1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19 
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT			BIT(0)
22 #define NEW_XMII			BIT(1)
23 #define IS_9893				BIT(2)
24 
25 static const struct {
26 	int index;
27 	char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 	{ 0x00, "rx_hi" },
30 	{ 0x01, "rx_undersize" },
31 	{ 0x02, "rx_fragments" },
32 	{ 0x03, "rx_oversize" },
33 	{ 0x04, "rx_jabbers" },
34 	{ 0x05, "rx_symbol_err" },
35 	{ 0x06, "rx_crc_err" },
36 	{ 0x07, "rx_align_err" },
37 	{ 0x08, "rx_mac_ctrl" },
38 	{ 0x09, "rx_pause" },
39 	{ 0x0A, "rx_bcast" },
40 	{ 0x0B, "rx_mcast" },
41 	{ 0x0C, "rx_ucast" },
42 	{ 0x0D, "rx_64_or_less" },
43 	{ 0x0E, "rx_65_127" },
44 	{ 0x0F, "rx_128_255" },
45 	{ 0x10, "rx_256_511" },
46 	{ 0x11, "rx_512_1023" },
47 	{ 0x12, "rx_1024_1522" },
48 	{ 0x13, "rx_1523_2000" },
49 	{ 0x14, "rx_2001" },
50 	{ 0x15, "tx_hi" },
51 	{ 0x16, "tx_late_col" },
52 	{ 0x17, "tx_pause" },
53 	{ 0x18, "tx_bcast" },
54 	{ 0x19, "tx_mcast" },
55 	{ 0x1A, "tx_ucast" },
56 	{ 0x1B, "tx_deferred" },
57 	{ 0x1C, "tx_total_col" },
58 	{ 0x1D, "tx_exc_col" },
59 	{ 0x1E, "tx_single_col" },
60 	{ 0x1F, "tx_mult_col" },
61 	{ 0x80, "rx_total" },
62 	{ 0x81, "tx_total" },
63 	{ 0x82, "rx_discards" },
64 	{ 0x83, "tx_discards" },
65 };
66 
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71 
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 			 bool set)
74 {
75 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 			   bits, set ? bits : 0);
77 }
78 
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83 
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 			       u32 bits, bool set)
86 {
87 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 			   bits, set ? bits : 0);
89 }
90 
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93 	unsigned int val;
94 
95 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 					val, !(val & VLAN_START), 10, 1000);
97 }
98 
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 				  u32 *vlan_table)
101 {
102 	int ret;
103 
104 	mutex_lock(&dev->vlan_mutex);
105 
106 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108 
109 	/* wait to be cleared */
110 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 	if (ret) {
112 		dev_dbg(dev->dev, "Failed to read vlan table\n");
113 		goto exit;
114 	}
115 
116 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119 
120 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121 
122 exit:
123 	mutex_unlock(&dev->vlan_mutex);
124 
125 	return ret;
126 }
127 
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 				  u32 *vlan_table)
130 {
131 	int ret;
132 
133 	mutex_lock(&dev->vlan_mutex);
134 
135 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138 
139 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141 
142 	/* wait to be cleared */
143 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 	if (ret) {
145 		dev_dbg(dev->dev, "Failed to write vlan table\n");
146 		goto exit;
147 	}
148 
149 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150 
151 	/* update vlan cache table */
152 	dev->vlan_cache[vid].table[0] = vlan_table[0];
153 	dev->vlan_cache[vid].table[1] = vlan_table[1];
154 	dev->vlan_cache[vid].table[2] = vlan_table[2];
155 
156 exit:
157 	mutex_unlock(&dev->vlan_mutex);
158 
159 	return ret;
160 }
161 
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169 
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177 
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180 	unsigned int val;
181 
182 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 					val, !(val & ALU_START), 10, 1000);
184 }
185 
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188 	unsigned int val;
189 
190 	return regmap_read_poll_timeout(dev->regmap[2],
191 					REG_SW_ALU_STAT_CTRL__4,
192 					val, !(val & ALU_STAT_START),
193 					10, 1000);
194 }
195 
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198 	u8 data8;
199 	u32 data32;
200 
201 	/* reset switch */
202 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203 
204 	/* turn off SPI DO Edge select */
205 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 			   SPI_AUTO_EDGE_DETECTION, 0);
207 
208 	/* default configuration */
209 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213 
214 	/* disable interrupts */
215 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218 
219 	/* set broadcast storm protection 10% rate */
220 	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 			   BROADCAST_STORM_RATE,
222 			   (BROADCAST_STORM_VALUE *
223 			   BROADCAST_STORM_PROT_RATE) / 100);
224 
225 	if (dev->synclko_125)
226 		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228 
229 	return 0;
230 }
231 
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 			      u64 *cnt)
234 {
235 	struct ksz_port *p = &dev->ports[port];
236 	unsigned int val;
237 	u32 data;
238 	int ret;
239 
240 	/* retain the flush/freeze bit */
241 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 	data |= MIB_COUNTER_READ;
243 	data |= (addr << MIB_COUNTER_INDEX_S);
244 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245 
246 	ret = regmap_read_poll_timeout(dev->regmap[2],
247 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 			val, !(val & MIB_COUNTER_READ), 10, 1000);
249 	/* failed to read MIB. get out of loop */
250 	if (ret) {
251 		dev_dbg(dev->dev, "Failed to get MIB\n");
252 		return;
253 	}
254 
255 	/* count resets upon read */
256 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 	*cnt += data;
258 }
259 
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 			      u64 *dropped, u64 *cnt)
262 {
263 	addr = ksz9477_mib_names[addr].index;
264 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266 
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 	struct ksz_port *p = &dev->ports[port];
271 
272 	/* enable/disable the port for flush/freeze function */
273 	mutex_lock(&p->mib.cnt_mutex);
274 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275 
276 	/* used by MIB counter reading code to know freeze is enabled */
277 	p->freeze = freeze;
278 	mutex_unlock(&p->mib.cnt_mutex);
279 }
280 
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283 	struct ksz_port_mib *mib = &dev->ports[port].mib;
284 
285 	/* flush all enabled port MIB counters */
286 	mutex_lock(&mib->cnt_mutex);
287 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 		     MIB_COUNTER_FLUSH_FREEZE);
289 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 	mutex_unlock(&mib->cnt_mutex);
292 
293 	mib->cnt_ptr = 0;
294 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296 
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 						      int port,
299 						      enum dsa_tag_protocol mp)
300 {
301 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 	struct ksz_device *dev = ds->priv;
303 
304 	if (dev->features & IS_9893)
305 		proto = DSA_TAG_PROTO_KSZ9893;
306 	return proto;
307 }
308 
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311 	struct ksz_device *dev = ds->priv;
312 	u16 val = 0xffff;
313 
314 	/* No real PHY after this. Simulate the PHY.
