557 
558 	return 0;
559 }
560 
561 static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
562 				 const struct switchdev_obj_port_vlan *vlan,
563 				 struct switchdev_trans *trans)
564 {
565 	/* nothing needed */
566 
567 	return 0;
568 }
569 
570 static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
571 			      const struct switchdev_obj_port_vlan *vlan,
572 			      struct switchdev_trans *trans)
573 {
574 	struct ksz_device *dev = ds->priv;
575 	u32 vlan_table[3];
576 	u16 vid;
577 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
578 
579 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
580 		if (get_vlan_table(ds, vid, vlan_table)) {
581 			dev_dbg(dev->dev, "Failed to get vlan table\n");
582 			return;
583 		}
584 
585 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
586 		if (untagged)
587 			vlan_table[1] |= BIT(port);
588 		else
589 			vlan_table[1] &= ~BIT(port);
590 		vlan_table[1] &= ~(BIT(dev->cpu_port));
591 
592 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
593 
594 		if (set_vlan_table(ds, vid, vlan_table)) {
595 			dev_dbg(dev->dev, "Failed to set vlan table\n");
596 			return;
597 		}
598 
599 		/* change PVID */
600 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
601 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
602 	}
603 }
604 
605 static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
606 			     const struct switchdev_obj_port_vlan *vlan)
607 {
608 	struct ksz_device *dev = ds->priv;
609 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
610 	u32 vlan_table[3];
611 	u16 vid;
612 	u16 pvid;
613 
614 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
615 	pvid = pvid & 0xFFF;
616 
617 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
618 		if (get_vlan_table(ds, vid, vlan_table)) {
619 			dev_dbg(dev->dev, "Failed to get vlan table\n");
620 			return -ETIMEDOUT;
621 		}
622 
623 		vlan_table[2] &= ~BIT(port);
624 
625 		if (pvid == vid)
626 			pvid = 1;
627 
628 		if (untagged)
629 			vlan_table[1] &= ~BIT(port);
630 
631 		if (set_vlan_table(ds, vid, vlan_table)) {
632 			dev_dbg(dev->dev, "Failed to set vlan table\n");
633 			return -ETIMEDOUT;
634 		}
635 	}
636 
637 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
638 
639 	return 0;
640 }
641 
642 struct alu_struct {
643 	/* entry 1 */
644 	u8	is_static:1;
645 	u8	is_src_filter:1;
646 	u8	is_dst_filter:1;
647 	u8	prio_age:3;
648 	u32	_reserv_0_1:23;
649 	u8	mstp:3;
650 	/* entry 2 */
651 	u8	is_override:1;
652 	u8	is_use_fid:1;
653 	u32	_reserv_1_1:23;
654 	u8	port_forward:7;
655 	/* entry 3 & 4*/
656 	u32	_reserv_2_1:9;
657 	u8	fid:7;
658 	u8	mac[ETH_ALEN];
659 };
660 
661 static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
662 			    const unsigned char *addr, u16 vid)
663 {
664 	struct ksz_device *dev = ds->priv;
665 	u32 alu_table[4];
666 	u32 data;
667 	int ret = 0;
668 
669 	mutex_lock(&dev->alu_mutex);
670 
671 	/* find any entry with mac & vid */
672 	data = vid << ALU_FID_INDEX_S;
673 	data |= ((addr[0] << 8) | addr[1]);
674 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
675 
676 	data = ((addr[2] << 24) | (addr[3] << 16));
677 	data |= ((addr[4] << 8) | addr[5]);
678 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
679 
680 	/* start read operation */
681 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
682 
683 	/* wait to be finished */
684 	ret = wait_alu_ready(dev, ALU_START, 1000);
685 	if (ret < 0) {
686 		dev_dbg(dev->dev, "Failed to read ALU\n");
687 		goto exit;
688 	}
689 
690 	/* read ALU entry */
691 	read_table(ds, alu_table);
692 
693 	/* update ALU entry */
694 	alu_table[0] = ALU_V_STATIC_VALID;
695 	alu_table[1] |= BIT(port);
696 	if (vid)
697 		alu_table[1] |= ALU_V_USE_FID;
698 	alu_table[2] = (vid << ALU_V_FID_S);
699 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
700 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
701 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
702 
703 	write_table(ds, alu_table);
704 
705 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
706 
707 	/* wait to be finished */
708 	ret = wait_alu_ready(dev, ALU_START, 1000);
709 	if (ret < 0)
710 		dev_dbg(dev->dev, "Failed to write ALU\n");
711 
712 exit:
713 	mutex_unlock(&dev->alu_mutex);
714 
715 	return ret;
716 }
717 
718 static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
719 			    const unsigned char *addr, u16 vid)
720 {
721 	struct ksz_device *dev = ds->priv;
722 	u32 alu_table[4];
723 	u32 data;
724 	int ret = 0;
725 
726 	mutex_lock(&dev->alu_mutex);
727 
728 	/* read any entry with mac & vid */
729 	data = vid << ALU_FID_INDEX_S;
