1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19 
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT			BIT(0)
22 #define NEW_XMII			BIT(1)
23 #define IS_9893				BIT(2)
24 
25 static const struct {
26 	int index;
27 	char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 	{ 0x00, "rx_hi" },
30 	{ 0x01, "rx_undersize" },
31 	{ 0x02, "rx_fragments" },
32 	{ 0x03, "rx_oversize" },
33 	{ 0x04, "rx_jabbers" },
34 	{ 0x05, "rx_symbol_err" },
35 	{ 0x06, "rx_crc_err" },
36 	{ 0x07, "rx_align_err" },
37 	{ 0x08, "rx_mac_ctrl" },
38 	{ 0x09, "rx_pause" },
39 	{ 0x0A, "rx_bcast" },
40 	{ 0x0B, "rx_mcast" },
41 	{ 0x0C, "rx_ucast" },
42 	{ 0x0D, "rx_64_or_less" },
43 	{ 0x0E, "rx_65_127" },
44 	{ 0x0F, "rx_128_255" },
45 	{ 0x10, "rx_256_511" },
46 	{ 0x11, "rx_512_1023" },
47 	{ 0x12, "rx_1024_1522" },
48 	{ 0x13, "rx_1523_2000" },
49 	{ 0x14, "rx_2001" },
50 	{ 0x15, "tx_hi" },
51 	{ 0x16, "tx_late_col" },
52 	{ 0x17, "tx_pause" },
53 	{ 0x18, "tx_bcast" },
54 	{ 0x19, "tx_mcast" },
55 	{ 0x1A, "tx_ucast" },
56 	{ 0x1B, "tx_deferred" },
57 	{ 0x1C, "tx_total_col" },
58 	{ 0x1D, "tx_exc_col" },
59 	{ 0x1E, "tx_single_col" },
60 	{ 0x1F, "tx_mult_col" },
61 	{ 0x80, "rx_total" },
62 	{ 0x81, "tx_total" },
63 	{ 0x82, "rx_discards" },
64 	{ 0x83, "tx_discards" },
65 };
66 
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71 
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 			 bool set)
74 {
75 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 			   bits, set ? bits : 0);
77 }
78 
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83 
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 			       u32 bits, bool set)
86 {
87 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 			   bits, set ? bits : 0);
89 }
90 
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93 	unsigned int val;
94 
95 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 					val, !(val & VLAN_START), 10, 1000);
97 }
98 
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 				  u32 *vlan_table)
101 {
102 	int ret;
103 
104 	mutex_lock(&dev->vlan_mutex);
105 
106 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108 
109 	/* wait to be cleared */
110 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 	if (ret) {
112 		dev_dbg(dev->dev, "Failed to read vlan table\n");
113 		goto exit;
114 	}
115 
116 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119 
120 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121 
122 exit:
123 	mutex_unlock(&dev->vlan_mutex);
124 
125 	return ret;
126 }
127 
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 				  u32 *vlan_table)
130 {
131 	int ret;
132 
133 	mutex_lock(&dev->vlan_mutex);
134 
135 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138 
139 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141 
142 	/* wait to be cleared */
143 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 	if (ret) {
145 		dev_dbg(dev->dev, "Failed to write vlan table\n");
146 		goto exit;
147 	}
148 
149 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150 
151 	/* update vlan cache table */
152 	dev->vlan_cache[vid].table[0] = vlan_table[0];
153 	dev->vlan_cache[vid].table[1] = vlan_table[1];
154 	dev->vlan_cache[vid].table[2] = vlan_table[2];
155 
156 exit:
157 	mutex_unlock(&dev->vlan_mutex);
158 
159 	return ret;
160 }
161 
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169 
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177 
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180 	unsigned int val;
181 
182 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 					val, !(val & ALU_START), 10, 1000);
184 }
185 
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188 	unsigned int val;
189 
190 	return regmap_read_poll_timeout(dev->regmap[2],
191 					REG_SW_ALU_STAT_CTRL__4,
192 					val, !(val & ALU_STAT_START),
193 					10, 1000);
194 }
195 
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198 	u8 data8;
199 	u32 data32;
200 
201 	/* reset switch */
202 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203 
204 	/* turn off SPI DO Edge select */
205 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 			   SPI_AUTO_EDGE_DETECTION, 0);
207 
208 	/* default configuration */
209 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213 
214 	/* disable interrupts */
215 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218 
219 	/* set broadcast storm protection 10% rate */
220 	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 			   BROADCAST_STORM_RATE,
222 			   (BROADCAST_STORM_VALUE *
223 			   BROADCAST_STORM_PROT_RATE) / 100);
224 
225 	if (dev->synclko_125)
226 		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228 
229 	return 0;
230 }
231 
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 			      u64 *cnt)
234 {
235 	struct ksz_port *p = &dev->ports[port];
236 	unsigned int val;
237 	u32 data;
238 	int ret;
239 
240 	/* retain the flush/freeze bit */
241 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 	data |= MIB_COUNTER_READ;
243 	data |= (addr << MIB_COUNTER_INDEX_S);
244 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245 
246 	ret = regmap_read_poll_timeout(dev->regmap[2],
247 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 			val, !(val & MIB_COUNTER_READ), 10, 1000);
249 	/* failed to read MIB. get out of loop */
250 	if (ret) {
251 		dev_dbg(dev->dev, "Failed to get MIB\n");
252 		return;
253 	}
254 
255 	/* count resets upon read */
256 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 	*cnt += data;
258 }
259 
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 			      u64 *dropped, u64 *cnt)
262 {
263 	addr = ksz9477_mib_names[addr].index;
264 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266 
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 	struct ksz_port *p = &dev->ports[port];
271 
272 	/* enable/disable the port for flush/freeze function */
273 	mutex_lock(&p->mib.cnt_mutex);
274 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275 
276 	/* used by MIB counter reading code to know freeze is enabled */
277 	p->freeze = freeze;
278 	mutex_unlock(&p->mib.cnt_mutex);
279 }
280 
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283 	struct ksz_port_mib *mib = &dev->ports[port].mib;
284 
285 	/* flush all enabled port MIB counters */
286 	mutex_lock(&mib->cnt_mutex);
287 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 		     MIB_COUNTER_FLUSH_FREEZE);
289 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 	mutex_unlock(&mib->cnt_mutex);
292 
293 	mib->cnt_ptr = 0;
294 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296 
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 						      int port,
299 						      enum dsa_tag_protocol mp)
300 {
301 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
302 	struct ksz_device *dev = ds->priv;
303 
304 	if (dev->features & IS_9893)
305 		proto = DSA_TAG_PROTO_KSZ9893;
306 	return proto;
307 }
308 
309 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
310 {
311 	struct ksz_device *dev = ds->priv;
312 	u16 val = 0xffff;
313 
314 	/* No real PHY after this. Simulate the PHY.
