1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2018 Microchip Technology Inc.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/export.h>
10 #include <linux/gpio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/microchip-ksz.h>
14 #include <linux/phy.h>
15 #include <linux/etherdevice.h>
16 #include <linux/if_bridge.h>
17 #include <net/dsa.h>
18 #include <net/switchdev.h>
19 
20 #include "ksz_priv.h"
21 #include "ksz_common.h"
22 #include "ksz9477_reg.h"
23 
24 static const struct {
25 	int index;
26 	char string[ETH_GSTRING_LEN];
27 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
28 	{ 0x00, "rx_hi" },
29 	{ 0x01, "rx_undersize" },
30 	{ 0x02, "rx_fragments" },
31 	{ 0x03, "rx_oversize" },
32 	{ 0x04, "rx_jabbers" },
33 	{ 0x05, "rx_symbol_err" },
34 	{ 0x06, "rx_crc_err" },
35 	{ 0x07, "rx_align_err" },
36 	{ 0x08, "rx_mac_ctrl" },
37 	{ 0x09, "rx_pause" },
38 	{ 0x0A, "rx_bcast" },
39 	{ 0x0B, "rx_mcast" },
40 	{ 0x0C, "rx_ucast" },
41 	{ 0x0D, "rx_64_or_less" },
42 	{ 0x0E, "rx_65_127" },
43 	{ 0x0F, "rx_128_255" },
44 	{ 0x10, "rx_256_511" },
45 	{ 0x11, "rx_512_1023" },
46 	{ 0x12, "rx_1024_1522" },
47 	{ 0x13, "rx_1523_2000" },
48 	{ 0x14, "rx_2001" },
49 	{ 0x15, "tx_hi" },
50 	{ 0x16, "tx_late_col" },
51 	{ 0x17, "tx_pause" },
52 	{ 0x18, "tx_bcast" },
53 	{ 0x19, "tx_mcast" },
54 	{ 0x1A, "tx_ucast" },
55 	{ 0x1B, "tx_deferred" },
56 	{ 0x1C, "tx_total_col" },
57 	{ 0x1D, "tx_exc_col" },
58 	{ 0x1E, "tx_single_col" },
59 	{ 0x1F, "tx_mult_col" },
60 	{ 0x80, "rx_total" },
61 	{ 0x81, "tx_total" },
62 	{ 0x82, "rx_discards" },
63 	{ 0x83, "tx_discards" },
64 };
65 
66 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
67 {
68 	u32 data;
69 
70 	ksz_read32(dev, addr, &data);
71 	if (set)
72 		data |= bits;
73 	else
74 		data &= ~bits;
75 	ksz_write32(dev, addr, data);
76 }
77 
78 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
79 			       u32 bits, bool set)
80 {
81 	u32 addr;
82 	u32 data;
83 
84 	addr = PORT_CTRL_ADDR(port, offset);
85 	ksz_read32(dev, addr, &data);
86 
87 	if (set)
88 		data |= bits;
89 	else
90 		data &= ~bits;
91 
92 	ksz_write32(dev, addr, data);
93 }
94 
95 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton,
96 					int timeout)
97 {
98 	u8 data;
99 
100 	do {
101 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
102 		if (!(data & waiton))
103 			break;
104 		usleep_range(1, 10);
105 	} while (timeout-- > 0);
106 
107 	if (timeout <= 0)
108 		return -ETIMEDOUT;
109 
110 	return 0;
111 }
112 
113 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
114 				  u32 *vlan_table)
115 {
116 	int ret;
117 
118 	mutex_lock(&dev->vlan_mutex);
119 
120 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
121 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
122 
123 	/* wait to be cleared */
124 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
125 	if (ret < 0) {
126 		dev_dbg(dev->dev, "Failed to read vlan table\n");
127 		goto exit;
128 	}
129 
130 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
131 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
132 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
133 
134 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
135 
136 exit:
137 	mutex_unlock(&dev->vlan_mutex);
138 
139 	return ret;
140 }
141 
142 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
143 				  u32 *vlan_table)
144 {
145 	int ret;
146 
147 	mutex_lock(&dev->vlan_mutex);
148 
149 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
150 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
151 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
152 
153 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
154 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
155 
156 	/* wait to be cleared */
157 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
158 	if (ret < 0) {
159 		dev_dbg(dev->dev, "Failed to write vlan table\n");
160 		goto exit;
161 	}
162 
163 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
164 
165 	/* update vlan cache table */
166 	dev->vlan_cache[vid].table[0] = vlan_table[0];
167 	dev->vlan_cache[vid].table[1] = vlan_table[1];
168 	dev->vlan_cache[vid].table[2] = vlan_table[2];