730 	data |= ((addr[0] << 8) | addr[1]);
731 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
732 
733 	data = ((addr[2] << 24) | (addr[3] << 16));
734 	data |= ((addr[4] << 8) | addr[5]);
735 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
736 
737 	/* start read operation */
738 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
739 
740 	/* wait to be finished */
741 	ret = wait_alu_ready(dev, ALU_START, 1000);
742 	if (ret < 0) {
743 		dev_dbg(dev->dev, "Failed to read ALU\n");
744 		goto exit;
745 	}
746 
747 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
748 	if (alu_table[0] & ALU_V_STATIC_VALID) {
749 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
750 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
751 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
752 
753 		/* clear forwarding port */
754 		alu_table[2] &= ~BIT(port);
755 
756 		/* if there is no port to forward, clear table */
757 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
758 			alu_table[0] = 0;
759 			alu_table[1] = 0;
760 			alu_table[2] = 0;
761 			alu_table[3] = 0;
762 		}
763 	} else {
764 		alu_table[0] = 0;
765 		alu_table[1] = 0;
766 		alu_table[2] = 0;
767 		alu_table[3] = 0;
768 	}
769 
770 	write_table(ds, alu_table);
771 
772 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
773 
774 	/* wait to be finished */
775 	ret = wait_alu_ready(dev, ALU_START, 1000);
776 	if (ret < 0)
777 		dev_dbg(dev->dev, "Failed to write ALU\n");
778 
779 exit:
780 	mutex_unlock(&dev->alu_mutex);
781 
782 	return ret;
783 }
784 
785 static void convert_alu(struct alu_struct *alu, u32 *alu_table)
786 {
787 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
788 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
789 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
790 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
791 			ALU_V_PRIO_AGE_CNT_M;
792 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
793 
794 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
795 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
796 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
797 
798 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
799 
800 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
801 	alu->mac[1] = alu_table[2] & 0xFF;
802 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
803 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
804 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
805 	alu->mac[5] = alu_table[3] & 0xFF;
806 }
807 
808 static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
809 			     dsa_fdb_dump_cb_t *cb, void *data)
810 {
811 	struct ksz_device *dev = ds->priv;
812 	int ret = 0;
813 	u32 ksz_data;
814 	u32 alu_table[4];
815 	struct alu_struct alu;
816 	int timeout;
817 
818 	mutex_lock(&dev->alu_mutex);
819 
820 	/* start ALU search */
821 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
822 
823 	do {
824 		timeout = 1000;
825 		do {
826 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
827 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
828 				break;
829 			usleep_range(1, 10);
830 		} while (timeout-- > 0);
831 
832 		if (!timeout) {
833 			dev_dbg(dev->dev, "Failed to search ALU\n");
834 			ret = -ETIMEDOUT;
835 			goto exit;
836 		}
837 
838 		/* read ALU table */
839 		read_table(ds, alu_table);
840 
841 		convert_alu(&alu, alu_table);
842 
843 		if (alu.port_forward & BIT(port)) {
844 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
845 			if (ret)
846 				goto exit;
847 		}
848 	} while (ksz_data & ALU_START);
849 
850 exit:
851 
852 	/* stop ALU search */
853 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
854 
855 	mutex_unlock(&dev->alu_mutex);
856 
857 	return ret;
858 }
859 
860 static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
861 				const struct switchdev_obj_port_mdb *mdb,
862 				struct switchdev_trans *trans)
863 {
864 	/* nothing to do */
865 	return 0;
866 }
867 
868 static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
869 			     const struct switchdev_obj_port_mdb *mdb,
870 			     struct switchdev_trans *trans)
871 {
872 	struct ksz_device *dev = ds->priv;
873 	u32 static_table[4];
874 	u32 data;
875 	int index;
876 	u32 mac_hi, mac_lo;
877 
878 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
879 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
880 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
881 
882 	mutex_lock(&dev->alu_mutex);
883 
884 	for (index = 0; index < dev->num_statics; index++) {
885 		/* find empty slot first */
886 		data = (index << ALU_STAT_INDEX_S) |
887 			ALU_STAT_READ | ALU_STAT_START;
