1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz_priv.h"
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 
21 /* Used with variable features to indicate capabilities. */
22 #define GBIT_SUPPORT			BIT(0)
23 #define NEW_XMII			BIT(1)
24 #define IS_9893				BIT(2)
25 
26 static const struct {
27 	int index;
28 	char string[ETH_GSTRING_LEN];
29 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
30 	{ 0x00, "rx_hi" },
31 	{ 0x01, "rx_undersize" },
32 	{ 0x02, "rx_fragments" },
33 	{ 0x03, "rx_oversize" },
34 	{ 0x04, "rx_jabbers" },
35 	{ 0x05, "rx_symbol_err" },
36 	{ 0x06, "rx_crc_err" },
37 	{ 0x07, "rx_align_err" },
38 	{ 0x08, "rx_mac_ctrl" },
39 	{ 0x09, "rx_pause" },
40 	{ 0x0A, "rx_bcast" },
41 	{ 0x0B, "rx_mcast" },
42 	{ 0x0C, "rx_ucast" },
43 	{ 0x0D, "rx_64_or_less" },
44 	{ 0x0E, "rx_65_127" },
45 	{ 0x0F, "rx_128_255" },
46 	{ 0x10, "rx_256_511" },
47 	{ 0x11, "rx_512_1023" },
48 	{ 0x12, "rx_1024_1522" },
49 	{ 0x13, "rx_1523_2000" },
50 	{ 0x14, "rx_2001" },
51 	{ 0x15, "tx_hi" },
52 	{ 0x16, "tx_late_col" },
53 	{ 0x17, "tx_pause" },
54 	{ 0x18, "tx_bcast" },
55 	{ 0x19, "tx_mcast" },
56 	{ 0x1A, "tx_ucast" },
57 	{ 0x1B, "tx_deferred" },
58 	{ 0x1C, "tx_total_col" },
59 	{ 0x1D, "tx_exc_col" },
60 	{ 0x1E, "tx_single_col" },
61 	{ 0x1F, "tx_mult_col" },
62 	{ 0x80, "rx_total" },
63 	{ 0x81, "tx_total" },
64 	{ 0x82, "rx_discards" },
65 	{ 0x83, "tx_discards" },
66 };
67 
68 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
69 {
70 	u32 data;
71 
72 	ksz_read32(dev, addr, &data);
73 	if (set)
74 		data |= bits;
75 	else
76 		data &= ~bits;
77 	ksz_write32(dev, addr, data);
78 }
79 
80 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
81 			       u32 bits, bool set)
82 {
83 	u32 addr;
84 	u32 data;
85 
86 	addr = PORT_CTRL_ADDR(port, offset);
87 	ksz_read32(dev, addr, &data);
88 
89 	if (set)
90 		data |= bits;
91 	else
92 		data &= ~bits;
93 
94 	ksz_write32(dev, addr, data);
95 }
96 
97 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton,
98 					int timeout)
99 {
100 	u8 data;
101 
102 	do {
103 		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
104 		if (!(data & waiton))
105 			break;
106 		usleep_range(1, 10);
107 	} while (timeout-- > 0);
108 
109 	if (timeout <= 0)
110 		return -ETIMEDOUT;
111 
112 	return 0;
113 }
114 
115 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
116 				  u32 *vlan_table)
117 {
118 	int ret;
119 
120 	mutex_lock(&dev->vlan_mutex);
121 
122 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
123 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
124 
125 	/* wait to be cleared */
126 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
127 	if (ret < 0) {
128 		dev_dbg(dev->dev, "Failed to read vlan table\n");
129 		goto exit;
130 	}
131 
132 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
133 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
134 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
135 
136 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
137 
138 exit:
139 	mutex_unlock(&dev->vlan_mutex);
140 
141 	return ret;
142 }
143 
144 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
145 				  u32 *vlan_table)
146 {
147 	int ret;
148 
149 	mutex_lock(&dev->vlan_mutex);
150 
151 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
152 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
153 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
154 
155 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
156 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
157 
158 	/* wait to be cleared */
159 	ret = ksz9477_wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
160 	if (ret < 0) {
161 		dev_dbg(dev->dev, "Failed to write vlan table\n");
162 		goto exit;
163 	}
164 
165 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
166 
167 	/* update vlan cache table */
168 	dev->vlan_cache[vid].table[0] = vlan_table[0];
169 	dev->vlan_cache[vid].table[1] = vlan_table[1];
170 	dev->vlan_cache[vid].table[2] = vlan_table[2];
171 
172 exit:
173 	mutex_unlock(&dev->vlan_mutex);
174 
175 	return ret;
176 }
177 
178 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
179 {
180 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
181 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
182 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
183 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
184 }
185 
186 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
187 {
188 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
189 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
190 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
191 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
192 }
193 
194 static int ksz9477_wait_alu_ready(struct ksz_device *dev, u32 waiton,
195 				  int timeout)
196 {
197 	u32 data;
198 
199 	do {
200 		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
201 		if (!(data & waiton))
202 			break;
203 		usleep_range(1, 10);
204 	} while (timeout-- > 0);
205 
206 	if (timeout <= 0)
207 		return -ETIMEDOUT;
208 
209 	return 0;
210 }
211 
212 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev, u32 waiton,
