1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17 
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 
21 /* Used with variable features to indicate capabilities. */
22 #define GBIT_SUPPORT			BIT(0)
23 #define NEW_XMII			BIT(1)
24 #define IS_9893				BIT(2)
25 
26 static const struct {
27 	int index;
28 	char string[ETH_GSTRING_LEN];
29 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
30 	{ 0x00, "rx_hi" },
31 	{ 0x01, "rx_undersize" },
32 	{ 0x02, "rx_fragments" },
33 	{ 0x03, "rx_oversize" },
34 	{ 0x04, "rx_jabbers" },
35 	{ 0x05, "rx_symbol_err" },
36 	{ 0x06, "rx_crc_err" },
37 	{ 0x07, "rx_align_err" },
38 	{ 0x08, "rx_mac_ctrl" },
39 	{ 0x09, "rx_pause" },
40 	{ 0x0A, "rx_bcast" },
41 	{ 0x0B, "rx_mcast" },
42 	{ 0x0C, "rx_ucast" },
43 	{ 0x0D, "rx_64_or_less" },
44 	{ 0x0E, "rx_65_127" },
45 	{ 0x0F, "rx_128_255" },
46 	{ 0x10, "rx_256_511" },
47 	{ 0x11, "rx_512_1023" },
48 	{ 0x12, "rx_1024_1522" },
49 	{ 0x13, "rx_1523_2000" },
50 	{ 0x14, "rx_2001" },
51 	{ 0x15, "tx_hi" },
52 	{ 0x16, "tx_late_col" },
53 	{ 0x17, "tx_pause" },
54 	{ 0x18, "tx_bcast" },
55 	{ 0x19, "tx_mcast" },
56 	{ 0x1A, "tx_ucast" },
57 	{ 0x1B, "tx_deferred" },
58 	{ 0x1C, "tx_total_col" },
59 	{ 0x1D, "tx_exc_col" },
60 	{ 0x1E, "tx_single_col" },
61 	{ 0x1F, "tx_mult_col" },
62 	{ 0x80, "rx_total" },
63 	{ 0x81, "tx_total" },
64 	{ 0x82, "rx_discards" },
65 	{ 0x83, "tx_discards" },
66 };
67 
68 struct ksz9477_stats_raw {
69 	u64 rx_hi;
70 	u64 rx_undersize;
71 	u64 rx_fragments;
72 	u64 rx_oversize;
73 	u64 rx_jabbers;
74 	u64 rx_symbol_err;
75 	u64 rx_crc_err;
76 	u64 rx_align_err;
77 	u64 rx_mac_ctrl;
78 	u64 rx_pause;
79 	u64 rx_bcast;
80 	u64 rx_mcast;
81 	u64 rx_ucast;
82 	u64 rx_64_or_less;
83 	u64 rx_65_127;
84 	u64 rx_128_255;
85 	u64 rx_256_511;
86 	u64 rx_512_1023;
87 	u64 rx_1024_1522;
88 	u64 rx_1523_2000;
89 	u64 rx_2001;
90 	u64 tx_hi;
91 	u64 tx_late_col;
92 	u64 tx_pause;
93 	u64 tx_bcast;
94 	u64 tx_mcast;
95 	u64 tx_ucast;
96 	u64 tx_deferred;
97 	u64 tx_total_col;
98 	u64 tx_exc_col;
99 	u64 tx_single_col;
100 	u64 tx_mult_col;
101 	u64 rx_total;
102 	u64 tx_total;
103 	u64 rx_discards;
104 	u64 tx_discards;
105 };
106 
107 static void ksz9477_r_mib_stats64(struct ksz_device *dev, int port)
108 {
109 	struct rtnl_link_stats64 *stats;
110 	struct ksz9477_stats_raw *raw;
111 	struct ksz_port_mib *mib;
112 
113 	mib = &dev->ports[port].mib;
114 	stats = &mib->stats64;
115 	raw = (struct ksz9477_stats_raw *)mib->counters;
116 
117 	spin_lock(&mib->stats64_lock);
118 
119 	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast;
120 	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast;
121 
122 	/* HW counters are counting bytes + FCS which is not acceptable
123 	 * for rtnl_link_stats64 interface
124 	 */
125 	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
126 	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
127 
128 	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
129 		raw->rx_oversize;
130 
131 	stats->rx_crc_errors = raw->rx_crc_err;
132 	stats->rx_frame_errors = raw->rx_align_err;
133 	stats->rx_dropped = raw->rx_discards;
134 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
135 		stats->rx_frame_errors  + stats->rx_dropped;
136 
137 	stats->tx_window_errors = raw->tx_late_col;
138 	stats->tx_fifo_errors = raw->tx_discards;
139 	stats->tx_aborted_errors = raw->tx_exc_col;
140 	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
141 		stats->tx_aborted_errors;
142 
143 	stats->multicast = raw->rx_mcast;
144 	stats->collisions = raw->tx_total_col;
145 
146 	spin_unlock(&mib->stats64_lock);
147 }
148 
149 static void ksz9477_get_stats64(struct dsa_switch *ds, int port,
150 			       struct rtnl_link_stats64 *s)
151 {
152 	struct ksz_device *dev = ds->priv;
153 	struct ksz_port_mib *mib;
154 
155 	mib = &dev->ports[port].mib;
156 
157 	spin_lock(&mib->stats64_lock);
158 	memcpy(s, &mib->stats64, sizeof(*s));
159 	spin_unlock(&mib->stats64_lock);
160 }
161 
162 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
163 {
164 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
165 }
166 
167 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
168 			 bool set)
169 {
170 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
171 			   bits, set ? bits : 0);
172 }
173 
174 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
175 {
176 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
177 }
178 
179 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
180 			       u32 bits, bool set)
181 {
182 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
183 			   bits, set ? bits : 0);
184 }
185 
186 static int ksz9477_change_mtu(struct dsa_switch *ds, int port, int mtu)
187 {
188 	struct ksz_device *dev = ds->priv;
189 	u16 frame_size, max_frame = 0;
190 	int i;
191 
192 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
193 
194 	/* Cache the per-port MTU setting */
195 	dev->ports[port].max_frame = frame_size;
196 
197 	for (i = 0; i < dev->port_cnt; i++)
198 		max_frame = max(max_frame, dev->ports[i].max_frame);
199 
200 	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
201 				  REG_SW_MTU_MASK, max_frame);
202 }
203 
204 static int ksz9477_max_mtu(struct dsa_switch *ds, int port)
205 {
206 	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
207 }
208 
209 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
210 {
211 	unsigned int val;
212 
213 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
214 					val, !(val & VLAN_START), 10, 1000);
215 }
216 
217 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
218 				  u32 *vlan_table)
219 {
220 	int ret;
221 
222 	mutex_lock(&dev->vlan_mutex);
223 
224 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
225 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
226 
227 	/* wait to be cleared */
228 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
229 	if (ret) {
230 		dev_dbg(dev->dev, "Failed to read vlan table\n");
231 		goto exit;
232 	}
233 
234 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
235 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
236 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
237 
238 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
239 
240 exit:
241 	mutex_unlock(&dev->vlan_mutex);