315 	 * A fixed PHY can be setup in the device tree, but this function is
316 	 * still called for that port during initialization.
317 	 * For RGMII PHY there is no way to access it so the fixed PHY should
318 	 * be used.  For SGMII PHY the supporting code will be added later.
319 	 */
320 	if (addr >= dev->phy_port_cnt) {
321 		struct ksz_port *p = &dev->ports[addr];
322 
323 		switch (reg) {
324 		case MII_BMCR:
325 			val = 0x1140;
326 			break;
327 		case MII_BMSR:
328 			val = 0x796d;
329 			break;
330 		case MII_PHYSID1:
331 			val = 0x0022;
332 			break;
333 		case MII_PHYSID2:
334 			val = 0x1631;
335 			break;
336 		case MII_ADVERTISE:
337 			val = 0x05e1;
338 			break;
339 		case MII_LPA:
340 			val = 0xc5e1;
341 			break;
342 		case MII_CTRL1000:
343 			val = 0x0700;
344 			break;
345 		case MII_STAT1000:
346 			if (p->phydev.speed == SPEED_1000)
347 				val = 0x3800;
348 			else
349 				val = 0;
350 			break;
351 		}
352 	} else {
353 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354 	}
355 
356 	return val;
357 }
358 
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 			       u16 val)
361 {
362 	struct ksz_device *dev = ds->priv;
363 
364 	/* No real PHY after this. */
365 	if (addr >= dev->phy_port_cnt)
366 		return 0;
367 
368 	/* No gigabit support.  Do not write to this register. */
369 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 		return 0;
371 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372 
373 	return 0;
374 }
375 
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 				u32 stringset, uint8_t *buf)
378 {
379 	int i;
380 
381 	if (stringset != ETH_SS_STATS)
382 		return;
383 
384 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 		       ETH_GSTRING_LEN);
387 	}
388 }
389 
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 				    u8 member)
392 {
393 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 	dev->ports[port].member = member;
395 }
396 
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 				       u8 state)
399 {
400 	struct ksz_device *dev = ds->priv;
401 	struct ksz_port *p = &dev->ports[port];
402 	u8 data;
403 	int member = -1;
404 	int forward = dev->member;
405 
406 	ksz_pread8(dev, port, P_STP_CTRL, &data);
407 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408 
409 	switch (state) {
410 	case BR_STATE_DISABLED:
411 		data |= PORT_LEARN_DISABLE;
412 		if (port != dev->cpu_port)
413 			member = 0;
414 		break;
415 	case BR_STATE_LISTENING:
416 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 		if (port != dev->cpu_port &&
418 		    p->stp_state == BR_STATE_DISABLED)
419 			member = dev->host_mask | p->vid_member;
420 		break;
421 	case BR_STATE_LEARNING:
422 		data |= PORT_RX_ENABLE;
423 		break;
424 	case BR_STATE_FORWARDING:
425 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426 
427 		/* This function is also used internally. */
428 		if (port == dev->cpu_port)
429 			break;
430 
431 		member = dev->host_mask | p->vid_member;
432 		mutex_lock(&dev->dev_mutex);
433 
434 		/* Port is a member of a bridge. */
435 		if (dev->br_member & (1 << port)) {
436 			dev->member |= (1 << port);
437 			member = dev->member;
438 		}
439 		mutex_unlock(&dev->dev_mutex);
440 		break;
441 	case BR_STATE_BLOCKING:
442 		data |= PORT_LEARN_DISABLE;
443 		if (port != dev->cpu_port &&
444 		    p->stp_state == BR_STATE_DISABLED)
445 			member = dev->host_mask | p->vid_member;
446 		break;
447 	default:
448 		dev_err(ds->dev, "invalid STP state: %d\n", state);
449 		return;
450 	}
451 
452 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 	p->stp_state = state;
454 	mutex_lock(&dev->dev_mutex);
455 	/* Port membership may share register with STP state. */
456 	if (member >= 0 && member != p->member)
457 		ksz9477_cfg_port_member(dev, port, (u8)member);
458 
459 	/* Check if forwarding needs to be updated. */
460 	if (state != BR_STATE_FORWARDING) {
461 		if (dev->br_member & (1 << port))
462 			dev->member &= ~(1 << port);
463 	}
464 
465 	/* When topology has changed the function ksz_update_port_member
466 	 * should be called to modify port forwarding behavior.