315 	 * A fixed PHY can be setup in the device tree, but this function is
316 	 * still called for that port during initialization.
317 	 * For RGMII PHY there is no way to access it so the fixed PHY should
318 	 * be used.  For SGMII PHY the supporting code will be added later.
319 	 */
320 	if (addr >= dev->phy_port_cnt) {
321 		struct ksz_port *p = &dev->ports[addr];
322 
323 		switch (reg) {
324 		case MII_BMCR:
325 			val = 0x1140;
326 			break;
327 		case MII_BMSR:
328 			val = 0x796d;
329 			break;
330 		case MII_PHYSID1:
331 			val = 0x0022;
332 			break;
333 		case MII_PHYSID2:
334 			val = 0x1631;
335 			break;
336 		case MII_ADVERTISE:
337 			val = 0x05e1;
338 			break;
339 		case MII_LPA:
340 			val = 0xc5e1;
341 			break;
342 		case MII_CTRL1000:
343 			val = 0x0700;
344 			break;
345 		case MII_STAT1000:
346 			if (p->phydev.speed == SPEED_1000)
347 				val = 0x3800;
348 			else
349 				val = 0;
350 			break;
351 		}
352 	} else {
353 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
354 	}
355 
356 	return val;
357 }
358 
359 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
360 			       u16 val)
361 {
362 	struct ksz_device *dev = ds->priv;
363 
364 	/* No real PHY after this. */
365 	if (addr >= dev->phy_port_cnt)
366 		return 0;
367 
368 	/* No gigabit support.  Do not write to this register. */
369 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
370 		return 0;
371 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
372 
373 	return 0;
374 }
375 
376 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
377 				u32 stringset, uint8_t *buf)
378 {
379 	int i;
380 
381 	if (stringset != ETH_SS_STATS)
382 		return;
383 
384 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
385 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
386 		       ETH_GSTRING_LEN);
387 	}
388 }
389 
390 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
391 				    u8 member)
392 {
393 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
394 	dev->ports[port].member = member;
395 }
396 
397 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
398 				       u8 state)
399 {
400 	struct ksz_device *dev = ds->priv;
401 	struct ksz_port *p = &dev->ports[port];
402 	u8 data;
403 	int member = -1;
404 	int forward = dev->member;
405 
406 	ksz_pread8(dev, port, P_STP_CTRL, &data);
407 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
408 
409 	switch (state) {
410 	case BR_STATE_DISABLED:
411 		data |= PORT_LEARN_DISABLE;
412 		if (port != dev->cpu_port)
413 			member = 0;
414 		break;
415 	case BR_STATE_LISTENING:
416 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
417 		if (port != dev->cpu_port &&
418 		    p->stp_state == BR_STATE_DISABLED)
419 			member = dev->host_mask | p->vid_member;
420 		break;
421 	case BR_STATE_LEARNING:
422 		data |= PORT_RX_ENABLE;
423 		break;
424 	case BR_STATE_FORWARDING:
425 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
426 
427 		/* This function is also used internally. */
428 		if (port == dev->cpu_port)
429 			break;
430 
431 		member = dev->host_mask | p->vid_member;
432 		mutex_lock(&dev->dev_mutex);
433 
434 		/* Port is a member of a bridge. */
435 		if (dev->br_member & (1 << port)) {
436 			dev->member |= (1 << port);
437 			member = dev->member;
438 		}
439 		mutex_unlock(&dev->dev_mutex);
440 		break;
441 	case BR_STATE_BLOCKING:
442 		data |= PORT_LEARN_DISABLE;
443 		if (port != dev->cpu_port &&
444 		    p->stp_state == BR_STATE_DISABLED)
445 			member = dev->host_mask | p->vid_member;
446 		break;
447 	default:
448 		dev_err(ds->dev, "invalid STP state: %d\n", state);
449 		return;
450 	}
451 
452 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
453 	p->stp_state = state;
454 	mutex_lock(&dev->dev_mutex);
455 	if (data & PORT_RX_ENABLE)
456 		dev->rx_ports |= (1 << port);
457 	else
458 		dev->rx_ports &= ~(1 << port);
459 	if (data & PORT_TX_ENABLE)
460 		dev->tx_ports |= (1 << port);
461 	else
462 		dev->tx_ports &= ~(1 << port);
463 
464 	/* Port membership may share register with STP state. */
465 	if (member >= 0 && member != p->member)
466 		ksz9477_cfg_port_member(dev, port, (u8)member);
467 
468 	/* Check if forwarding needs to be updated. */
469 	if (state != BR_STATE_FORWARDING) {
470 		if (dev->br_member & (1 << port))
471 			dev->member &= ~(1 << port);
472 	}
473 
474 	/* When topology has changed the function ksz_update_port_member
475 	 * should be called to modify port forwarding behavior.