169 
170 exit:
171 	mutex_unlock(&dev->vlan_mutex);
172 
173 	return ret;
174 }
175 
176 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
177 {
178 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
179 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
180 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
181 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
182 }
183 
184 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
185 {
186 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
187 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
188 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
189 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
190 }
191 
192 static int ksz9477_wait_alu_ready(struct ksz_device *dev, u32 waiton,
193 				  int timeout)
194 {
195 	u32 data;
196 
197 	do {
198 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
199 		if (!(data & waiton))
200 			break;
201 		usleep_range(1, 10);
202 	} while (timeout-- > 0);
203 
204 	if (timeout <= 0)
205 		return -ETIMEDOUT;
206 
207 	return 0;
208 }
209 
210 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev, u32 waiton,
211 				      int timeout)
212 {
213 	u32 data;
214 
215 	do {
216 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
217 		if (!(data & waiton))
218 			break;
219 		usleep_range(1, 10);
220 	} while (timeout-- > 0);
221 
222 	if (timeout <= 0)
223 		return -ETIMEDOUT;
224 
225 	return 0;
226 }
227 
228 static int ksz9477_reset_switch(struct ksz_device *dev)
229 {
230 	u8 data8;
231 	u16 data16;
232 	u32 data32;
233 
234 	/* reset switch */
235 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
236 
237 	/* turn off SPI DO Edge select */
238 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
239 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
240 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
241 
242 	/* default configuration */
243 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
244 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
245 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
246 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
247 
248 	/* disable interrupts */
249 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
250 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
251 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
252 
253 	/* set broadcast storm protection 10% rate */
254 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
255 	data16 &= ~BROADCAST_STORM_RATE;
256 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
257 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
258 
259 	return 0;
260 }
261 
262 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
263 						      int port)
264 {
265 	return DSA_TAG_PROTO_KSZ9477;
266 }
267 
268 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
269 {
270 	struct ksz_device *dev = ds->priv;
271 	u16 val = 0xffff;
272 
273 	/* No real PHY after this. Simulate the PHY.
274 	 * A fixed PHY can be setup in the device tree, but this function is
275 	 * still called for that port during initialization.
276 	 * For RGMII PHY there is no way to access it so the fixed PHY should
277 	 * be used.  For SGMII PHY the supporting code will be added later.
278 	 */
279 	if (addr >= dev->phy_port_cnt) {
280 		struct ksz_port *p = &dev->ports[addr];
281 
282 		switch (reg) {
283 		case MII_BMCR:
284 			val = 0x1140;
285 			break;
286 		case MII_BMSR:
287 			val = 0x796d;
288 			break;
289 		case MII_PHYSID1:
290 			val = 0x0022;
291 			break;
292 		case MII_PHYSID2:
293 			val = 0x1631;
294 			break;
295 		case MII_ADVERTISE:
296 			val = 0x05e1;
297 			break;
298 		case MII_LPA:
299 			val = 0xc5e1;
300 			break;
301 		case MII_CTRL1000:
302 			val = 0x0700;
303 			break;
304 		case MII_STAT1000:
305 			if (p->phydev.speed == SPEED_1000)
306 				val = 0x3800;
307 			else
308 				val = 0;
309 			break;
310 		}
311 	} else {
312 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
313 	}
314 
315 	return val;
316 }
317 
318 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
319 			       u16 val)
320 {
321 	struct ksz_device *dev = ds->priv;
322 
323 	/* No real PHY after this. */