467 	 */
468 	if (forward != dev->member)
469 		ksz_update_port_member(dev, port);
470 	mutex_unlock(&dev->dev_mutex);
471 }
472 
473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475 	u8 data;
476 
477 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
478 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
479 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480 
481 	if (port < dev->mib_port_cnt) {
482 		/* flush individual port */
483 		ksz_pread8(dev, port, P_STP_CTRL, &data);
484 		if (!(data & PORT_LEARN_DISABLE))
485 			ksz_pwrite8(dev, port, P_STP_CTRL,
486 				    data | PORT_LEARN_DISABLE);
487 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 	} else {
490 		/* flush all */
491 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 	}
493 }
494 
495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 				       bool flag)
497 {
498 	struct ksz_device *dev = ds->priv;
499 
500 	if (flag) {
501 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502 			     PORT_VLAN_LOOKUP_VID_0, true);
503 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
504 	} else {
505 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
506 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
507 			     PORT_VLAN_LOOKUP_VID_0, false);
508 	}
509 
510 	return 0;
511 }
512 
513 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
514 				  const struct switchdev_obj_port_vlan *vlan)
515 {
516 	struct ksz_device *dev = ds->priv;
517 	u32 vlan_table[3];
518 	u16 vid;
519 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
520 
521 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
522 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
523 			dev_dbg(dev->dev, "Failed to get vlan table\n");
524 			return;
525 		}
526 
527 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
528 		if (untagged)
529 			vlan_table[1] |= BIT(port);
530 		else
531 			vlan_table[1] &= ~BIT(port);
532 		vlan_table[1] &= ~(BIT(dev->cpu_port));
533 
534 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
535 
536 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
537 			dev_dbg(dev->dev, "Failed to set vlan table\n");
538 			return;
539 		}
540 
541 		/* change PVID */
542 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
543 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
544 	}
545 }
546 
547 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
548 				 const struct switchdev_obj_port_vlan *vlan)
549 {
550 	struct ksz_device *dev = ds->priv;
551 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
552 	u32 vlan_table[3];
553 	u16 vid;
554 	u16 pvid;
555 
556 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
557 	pvid = pvid & 0xFFF;
558 
559 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
560 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
561 			dev_dbg(dev->dev, "Failed to get vlan table\n");
562 			return -ETIMEDOUT;
563 		}
564 
565 		vlan_table[2] &= ~BIT(port);
566 
567 		if (pvid == vid)
568 			pvid = 1;
569 
570 		if (untagged)
571 			vlan_table[1] &= ~BIT(port);
572 
573 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
574 			dev_dbg(dev->dev, "Failed to set vlan table\n");
575 			return -ETIMEDOUT;
576 		}
577 	}
578 
579 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
580 
581 	return 0;
582 }
583 
584 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
585 				const unsigned char *addr, u16 vid)
586 {
587 	struct ksz_device *dev = ds->priv;
588 	u32 alu_table[4];
589 	u32 data;
590 	int ret = 0;
591 
592 	mutex_lock(&dev->alu_mutex);
593 
594 	/* find any entry with mac & vid */
595 	data = vid << ALU_FID_INDEX_S;
596 	data |= ((addr[0] << 8) | addr[1]);
597 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
598 
599 	data = ((addr[2] << 24) | (addr[3] << 16));
600 	data |= ((addr[4] << 8) | addr[5]);
601 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
602 
603 	/* start read operation */
604 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
605 
606 	/* wait to be finished */
607 	ret = ksz9477_wait_alu_ready(dev);
608 	if (ret) {
609 		dev_dbg(dev->dev, "Failed to read ALU\n");
610 		goto exit;
611 	}
612 
613 	/* read ALU entry */
614 	ksz9477_read_table(dev, alu_table);
615 
616 	/* update ALU entry */
617 	alu_table[0] = ALU_V_STATIC_VALID;
618 	alu_table[1] |= BIT(port);
619 	if (vid)
620 		alu_table[1] |= ALU_V_USE_FID;
621 	alu_table[2] = (vid << ALU_V_FID_S);
622 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
623 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
624 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
625 
626 	ksz9477_write_table(dev, alu_table);
627 
628 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
629 
630 	/* wait to be finished */
631 	ret = ksz9477_wait_alu_ready(dev);
632 	if (ret)
633 		dev_dbg(dev->dev, "Failed to write ALU\n");
634 
635 exit:
636 	mutex_unlock(&dev->alu_mutex);
637 
638 	return ret;
639 }
640 
641 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
642 				const unsigned char *addr, u16 vid)
643 {
644 	struct ksz_device *dev = ds->priv;
645 	u32 alu_table[4];
646 	u32 data;
647 	int ret = 0;
648 
649 	mutex_lock(&dev->alu_mutex);
650 
651 	/* read any entry with mac & vid */
652 	data = vid << ALU_FID_INDEX_S;
653 	data |= ((addr[0] << 8) | addr[1]);
654 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
655 
656 	data = ((addr[2] << 24) | (addr[3] << 16));
657 	data |= ((addr[4] << 8) | addr[5]);
658 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
659 
660 	/* start read operation */
661 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
662 
663 	/* wait to be finished */
664 	ret = ksz9477_wait_alu_ready(dev);
665 	if (ret) {
666 		dev_dbg(dev->dev, "Failed to read ALU\n");
667 		goto exit;
668 	}
669 
670 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
671 	if (alu_table[0] & ALU_V_STATIC_VALID) {
672 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
673 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