476 	 */
477 	if (forward != dev->member)
478 		ksz_update_port_member(dev, port);
479 	mutex_unlock(&dev->dev_mutex);
480 }
481 
482 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
483 {
484 	u8 data;
485 
486 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
487 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
488 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
489 
490 	if (port < dev->mib_port_cnt) {
491 		/* flush individual port */
492 		ksz_pread8(dev, port, P_STP_CTRL, &data);
493 		if (!(data & PORT_LEARN_DISABLE))
494 			ksz_pwrite8(dev, port, P_STP_CTRL,
495 				    data | PORT_LEARN_DISABLE);
496 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
497 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
498 	} else {
499 		/* flush all */
500 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
501 	}
502 }
503 
504 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
505 				       bool flag)
506 {
507 	struct ksz_device *dev = ds->priv;
508 
509 	if (flag) {
510 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
511 			     PORT_VLAN_LOOKUP_VID_0, true);
512 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
513 	} else {
514 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
515 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
516 			     PORT_VLAN_LOOKUP_VID_0, false);
517 	}
518 
519 	return 0;
520 }
521 
522 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
523 				  const struct switchdev_obj_port_vlan *vlan)
524 {
525 	struct ksz_device *dev = ds->priv;
526 	u32 vlan_table[3];
527 	u16 vid;
528 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
529 
530 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
531 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
532 			dev_dbg(dev->dev, "Failed to get vlan table\n");
533 			return;
534 		}
535 
536 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
537 		if (untagged)
538 			vlan_table[1] |= BIT(port);
539 		else
540 			vlan_table[1] &= ~BIT(port);
541 		vlan_table[1] &= ~(BIT(dev->cpu_port));
542 
543 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
544 
545 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
546 			dev_dbg(dev->dev, "Failed to set vlan table\n");
547 			return;
548 		}
549 
550 		/* change PVID */
551 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
552 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
553 	}
554 }
555 
556 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
557 				 const struct switchdev_obj_port_vlan *vlan)
558 {
559 	struct ksz_device *dev = ds->priv;
560 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
561 	u32 vlan_table[3];
562 	u16 vid;
563 	u16 pvid;
564 
565 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
566 	pvid = pvid & 0xFFF;
567 
568 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
569 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
570 			dev_dbg(dev->dev, "Failed to get vlan table\n");
571 			return -ETIMEDOUT;
572 		}
573 
574 		vlan_table[2] &= ~BIT(port);
575 
576 		if (pvid == vid)
577 			pvid = 1;
578 
579 		if (untagged)
580 			vlan_table[1] &= ~BIT(port);
581 
582 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
583 			dev_dbg(dev->dev, "Failed to set vlan table\n");
584 			return -ETIMEDOUT;
585 		}
586 	}
587 
588 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
589 
590 	return 0;
591 }
592 
593 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
594 				const unsigned char *addr, u16 vid)
595 {
596 	struct ksz_device *dev = ds->priv;
597 	u32 alu_table[4];
598 	u32 data;
599 	int ret = 0;
600 
601 	mutex_lock(&dev->alu_mutex);
602 
603 	/* find any entry with mac & vid */
604 	data = vid << ALU_FID_INDEX_S;
605 	data |= ((addr[0] << 8) | addr[1]);
606 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
607 
608 	data = ((addr[2] << 24) | (addr[3] << 16));
609 	data |= ((addr[4] << 8) | addr[5]);
610 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
611 
612 	/* start read operation */
613 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
614 
615 	/* wait to be finished */
616 	ret = ksz9477_wait_alu_ready(dev);
617 	if (ret) {
618 		dev_dbg(dev->dev, "Failed to read ALU\n");
619 		goto exit;
620 	}
621 
622 	/* read ALU entry */
623 	ksz9477_read_table(dev, alu_table);
624 
625 	/* update ALU entry */
626 	alu_table[0] = ALU_V_STATIC_VALID;
627 	alu_table[1] |= BIT(port);
628 	if (vid)
629 		alu_table[1] |= ALU_V_USE_FID;
630 	alu_table[2] = (vid << ALU_V_FID_S);
631 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
632 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
633 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
634 
635 	ksz9477_write_table(dev, alu_table);
636 
637 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
638 
639 	/* wait to be finished */
640 	ret = ksz9477_wait_alu_ready(dev);
641 	if (ret)
642 		dev_dbg(dev->dev, "Failed to write ALU\n");
643 
644 exit:
645 	mutex_unlock(&dev->alu_mutex);
646 
647 	return ret;
648 }
649 
650 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
651 				const unsigned char *addr, u16 vid)
652 {
653 	struct ksz_device *dev = ds->priv;
654 	u32 alu_table[4];
655 	u32 data;
656 	int ret = 0;
657 
658 	mutex_lock(&dev->alu_mutex);
659 
660 	/* read any entry with mac & vid */
661 	data = vid << ALU_FID_INDEX_S;
662 	data |= ((addr[0] << 8) | addr[1]);
663 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
664 
665 	data = ((addr[2] << 24) | (addr[3] << 16));
666 	data |= ((addr[4] << 8) | addr[5]);
667 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
668 
669 	/* start read operation */
670 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
671 
672 	/* wait to be finished */
673 	ret = ksz9477_wait_alu_ready(dev);
674 	if (ret) {
675 		dev_dbg(dev->dev, "Failed to read ALU\n");
676 		goto exit;
677 	}
678 
679 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
680 	if (alu_table[0] & ALU_V_STATIC_VALID) {
681 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
682 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
683 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
684 
685 		/* clear forwarding port */
686 		alu_table[2] &= ~BIT(port);
687 