324 	if (addr >= dev->phy_port_cnt)
325 		return 0;
326 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
327 
328 	return 0;
329 }
330 
331 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
332 				u32 stringset, uint8_t *buf)
333 {
334 	int i;
335 
336 	if (stringset != ETH_SS_STATS)
337 		return;
338 
339 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
340 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
341 		       ETH_GSTRING_LEN);
342 	}
343 }
344 
345 static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
346 				  uint64_t *buf)
347 {
348 	struct ksz_device *dev = ds->priv;
349 	int i;
350 	u32 data;
351 	int timeout;
352 
353 	mutex_lock(&dev->stats_mutex);
354 
355 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
356 		data = MIB_COUNTER_READ;
357 		data |= ((ksz9477_mib_names[i].index & 0xFF) <<
358 			MIB_COUNTER_INDEX_S);
359 		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
360 
361 		timeout = 1000;
362 		do {
363 			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
364 				    &data);
365 			usleep_range(1, 10);
366 			if (!(data & MIB_COUNTER_READ))
367 				break;
368 		} while (timeout-- > 0);
369 
370 		/* failed to read MIB. get out of loop */
371 		if (!timeout) {
372 			dev_dbg(dev->dev, "Failed to get MIB\n");
373 			break;
374 		}
375 
376 		/* count resets upon read */
377 		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
378 
379 		dev->mib_value[i] += (uint64_t)data;
380 		buf[i] = dev->mib_value[i];
381 	}
382 
383 	mutex_unlock(&dev->stats_mutex);
384 }
385 
386 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
387 				    u8 member)
388 {
389 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
390 	dev->ports[port].member = member;
391 }
392 
393 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
394 				       u8 state)
395 {
396 	struct ksz_device *dev = ds->priv;
397 	struct ksz_port *p = &dev->ports[port];
398 	u8 data;
399 	int member = -1;
400 
401 	ksz_pread8(dev, port, P_STP_CTRL, &data);
402 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
403 
404 	switch (state) {
405 	case BR_STATE_DISABLED:
406 		data |= PORT_LEARN_DISABLE;
407 		if (port != dev->cpu_port)
408 			member = 0;
409 		break;
410 	case BR_STATE_LISTENING:
411 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
412 		if (port != dev->cpu_port &&
413 		    p->stp_state == BR_STATE_DISABLED)
414 			member = dev->host_mask | p->vid_member;
415 		break;
416 	case BR_STATE_LEARNING:
417 		data |= PORT_RX_ENABLE;
418 		break;
419 	case BR_STATE_FORWARDING:
420 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
421 
422 		/* This function is also used internally. */
423 		if (port == dev->cpu_port)
424 			break;
425 
426 		member = dev->host_mask | p->vid_member;
427 
428 		/* Port is a member of a bridge. */
429 		if (dev->br_member & (1 << port)) {
430 			dev->member |= (1 << port);
431 			member = dev->member;
432 		}
433 		break;
434 	case BR_STATE_BLOCKING:
435 		data |= PORT_LEARN_DISABLE;
436 		if (port != dev->cpu_port &&
437 		    p->stp_state == BR_STATE_DISABLED)
438 			member = dev->host_mask | p->vid_member;
439 		break;
440 	default:
441 		dev_err(ds->dev, "invalid STP state: %d\n", state);
442 		return;
443 	}
444 
445 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
446 	p->stp_state = state;
447 	if (data & PORT_RX_ENABLE)
448 		dev->rx_ports |= (1 << port);
449 	else
450 		dev->rx_ports &= ~(1 << port);
451 	if (data & PORT_TX_ENABLE)
452 		dev->tx_ports |= (1 << port);
453 	else
454 		dev->tx_ports &= ~(1 << port);
455 
456 	/* Port membership may share register with STP state. */
457 	if (member >= 0 && member != p->member)
458 		ksz9477_cfg_port_member(dev, port, (u8)member);
459 
460 	/* Check if forwarding needs to be updated. */
461 	if (state != BR_STATE_FORWARDING) {
462 		if (dev->br_member & (1 << port))
463 			dev->member &= ~(1 << port);
464 	}
465 
466 	/* When topology has changed the function ksz_update_port_member
467 	 * should be called to modify port forwarding behavior.  However
468 	 * as the offload_fwd_mark indication cannot be reported here
469 	 * the switch forwarding function is not enabled.