674 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
675 
676 		/* clear forwarding port */
677 		alu_table[2] &= ~BIT(port);
678 
679 		/* if there is no port to forward, clear table */
680 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
681 			alu_table[0] = 0;
682 			alu_table[1] = 0;
683 			alu_table[2] = 0;
684 			alu_table[3] = 0;
685 		}
686 	} else {
687 		alu_table[0] = 0;
688 		alu_table[1] = 0;
689 		alu_table[2] = 0;
690 		alu_table[3] = 0;
691 	}
692 
693 	ksz9477_write_table(dev, alu_table);
694 
695 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
696 
697 	/* wait to be finished */
698 	ret = ksz9477_wait_alu_ready(dev);
699 	if (ret)
700 		dev_dbg(dev->dev, "Failed to write ALU\n");
701 
702 exit:
703 	mutex_unlock(&dev->alu_mutex);
704 
705 	return ret;
706 }
707 
708 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
709 {
710 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
711 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
712 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
713 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
714 			ALU_V_PRIO_AGE_CNT_M;
715 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
716 
717 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
718 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
719 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
720 
721 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
722 
723 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
724 	alu->mac[1] = alu_table[2] & 0xFF;
725 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
726 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
727 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
728 	alu->mac[5] = alu_table[3] & 0xFF;
729 }
730 
731 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
732 				 dsa_fdb_dump_cb_t *cb, void *data)
733 {
734 	struct ksz_device *dev = ds->priv;
735 	int ret = 0;
736 	u32 ksz_data;
737 	u32 alu_table[4];
738 	struct alu_struct alu;
739 	int timeout;
740 
741 	mutex_lock(&dev->alu_mutex);
742 
743 	/* start ALU search */
744 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
745 
746 	do {
747 		timeout = 1000;
748 		do {
749 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
750 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
751 				break;
752 			usleep_range(1, 10);
753 		} while (timeout-- > 0);
754 
755 		if (!timeout) {
756 			dev_dbg(dev->dev, "Failed to search ALU\n");
757 			ret = -ETIMEDOUT;
758 			goto exit;
759 		}
760 
761 		/* read ALU table */
762 		ksz9477_read_table(dev, alu_table);
763 
764 		ksz9477_convert_alu(&alu, alu_table);
765 
766 		if (alu.port_forward & BIT(port)) {
767 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
768 			if (ret)
769 				goto exit;
770 		}
771 	} while (ksz_data & ALU_START);
772 
773 exit:
774 
775 	/* stop ALU search */
776 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
777 
778 	mutex_unlock(&dev->alu_mutex);
779 
780 	return ret;
781 }
782 
783 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
784 				 const struct switchdev_obj_port_mdb *mdb)
785 {
786 	struct ksz_device *dev = ds->priv;
787 	u32 static_table[4];
788 	u32 data;
789 	int index;
790 	u32 mac_hi, mac_lo;
791 
792 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
793 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
794 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
795 
796 	mutex_lock(&dev->alu_mutex);
797 
798 	for (index = 0; index < dev->num_statics; index++) {
799 		/* find empty slot first */
800 		data = (index << ALU_STAT_INDEX_S) |
801 			ALU_STAT_READ | ALU_STAT_START;
802 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
803 
804 		/* wait to be finished */
805 		if (ksz9477_wait_alu_sta_ready(dev)) {
806 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
807 			goto exit;
808 		}
809 
810 		/* read ALU static table */
811 		ksz9477_read_table(dev, static_table);
812 
813 		if (static_table[0] & ALU_V_STATIC_VALID) {
814 			/* check this has same vid & mac address */
815 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
816 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
817 			    static_table[3] == mac_lo) {
818 				/* found matching one */
819 				break;
820 			}
821 		} else {
822 			/* found empty one */
823 			break;
824 		}
825 	}
826 
827 	/* no available entry */
828 	if (index == dev->num_statics)
829 		goto exit;
830 
831 	/* add entry */
832 	static_table[0] = ALU_V_STATIC_VALID;
833 	static_table[1] |= BIT(port);
834 	if (mdb->vid)
835 		static_table[1] |= ALU_V_USE_FID;
836 	static_table[2] = (mdb->vid << ALU_V_FID_S);
837 	static_table[2] |= mac_hi;
838 	static_table[3] = mac_lo;
839 
840 	ksz9477_write_table(dev, static_table);
841 
842 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
843 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
844 
845 	/* wait to be finished */
846 	if (ksz9477_wait_alu_sta_ready(dev))
847 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
848 
849 exit:
850 	mutex_unlock(&dev->alu_mutex);
851 }
852 
853 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
854 				const struct switchdev_obj_port_mdb *mdb)
855 {
856 	struct ksz_device *dev = ds->priv;
857 	u32 static_table[4];
858 	u32 data;
859 	int index;
860 	int ret = 0;
861 	u32 mac_hi, mac_lo;
862 
863 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
864 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
865 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
866 
867 	mutex_lock(&dev->alu_mutex);
868 
869 	for (index = 0; index < dev->num_statics; index++) {
870 		/* find empty slot first */
871 		data = (index << ALU_STAT_INDEX_S) |
872 			ALU_STAT_READ | ALU_STAT_START;
873 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
874 
875 		/* wait to be finished */
876 		ret = ksz9477_wait_alu_sta_ready(dev);
877 		if (ret) {
878 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
879 			goto exit;
880 		}