242 
243 	return ret;
244 }
245 
246 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
247 				  u32 *vlan_table)
248 {
249 	int ret;
250 
251 	mutex_lock(&dev->vlan_mutex);
252 
253 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
254 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
255 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
256 
257 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
258 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
259 
260 	/* wait to be cleared */
261 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
262 	if (ret) {
263 		dev_dbg(dev->dev, "Failed to write vlan table\n");
264 		goto exit;
265 	}
266 
267 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
268 
269 	/* update vlan cache table */
270 	dev->vlan_cache[vid].table[0] = vlan_table[0];
271 	dev->vlan_cache[vid].table[1] = vlan_table[1];
272 	dev->vlan_cache[vid].table[2] = vlan_table[2];
273 
274 exit:
275 	mutex_unlock(&dev->vlan_mutex);
276 
277 	return ret;
278 }
279 
280 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
281 {
282 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
283 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
284 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
285 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
286 }
287 
288 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
289 {
290 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
291 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
292 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
293 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
294 }
295 
296 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
297 {
298 	unsigned int val;
299 
300 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
301 					val, !(val & ALU_START), 10, 1000);
302 }
303 
304 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
305 {
306 	unsigned int val;
307 
308 	return regmap_read_poll_timeout(dev->regmap[2],
309 					REG_SW_ALU_STAT_CTRL__4,
310 					val, !(val & ALU_STAT_START),
311 					10, 1000);
312 }
313 
314 static int ksz9477_reset_switch(struct ksz_device *dev)
315 {
316 	u8 data8;
317 	u32 data32;
318 
319 	/* reset switch */
320 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
321 
322 	/* turn off SPI DO Edge select */
323 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
324 			   SPI_AUTO_EDGE_DETECTION, 0);
325 
326 	/* default configuration */
327 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
328 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
329 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
330 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
331 
332 	/* disable interrupts */
333 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
334 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
335 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
336 
337 	/* set broadcast storm protection 10% rate */
338 	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
339 			   BROADCAST_STORM_RATE,
340 			   (BROADCAST_STORM_VALUE *
341 			   BROADCAST_STORM_PROT_RATE) / 100);
342 
343 	data8 = SW_ENABLE_REFCLKO;
344 	if (dev->synclko_disable)
345 		data8 = 0;
346 	else if (dev->synclko_125)
347 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
348 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
349 
350 	return 0;
351 }
352 
353 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
354 			      u64 *cnt)
355 {
356 	struct ksz_port *p = &dev->ports[port];
357 	unsigned int val;
358 	u32 data;
359 	int ret;
360 
361 	/* retain the flush/freeze bit */
362 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
363 	data |= MIB_COUNTER_READ;
364 	data |= (addr << MIB_COUNTER_INDEX_S);
365 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
366 
367 	ret = regmap_read_poll_timeout(dev->regmap[2],
368 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
369 			val, !(val & MIB_COUNTER_READ), 10, 1000);
370 	/* failed to read MIB. get out of loop */
371 	if (ret) {
372 		dev_dbg(dev->dev, "Failed to get MIB\n");
373 		return;
374 	}
375 
376 	/* count resets upon read */
377 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
378 	*cnt += data;
379 }
380 
381 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
382 			      u64 *dropped, u64 *cnt)
383 {
384 	addr = ksz9477_mib_names[addr].index;
385 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
386 }
387 
388 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
389 {
390 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
391 	struct ksz_port *p = &dev->ports[port];
392 
393 	/* enable/disable the port for flush/freeze function */
394 	mutex_lock(&p->mib.cnt_mutex);
395 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
396 
397 	/* used by MIB counter reading code to know freeze is enabled */
398 	p->freeze = freeze;
399 	mutex_unlock(&p->mib.cnt_mutex);
400 }
401 
402 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
403 {
404 	struct ksz_port_mib *mib = &dev->ports[port].mib;
405 
406 	/* flush all enabled port MIB counters */
407 	mutex_lock(&mib->cnt_mutex);
408 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
409 		     MIB_COUNTER_FLUSH_FREEZE);
410 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
411 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
412 	mutex_unlock(&mib->cnt_mutex);
413 
414 	mib->cnt_ptr = 0;
415 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
416 }
417 
418 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
419 						      int port,
420 						      enum dsa_tag_protocol mp)
421 {
422 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
423 	struct ksz_device *dev = ds->priv;
424 
425 	if (dev->features & IS_9893)
426 		proto = DSA_TAG_PROTO_KSZ9893;
427 	return proto;
428 }
429 
430 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
431 {
432 	struct ksz_device *dev = ds->priv;
433 	u16 val = 0xffff;
434 
435 	/* No real PHY after this. Simulate the PHY.
436 	 * A fixed PHY can be setup in the device tree, but this function is
437 	 * still called for that port during initialization.
438 	 * For RGMII PHY there is no way to access it so the fixed PHY should
439 	 * be used.  For SGMII PHY the supporting code will be added later.