470 	 */
471 }
472 
473 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
474 {
475 	u8 data;
476 
477 	ksz_read8(dev, REG_SW_LUE_CTRL_2, &data);
478 	data &= ~(SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S);
479 	data |= (SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
480 	ksz_write8(dev, REG_SW_LUE_CTRL_2, data);
481 	if (port < dev->mib_port_cnt) {
482 		/* flush individual port */
483 		ksz_pread8(dev, port, P_STP_CTRL, &data);
484 		if (!(data & PORT_LEARN_DISABLE))
485 			ksz_pwrite8(dev, port, P_STP_CTRL,
486 				    data | PORT_LEARN_DISABLE);
487 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
488 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
489 	} else {
490 		/* flush all */
491 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
492 	}
493 }
494 
495 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
496 				       bool flag)
497 {
498 	struct ksz_device *dev = ds->priv;
499 
500 	if (flag) {
501 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
502 			     PORT_VLAN_LOOKUP_VID_0, true);
503 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
504 	} else {
505 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
506 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
507 			     PORT_VLAN_LOOKUP_VID_0, false);
508 	}
509 
510 	return 0;
511 }
512 
513 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
514 				  const struct switchdev_obj_port_vlan *vlan)
515 {
516 	struct ksz_device *dev = ds->priv;
517 	u32 vlan_table[3];
518 	u16 vid;
519 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
520 
521 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
522 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
523 			dev_dbg(dev->dev, "Failed to get vlan table\n");
524 			return;
525 		}
526 
527 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
528 		if (untagged)
529 			vlan_table[1] |= BIT(port);
530 		else
531 			vlan_table[1] &= ~BIT(port);
532 		vlan_table[1] &= ~(BIT(dev->cpu_port));
533 
534 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
535 
536 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
537 			dev_dbg(dev->dev, "Failed to set vlan table\n");
538 			return;
539 		}
540 
541 		/* change PVID */
542 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
543 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
544 	}
545 }
546 
547 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
548 				 const struct switchdev_obj_port_vlan *vlan)
549 {
550 	struct ksz_device *dev = ds->priv;
551 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
552 	u32 vlan_table[3];
553 	u16 vid;
554 	u16 pvid;
555 
556 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
557 	pvid = pvid & 0xFFF;
558 
559 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
560 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
561 			dev_dbg(dev->dev, "Failed to get vlan table\n");
562 			return -ETIMEDOUT;
563 		}
564 
565 		vlan_table[2] &= ~BIT(port);
566 
567 		if (pvid == vid)
568 			pvid = 1;
569 
570 		if (untagged)
571 			vlan_table[1] &= ~BIT(port);
572 
573 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
574 			dev_dbg(dev->dev, "Failed to set vlan table\n");
575 			return -ETIMEDOUT;
576 		}
577 	}
578 
579 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
580 
581 	return 0;
582 }
583 
584 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
585 				const unsigned char *addr, u16 vid)
586 {
587 	struct ksz_device *dev = ds->priv;
588 	u32 alu_table[4];
589 	u32 data;
590 	int ret = 0;
591 
592 	mutex_lock(&dev->alu_mutex);
593 
594 	/* find any entry with mac & vid */
595 	data = vid << ALU_FID_INDEX_S;
596 	data |= ((addr[0] << 8) | addr[1]);
597 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
598 
599 	data = ((addr[2] << 24) | (addr[3] << 16));
600 	data |= ((addr[4] << 8) | addr[5]);
601 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
602 
603 	/* start read operation */
604 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
605 
606 	/* wait to be finished */
607 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
608 	if (ret < 0) {
609 		dev_dbg(dev->dev, "Failed to read ALU\n");
610 		goto exit;
611 	}
612 
613 	/* read ALU entry */
614 	ksz9477_read_table(dev, alu_table);
615 
616 	/* update ALU entry */
617 	alu_table[0] = ALU_V_STATIC_VALID;
618 	alu_table[1] |= BIT(port);
619 	if (vid)
620 		alu_table[1] |= ALU_V_USE_FID;
621 	alu_table[2] = (vid << ALU_V_FID_S);
622 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
623 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
624 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
625 
626 	ksz9477_write_table(dev, alu_table);
627 
628 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
629 
630 	/* wait to be finished */
631 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
632 	if (ret < 0)
633 		dev_dbg(dev->dev, "Failed to write ALU\n");
634 
635 exit:
636 	mutex_unlock(&dev->alu_mutex);
637 
638 	return ret;
639 }
640 
641 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