881 
882 		/* read ALU static table */
883 		ksz9477_read_table(dev, static_table);
884 
885 		if (static_table[0] & ALU_V_STATIC_VALID) {
886 			/* check this has same vid & mac address */
887 
888 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
889 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
890 			    static_table[3] == mac_lo) {
891 				/* found matching one */
892 				break;
893 			}
894 		}
895 	}
896 
897 	/* no available entry */
898 	if (index == dev->num_statics)
899 		goto exit;
900 
901 	/* clear port */
902 	static_table[1] &= ~BIT(port);
903 
904 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
905 		/* delete entry */
906 		static_table[0] = 0;
907 		static_table[1] = 0;
908 		static_table[2] = 0;
909 		static_table[3] = 0;
910 	}
911 
912 	ksz9477_write_table(dev, static_table);
913 
914 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
915 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
916 
917 	/* wait to be finished */
918 	ret = ksz9477_wait_alu_sta_ready(dev);
919 	if (ret)
920 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921 
922 exit:
923 	mutex_unlock(&dev->alu_mutex);
924 
925 	return ret;
926 }
927 
928 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
929 				   struct dsa_mall_mirror_tc_entry *mirror,
930 				   bool ingress)
931 {
932 	struct ksz_device *dev = ds->priv;
933 
934 	if (ingress)
935 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
936 	else
937 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
938 
939 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
940 
941 	/* configure mirror port */
942 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
943 		     PORT_MIRROR_SNIFFER, true);
944 
945 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
946 
947 	return 0;
948 }
949 
950 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
951 				    struct dsa_mall_mirror_tc_entry *mirror)
952 {
953 	struct ksz_device *dev = ds->priv;
954 	u8 data;
955 
956 	if (mirror->ingress)
957 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
958 	else
959 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
960 
961 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
962 
963 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
964 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
965 			     PORT_MIRROR_SNIFFER, false);
966 }
967 
968 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
969 {
970 	bool gbit;
971 
972 	if (dev->features & NEW_XMII)
973 		gbit = !(data & PORT_MII_NOT_1GBIT);
974 	else
975 		gbit = !!(data & PORT_MII_1000MBIT_S1);
976 	return gbit;
977 }
978 
979 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
980 {
981 	if (dev->features & NEW_XMII) {
982 		if (gbit)
983 			*data &= ~PORT_MII_NOT_1GBIT;
984 		else
985 			*data |= PORT_MII_NOT_1GBIT;
986 	} else {
987 		if (gbit)
988 			*data |= PORT_MII_1000MBIT_S1;
989 		else
990 			*data &= ~PORT_MII_1000MBIT_S1;
991 	}
992 }
993 
994 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
995 {
996 	int mode;
997 
998 	if (dev->features & NEW_XMII) {
999 		switch (data & PORT_MII_SEL_M) {
1000 		case PORT_MII_SEL:
1001 			mode = 0;
1002 			break;
1003 		case PORT_RMII_SEL:
1004 			mode = 1;
1005 			break;
1006 		case PORT_GMII_SEL:
1007 			mode = 2;
1008 			break;
1009 		default:
1010 			mode = 3;
1011 		}
1012 	} else {
1013 		switch (data & PORT_MII_SEL_M) {
1014 		case PORT_MII_SEL_S1:
1015 			mode = 0;
1016 			break;
1017 		case PORT_RMII_SEL_S1:
1018 			mode = 1;
1019 			break;
1020 		case PORT_GMII_SEL_S1:
1021 			mode = 2;
1022 			break;
1023 		default:
1024 			mode = 3;
1025 		}
1026 	}
1027 	return mode;
1028 }
1029 
1030 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1031 {
1032 	u8 xmii;
1033 
1034 	if (dev->features & NEW_XMII) {
1035 		switch (mode) {
1036 		case 0:
1037 			xmii = PORT_MII_SEL;
1038 			break;
1039 		case 1:
1040 			xmii = PORT_RMII_SEL;
1041 			break;
1042 		case 2:
1043 			xmii = PORT_GMII_SEL;
1044 			break;
1045 		default:
1046 			xmii = PORT_RGMII_SEL;
1047 			break;
1048 		}
1049 	} else {
1050 		switch (mode) {
1051 		case 0:
1052 			xmii = PORT_MII_SEL_S1;
1053 			break;
1054 		case 1:
1055 			xmii = PORT_RMII_SEL_S1;
1056 			break;
1057 		case 2:
1058 			xmii = PORT_GMII_SEL_S1;
1059 			break;
1060 		default:
1061 			xmii = PORT_RGMII_SEL_S1;
1062 			break;
1063 		}
1064 	}
1065 	*data &= ~PORT_MII_SEL_M;
1066 	*data |= xmii;
1067 }
1068 
1069 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1070 {
1071 	phy_interface_t interface;
1072 	bool gbit;
1073 	int mode;
1074 	u8 data8;
1075 
1076 	if (port < dev->phy_port_cnt)
1077 		return PHY_INTERFACE_MODE_NA;
1078 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1079 	gbit = ksz9477_get_gbit(dev, data8);
1080 	mode = ksz9477_get_xmii(dev, data8);
1081 	switch (mode) {
1082 	case 2:
1083 		interface = PHY_INTERFACE_MODE_GMII;
1084 		if (gbit)
1085 			break;
1086 		fallthrough;
1087 	case 0:
1088 		interface = PHY_INTERFACE_MODE_MII;
1089 		break;
1090 	case 1:
1091 		interface = PHY_INTERFACE_MODE_RMII;
1092 		break;
1093 	default:
1094 		interface = PHY_INTERFACE_MODE_RGMII;
1095 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1096 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1097 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1098 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1099 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1100 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1101 		}
1102 		break;
1103 	}
1104 	return interface;
1105 }
1106 
1107 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1108 				   u8 dev_addr, u16 reg_addr, u16 val)
1109 {
1110 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1111 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1112 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1113 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1114 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1115 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1116 }