688 		/* if there is no port to forward, clear table */
689 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
690 			alu_table[0] = 0;
691 			alu_table[1] = 0;
692 			alu_table[2] = 0;
693 			alu_table[3] = 0;
694 		}
695 	} else {
696 		alu_table[0] = 0;
697 		alu_table[1] = 0;
698 		alu_table[2] = 0;
699 		alu_table[3] = 0;
700 	}
701 
702 	ksz9477_write_table(dev, alu_table);
703 
704 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
705 
706 	/* wait to be finished */
707 	ret = ksz9477_wait_alu_ready(dev);
708 	if (ret)
709 		dev_dbg(dev->dev, "Failed to write ALU\n");
710 
711 exit:
712 	mutex_unlock(&dev->alu_mutex);
713 
714 	return ret;
715 }
716 
717 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
718 {
719 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
720 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
721 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
722 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
723 			ALU_V_PRIO_AGE_CNT_M;
724 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
725 
726 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
727 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
728 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
729 
730 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
731 
732 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
733 	alu->mac[1] = alu_table[2] & 0xFF;
734 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
735 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
736 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
737 	alu->mac[5] = alu_table[3] & 0xFF;
738 }
739 
740 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
741 				 dsa_fdb_dump_cb_t *cb, void *data)
742 {
743 	struct ksz_device *dev = ds->priv;
744 	int ret = 0;
745 	u32 ksz_data;
746 	u32 alu_table[4];
747 	struct alu_struct alu;
748 	int timeout;
749 
750 	mutex_lock(&dev->alu_mutex);
751 
752 	/* start ALU search */
753 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
754 
755 	do {
756 		timeout = 1000;
757 		do {
758 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
759 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
760 				break;
761 			usleep_range(1, 10);
762 		} while (timeout-- > 0);
763 
764 		if (!timeout) {
765 			dev_dbg(dev->dev, "Failed to search ALU\n");
766 			ret = -ETIMEDOUT;
767 			goto exit;
768 		}
769 
770 		/* read ALU table */
771 		ksz9477_read_table(dev, alu_table);
772 
773 		ksz9477_convert_alu(&alu, alu_table);
774 
775 		if (alu.port_forward & BIT(port)) {
776 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
777 			if (ret)
778 				goto exit;
779 		}
780 	} while (ksz_data & ALU_START);
781 
782 exit:
783 
784 	/* stop ALU search */
785 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
786 
787 	mutex_unlock(&dev->alu_mutex);
788 
789 	return ret;
790 }
791 
792 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
793 				 const struct switchdev_obj_port_mdb *mdb)
794 {
795 	struct ksz_device *dev = ds->priv;
796 	u32 static_table[4];
797 	u32 data;
798 	int index;
799 	u32 mac_hi, mac_lo;
800 
801 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
802 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
803 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
804 
805 	mutex_lock(&dev->alu_mutex);
806 
807 	for (index = 0; index < dev->num_statics; index++) {
808 		/* find empty slot first */
809 		data = (index << ALU_STAT_INDEX_S) |
810 			ALU_STAT_READ | ALU_STAT_START;
811 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
812 
813 		/* wait to be finished */
814 		if (ksz9477_wait_alu_sta_ready(dev)) {
815 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
816 			goto exit;
817 		}
818 
819 		/* read ALU static table */
820 		ksz9477_read_table(dev, static_table);
821 
822 		if (static_table[0] & ALU_V_STATIC_VALID) {
823 			/* check this has same vid & mac address */
824 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
825 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
826 			    static_table[3] == mac_lo) {
827 				/* found matching one */
828 				break;
829 			}
830 		} else {
831 			/* found empty one */
832 			break;
833 		}
834 	}
835 
836 	/* no available entry */
837 	if (index == dev->num_statics)
838 		goto exit;
839 
840 	/* add entry */
841 	static_table[0] = ALU_V_STATIC_VALID;
842 	static_table[1] |= BIT(port);
843 	if (mdb->vid)
844 		static_table[1] |= ALU_V_USE_FID;
845 	static_table[2] = (mdb->vid << ALU_V_FID_S);
846 	static_table[2] |= mac_hi;
847 	static_table[3] = mac_lo;
848 
849 	ksz9477_write_table(dev, static_table);
850 
851 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
852 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
853 
854 	/* wait to be finished */
855 	if (ksz9477_wait_alu_sta_ready(dev))
856 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
857 
858 exit:
859 	mutex_unlock(&dev->alu_mutex);
860 }
861 
862 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
863 				const struct switchdev_obj_port_mdb *mdb)
864 {
865 	struct ksz_device *dev = ds->priv;
866 	u32 static_table[4];
867 	u32 data;
868 	int index;
869 	int ret = 0;
870 	u32 mac_hi, mac_lo;
871 
872 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
873 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
874 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
875 
876 	mutex_lock(&dev->alu_mutex);
877 
878 	for (index = 0; index < dev->num_statics; index++) {
879 		/* find empty slot first */
880 		data = (index << ALU_STAT_INDEX_S) |
881 			ALU_STAT_READ | ALU_STAT_START;
882 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
883 
884 		/* wait to be finished */
885 		ret = ksz9477_wait_alu_sta_ready(dev);
886 		if (ret) {
887 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
888 			goto exit;
889 		}
890 
891 		/* read ALU static table */
892 		ksz9477_read_table(dev, static_table);
893 
894 		if (static_table[0] & ALU_V_STATIC_VALID) {
895 			/* check this has same vid & mac address */
896 
897 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
898 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
899 			    static_table[3] == mac_lo) {
900 				/* found matching one */