642 				const unsigned char *addr, u16 vid)
643 {
644 	struct ksz_device *dev = ds->priv;
645 	u32 alu_table[4];
646 	u32 data;
647 	int ret = 0;
648 
649 	mutex_lock(&dev->alu_mutex);
650 
651 	/* read any entry with mac & vid */
652 	data = vid << ALU_FID_INDEX_S;
653 	data |= ((addr[0] << 8) | addr[1]);
654 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
655 
656 	data = ((addr[2] << 24) | (addr[3] << 16));
657 	data |= ((addr[4] << 8) | addr[5]);
658 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
659 
660 	/* start read operation */
661 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
662 
663 	/* wait to be finished */
664 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
665 	if (ret < 0) {
666 		dev_dbg(dev->dev, "Failed to read ALU\n");
667 		goto exit;
668 	}
669 
670 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
671 	if (alu_table[0] & ALU_V_STATIC_VALID) {
672 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
673 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
674 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
675 
676 		/* clear forwarding port */
677 		alu_table[2] &= ~BIT(port);
678 
679 		/* if there is no port to forward, clear table */
680 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
681 			alu_table[0] = 0;
682 			alu_table[1] = 0;
683 			alu_table[2] = 0;
684 			alu_table[3] = 0;
685 		}
686 	} else {
687 		alu_table[0] = 0;
688 		alu_table[1] = 0;
689 		alu_table[2] = 0;
690 		alu_table[3] = 0;
691 	}
692 
693 	ksz9477_write_table(dev, alu_table);
694 
695 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
696 
697 	/* wait to be finished */
698 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
699 	if (ret < 0)
700 		dev_dbg(dev->dev, "Failed to write ALU\n");
701 
702 exit:
703 	mutex_unlock(&dev->alu_mutex);
704 
705 	return ret;
706 }
707 
708 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
709 {
710 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
711 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
712 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
713 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
714 			ALU_V_PRIO_AGE_CNT_M;
715 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
716 
717 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
718 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
719 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
720 
721 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
722 
723 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
724 	alu->mac[1] = alu_table[2] & 0xFF;
725 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
726 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
727 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
728 	alu->mac[5] = alu_table[3] & 0xFF;
729 }
730 
731 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
732 				 dsa_fdb_dump_cb_t *cb, void *data)
733 {
734 	struct ksz_device *dev = ds->priv;
735 	int ret = 0;
736 	u32 ksz_data;
737 	u32 alu_table[4];
738 	struct alu_struct alu;
739 	int timeout;
740 
741 	mutex_lock(&dev->alu_mutex);
742 
743 	/* start ALU search */
744 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
745 
746 	do {
747 		timeout = 1000;
748 		do {
749 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
750 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
751 				break;
752 			usleep_range(1, 10);
753 		} while (timeout-- > 0);
754 
755 		if (!timeout) {
756 			dev_dbg(dev->dev, "Failed to search ALU\n");
757 			ret = -ETIMEDOUT;
758 			goto exit;
759 		}
760 
761 		/* read ALU table */
762 		ksz9477_read_table(dev, alu_table);
763 
764 		ksz9477_convert_alu(&alu, alu_table);
765 
766 		if (alu.port_forward & BIT(port)) {
767 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
768 			if (ret)
769 				goto exit;
770 		}
771 	} while (ksz_data & ALU_START);
772 
773 exit:
774 
775 	/* stop ALU search */
776 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
777 
778 	mutex_unlock(&dev->alu_mutex);
779 
780 	return ret;
781 }
782 
783 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
784 				 const struct switchdev_obj_port_mdb *mdb)
785 {
786 	struct ksz_device *dev = ds->priv;
787 	u32 static_table[4];
788 	u32 data;
789 	int index;
790 	u32 mac_hi, mac_lo;
791 
792 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
793 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
794 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
795 
796 	mutex_lock(&dev->alu_mutex);
797 
798 	for (index = 0; index < dev->num_statics; index++) {
799 		/* find empty slot first */
800 		data = (index << ALU_STAT_INDEX_S) |
801 			ALU_STAT_READ | ALU_STAT_START;
802 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
803 
804 		/* wait to be finished */
805 		if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
806 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
807 			goto exit;
808 		}
809 
810 		/* read ALU static table */
811 		ksz9477_read_table(dev, static_table);
812 
813 		if (static_table[0] & ALU_V_STATIC_VALID) {