1117 
1118 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1119 {
1120 	/* Apply PHY settings to address errata listed in
1121 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1122 	 * Silicon Errata and Data Sheet Clarification documents:
1123 	 *
1124 	 * Register settings are needed to improve PHY receive performance
1125 	 */
1126 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1127 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1128 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1129 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1130 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1131 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1132 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1133 
1134 	/* Transmit waveform amplitude can be improved
1135 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1136 	 */
1137 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1138 
1139 	/* Energy Efficient Ethernet (EEE) feature select must
1140 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1141 	 */
1142 	if (dev->features & GBIT_SUPPORT)
1143 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1144 
1145 	/* Register settings are required to meet data sheet
1146 	 * supply current specifications
1147 	 */
1148 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1149 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1150 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1151 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1152 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1153 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1154 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1155 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1156 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1157 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1158 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1159 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1160 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1161 }
1162 
1163 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1164 {
1165 	u8 data8;
1166 	u8 member;
1167 	u16 data16;
1168 	struct ksz_port *p = &dev->ports[port];
1169 
1170 	/* enable tag tail for host port */
1171 	if (cpu_port)
1172 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1173 			     true);
1174 
1175 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1176 
1177 	/* set back pressure */
1178 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1179 
1180 	/* enable broadcast storm limit */
1181 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1182 
1183 	/* disable DiffServ priority */
1184 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1185 
1186 	/* replace priority */
1187 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1188 		     false);
1189 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1190 			   MTI_PVID_REPLACE, false);
1191 
1192 	/* enable 802.1p priority */
1193 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1194 
1195 	if (port < dev->phy_port_cnt) {
1196 		/* do not force flow control */
1197 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1198 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1199 			     false);
1200 
1201 		if (dev->phy_errata_9477)
1202 			ksz9477_phy_errata_setup(dev, port);
1203 	} else {
1204 		/* force flow control */
1205 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1206 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1207 			     true);
1208 
1209 		/* configure MAC to 1G & RGMII mode */
1210 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1211 		switch (dev->interface) {
1212 		case PHY_INTERFACE_MODE_MII:
1213 			ksz9477_set_xmii(dev, 0, &data8);
1214 			ksz9477_set_gbit(dev, false, &data8);
1215 			p->phydev.speed = SPEED_100;
1216 			break;
1217 		case PHY_INTERFACE_MODE_RMII:
1218 			ksz9477_set_xmii(dev, 1, &data8);
1219 			ksz9477_set_gbit(dev, false, &data8);
1220 			p->phydev.speed = SPEED_100;
1221 			break;
1222 		case PHY_INTERFACE_MODE_GMII:
1223 			ksz9477_set_xmii(dev, 2, &data8);
1224 			ksz9477_set_gbit(dev, true, &data8);
1225 			p->phydev.speed = SPEED_1000;
1226 			break;
1227 		default:
1228 			ksz9477_set_xmii(dev, 3, &data8);
1229 			ksz9477_set_gbit(dev, true, &data8);
1230 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1231 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1232 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1233 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1234 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1235 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1236 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1237 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1238 			p->phydev.speed = SPEED_1000;
1239 			break;
1240 		}
1241 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1242 		p->phydev.duplex = 1;
1243 	}
1244 	mutex_lock(&dev->dev_mutex);
1245 	if (cpu_port)
1246 		member = dev->port_mask;
1247 	else
1248 		member = dev->host_mask | p->vid_member;
1249 	mutex_unlock(&dev->dev_mutex);
1250 	ksz9477_cfg_port_member(dev, port, member);
1251 
1252 	/* clear pending interrupts */
1253 	if (port < dev->phy_port_cnt)
1254 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1255 }
1256 
1257 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1258 {
1259 	struct ksz_device *dev = ds->priv;
1260 	struct ksz_port *p;
1261 	int i;
1262 
1263 	ds->num_ports = dev->port_cnt;
1264 
1265 	for (i = 0; i < dev->port_cnt; i++) {
1266 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1267 			phy_interface_t interface;
1268 
1269 			dev->cpu_port = i;
1270 			dev->host_mask = (1 << dev->cpu_port);
1271 			dev->port_mask |= dev->host_mask;
1272 
1273 			/* Read from XMII register to determine host port
1274 			 * interface.  If set specifically in device tree
1275 			 * note the difference to help debugging.