440 	 */
441 	if (addr >= dev->phy_port_cnt) {
442 		struct ksz_port *p = &dev->ports[addr];
443 
444 		switch (reg) {
445 		case MII_BMCR:
446 			val = 0x1140;
447 			break;
448 		case MII_BMSR:
449 			val = 0x796d;
450 			break;
451 		case MII_PHYSID1:
452 			val = 0x0022;
453 			break;
454 		case MII_PHYSID2:
455 			val = 0x1631;
456 			break;
457 		case MII_ADVERTISE:
458 			val = 0x05e1;
459 			break;
460 		case MII_LPA:
461 			val = 0xc5e1;
462 			break;
463 		case MII_CTRL1000:
464 			val = 0x0700;
465 			break;
466 		case MII_STAT1000:
467 			if (p->phydev.speed == SPEED_1000)
468 				val = 0x3800;
469 			else
470 				val = 0;
471 			break;
472 		}
473 	} else {
474 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
475 	}
476 
477 	return val;
478 }
479 
480 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
481 			       u16 val)
482 {
483 	struct ksz_device *dev = ds->priv;
484 
485 	/* No real PHY after this. */
486 	if (addr >= dev->phy_port_cnt)
487 		return 0;
488 
489 	/* No gigabit support.  Do not write to this register. */
490 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
491 		return 0;
492 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
493 
494 	return 0;
495 }
496 
497 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
498 				u32 stringset, uint8_t *buf)
499 {
500 	int i;
501 
502 	if (stringset != ETH_SS_STATS)
503 		return;
504 
505 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
506 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
507 		       ETH_GSTRING_LEN);
508 	}
509 }
510 
511 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
512 				    u8 member)
513 {
514 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
515 }
516 
517 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
518 				       u8 state)
519 {
520 	struct ksz_device *dev = ds->priv;
521 	struct ksz_port *p = &dev->ports[port];
522 	u8 data;
523 
524 	ksz_pread8(dev, port, P_STP_CTRL, &data);
525 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
526 
527 	switch (state) {
528 	case BR_STATE_DISABLED:
529 		data |= PORT_LEARN_DISABLE;
530 		break;
531 	case BR_STATE_LISTENING:
532 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
533 		break;
534 	case BR_STATE_LEARNING:
535 		data |= PORT_RX_ENABLE;
536 		break;
537 	case BR_STATE_FORWARDING:
538 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
539 		break;
540 	case BR_STATE_BLOCKING:
541 		data |= PORT_LEARN_DISABLE;
542 		break;
543 	default:
544 		dev_err(ds->dev, "invalid STP state: %d\n", state);
545 		return;
546 	}
547 
548 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
549 	p->stp_state = state;
550 
551 	ksz_update_port_member(dev, port);
552 }
553 
554 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
555 {
556 	u8 data;
557 
558 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
559 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
560 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
561 
562 	if (port < dev->port_cnt) {
563 		/* flush individual port */
564 		ksz_pread8(dev, port, P_STP_CTRL, &data);
565 		if (!(data & PORT_LEARN_DISABLE))
566 			ksz_pwrite8(dev, port, P_STP_CTRL,
567 				    data | PORT_LEARN_DISABLE);
568 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
569 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
570 	} else {
571 		/* flush all */
572 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
573 	}
574 }
575 
576 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
577 				       bool flag,
578 				       struct netlink_ext_ack *extack)
579 {
580 	struct ksz_device *dev = ds->priv;
581 
582 	if (flag) {
583 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
584 			     PORT_VLAN_LOOKUP_VID_0, true);
585 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
586 	} else {
587 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
588 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
589 			     PORT_VLAN_LOOKUP_VID_0, false);
590 	}
591 
592 	return 0;
593 }
594 
595 static int ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
596 				 const struct switchdev_obj_port_vlan *vlan,
597 				 struct netlink_ext_ack *extack)
598 {
599 	struct ksz_device *dev = ds->priv;
600 	u32 vlan_table[3];
601 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
602 	int err;
603 
604 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
605 	if (err) {
606 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
607 		return err;
608 	}
609 
610 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
611 	if (untagged)
612 		vlan_table[1] |= BIT(port);
613 	else
614 		vlan_table[1] &= ~BIT(port);
615 	vlan_table[1] &= ~(BIT(dev->cpu_port));
616 
617 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
618 
619 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
620 	if (err) {
621 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
622 		return err;
623 	}
624 
625 	/* change PVID */
626 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
627 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
628 
629 	return 0;
630 }
631 
632 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
633 				 const struct switchdev_obj_port_vlan *vlan)
634 {
635 	struct ksz_device *dev = ds->priv;
636 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
637 	u32 vlan_table[3];
638 	u16 pvid;
639 
640 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
641 	pvid = pvid & 0xFFF;
642 
643 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
644 		dev_dbg(dev->dev, "Failed to get vlan table\n");
645 		return -ETIMEDOUT;
646 	}
647 
648 	vlan_table[2] &= ~BIT(port);
649 
650 	if (pvid == vlan->vid)
651 		pvid = 1;
652 
653 	if (untagged)
654 		vlan_table[1] &= ~BIT(port);
655 
656 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
657 		dev_dbg(dev->dev, "Failed to set vlan table\n");
658 		return -ETIMEDOUT;
659 	}
660 
661 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
662 
663 	return 0;
664 }
665 
666 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
667 				const unsigned char *addr, u16 vid,
668 				struct dsa_db db)
669 {
670 	struct ksz_device *dev = ds->priv;
671 	u32 alu_table[4];
672 	u32 data;
673 	int ret = 0;
674 
675 	mutex_lock(&dev->alu_mutex);
676 
677 	/* find any entry with mac & vid */
678 	data = vid << ALU_FID_INDEX_S;
679 	data |= ((addr[0] << 8) | addr[1]);
680 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
681 
682 	data = ((addr[2] << 24) | (addr[3] << 16));
683 	data |= ((addr[4] << 8) | addr[5]);
684 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
685 
686 	/* start read operation */
687 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
688 
689 	/* wait to be finished */
690 	ret = ksz9477_wait_alu_ready(dev);