814 			/* check this has same vid & mac address */
815 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
816 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
817 			    static_table[3] == mac_lo) {
818 				/* found matching one */
819 				break;
820 			}
821 		} else {
822 			/* found empty one */
823 			break;
824 		}
825 	}
826 
827 	/* no available entry */
828 	if (index == dev->num_statics)
829 		goto exit;
830 
831 	/* add entry */
832 	static_table[0] = ALU_V_STATIC_VALID;
833 	static_table[1] |= BIT(port);
834 	if (mdb->vid)
835 		static_table[1] |= ALU_V_USE_FID;
836 	static_table[2] = (mdb->vid << ALU_V_FID_S);
837 	static_table[2] |= mac_hi;
838 	static_table[3] = mac_lo;
839 
840 	ksz9477_write_table(dev, static_table);
841 
842 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
843 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
844 
845 	/* wait to be finished */
846 	if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
847 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
848 
849 exit:
850 	mutex_unlock(&dev->alu_mutex);
851 }
852 
853 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
854 				const struct switchdev_obj_port_mdb *mdb)
855 {
856 	struct ksz_device *dev = ds->priv;
857 	u32 static_table[4];
858 	u32 data;
859 	int index;
860 	int ret = 0;
861 	u32 mac_hi, mac_lo;
862 
863 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
864 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
865 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
866 
867 	mutex_lock(&dev->alu_mutex);
868 
869 	for (index = 0; index < dev->num_statics; index++) {
870 		/* find empty slot first */
871 		data = (index << ALU_STAT_INDEX_S) |
872 			ALU_STAT_READ | ALU_STAT_START;
873 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
874 
875 		/* wait to be finished */
876 		ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
877 		if (ret < 0) {
878 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
879 			goto exit;
880 		}
881 
882 		/* read ALU static table */
883 		ksz9477_read_table(dev, static_table);
884 
885 		if (static_table[0] & ALU_V_STATIC_VALID) {
886 			/* check this has same vid & mac address */
887 
888 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
889 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
890 			    static_table[3] == mac_lo) {
891 				/* found matching one */
892 				break;
893 			}
894 		}
895 	}
896 
897 	/* no available entry */
898 	if (index == dev->num_statics)
899 		goto exit;
900 
901 	/* clear port */
902 	static_table[1] &= ~BIT(port);
903 
904 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
905 		/* delete entry */
906 		static_table[0] = 0;
907 		static_table[1] = 0;
908 		static_table[2] = 0;
909 		static_table[3] = 0;
910 	}
911 
912 	ksz9477_write_table(dev, static_table);
913 
914 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
915 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
916 
917 	/* wait to be finished */
918 	ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
919 	if (ret < 0)
920 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
921 
922 exit:
923 	mutex_unlock(&dev->alu_mutex);
924 
925 	return ret;
926 }
927 
928 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
929 				   struct dsa_mall_mirror_tc_entry *mirror,
930 				   bool ingress)
931 {
932 	struct ksz_device *dev = ds->priv;
933 
934 	if (ingress)
935 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
936 	else
937 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
938 
939 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
940 
941 	/* configure mirror port */
942 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
943 		     PORT_MIRROR_SNIFFER, true);
944 
945 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
946 
947 	return 0;
948 }
949 
950 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
951 				    struct dsa_mall_mirror_tc_entry *mirror)
952 {
953 	struct ksz_device *dev = ds->priv;
954 	u8 data;
955 
956 	if (mirror->ingress)
957 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
958 	else
959 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
960 
961 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
962 
963 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
964 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
965 			     PORT_MIRROR_SNIFFER, false);
966 }
967 
968 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
969 {
970 	u8 data8;
971 	u8 member;
972 	u16 data16;
973 	struct ksz_port *p = &dev->ports[port];
974 
975 	/* enable tag tail for host port */
976 	if (cpu_port)
977 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
978 			     true);
979 
980 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
981 
982 	/* set back pressure */
983 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
984 
985 	/* enable broadcast storm limit */
986 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
987 
988 	/* disable DiffServ priority */
989 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