1276 			 */
1277 			interface = ksz9477_get_interface(dev, i);
1278 			if (!dev->interface)
1279 				dev->interface = interface;
1280 			if (interface && interface != dev->interface)
1281 				dev_info(dev->dev,
1282 					 "use %s instead of %s\n",
1283 					  phy_modes(dev->interface),
1284 					  phy_modes(interface));
1285 
1286 			/* enable cpu port */
1287 			ksz9477_port_setup(dev, i, true);
1288 			p = &dev->ports[dev->cpu_port];
1289 			p->vid_member = dev->port_mask;
1290 			p->on = 1;
1291 		}
1292 	}
1293 
1294 	dev->member = dev->host_mask;
1295 
1296 	for (i = 0; i < dev->mib_port_cnt; i++) {
1297 		if (i == dev->cpu_port)
1298 			continue;
1299 		p = &dev->ports[i];
1300 
1301 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1302 		 * be called.
1303 		 */
1304 		p->vid_member = (1 << i);
1305 		p->member = dev->port_mask;
1306 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1307 		p->on = 1;
1308 		if (i < dev->phy_port_cnt)
1309 			p->phy = 1;
1310 		if (dev->chip_id == 0x00947700 && i == 6) {
1311 			p->sgmii = 1;
1312 
1313 			/* SGMII PHY detection code is not implemented yet. */
1314 			p->phy = 0;
1315 		}
1316 	}
1317 }
1318 
1319 static int ksz9477_setup(struct dsa_switch *ds)
1320 {
1321 	struct ksz_device *dev = ds->priv;
1322 	int ret = 0;
1323 
1324 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1325 				       dev->num_vlans, GFP_KERNEL);
1326 	if (!dev->vlan_cache)
1327 		return -ENOMEM;
1328 
1329 	ret = ksz9477_reset_switch(dev);
1330 	if (ret) {
1331 		dev_err(ds->dev, "failed to reset switch\n");
1332 		return ret;
1333 	}
1334 
1335 	/* Required for port partitioning. */
1336 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1337 		      true);
1338 
1339 	/* Do not work correctly with tail tagging. */
1340 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1341 
1342 	/* accept packet up to 2000bytes */
1343 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1344 
1345 	ksz9477_config_cpu_port(ds);
1346 
1347 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1348 
1349 	/* queue based egress rate limit */
1350 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1351 
1352 	/* enable global MIB counter freeze function */
1353 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1354 
1355 	/* start switch */
1356 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1357 
1358 	ksz_init_mib_timer(dev);
1359 
1360 	return 0;
1361 }
1362 
1363 static const struct dsa_switch_ops ksz9477_switch_ops = {
1364 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1365 	.setup			= ksz9477_setup,
1366 	.phy_read		= ksz9477_phy_read16,
1367 	.phy_write		= ksz9477_phy_write16,
1368 	.phylink_mac_link_down	= ksz_mac_link_down,
1369 	.port_enable		= ksz_enable_port,
1370 	.get_strings		= ksz9477_get_strings,
1371 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1372 	.get_sset_count		= ksz_sset_count,
1373 	.port_bridge_join	= ksz_port_bridge_join,
1374 	.port_bridge_leave	= ksz_port_bridge_leave,
1375 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1376 	.port_fast_age		= ksz_port_fast_age,
1377 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1378 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1379 	.port_vlan_add		= ksz9477_port_vlan_add,
1380 	.port_vlan_del		= ksz9477_port_vlan_del,
1381 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1382 	.port_fdb_add		= ksz9477_port_fdb_add,
1383 	.port_fdb_del		= ksz9477_port_fdb_del,
1384 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1385 	.port_mdb_add           = ksz9477_port_mdb_add,
1386 	.port_mdb_del           = ksz9477_port_mdb_del,
1387 	.port_mirror_add	= ksz9477_port_mirror_add,
1388 	.port_mirror_del	= ksz9477_port_mirror_del,
1389 };
1390 
1391 static u32 ksz9477_get_port_addr(int port, int offset)
1392 {
1393 	return PORT_CTRL_ADDR(port, offset);
1394 }
1395 
1396 static int ksz9477_switch_detect(struct ksz_device *dev)
1397 {
1398 	u8 data8;
1399 	u8 id_hi;
1400 	u8 id_lo;
1401 	u32 id32;
1402 	int ret;
1403 
1404 	/* turn off SPI DO Edge select */
1405 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1406 	if (ret)
1407 		return ret;
1408 
1409 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1410 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1411 	if (ret)
1412 		return ret;
1413 
1414 	/* read chip id */
1415 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1416 	if (ret)
1417 		return ret;
1418 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1419 	if (ret)
1420 		return ret;
1421 
1422 	/* Number of ports can be reduced depending on chip. */
1423 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1424 	dev->phy_port_cnt = 5;
1425 
1426 	/* Default capability is gigabit capable. */
1427 	dev->features = GBIT_SUPPORT;
1428 
1429 	id_hi = (u8)(id32 >> 16);
1430 	id_lo = (u8)(id32 >> 8);
1431 	if ((id_lo & 0xf) == 3) {
1432 		/* Chip is from KSZ9893 design. */
1433 		dev->features |= IS_9893;
1434 
1435 		/* Chip does not support gigabit. */
1436 		if (data8 & SW_QW_ABLE)
1437 			dev->features &= ~GBIT_SUPPORT;
1438 		dev->mib_port_cnt = 3;