691 	if (ret) {
692 		dev_dbg(dev->dev, "Failed to read ALU\n");
693 		goto exit;
694 	}
695 
696 	/* read ALU entry */
697 	ksz9477_read_table(dev, alu_table);
698 
699 	/* update ALU entry */
700 	alu_table[0] = ALU_V_STATIC_VALID;
701 	alu_table[1] |= BIT(port);
702 	if (vid)
703 		alu_table[1] |= ALU_V_USE_FID;
704 	alu_table[2] = (vid << ALU_V_FID_S);
705 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
706 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
707 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
708 
709 	ksz9477_write_table(dev, alu_table);
710 
711 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
712 
713 	/* wait to be finished */
714 	ret = ksz9477_wait_alu_ready(dev);
715 	if (ret)
716 		dev_dbg(dev->dev, "Failed to write ALU\n");
717 
718 exit:
719 	mutex_unlock(&dev->alu_mutex);
720 
721 	return ret;
722 }
723 
724 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
725 				const unsigned char *addr, u16 vid,
726 				struct dsa_db db)
727 {
728 	struct ksz_device *dev = ds->priv;
729 	u32 alu_table[4];
730 	u32 data;
731 	int ret = 0;
732 
733 	mutex_lock(&dev->alu_mutex);
734 
735 	/* read any entry with mac & vid */
736 	data = vid << ALU_FID_INDEX_S;
737 	data |= ((addr[0] << 8) | addr[1]);
738 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
739 
740 	data = ((addr[2] << 24) | (addr[3] << 16));
741 	data |= ((addr[4] << 8) | addr[5]);
742 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
743 
744 	/* start read operation */
745 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
746 
747 	/* wait to be finished */
748 	ret = ksz9477_wait_alu_ready(dev);
749 	if (ret) {
750 		dev_dbg(dev->dev, "Failed to read ALU\n");
751 		goto exit;
752 	}
753 
754 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
755 	if (alu_table[0] & ALU_V_STATIC_VALID) {
756 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
757 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
758 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
759 
760 		/* clear forwarding port */
761 		alu_table[2] &= ~BIT(port);
762 
763 		/* if there is no port to forward, clear table */
764 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
765 			alu_table[0] = 0;
766 			alu_table[1] = 0;
767 			alu_table[2] = 0;
768 			alu_table[3] = 0;
769 		}
770 	} else {
771 		alu_table[0] = 0;
772 		alu_table[1] = 0;
773 		alu_table[2] = 0;
774 		alu_table[3] = 0;
775 	}
776 
777 	ksz9477_write_table(dev, alu_table);
778 
779 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
780 
781 	/* wait to be finished */
782 	ret = ksz9477_wait_alu_ready(dev);
783 	if (ret)
784 		dev_dbg(dev->dev, "Failed to write ALU\n");
785 
786 exit:
787 	mutex_unlock(&dev->alu_mutex);
788 
789 	return ret;
790 }
791 
792 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
793 {
794 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
795 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
796 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
797 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
798 			ALU_V_PRIO_AGE_CNT_M;
799 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
800 
801 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
802 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
803 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
804 
805 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
806 
807 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
808 	alu->mac[1] = alu_table[2] & 0xFF;
809 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
810 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
811 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
812 	alu->mac[5] = alu_table[3] & 0xFF;
813 }
814 
815 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
816 				 dsa_fdb_dump_cb_t *cb, void *data)
817 {
818 	struct ksz_device *dev = ds->priv;
819 	int ret = 0;
820 	u32 ksz_data;
821 	u32 alu_table[4];
822 	struct alu_struct alu;
823 	int timeout;
824 
825 	mutex_lock(&dev->alu_mutex);
826 
827 	/* start ALU search */
828 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
829 
830 	do {
831 		timeout = 1000;
832 		do {
833 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
834 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
835 				break;
836 			usleep_range(1, 10);
837 		} while (timeout-- > 0);
838 
839 		if (!timeout) {
840 			dev_dbg(dev->dev, "Failed to search ALU\n");
841 			ret = -ETIMEDOUT;
842 			goto exit;
843 		}
844 
845 		/* read ALU table */
846 		ksz9477_read_table(dev, alu_table);
847 
848 		ksz9477_convert_alu(&alu, alu_table);
849 
850 		if (alu.port_forward & BIT(port)) {
851 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
852 			if (ret)
853 				goto exit;
854 		}
855 	} while (ksz_data & ALU_START);
856 
857 exit:
858 
859 	/* stop ALU search */
860 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
861 
862 	mutex_unlock(&dev->alu_mutex);
863 
864 	return ret;
865 }
866 
867 static int ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
868 				const struct switchdev_obj_port_mdb *mdb,
869 				struct dsa_db db)
870 {
871 	struct ksz_device *dev = ds->priv;
872 	u32 static_table[4];
873 	u32 data;
874 	int index;
875 	u32 mac_hi, mac_lo;
876 	int err = 0;
877 
878 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
879 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
880 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
881 
882 	mutex_lock(&dev->alu_mutex);
883 
884 	for (index = 0; index < dev->num_statics; index++) {
885 		/* find empty slot first */
886 		data = (index << ALU_STAT_INDEX_S) |
887 			ALU_STAT_READ | ALU_STAT_START;
888 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
889 
890 		/* wait to be finished */
891 		err = ksz9477_wait_alu_sta_ready(dev);
892 		if (err) {
893 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
894 			goto exit;
895 		}
896 
897 		/* read ALU static table */
898 		ksz9477_read_table(dev, static_table);
899 
900 		if (static_table[0] & ALU_V_STATIC_VALID) {
901 			/* check this has same vid & mac address */
902 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
903 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
904 			    static_table[3] == mac_lo) {
905 				/* found matching one */
906 				break;
907 			}
908 		} else {
909 			/* found empty one */
910 			break;
911 		}
912 	}
913 
914 	/* no available entry */
915 	if (index == dev->num_statics) {
916 		err = -ENOSPC;
917 		goto exit;
918 	}
919 
920 	/* add entry */
921 	static_table[0] = ALU_V_STATIC_VALID;
922 	static_table[1] |= BIT(port);
923 	if (mdb->vid)
924 		static_table[1] |= ALU_V_USE_FID;
925 	static_table[2] = (mdb->vid << ALU_V_FID_S);
926 	static_table[2] |= mac_hi;