990 
991 	/* replace priority */
992 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
993 		     false);
994 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
995 			   MTI_PVID_REPLACE, false);
996 
997 	/* enable 802.1p priority */
998 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
999 
1000 	if (port < dev->phy_port_cnt) {
1001 		/* do not force flow control */
1002 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1003 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1004 			     false);
1005 
1006 	} else {
1007 		/* force flow control */
1008 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1009 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1010 			     true);
1011 
1012 		/* configure MAC to 1G & RGMII mode */
1013 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1014 		data8 &= ~PORT_MII_NOT_1GBIT;
1015 		data8 &= ~PORT_MII_SEL_M;
1016 		switch (dev->interface) {
1017 		case PHY_INTERFACE_MODE_MII:
1018 			data8 |= PORT_MII_NOT_1GBIT;
1019 			data8 |= PORT_MII_SEL;
1020 			p->phydev.speed = SPEED_100;
1021 			break;
1022 		case PHY_INTERFACE_MODE_RMII:
1023 			data8 |= PORT_MII_NOT_1GBIT;
1024 			data8 |= PORT_RMII_SEL;
1025 			p->phydev.speed = SPEED_100;
1026 			break;
1027 		case PHY_INTERFACE_MODE_GMII:
1028 			data8 |= PORT_GMII_SEL;
1029 			p->phydev.speed = SPEED_1000;
1030 			break;
1031 		default:
1032 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1033 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1034 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1035 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1036 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1037 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1038 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1039 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1040 			data8 |= PORT_RGMII_SEL;
1041 			p->phydev.speed = SPEED_1000;
1042 			break;
1043 		}
1044 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1045 		p->phydev.duplex = 1;
1046 	}
1047 	if (cpu_port) {
1048 		member = dev->port_mask;
1049 		dev->on_ports = dev->host_mask;
1050 		dev->live_ports = dev->host_mask;
1051 	} else {
1052 		member = dev->host_mask | p->vid_member;
1053 		dev->on_ports |= (1 << port);
1054 
1055 		/* Link was detected before port is enabled. */
1056 		if (p->phydev.link)
1057 			dev->live_ports |= (1 << port);
1058 	}
1059 	ksz9477_cfg_port_member(dev, port, member);
1060 
1061 	/* clear pending interrupts */
1062 	if (port < dev->phy_port_cnt)
1063 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1064 }
1065 
1066 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1067 {
1068 	struct ksz_device *dev = ds->priv;
1069 	struct ksz_port *p;
1070 	int i;
1071 
1072 	ds->num_ports = dev->port_cnt;
1073 
1074 	for (i = 0; i < dev->port_cnt; i++) {
1075 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1076 			dev->cpu_port = i;
1077 			dev->host_mask = (1 << dev->cpu_port);
1078 			dev->port_mask |= dev->host_mask;
1079 
1080 			/* enable cpu port */
1081 			ksz9477_port_setup(dev, i, true);
1082 			p = &dev->ports[dev->cpu_port];
1083 			p->vid_member = dev->port_mask;
1084 			p->on = 1;
1085 		}
1086 	}
1087 
1088 	dev->member = dev->host_mask;
1089 
1090 	for (i = 0; i < dev->mib_port_cnt; i++) {
1091 		if (i == dev->cpu_port)
1092 			continue;
1093 		p = &dev->ports[i];
1094 
1095 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1096 		 * be called.
1097 		 */
1098 		p->vid_member = (1 << i);
1099 		p->member = dev->port_mask;
1100 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1101 		p->on = 1;
1102 		if (i < dev->phy_port_cnt)
1103 			p->phy = 1;
1104 		if (dev->chip_id == 0x00947700 && i == 6) {
1105 			p->sgmii = 1;
1106 
1107 			/* SGMII PHY detection code is not implemented yet. */
1108 			p->phy = 0;
1109 		}
1110 	}
1111 }
1112 
1113 static int ksz9477_setup(struct dsa_switch *ds)
1114 {
1115 	struct ksz_device *dev = ds->priv;
1116 	int ret = 0;
1117 
1118 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1119 				       dev->num_vlans, GFP_KERNEL);
1120 	if (!dev->vlan_cache)
1121 		return -ENOMEM;
1122 
1123 	ret = ksz9477_reset_switch(dev);
1124 	if (ret) {
1125 		dev_err(ds->dev, "failed to reset switch\n");
1126 		return ret;
1127 	}
1128 
1129 	/* Required for port partitioning. */
1130 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1131 		      true);
1132 
1133 	/* accept packet up to 2000bytes */
1134 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1135 
1136 	ksz9477_config_cpu_port(ds);
1137 
1138 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1139 
1140 	/* queue based egress rate limit */
1141 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1142 
1143 	/* start switch */
1144 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1145 
1146 	return 0;
1147 }
1148 
1149 static const struct dsa_switch_ops ksz9477_switch_ops = {
1150 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1151 	.setup			= ksz9477_setup,
1152 	.phy_read		= ksz9477_phy_read16,