901 				break;
902 			}
903 		}
904 	}
905 
906 	/* no available entry */
907 	if (index == dev->num_statics)
908 		goto exit;
909 
910 	/* clear port */
911 	static_table[1] &= ~BIT(port);
912 
913 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
914 		/* delete entry */
915 		static_table[0] = 0;
916 		static_table[1] = 0;
917 		static_table[2] = 0;
918 		static_table[3] = 0;
919 	}
920 
921 	ksz9477_write_table(dev, static_table);
922 
923 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
924 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
925 
926 	/* wait to be finished */
927 	ret = ksz9477_wait_alu_sta_ready(dev);
928 	if (ret)
929 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
930 
931 exit:
932 	mutex_unlock(&dev->alu_mutex);
933 
934 	return ret;
935 }
936 
937 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
938 				   struct dsa_mall_mirror_tc_entry *mirror,
939 				   bool ingress)
940 {
941 	struct ksz_device *dev = ds->priv;
942 
943 	if (ingress)
944 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
945 	else
946 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
947 
948 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
949 
950 	/* configure mirror port */
951 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
952 		     PORT_MIRROR_SNIFFER, true);
953 
954 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
955 
956 	return 0;
957 }
958 
959 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
960 				    struct dsa_mall_mirror_tc_entry *mirror)
961 {
962 	struct ksz_device *dev = ds->priv;
963 	u8 data;
964 
965 	if (mirror->ingress)
966 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
967 	else
968 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
969 
970 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
971 
972 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
973 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
974 			     PORT_MIRROR_SNIFFER, false);
975 }
976 
977 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
978 			      struct phy_device *phy)
979 {
980 	/* Only apply to port with PHY. */
981 	if (port >= dev->phy_port_cnt)
982 		return;
983 
984 	/* The MAC actually cannot run in 1000 half-duplex mode. */
985 	phy_remove_link_mode(phy,
986 			     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
987 
988 	/* PHY does not support gigabit. */
989 	if (!(dev->features & GBIT_SUPPORT))
990 		phy_remove_link_mode(phy,
991 				     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
992 }
993 
994 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
995 {
996 	bool gbit;
997 
998 	if (dev->features & NEW_XMII)
999 		gbit = !(data & PORT_MII_NOT_1GBIT);
1000 	else
1001 		gbit = !!(data & PORT_MII_1000MBIT_S1);
1002 	return gbit;
1003 }
1004 
1005 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1006 {
1007 	if (dev->features & NEW_XMII) {
1008 		if (gbit)
1009 			*data &= ~PORT_MII_NOT_1GBIT;
1010 		else
1011 			*data |= PORT_MII_NOT_1GBIT;
1012 	} else {
1013 		if (gbit)
1014 			*data |= PORT_MII_1000MBIT_S1;
1015 		else
1016 			*data &= ~PORT_MII_1000MBIT_S1;
1017 	}
1018 }
1019 
1020 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1021 {
1022 	int mode;
1023 
1024 	if (dev->features & NEW_XMII) {
1025 		switch (data & PORT_MII_SEL_M) {
1026 		case PORT_MII_SEL:
1027 			mode = 0;
1028 			break;
1029 		case PORT_RMII_SEL:
1030 			mode = 1;
1031 			break;
1032 		case PORT_GMII_SEL:
1033 			mode = 2;
1034 			break;
1035 		default:
1036 			mode = 3;
1037 		}
1038 	} else {
1039 		switch (data & PORT_MII_SEL_M) {
1040 		case PORT_MII_SEL_S1:
1041 			mode = 0;
1042 			break;
1043 		case PORT_RMII_SEL_S1:
1044 			mode = 1;
1045 			break;
1046 		case PORT_GMII_SEL_S1:
1047 			mode = 2;
1048 			break;
1049 		default:
1050 			mode = 3;
1051 		}
1052 	}
1053 	return mode;
1054 }
1055 
1056 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1057 {
1058 	u8 xmii;
1059 
1060 	if (dev->features & NEW_XMII) {
1061 		switch (mode) {
1062 		case 0:
1063 			xmii = PORT_MII_SEL;
1064 			break;
1065 		case 1:
1066 			xmii = PORT_RMII_SEL;
1067 			break;
1068 		case 2:
1069 			xmii = PORT_GMII_SEL;
1070 			break;
1071 		default:
1072 			xmii = PORT_RGMII_SEL;
1073 			break;
1074 		}
1075 	} else {
1076 		switch (mode) {
1077 		case 0:
1078 			xmii = PORT_MII_SEL_S1;
1079 			break;
1080 		case 1:
1081 			xmii = PORT_RMII_SEL_S1;
1082 			break;
1083 		case 2:
1084 			xmii = PORT_GMII_SEL_S1;
1085 			break;
1086 		default:
1087 			xmii = PORT_RGMII_SEL_S1;
1088 			break;
1089 		}
1090 	}
1091 	*data &= ~PORT_MII_SEL_M;
1092 	*data |= xmii;
1093 }
1094 
1095 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1096 {
1097 	phy_interface_t interface;
1098 	bool gbit;
1099 	int mode;
1100 	u8 data8;
1101 
1102 	if (port < dev->phy_port_cnt)
1103 		return PHY_INTERFACE_MODE_NA;
1104 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1105 	gbit = ksz9477_get_gbit(dev, data8);
1106 	mode = ksz9477_get_xmii(dev, data8);
1107 	switch (mode) {
1108 	case 2:
1109 		interface = PHY_INTERFACE_MODE_GMII;
1110 		if (gbit)
1111 			break;
1112 		/* fall through */
1113 	case 0:
1114 		interface = PHY_INTERFACE_MODE_MII;
1115 		break;
1116 	case 1:
1117 		interface = PHY_INTERFACE_MODE_RMII;
1118 		break;
1119 	default:
1120 		interface = PHY_INTERFACE_MODE_RGMII;
1121 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1122 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1123 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1124 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1125 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1126 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1127 		}
1128 		break;
1129 	}
1130 	return interface;
1131 }
1132 
1133 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1134 				   u8 dev_addr, u16 reg_addr, u16 val)
1135 {
1136 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1137 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1138 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1139 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1140 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1141 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1142 }