927 	static_table[3] = mac_lo;
928 
929 	ksz9477_write_table(dev, static_table);
930 
931 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
932 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
933 
934 	/* wait to be finished */
935 	if (ksz9477_wait_alu_sta_ready(dev))
936 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
937 
938 exit:
939 	mutex_unlock(&dev->alu_mutex);
940 	return err;
941 }
942 
943 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
944 				const struct switchdev_obj_port_mdb *mdb,
945 				struct dsa_db db)
946 {
947 	struct ksz_device *dev = ds->priv;
948 	u32 static_table[4];
949 	u32 data;
950 	int index;
951 	int ret = 0;
952 	u32 mac_hi, mac_lo;
953 
954 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
955 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
956 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
957 
958 	mutex_lock(&dev->alu_mutex);
959 
960 	for (index = 0; index < dev->num_statics; index++) {
961 		/* find empty slot first */
962 		data = (index << ALU_STAT_INDEX_S) |
963 			ALU_STAT_READ | ALU_STAT_START;
964 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
965 
966 		/* wait to be finished */
967 		ret = ksz9477_wait_alu_sta_ready(dev);
968 		if (ret) {
969 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
970 			goto exit;
971 		}
972 
973 		/* read ALU static table */
974 		ksz9477_read_table(dev, static_table);
975 
976 		if (static_table[0] & ALU_V_STATIC_VALID) {
977 			/* check this has same vid & mac address */
978 
979 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
980 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
981 			    static_table[3] == mac_lo) {
982 				/* found matching one */
983 				break;
984 			}
985 		}
986 	}
987 
988 	/* no available entry */
989 	if (index == dev->num_statics)
990 		goto exit;
991 
992 	/* clear port */
993 	static_table[1] &= ~BIT(port);
994 
995 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
996 		/* delete entry */
997 		static_table[0] = 0;
998 		static_table[1] = 0;
999 		static_table[2] = 0;
1000 		static_table[3] = 0;
1001 	}
1002 
1003 	ksz9477_write_table(dev, static_table);
1004 
1005 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
1006 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1007 
1008 	/* wait to be finished */
1009 	ret = ksz9477_wait_alu_sta_ready(dev);
1010 	if (ret)
1011 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1012 
1013 exit:
1014 	mutex_unlock(&dev->alu_mutex);
1015 
1016 	return ret;
1017 }
1018 
1019 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
1020 				   struct dsa_mall_mirror_tc_entry *mirror,
1021 				   bool ingress, struct netlink_ext_ack *extack)
1022 {
1023 	struct ksz_device *dev = ds->priv;
1024 
1025 	if (ingress)
1026 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1027 	else
1028 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1029 
1030 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1031 
1032 	/* configure mirror port */
1033 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1034 		     PORT_MIRROR_SNIFFER, true);
1035 
1036 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1037 
1038 	return 0;
1039 }
1040 
1041 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
1042 				    struct dsa_mall_mirror_tc_entry *mirror)
1043 {
1044 	struct ksz_device *dev = ds->priv;
1045 	u8 data;
1046 
1047 	if (mirror->ingress)
1048 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1049 	else
1050 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1051 
1052 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1053 
1054 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1055 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1056 			     PORT_MIRROR_SNIFFER, false);
1057 }
1058 
1059 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
1060 {
1061 	bool gbit;
1062 
1063 	if (dev->features & NEW_XMII)
1064 		gbit = !(data & PORT_MII_NOT_1GBIT);
1065 	else
1066 		gbit = !!(data & PORT_MII_1000MBIT_S1);
1067 	return gbit;
1068 }
1069 
1070 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1071 {
1072 	if (dev->features & NEW_XMII) {
1073 		if (gbit)
1074 			*data &= ~PORT_MII_NOT_1GBIT;
1075 		else
1076 			*data |= PORT_MII_NOT_1GBIT;
1077 	} else {
1078 		if (gbit)
1079 			*data |= PORT_MII_1000MBIT_S1;
1080 		else
1081 			*data &= ~PORT_MII_1000MBIT_S1;
1082 	}
1083 }
1084 
1085 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1086 {
1087 	int mode;
1088 
1089 	if (dev->features & NEW_XMII) {
1090 		switch (data & PORT_MII_SEL_M) {
1091 		case PORT_MII_SEL:
1092 			mode = 0;
1093 			break;
1094 		case PORT_RMII_SEL:
1095 			mode = 1;
1096 			break;
1097 		case PORT_GMII_SEL:
1098 			mode = 2;
1099 			break;
1100 		default:
1101 			mode = 3;
1102 		}
1103 	} else {
1104 		switch (data & PORT_MII_SEL_M) {
1105 		case PORT_MII_SEL_S1:
1106 			mode = 0;
1107 			break;
1108 		case PORT_RMII_SEL_S1:
1109 			mode = 1;
1110 			break;
1111 		case PORT_GMII_SEL_S1:
1112 			mode = 2;
1113 			break;
1114 		default:
1115 			mode = 3;
1116 		}
1117 	}
1118 	return mode;
1119 }
1120 
1121 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1122 {
1123 	u8 xmii;
1124 
1125 	if (dev->features & NEW_XMII) {
1126 		switch (mode) {
1127 		case 0:
1128 			xmii = PORT_MII_SEL;
1129 			break;
1130 		case 1:
1131 			xmii = PORT_RMII_SEL;
1132 			break;
1133 		case 2:
1134 			xmii = PORT_GMII_SEL;
1135 			break;
1136 		default:
1137 			xmii = PORT_RGMII_SEL;
1138 			break;
1139 		}
1140 	} else {
1141 		switch (mode) {
1142 		case 0:
1143 			xmii = PORT_MII_SEL_S1;
1144 			break;
1145 		case 1:
1146 			xmii = PORT_RMII_SEL_S1;
1147 			break;
1148 		case 2:
1149 			xmii = PORT_GMII_SEL_S1;
1150 			break;
1151 		default:
1152 			xmii = PORT_RGMII_SEL_S1;
1153 			break;
1154 		}
1155 	}
1156 	*data &= ~PORT_MII_SEL_M;
1157 	*data |= xmii;
1158 }
1159 
1160 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1161 {
1162 	phy_interface_t interface;
1163 	bool gbit;
1164 	int mode;
1165 	u8 data8;
1166 
1167 	if (port < dev->phy_port_cnt)
1168 		return PHY_INTERFACE_MODE_NA;
1169 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1170 	gbit = ksz9477_get_gbit(dev, data8);
1171 	mode = ksz9477_get_xmii(dev, data8);
1172 	switch (mode) {
1173 	case 2:
1174 		interface = PHY_INTERFACE_MODE_GMII;
1175 		if (gbit)
1176 			break;
1177 		fallthrough;
1178 	case 0:
1179 		interface = PHY_INTERFACE_MODE_MII;
1180 		break;
1181 	case 1:
1182 		interface = PHY_INTERFACE_MODE_RMII;
1183 		break;
1184 	default:
1185 		interface = PHY_INTERFACE_MODE_RGMII;