888 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
889 
890 		/* wait to be finished */
891 		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
892 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
893 			goto exit;
894 		}
895 
896 		/* read ALU static table */
897 		read_table(ds, static_table);
898 
899 		if (static_table[0] & ALU_V_STATIC_VALID) {
900 			/* check this has same vid & mac address */
901 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
902 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
903 			    (static_table[3] == mac_lo)) {
904 				/* found matching one */
905 				break;
906 			}
907 		} else {
908 			/* found empty one */
909 			break;
910 		}
911 	}
912 
913 	/* no available entry */
914 	if (index == dev->num_statics)
915 		goto exit;
916 
917 	/* add entry */
918 	static_table[0] = ALU_V_STATIC_VALID;
919 	static_table[1] |= BIT(port);
920 	if (mdb->vid)
921 		static_table[1] |= ALU_V_USE_FID;
922 	static_table[2] = (mdb->vid << ALU_V_FID_S);
923 	static_table[2] |= mac_hi;
924 	static_table[3] = mac_lo;
925 
926 	write_table(ds, static_table);
927 
928 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
929 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
930 
931 	/* wait to be finished */
932 	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
933 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
934 
935 exit:
936 	mutex_unlock(&dev->alu_mutex);
937 }
938 
939 static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
940 			    const struct switchdev_obj_port_mdb *mdb)
941 {
942 	struct ksz_device *dev = ds->priv;
943 	u32 static_table[4];
944 	u32 data;
945 	int index;
946 	int ret = 0;
947 	u32 mac_hi, mac_lo;
948 
949 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
950 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
951 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
952 
953 	mutex_lock(&dev->alu_mutex);
954 
955 	for (index = 0; index < dev->num_statics; index++) {
956 		/* find empty slot first */
957 		data = (index << ALU_STAT_INDEX_S) |
958 			ALU_STAT_READ | ALU_STAT_START;
959 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
960 
961 		/* wait to be finished */
962 		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
963 		if (ret < 0) {
964 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
965 			goto exit;
966 		}
967 
968 		/* read ALU static table */
969 		read_table(ds, static_table);
970 
971 		if (static_table[0] & ALU_V_STATIC_VALID) {
972 			/* check this has same vid & mac address */
973 
974 			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
975 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
976 			    (static_table[3] == mac_lo)) {
977 				/* found matching one */
978 				break;
979 			}
980 		}
981 	}
982 
983 	/* no available entry */
984 	if (index == dev->num_statics) {
985 		ret = -EINVAL;
986 		goto exit;
987 	}
988 
989 	/* clear port */
990 	static_table[1] &= ~BIT(port);
991 
992 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
993 		/* delete entry */
994 		static_table[0] = 0;
995 		static_table[1] = 0;
996 		static_table[2] = 0;
997 		static_table[3] = 0;
998 	}
999 
1000 	write_table(ds, static_table);
1001 
1002 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1003 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1004 
1005 	/* wait to be finished */
1006 	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1007 	if (ret < 0)
1008 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1009 
1010 exit:
1011 	mutex_unlock(&dev->alu_mutex);
1012 
1013 	return ret;
1014 }
1015 
1016 static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1017 			       struct dsa_mall_mirror_tc_entry *mirror,
1018 			       bool ingress)
1019 {
1020 	struct ksz_device *dev = ds->priv;
1021 
1022 	if (ingress)
1023 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1024 	else
1025 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1026 
1027 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1028 
1029 	/* configure mirror port */
1030 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1031 		     PORT_MIRROR_SNIFFER, true);
1032 
1033 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1034 
1035 	return 0;
1036 }
1037 
1038 static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1039 				struct dsa_mall_mirror_tc_entry *mirror)
1040 {
1041 	struct ksz_device *dev = ds->priv;
1042 	u8 data;
1043 
1044 	if (mirror->ingress)
1045 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1046 	else
1047 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1048 