1153 	.phy_write		= ksz9477_phy_write16,
1154 	.port_enable		= ksz_enable_port,
1155 	.port_disable		= ksz_disable_port,
1156 	.get_strings		= ksz9477_get_strings,
1157 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1158 	.get_sset_count		= ksz_sset_count,
1159 	.port_bridge_join	= ksz_port_bridge_join,
1160 	.port_bridge_leave	= ksz_port_bridge_leave,
1161 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1162 	.port_fast_age		= ksz_port_fast_age,
1163 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1164 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1165 	.port_vlan_add		= ksz9477_port_vlan_add,
1166 	.port_vlan_del		= ksz9477_port_vlan_del,
1167 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1168 	.port_fdb_add		= ksz9477_port_fdb_add,
1169 	.port_fdb_del		= ksz9477_port_fdb_del,
1170 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1171 	.port_mdb_add           = ksz9477_port_mdb_add,
1172 	.port_mdb_del           = ksz9477_port_mdb_del,
1173 	.port_mirror_add	= ksz9477_port_mirror_add,
1174 	.port_mirror_del	= ksz9477_port_mirror_del,
1175 };
1176 
1177 static u32 ksz9477_get_port_addr(int port, int offset)
1178 {
1179 	return PORT_CTRL_ADDR(port, offset);
1180 }
1181 
1182 static int ksz9477_switch_detect(struct ksz_device *dev)
1183 {
1184 	u8 data8;
1185 	u32 id32;
1186 	int ret;
1187 
1188 	/* turn off SPI DO Edge select */
1189 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1190 	if (ret)
1191 		return ret;
1192 
1193 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1194 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1195 	if (ret)
1196 		return ret;
1197 
1198 	/* read chip id */
1199 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1200 	if (ret)
1201 		return ret;
1202 
1203 	/* Number of ports can be reduced depending on chip. */
1204 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1205 	dev->phy_port_cnt = 5;
1206 
1207 	dev->chip_id = id32;
1208 
1209 	return 0;
1210 }
1211 
1212 struct ksz_chip_data {
1213 	u32 chip_id;
1214 	const char *dev_name;
1215 	int num_vlans;
1216 	int num_alus;
1217 	int num_statics;
1218 	int cpu_ports;
1219 	int port_cnt;
1220 };
1221 
1222 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1223 	{
1224 		.chip_id = 0x00947700,
1225 		.dev_name = "KSZ9477",
1226 		.num_vlans = 4096,
1227 		.num_alus = 4096,
1228 		.num_statics = 16,
1229 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1230 		.port_cnt = 7,		/* total physical port count */
1231 	},
1232 	{
1233 		.chip_id = 0x00989700,
1234 		.dev_name = "KSZ9897",
1235 		.num_vlans = 4096,
1236 		.num_alus = 4096,
1237 		.num_statics = 16,
1238 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1239 		.port_cnt = 7,		/* total physical port count */
1240 	},
1241 };
1242 
1243 static int ksz9477_switch_init(struct ksz_device *dev)
1244 {
1245 	int i;
1246 
1247 	dev->ds->ops = &ksz9477_switch_ops;
1248 
1249 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1250 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1251 
1252 		if (dev->chip_id == chip->chip_id) {
1253 			dev->name = chip->dev_name;
1254 			dev->num_vlans = chip->num_vlans;
1255 			dev->num_alus = chip->num_alus;
1256 			dev->num_statics = chip->num_statics;
1257 			dev->port_cnt = chip->port_cnt;
1258 			dev->cpu_ports = chip->cpu_ports;
1259 
1260 			break;
1261 		}
1262 	}
1263 
1264 	/* no switch found */
1265 	if (!dev->port_cnt)
1266 		return -ENODEV;
1267 
1268 	dev->port_mask = (1 << dev->port_cnt) - 1;
1269 
1270 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1271 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1272 
1273 	i = dev->mib_port_cnt;
1274 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1275 				  GFP_KERNEL);
1276 	if (!dev->ports)
1277 		return -ENOMEM;
1278 	for (i = 0; i < dev->mib_port_cnt; i++) {
1279 		dev->ports[i].mib.counters =
1280 			devm_kzalloc(dev->dev,
1281 				     sizeof(u64) *
1282 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1283 				     GFP_KERNEL);
1284 		if (!dev->ports[i].mib.counters)
1285 			return -ENOMEM;
1286 	}
1287 	dev->interface = PHY_INTERFACE_MODE_RGMII_TXID;
1288 
1289 	return 0;
1290 }
1291 
1292 static void ksz9477_switch_exit(struct ksz_device *dev)
1293 {
1294 	ksz9477_reset_switch(dev);
1295 }
1296 
1297 static const struct ksz_dev_ops ksz9477_dev_ops = {
1298 	.get_port_addr = ksz9477_get_port_addr,
1299 	.cfg_port_member = ksz9477_cfg_port_member,
1300 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1301 	.port_setup = ksz9477_port_setup,
1302 	.shutdown = ksz9477_reset_switch,
1303 	.detect = ksz9477_switch_detect,
1304 	.init = ksz9477_switch_init,
1305 	.exit = ksz9477_switch_exit,
1306 };
1307 
1308 int ksz9477_switch_register(struct ksz_device *dev)
1309 {
1310 	return ksz_switch_register(dev, &ksz9477_dev_ops);
1311 }
1312 EXPORT_SYMBOL(ksz9477_switch_register);
1313 
1314 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1315 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1316 MODULE_LICENSE("GPL");
1317