1143 
1144 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1145 {
1146 	/* Apply PHY settings to address errata listed in
1147 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1148 	 * Silicon Errata and Data Sheet Clarification documents:
1149 	 *
1150 	 * Register settings are needed to improve PHY receive performance
1151 	 */
1152 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1153 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1154 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1155 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1156 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1157 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1158 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1159 
1160 	/* Transmit waveform amplitude can be improved
1161 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1162 	 */
1163 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1164 
1165 	/* Energy Efficient Ethernet (EEE) feature select must
1166 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1167 	 */
1168 	if (dev->features & GBIT_SUPPORT)
1169 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1170 
1171 	/* Register settings are required to meet data sheet
1172 	 * supply current specifications
1173 	 */
1174 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1175 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1176 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1177 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1178 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1179 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1180 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1181 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1182 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1183 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1184 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1185 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1186 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1187 }
1188 
1189 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1190 {
1191 	u8 data8;
1192 	u8 member;
1193 	u16 data16;
1194 	struct ksz_port *p = &dev->ports[port];
1195 
1196 	/* enable tag tail for host port */
1197 	if (cpu_port)
1198 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1199 			     true);
1200 
1201 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1202 
1203 	/* set back pressure */
1204 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1205 
1206 	/* enable broadcast storm limit */
1207 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1208 
1209 	/* disable DiffServ priority */
1210 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1211 
1212 	/* replace priority */
1213 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1214 		     false);
1215 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1216 			   MTI_PVID_REPLACE, false);
1217 
1218 	/* enable 802.1p priority */
1219 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1220 
1221 	if (port < dev->phy_port_cnt) {
1222 		/* do not force flow control */
1223 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1224 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1225 			     false);
1226 
1227 		if (dev->phy_errata_9477)
1228 			ksz9477_phy_errata_setup(dev, port);
1229 	} else {
1230 		/* force flow control */
1231 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1232 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1233 			     true);
1234 
1235 		/* configure MAC to 1G & RGMII mode */
1236 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1237 		switch (dev->interface) {
1238 		case PHY_INTERFACE_MODE_MII:
1239 			ksz9477_set_xmii(dev, 0, &data8);
1240 			ksz9477_set_gbit(dev, false, &data8);
1241 			p->phydev.speed = SPEED_100;
1242 			break;
1243 		case PHY_INTERFACE_MODE_RMII:
1244 			ksz9477_set_xmii(dev, 1, &data8);
1245 			ksz9477_set_gbit(dev, false, &data8);
1246 			p->phydev.speed = SPEED_100;
1247 			break;
1248 		case PHY_INTERFACE_MODE_GMII:
1249 			ksz9477_set_xmii(dev, 2, &data8);
1250 			ksz9477_set_gbit(dev, true, &data8);
1251 			p->phydev.speed = SPEED_1000;
1252 			break;
1253 		default:
1254 			ksz9477_set_xmii(dev, 3, &data8);
1255 			ksz9477_set_gbit(dev, true, &data8);
1256 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1257 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1258 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1259 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1260 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1261 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1262 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1263 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1264 			p->phydev.speed = SPEED_1000;
1265 			break;
1266 		}
1267 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1268 		p->phydev.duplex = 1;
1269 	}
1270 	mutex_lock(&dev->dev_mutex);
1271 	if (cpu_port) {
1272 		member = dev->port_mask;
1273 		dev->on_ports = dev->host_mask;
1274 		dev->live_ports = dev->host_mask;
1275 	} else {
1276 		member = dev->host_mask | p->vid_member;
1277 		dev->on_ports |= (1 << port);
1278 
1279 		/* Link was detected before port is enabled. */
1280 		if (p->phydev.link)
1281 			dev->live_ports |= (1 << port);
1282 	}
1283 	mutex_unlock(&dev->dev_mutex);
1284 	ksz9477_cfg_port_member(dev, port, member);
1285 
1286 	/* clear pending interrupts */
1287 	if (port < dev->phy_port_cnt)
1288 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1289 }
1290 
1291 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1292 {
1293 	struct ksz_device *dev = ds->priv;
1294 	struct ksz_port *p;
1295 	int i;
1296 
1297 	ds->num_ports = dev->port_cnt;
1298 
1299 	for (i = 0; i < dev->port_cnt; i++) {
1300 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1301 			phy_interface_t interface;
1302 
1303 			dev->cpu_port = i;
1304 			dev->host_mask = (1 << dev->cpu_port);
1305 			dev->port_mask |= dev->host_mask;
1306 
1307 			/* Read from XMII register to determine host port
1308 			 * interface.  If set specifically in device tree
1309 			 * note the difference to help debugging.