1049 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1050 
1051 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1052 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1053 			     PORT_MIRROR_SNIFFER, false);
1054 }
1055 
1056 static const struct dsa_switch_ops ksz_switch_ops = {
1057 	.get_tag_protocol	= ksz_get_tag_protocol,
1058 	.setup			= ksz_setup,
1059 	.phy_read		= ksz_phy_read16,
1060 	.phy_write		= ksz_phy_write16,
1061 	.port_enable		= ksz_enable_port,
1062 	.port_disable		= ksz_disable_port,
1063 	.get_strings		= ksz_get_strings,
1064 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1065 	.get_sset_count		= ksz_sset_count,
1066 	.port_stp_state_set	= ksz_port_stp_state_set,
1067 	.port_fast_age		= ksz_port_fast_age,
1068 	.port_vlan_filtering	= ksz_port_vlan_filtering,
1069 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1070 	.port_vlan_add		= ksz_port_vlan_add,
1071 	.port_vlan_del		= ksz_port_vlan_del,
1072 	.port_fdb_dump		= ksz_port_fdb_dump,
1073 	.port_fdb_add		= ksz_port_fdb_add,
1074 	.port_fdb_del		= ksz_port_fdb_del,
1075 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1076 	.port_mdb_add           = ksz_port_mdb_add,
1077 	.port_mdb_del           = ksz_port_mdb_del,
1078 	.port_mirror_add	= ksz_port_mirror_add,
1079 	.port_mirror_del	= ksz_port_mirror_del,
1080 };
1081 
1082 struct ksz_chip_data {
1083 	u32 chip_id;
1084 	const char *dev_name;
1085 	int num_vlans;
1086 	int num_alus;
1087 	int num_statics;
1088 	int cpu_ports;
1089 	int port_cnt;
1090 };
1091 
1092 static const struct ksz_chip_data ksz_switch_chips[] = {
1093 	{
1094 		.chip_id = 0x00947700,
1095 		.dev_name = "KSZ9477",
1096 		.num_vlans = 4096,
1097 		.num_alus = 4096,
1098 		.num_statics = 16,
1099 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1100 		.port_cnt = 7,		/* total physical port count */
1101 	},
1102 };
1103 
1104 static int ksz_switch_init(struct ksz_device *dev)
1105 {
1106 	int i;
1107 
1108 	mutex_init(&dev->reg_mutex);
1109 	mutex_init(&dev->stats_mutex);
1110 	mutex_init(&dev->alu_mutex);
1111 	mutex_init(&dev->vlan_mutex);
1112 
1113 	dev->ds->ops = &ksz_switch_ops;
1114 
1115 	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1116 		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1117 
1118 		if (dev->chip_id == chip->chip_id) {
1119 			dev->name = chip->dev_name;
1120 			dev->num_vlans = chip->num_vlans;
1121 			dev->num_alus = chip->num_alus;
1122 			dev->num_statics = chip->num_statics;
1123 			dev->port_cnt = chip->port_cnt;
1124 			dev->cpu_ports = chip->cpu_ports;
1125 
1126 			break;
1127 		}
1128 	}
1129 
1130 	/* no switch found */
1131 	if (!dev->port_cnt)
1132 		return -ENODEV;
1133 
1134 	return 0;
1135 }
1136 
1137 struct ksz_device *ksz_switch_alloc(struct device *base,
1138 				    const struct ksz_io_ops *ops,
1139 				    void *priv)
1140 {
1141 	struct dsa_switch *ds;
1142 	struct ksz_device *swdev;
1143 
1144 	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1145 	if (!ds)
1146 		return NULL;
1147 
1148 	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1149 	if (!swdev)
1150 		return NULL;
1151 
1152 	ds->priv = swdev;
1153 	swdev->dev = base;
1154 
1155 	swdev->ds = ds;
1156 	swdev->priv = priv;
1157 	swdev->ops = ops;
1158 
1159 	return swdev;
1160 }
1161 EXPORT_SYMBOL(ksz_switch_alloc);
1162 
1163 int ksz_switch_detect(struct ksz_device *dev)
1164 {
1165 	u8 data8;
1166 	u32 id32;
1167 	int ret;
1168 
1169 	/* turn off SPI DO Edge select */
1170 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1171 	if (ret)
1172 		return ret;
1173 
1174 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1175 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1176 	if (ret)
1177 		return ret;
1178 
1179 	/* read chip id */
1180 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1181 	if (ret)
1182 		return ret;
1183 
1184 	dev->chip_id = id32;
1185 
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL(ksz_switch_detect);
1189 
1190 int ksz_switch_register(struct ksz_device *dev)
1191 {
1192 	int ret;
1193 
1194 	if (dev->pdata)
1195 		dev->chip_id = dev->pdata->chip_id;
1196 
1197 	if (ksz_switch_detect(dev))
1198 		return -EINVAL;
1199 
1200 	ret = ksz_switch_init(dev);
1201 	if (ret)
1202 		return ret;
1203 
1204 	return dsa_register_switch(dev->ds);
1205 }
1206 EXPORT_SYMBOL(ksz_switch_register);
1207 
1208 void ksz_switch_remove(struct ksz_device *dev)
1209 {
1210 	dsa_unregister_switch(dev->ds);
1211 }
1212 EXPORT_SYMBOL(ksz_switch_remove);
1213 
1214 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1215 MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1216 MODULE_LICENSE("GPL");
1217