1186 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1187 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1188 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1189 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1190 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1191 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1192 		}
1193 		break;
1194 	}
1195 	return interface;
1196 }
1197 
1198 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1199 				   u8 dev_addr, u16 reg_addr, u16 val)
1200 {
1201 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1202 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1203 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1204 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1205 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1206 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1207 }
1208 
1209 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1210 {
1211 	/* Apply PHY settings to address errata listed in
1212 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1213 	 * Silicon Errata and Data Sheet Clarification documents:
1214 	 *
1215 	 * Register settings are needed to improve PHY receive performance
1216 	 */
1217 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1218 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1219 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1220 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1221 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1222 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1223 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1224 
1225 	/* Transmit waveform amplitude can be improved
1226 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1227 	 */
1228 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1229 
1230 	/* Energy Efficient Ethernet (EEE) feature select must
1231 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1232 	 */
1233 	if (dev->features & GBIT_SUPPORT)
1234 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1235 
1236 	/* Register settings are required to meet data sheet
1237 	 * supply current specifications
1238 	 */
1239 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1240 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1241 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1242 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1243 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1244 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1245 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1246 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1247 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1248 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1249 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1250 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1251 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1252 }
1253 
1254 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1255 {
1256 	struct ksz_port *p = &dev->ports[port];
1257 	struct dsa_switch *ds = dev->ds;
1258 	u8 data8, member;
1259 	u16 data16;
1260 
1261 	/* enable tag tail for host port */
1262 	if (cpu_port)
1263 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1264 			     true);
1265 
1266 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1267 
1268 	/* set back pressure */
1269 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1270 
1271 	/* enable broadcast storm limit */
1272 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1273 
1274 	/* disable DiffServ priority */
1275 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1276 
1277 	/* replace priority */
1278 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1279 		     false);
1280 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1281 			   MTI_PVID_REPLACE, false);
1282 
1283 	/* enable 802.1p priority */
1284 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1285 
1286 	if (port < dev->phy_port_cnt) {
1287 		/* do not force flow control */
1288 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1289 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1290 			     false);
1291 
1292 		if (dev->phy_errata_9477)
1293 			ksz9477_phy_errata_setup(dev, port);
1294 	} else {
1295 		/* force flow control */
1296 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1297 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1298 			     true);
1299 
1300 		/* configure MAC to 1G & RGMII mode */
1301 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1302 		switch (p->interface) {
1303 		case PHY_INTERFACE_MODE_MII:
1304 			ksz9477_set_xmii(dev, 0, &data8);
1305 			ksz9477_set_gbit(dev, false, &data8);
1306 			p->phydev.speed = SPEED_100;
1307 			break;
1308 		case PHY_INTERFACE_MODE_RMII:
1309 			ksz9477_set_xmii(dev, 1, &data8);
1310 			ksz9477_set_gbit(dev, false, &data8);
1311 			p->phydev.speed = SPEED_100;
1312 			break;
1313 		case PHY_INTERFACE_MODE_GMII:
1314 			ksz9477_set_xmii(dev, 2, &data8);
1315 			ksz9477_set_gbit(dev, true, &data8);
1316 			p->phydev.speed = SPEED_1000;
1317 			break;
1318 		default:
1319 			ksz9477_set_xmii(dev, 3, &data8);
1320 			ksz9477_set_gbit(dev, true, &data8);
1321 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1322 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1323 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1324 			    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1325 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1326 			if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1327 			    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1328 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1329 			/* On KSZ9893, disable RGMII in-band status support */
1330 			if (dev->features & IS_9893)
1331 				data8 &= ~PORT_MII_MAC_MODE;
1332 			p->phydev.speed = SPEED_1000;
1333 			break;
1334 		}
1335 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1336 		p->phydev.duplex = 1;
1337 	}
1338 
1339 	if (cpu_port)
1340 		member = dsa_user_ports(ds);
1341 	else
1342 		member = BIT(dsa_upstream_port(ds, port));
1343 
1344 	ksz9477_cfg_port_member(dev, port, member);
1345 
1346 	/* clear pending interrupts */
1347 	if (port < dev->phy_port_cnt)
1348 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1349 }
1350 
1351 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1352 {
1353 	struct ksz_device *dev = ds->priv;
1354 	struct ksz_port *p;
1355 	int i;
1356 
1357 	for (i = 0; i < dev->port_cnt; i++) {
1358 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1359 			phy_interface_t interface;
1360 			const char *prev_msg;
1361 			const char *prev_mode;
1362 
1363 			dev->cpu_port = i;
1364 			p = &dev->ports[i];
1365 
1366 			/* Read from XMII register to determine host port
1367 			 * interface.  If set specifically in device tree
1368 			 * note the difference to help debugging.