1310 			 */
1311 			interface = ksz9477_get_interface(dev, i);
1312 			if (!dev->interface)
1313 				dev->interface = interface;
1314 			if (interface && interface != dev->interface)
1315 				dev_info(dev->dev,
1316 					 "use %s instead of %s\n",
1317 					  phy_modes(dev->interface),
1318 					  phy_modes(interface));
1319 
1320 			/* enable cpu port */
1321 			ksz9477_port_setup(dev, i, true);
1322 			p = &dev->ports[dev->cpu_port];
1323 			p->vid_member = dev->port_mask;
1324 			p->on = 1;
1325 		}
1326 	}
1327 
1328 	dev->member = dev->host_mask;
1329 
1330 	for (i = 0; i < dev->mib_port_cnt; i++) {
1331 		if (i == dev->cpu_port)
1332 			continue;
1333 		p = &dev->ports[i];
1334 
1335 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1336 		 * be called.
1337 		 */
1338 		p->vid_member = (1 << i);
1339 		p->member = dev->port_mask;
1340 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1341 		p->on = 1;
1342 		if (i < dev->phy_port_cnt)
1343 			p->phy = 1;
1344 		if (dev->chip_id == 0x00947700 && i == 6) {
1345 			p->sgmii = 1;
1346 
1347 			/* SGMII PHY detection code is not implemented yet. */
1348 			p->phy = 0;
1349 		}
1350 	}
1351 }
1352 
1353 static int ksz9477_setup(struct dsa_switch *ds)
1354 {
1355 	struct ksz_device *dev = ds->priv;
1356 	int ret = 0;
1357 
1358 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1359 				       dev->num_vlans, GFP_KERNEL);
1360 	if (!dev->vlan_cache)
1361 		return -ENOMEM;
1362 
1363 	ret = ksz9477_reset_switch(dev);
1364 	if (ret) {
1365 		dev_err(ds->dev, "failed to reset switch\n");
1366 		return ret;
1367 	}
1368 
1369 	/* Required for port partitioning. */
1370 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1371 		      true);
1372 
1373 	/* Do not work correctly with tail tagging. */
1374 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1375 
1376 	/* accept packet up to 2000bytes */
1377 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1378 
1379 	ksz9477_config_cpu_port(ds);
1380 
1381 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1382 
1383 	/* queue based egress rate limit */
1384 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1385 
1386 	/* enable global MIB counter freeze function */
1387 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1388 
1389 	/* start switch */
1390 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1391 
1392 	ksz_init_mib_timer(dev);
1393 
1394 	return 0;
1395 }
1396 
1397 static const struct dsa_switch_ops ksz9477_switch_ops = {
1398 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1399 	.setup			= ksz9477_setup,
1400 	.phy_read		= ksz9477_phy_read16,
1401 	.phy_write		= ksz9477_phy_write16,
1402 	.adjust_link		= ksz_adjust_link,
1403 	.port_enable		= ksz_enable_port,
1404 	.port_disable		= ksz_disable_port,
1405 	.get_strings		= ksz9477_get_strings,
1406 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1407 	.get_sset_count		= ksz_sset_count,
1408 	.port_bridge_join	= ksz_port_bridge_join,
1409 	.port_bridge_leave	= ksz_port_bridge_leave,
1410 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1411 	.port_fast_age		= ksz_port_fast_age,
1412 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1413 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1414 	.port_vlan_add		= ksz9477_port_vlan_add,
1415 	.port_vlan_del		= ksz9477_port_vlan_del,
1416 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1417 	.port_fdb_add		= ksz9477_port_fdb_add,
1418 	.port_fdb_del		= ksz9477_port_fdb_del,
1419 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1420 	.port_mdb_add           = ksz9477_port_mdb_add,
1421 	.port_mdb_del           = ksz9477_port_mdb_del,
1422 	.port_mirror_add	= ksz9477_port_mirror_add,
1423 	.port_mirror_del	= ksz9477_port_mirror_del,
1424 };
1425 
1426 static u32 ksz9477_get_port_addr(int port, int offset)
1427 {
1428 	return PORT_CTRL_ADDR(port, offset);
1429 }
1430 
1431 static int ksz9477_switch_detect(struct ksz_device *dev)
1432 {
1433 	u8 data8;
1434 	u8 id_hi;
1435 	u8 id_lo;
1436 	u32 id32;
1437 	int ret;
1438 
1439 	/* turn off SPI DO Edge select */
1440 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1441 	if (ret)
1442 		return ret;
1443 
1444 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1445 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1446 	if (ret)
1447 		return ret;
1448 
1449 	/* read chip id */
1450 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1451 	if (ret)
1452 		return ret;
1453 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1454 	if (ret)
1455 		return ret;
1456 
1457 	/* Number of ports can be reduced depending on chip. */
1458 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1459 	dev->phy_port_cnt = 5;
1460 
1461 	/* Default capability is gigabit capable. */