1439 		dev->phy_port_cnt = 2;
1440 	} else {
1441 		/* Chip uses new XMII register definitions. */
1442 		dev->features |= NEW_XMII;
1443 
1444 		/* Chip does not support gigabit. */
1445 		if (!(data8 & SW_GIGABIT_ABLE))
1446 			dev->features &= ~GBIT_SUPPORT;
1447 	}
1448 
1449 	/* Change chip id to known ones so it can be matched against them. */
1450 	id32 = (id_hi << 16) | (id_lo << 8);
1451 
1452 	dev->chip_id = id32;
1453 
1454 	return 0;
1455 }
1456 
1457 struct ksz_chip_data {
1458 	u32 chip_id;
1459 	const char *dev_name;
1460 	int num_vlans;
1461 	int num_alus;
1462 	int num_statics;
1463 	int cpu_ports;
1464 	int port_cnt;
1465 	bool phy_errata_9477;
1466 };
1467 
1468 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1469 	{
1470 		.chip_id = 0x00947700,
1471 		.dev_name = "KSZ9477",
1472 		.num_vlans = 4096,
1473 		.num_alus = 4096,
1474 		.num_statics = 16,
1475 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1476 		.port_cnt = 7,		/* total physical port count */
1477 		.phy_errata_9477 = true,
1478 	},
1479 	{
1480 		.chip_id = 0x00989700,
1481 		.dev_name = "KSZ9897",
1482 		.num_vlans = 4096,
1483 		.num_alus = 4096,
1484 		.num_statics = 16,
1485 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1486 		.port_cnt = 7,		/* total physical port count */
1487 		.phy_errata_9477 = true,
1488 	},
1489 	{
1490 		.chip_id = 0x00989300,
1491 		.dev_name = "KSZ9893",
1492 		.num_vlans = 4096,
1493 		.num_alus = 4096,
1494 		.num_statics = 16,
1495 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1496 		.port_cnt = 3,		/* total port count */
1497 	},
1498 	{
1499 		.chip_id = 0x00956700,
1500 		.dev_name = "KSZ9567",
1501 		.num_vlans = 4096,
1502 		.num_alus = 4096,
1503 		.num_statics = 16,
1504 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1505 		.port_cnt = 7,		/* total physical port count */
1506 	},
1507 };
1508 
1509 static int ksz9477_switch_init(struct ksz_device *dev)
1510 {
1511 	int i;
1512 
1513 	dev->ds->ops = &ksz9477_switch_ops;
1514 
1515 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1516 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1517 
1518 		if (dev->chip_id == chip->chip_id) {
1519 			dev->name = chip->dev_name;
1520 			dev->num_vlans = chip->num_vlans;
1521 			dev->num_alus = chip->num_alus;
1522 			dev->num_statics = chip->num_statics;
1523 			dev->port_cnt = chip->port_cnt;
1524 			dev->cpu_ports = chip->cpu_ports;
1525 			dev->phy_errata_9477 = chip->phy_errata_9477;
1526 
1527 			break;
1528 		}
1529 	}
1530 
1531 	/* no switch found */
1532 	if (!dev->port_cnt)
1533 		return -ENODEV;
1534 
1535 	dev->port_mask = (1 << dev->port_cnt) - 1;
1536 
1537 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1538 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1539 
1540 	i = dev->mib_port_cnt;
1541 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1542 				  GFP_KERNEL);
1543 	if (!dev->ports)
1544 		return -ENOMEM;
1545 	for (i = 0; i < dev->mib_port_cnt; i++) {
1546 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1547 		dev->ports[i].mib.counters =
1548 			devm_kzalloc(dev->dev,
1549 				     sizeof(u64) *
1550 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1551 				     GFP_KERNEL);
1552 		if (!dev->ports[i].mib.counters)
1553 			return -ENOMEM;
1554 	}
1555 
1556 	/* set the real number of ports */
1557 	dev->ds->num_ports = dev->port_cnt;
1558 
1559 	return 0;
1560 }
1561 
1562 static void ksz9477_switch_exit(struct ksz_device *dev)
1563 {
1564 	ksz9477_reset_switch(dev);
1565 }
1566 
1567 static const struct ksz_dev_ops ksz9477_dev_ops = {
1568 	.get_port_addr = ksz9477_get_port_addr,
1569 	.cfg_port_member = ksz9477_cfg_port_member,
1570 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1571 	.port_setup = ksz9477_port_setup,
1572 	.r_mib_cnt = ksz9477_r_mib_cnt,
1573 	.r_mib_pkt = ksz9477_r_mib_pkt,
1574 	.freeze_mib = ksz9477_freeze_mib,
1575 	.port_init_cnt = ksz9477_port_init_cnt,
1576 	.shutdown = ksz9477_reset_switch,
1577 	.detect = ksz9477_switch_detect,
1578 	.init = ksz9477_switch_init,
1579 	.exit = ksz9477_switch_exit,
1580 };
1581 
1582 int ksz9477_switch_register(struct ksz_device *dev)
1583 {
1584 	int ret, i;
1585 	struct phy_device *phydev;
1586 
1587 	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1588 	if (ret)
1589 		return ret;
1590 
1591 	for (i = 0; i < dev->phy_port_cnt; ++i) {
1592 		if (!dsa_is_user_port(dev->ds, i))
1593 			continue;
1594 
1595 		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1596 
1597 		/* The MAC actually cannot run in 1000 half-duplex mode. */
1598 		phy_remove_link_mode(phydev,
1599 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1600 
1601 		/* PHY does not support gigabit. */
1602 		if (!(dev->features & GBIT_SUPPORT))
1603 			phy_remove_link_mode(phydev,
1604 					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1605 	}
1606 	return ret;
1607 }
1608 EXPORT_SYMBOL(ksz9477_switch_register);
1609 
1610 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1611 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1612 MODULE_LICENSE("GPL");
1613