1369 			 */
1370 			interface = ksz9477_get_interface(dev, i);
1371 			if (!p->interface) {
1372 				if (dev->compat_interface) {
1373 					dev_warn(dev->dev,
1374 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1375 						 "Please update your device tree.\n",
1376 						 i);
1377 					p->interface = dev->compat_interface;
1378 				} else {
1379 					p->interface = interface;
1380 				}
1381 			}
1382 			if (interface && interface != p->interface) {
1383 				prev_msg = " instead of ";
1384 				prev_mode = phy_modes(interface);
1385 			} else {
1386 				prev_msg = "";
1387 				prev_mode = "";
1388 			}
1389 			dev_info(dev->dev,
1390 				 "Port%d: using phy mode %s%s%s\n",
1391 				 i,
1392 				 phy_modes(p->interface),
1393 				 prev_msg,
1394 				 prev_mode);
1395 
1396 			/* enable cpu port */
1397 			ksz9477_port_setup(dev, i, true);
1398 			p->on = 1;
1399 		}
1400 	}
1401 
1402 	for (i = 0; i < dev->port_cnt; i++) {
1403 		if (i == dev->cpu_port)
1404 			continue;
1405 		p = &dev->ports[i];
1406 
1407 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1408 		p->on = 1;
1409 		if (i < dev->phy_port_cnt)
1410 			p->phy = 1;
1411 		if (dev->chip_id == 0x00947700 && i == 6) {
1412 			p->sgmii = 1;
1413 
1414 			/* SGMII PHY detection code is not implemented yet. */
1415 			p->phy = 0;
1416 		}
1417 	}
1418 }
1419 
1420 static int ksz9477_setup(struct dsa_switch *ds)
1421 {
1422 	struct ksz_device *dev = ds->priv;
1423 	int ret = 0;
1424 
1425 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1426 				       dev->num_vlans, GFP_KERNEL);
1427 	if (!dev->vlan_cache)
1428 		return -ENOMEM;
1429 
1430 	ret = ksz9477_reset_switch(dev);
1431 	if (ret) {
1432 		dev_err(ds->dev, "failed to reset switch\n");
1433 		return ret;
1434 	}
1435 
1436 	/* Required for port partitioning. */
1437 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1438 		      true);
1439 
1440 	/* Do not work correctly with tail tagging. */
1441 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1442 
1443 	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1444 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1445 
1446 	/* Now we can configure default MTU value */
1447 	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1448 				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1449 	if (ret)
1450 		return ret;
1451 
1452 	ksz9477_config_cpu_port(ds);
1453 
1454 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1455 
1456 	/* queue based egress rate limit */
1457 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1458 
1459 	/* enable global MIB counter freeze function */
1460 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1461 
1462 	/* start switch */
1463 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1464 
1465 	ksz_init_mib_timer(dev);
1466 
1467 	ds->configure_vlan_while_not_filtering = false;
1468 
1469 	return 0;
1470 }
1471 
1472 static const struct dsa_switch_ops ksz9477_switch_ops = {
1473 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1474 	.setup			= ksz9477_setup,
1475 	.phy_read		= ksz9477_phy_read16,
1476 	.phy_write		= ksz9477_phy_write16,
1477 	.phylink_mac_link_down	= ksz_mac_link_down,
1478 	.port_enable		= ksz_enable_port,
1479 	.get_strings		= ksz9477_get_strings,
1480 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1481 	.get_sset_count		= ksz_sset_count,
1482 	.port_bridge_join	= ksz_port_bridge_join,
1483 	.port_bridge_leave	= ksz_port_bridge_leave,
1484 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1485 	.port_fast_age		= ksz_port_fast_age,
1486 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1487 	.port_vlan_add		= ksz9477_port_vlan_add,
1488 	.port_vlan_del		= ksz9477_port_vlan_del,
1489 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1490 	.port_fdb_add		= ksz9477_port_fdb_add,
1491 	.port_fdb_del		= ksz9477_port_fdb_del,
1492 	.port_mdb_add           = ksz9477_port_mdb_add,
1493 	.port_mdb_del           = ksz9477_port_mdb_del,
1494 	.port_mirror_add	= ksz9477_port_mirror_add,
1495 	.port_mirror_del	= ksz9477_port_mirror_del,
1496 	.get_stats64		= ksz9477_get_stats64,
1497 	.port_change_mtu	= ksz9477_change_mtu,
1498 	.port_max_mtu		= ksz9477_max_mtu,
1499 };
1500 
1501 static u32 ksz9477_get_port_addr(int port, int offset)
1502 {
1503 	return PORT_CTRL_ADDR(port, offset);
1504 }
1505 
1506 static int ksz9477_switch_detect(struct ksz_device *dev)
1507 {
1508 	u8 data8;
1509 	u8 id_hi;
1510 	u8 id_lo;
1511 	u32 id32;
1512 	int ret;
1513 
1514 	/* turn off SPI DO Edge select */
1515 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1516 	if (ret)
1517 		return ret;
1518 
1519 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1520 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1521 	if (ret)
1522 		return ret;
1523 
1524 	/* read chip id */
1525 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1526 	if (ret)
1527 		return ret;
1528 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1529 	if (ret)
1530 		return ret;
1531 
1532 	/* Number of ports can be reduced depending on chip. */
1533 	dev->phy_port_cnt = 5;
1534 
1535 	/* Default capability is gigabit capable. */
1536 	dev->features = GBIT_SUPPORT;
1537 
1538 	dev_dbg(dev->dev, "Switch detect: ID=%08x%02x\n", id32, data8);
1539 	id_hi = (u8)(id32 >> 16);
1540 	id_lo = (u8)(id32 >> 8);
1541 	if ((id_lo & 0xf) == 3) {
1542 		/* Chip is from KSZ9893 design. */
1543 		dev_info(dev->dev, "Found KSZ9893\n");