1462 	dev->features = GBIT_SUPPORT;
1463 
1464 	id_hi = (u8)(id32 >> 16);
1465 	id_lo = (u8)(id32 >> 8);
1466 	if ((id_lo & 0xf) == 3) {
1467 		/* Chip is from KSZ9893 design. */
1468 		dev->features |= IS_9893;
1469 
1470 		/* Chip does not support gigabit. */
1471 		if (data8 & SW_QW_ABLE)
1472 			dev->features &= ~GBIT_SUPPORT;
1473 		dev->mib_port_cnt = 3;
1474 		dev->phy_port_cnt = 2;
1475 	} else {
1476 		/* Chip uses new XMII register definitions. */
1477 		dev->features |= NEW_XMII;
1478 
1479 		/* Chip does not support gigabit. */
1480 		if (!(data8 & SW_GIGABIT_ABLE))
1481 			dev->features &= ~GBIT_SUPPORT;
1482 	}
1483 
1484 	/* Change chip id to known ones so it can be matched against them. */
1485 	id32 = (id_hi << 16) | (id_lo << 8);
1486 
1487 	dev->chip_id = id32;
1488 
1489 	return 0;
1490 }
1491 
1492 struct ksz_chip_data {
1493 	u32 chip_id;
1494 	const char *dev_name;
1495 	int num_vlans;
1496 	int num_alus;
1497 	int num_statics;
1498 	int cpu_ports;
1499 	int port_cnt;
1500 	bool phy_errata_9477;
1501 };
1502 
1503 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1504 	{
1505 		.chip_id = 0x00947700,
1506 		.dev_name = "KSZ9477",
1507 		.num_vlans = 4096,
1508 		.num_alus = 4096,
1509 		.num_statics = 16,
1510 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1511 		.port_cnt = 7,		/* total physical port count */
1512 		.phy_errata_9477 = true,
1513 	},
1514 	{
1515 		.chip_id = 0x00989700,
1516 		.dev_name = "KSZ9897",
1517 		.num_vlans = 4096,
1518 		.num_alus = 4096,
1519 		.num_statics = 16,
1520 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1521 		.port_cnt = 7,		/* total physical port count */
1522 		.phy_errata_9477 = true,
1523 	},
1524 	{
1525 		.chip_id = 0x00989300,
1526 		.dev_name = "KSZ9893",
1527 		.num_vlans = 4096,
1528 		.num_alus = 4096,
1529 		.num_statics = 16,
1530 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1531 		.port_cnt = 3,		/* total port count */
1532 	},
1533 	{
1534 		.chip_id = 0x00956700,
1535 		.dev_name = "KSZ9567",
1536 		.num_vlans = 4096,
1537 		.num_alus = 4096,
1538 		.num_statics = 16,
1539 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1540 		.port_cnt = 7,		/* total physical port count */
1541 	},
1542 };
1543 
1544 static int ksz9477_switch_init(struct ksz_device *dev)
1545 {
1546 	int i;
1547 
1548 	dev->ds->ops = &ksz9477_switch_ops;
1549 
1550 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1551 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1552 
1553 		if (dev->chip_id == chip->chip_id) {
1554 			dev->name = chip->dev_name;
1555 			dev->num_vlans = chip->num_vlans;
1556 			dev->num_alus = chip->num_alus;
1557 			dev->num_statics = chip->num_statics;
1558 			dev->port_cnt = chip->port_cnt;
1559 			dev->cpu_ports = chip->cpu_ports;
1560 			dev->phy_errata_9477 = chip->phy_errata_9477;
1561 
1562 			break;
1563 		}
1564 	}
1565 
1566 	/* no switch found */
1567 	if (!dev->port_cnt)
1568 		return -ENODEV;
1569 
1570 	dev->port_mask = (1 << dev->port_cnt) - 1;
1571 
1572 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1573 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1574 
1575 	i = dev->mib_port_cnt;
1576 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1577 				  GFP_KERNEL);
1578 	if (!dev->ports)
1579 		return -ENOMEM;
1580 	for (i = 0; i < dev->mib_port_cnt; i++) {
1581 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1582 		dev->ports[i].mib.counters =
1583 			devm_kzalloc(dev->dev,
1584 				     sizeof(u64) *
1585 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1586 				     GFP_KERNEL);
1587 		if (!dev->ports[i].mib.counters)
1588 			return -ENOMEM;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 static void ksz9477_switch_exit(struct ksz_device *dev)
1595 {
1596 	ksz9477_reset_switch(dev);
1597 }
1598 
1599 static const struct ksz_dev_ops ksz9477_dev_ops = {
1600 	.get_port_addr = ksz9477_get_port_addr,
1601 	.cfg_port_member = ksz9477_cfg_port_member,
1602 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1603 	.phy_setup = ksz9477_phy_setup,
1604 	.port_setup = ksz9477_port_setup,
1605 	.r_mib_cnt = ksz9477_r_mib_cnt,
1606 	.r_mib_pkt = ksz9477_r_mib_pkt,
1607 	.freeze_mib = ksz9477_freeze_mib,
1608 	.port_init_cnt = ksz9477_port_init_cnt,
1609 	.shutdown = ksz9477_reset_switch,
1610 	.detect = ksz9477_switch_detect,
1611 	.init = ksz9477_switch_init,
1612 	.exit = ksz9477_switch_exit,
1613 };
1614 
1615 int ksz9477_switch_register(struct ksz_device *dev)
1616 {
1617 	return ksz_switch_register(dev, &ksz9477_dev_ops);
1618 }
1619 EXPORT_SYMBOL(ksz9477_switch_register);
1620 
1621 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1622 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1623 MODULE_LICENSE("GPL");
1624