1544 		dev->features |= IS_9893;
1545 
1546 		/* Chip does not support gigabit. */
1547 		if (data8 & SW_QW_ABLE)
1548 			dev->features &= ~GBIT_SUPPORT;
1549 		dev->phy_port_cnt = 2;
1550 	} else {
1551 		dev_info(dev->dev, "Found KSZ9477 or compatible\n");
1552 		/* Chip uses new XMII register definitions. */
1553 		dev->features |= NEW_XMII;
1554 
1555 		/* Chip does not support gigabit. */
1556 		if (!(data8 & SW_GIGABIT_ABLE))
1557 			dev->features &= ~GBIT_SUPPORT;
1558 	}
1559 
1560 	/* Change chip id to known ones so it can be matched against them. */
1561 	id32 = (id_hi << 16) | (id_lo << 8);
1562 
1563 	dev->chip_id = id32;
1564 
1565 	return 0;
1566 }
1567 
1568 struct ksz_chip_data {
1569 	u32 chip_id;
1570 	const char *dev_name;
1571 	int num_vlans;
1572 	int num_alus;
1573 	int num_statics;
1574 	int cpu_ports;
1575 	int port_cnt;
1576 	bool phy_errata_9477;
1577 };
1578 
1579 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1580 	{
1581 		.chip_id = 0x00947700,
1582 		.dev_name = "KSZ9477",
1583 		.num_vlans = 4096,
1584 		.num_alus = 4096,
1585 		.num_statics = 16,
1586 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1587 		.port_cnt = 7,		/* total physical port count */
1588 		.phy_errata_9477 = true,
1589 	},
1590 	{
1591 		.chip_id = 0x00989700,
1592 		.dev_name = "KSZ9897",
1593 		.num_vlans = 4096,
1594 		.num_alus = 4096,
1595 		.num_statics = 16,
1596 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1597 		.port_cnt = 7,		/* total physical port count */
1598 		.phy_errata_9477 = true,
1599 	},
1600 	{
1601 		.chip_id = 0x00989300,
1602 		.dev_name = "KSZ9893",
1603 		.num_vlans = 4096,
1604 		.num_alus = 4096,
1605 		.num_statics = 16,
1606 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1607 		.port_cnt = 3,		/* total port count */
1608 	},
1609 	{
1610 		.chip_id = 0x00956700,
1611 		.dev_name = "KSZ9567",
1612 		.num_vlans = 4096,
1613 		.num_alus = 4096,
1614 		.num_statics = 16,
1615 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1616 		.port_cnt = 7,		/* total physical port count */
1617 		.phy_errata_9477 = true,
1618 	},
1619 };
1620 
1621 static int ksz9477_switch_init(struct ksz_device *dev)
1622 {
1623 	int i;
1624 
1625 	dev->ds->ops = &ksz9477_switch_ops;
1626 
1627 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1628 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1629 
1630 		if (dev->chip_id == chip->chip_id) {
1631 			dev->name = chip->dev_name;
1632 			dev->num_vlans = chip->num_vlans;
1633 			dev->num_alus = chip->num_alus;
1634 			dev->num_statics = chip->num_statics;
1635 			dev->port_cnt = chip->port_cnt;
1636 			dev->cpu_ports = chip->cpu_ports;
1637 			dev->phy_errata_9477 = chip->phy_errata_9477;
1638 
1639 			break;
1640 		}
1641 	}
1642 
1643 	/* no switch found */
1644 	if (!dev->port_cnt)
1645 		return -ENODEV;
1646 
1647 	dev->port_mask = (1 << dev->port_cnt) - 1;
1648 
1649 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1650 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1651 
1652 	dev->ports = devm_kzalloc(dev->dev,
1653 				  dev->port_cnt * sizeof(struct ksz_port),
1654 				  GFP_KERNEL);
1655 	if (!dev->ports)
1656 		return -ENOMEM;
1657 	for (i = 0; i < dev->port_cnt; i++) {
1658 		spin_lock_init(&dev->ports[i].mib.stats64_lock);
1659 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1660 		dev->ports[i].mib.counters =
1661 			devm_kzalloc(dev->dev,
1662 				     sizeof(u64) *
1663 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1664 				     GFP_KERNEL);
1665 		if (!dev->ports[i].mib.counters)
1666 			return -ENOMEM;
1667 	}
1668 
1669 	/* set the real number of ports */
1670 	dev->ds->num_ports = dev->port_cnt;
1671 
1672 	return 0;
1673 }
1674 
1675 static void ksz9477_switch_exit(struct ksz_device *dev)
1676 {
1677 	ksz9477_reset_switch(dev);
1678 }
1679 
1680 static const struct ksz_dev_ops ksz9477_dev_ops = {
1681 	.get_port_addr = ksz9477_get_port_addr,
1682 	.cfg_port_member = ksz9477_cfg_port_member,
1683 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1684 	.port_setup = ksz9477_port_setup,
1685 	.r_mib_cnt = ksz9477_r_mib_cnt,
1686 	.r_mib_pkt = ksz9477_r_mib_pkt,
1687 	.r_mib_stat64 = ksz9477_r_mib_stats64,
1688 	.freeze_mib = ksz9477_freeze_mib,
1689 	.port_init_cnt = ksz9477_port_init_cnt,
1690 	.shutdown = ksz9477_reset_switch,
1691 	.detect = ksz9477_switch_detect,
1692 	.init = ksz9477_switch_init,
1693 	.exit = ksz9477_switch_exit,
1694 };
1695 
1696 int ksz9477_switch_register(struct ksz_device *dev)
1697 {
1698 	int ret, i;
1699 	struct phy_device *phydev;
1700 
1701 	ret = ksz_switch_register(dev, &ksz9477_dev_ops);
1702 	if (ret)
1703 		return ret;
1704 
1705 	for (i = 0; i < dev->phy_port_cnt; ++i) {
1706 		if (!dsa_is_user_port(dev->ds, i))
1707 			continue;
1708 
1709 		phydev = dsa_to_port(dev->ds, i)->slave->phydev;
1710 
1711 		/* The MAC actually cannot run in 1000 half-duplex mode. */
1712 		phy_remove_link_mode(phydev,
1713 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1714 
1715 		/* PHY does not support gigabit. */
1716 		if (!(dev->features & GBIT_SUPPORT))
1717 			phy_remove_link_mode(phydev,
1718 					     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1719 	}
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL(ksz9477_switch_register);
1723 
1724 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1725 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1726 MODULE_LICENSE("GPL");
1727