213 				      int timeout)
214 {
215 	u32 data;
216 
217 	do {
218 		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
219 		if (!(data & waiton))
220 			break;
221 		usleep_range(1, 10);
222 	} while (timeout-- > 0);
223 
224 	if (timeout <= 0)
225 		return -ETIMEDOUT;
226 
227 	return 0;
228 }
229 
230 static int ksz9477_reset_switch(struct ksz_device *dev)
231 {
232 	u8 data8;
233 	u16 data16;
234 	u32 data32;
235 
236 	/* reset switch */
237 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
238 
239 	/* turn off SPI DO Edge select */
240 	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
241 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
242 	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
243 
244 	/* default configuration */
245 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
246 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
247 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
248 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
249 
250 	/* disable interrupts */
251 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
252 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
253 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
254 
255 	/* set broadcast storm protection 10% rate */
256 	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
257 	data16 &= ~BROADCAST_STORM_RATE;
258 	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
259 	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
260 
261 	return 0;
262 }
263 
264 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
265 			      u64 *cnt)
266 {
267 	struct ksz_poll_ctx ctx = {
268 		.dev = dev,
269 		.port = port,
270 		.offset = REG_PORT_MIB_CTRL_STAT__4,
271 	};
272 	struct ksz_port *p = &dev->ports[port];
273 	u32 data;
274 	int ret;
275 
276 	/* retain the flush/freeze bit */
277 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
278 	data |= MIB_COUNTER_READ;
279 	data |= (addr << MIB_COUNTER_INDEX_S);
280 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
281 
282 	ret = readx_poll_timeout(ksz_pread32_poll, &ctx, data,
283 				 !(data & MIB_COUNTER_READ), 10, 1000);
284 
285 	/* failed to read MIB. get out of loop */
286 	if (ret < 0) {
287 		dev_dbg(dev->dev, "Failed to get MIB\n");
288 		return;
289 	}
290 
291 	/* count resets upon read */
292 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
293 	*cnt += data;
294 }
295 
296 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
297 			      u64 *dropped, u64 *cnt)
298 {
299 	addr = ksz9477_mib_names[addr].index;
300 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
301 }
302 
303 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
304 {
305 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
306 	struct ksz_port *p = &dev->ports[port];
307 
308 	/* enable/disable the port for flush/freeze function */
309 	mutex_lock(&p->mib.cnt_mutex);
310 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
311 
312 	/* used by MIB counter reading code to know freeze is enabled */
313 	p->freeze = freeze;
314 	mutex_unlock(&p->mib.cnt_mutex);
315 }
316 
317 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
318 {
319 	struct ksz_port_mib *mib = &dev->ports[port].mib;
320 
321 	/* flush all enabled port MIB counters */
322 	mutex_lock(&mib->cnt_mutex);
323 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
324 		     MIB_COUNTER_FLUSH_FREEZE);
325 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
326 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
327 	mutex_unlock(&mib->cnt_mutex);
328 
329 	mib->cnt_ptr = 0;
330 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
331 }
332 
333 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
334 						      int port)
335 {
336 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
337 	struct ksz_device *dev = ds->priv;
338 
339 	if (dev->features & IS_9893)
340 		proto = DSA_TAG_PROTO_KSZ9893;
341 	return proto;
342 }
343 
344 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
345 {
346 	struct ksz_device *dev = ds->priv;
347 	u16 val = 0xffff;
348 
349 	/* No real PHY after this. Simulate the PHY.
350 	 * A fixed PHY can be setup in the device tree, but this function is
351 	 * still called for that port during initialization.
352 	 * For RGMII PHY there is no way to access it so the fixed PHY should
353 	 * be used.  For SGMII PHY the supporting code will be added later.
354 	 */
355 	if (addr >= dev->phy_port_cnt) {
356 		struct ksz_port *p = &dev->ports[addr];
357 
358 		switch (reg) {
359 		case MII_BMCR:
360 			val = 0x1140;
361 			break;
362 		case MII_BMSR:
363 			val = 0x796d;
364 			break;
365 		case MII_PHYSID1:
366 			val = 0x0022;
367 			break;
368 		case MII_PHYSID2:
369 			val = 0x1631;
370 			break;
371 		case MII_ADVERTISE:
372 			val = 0x05e1;
373 			break;
374 		case MII_LPA:
375 			val = 0xc5e1;
376 			break;
377 		case MII_CTRL1000:
378 			val = 0x0700;
379 			break;
380 		case MII_STAT1000:
381 			if (p->phydev.speed == SPEED_1000)
382 				val = 0x3800;
383 			else
384 				val = 0;
385 			break;
386 		}
387 	} else {
388 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
389 	}
390 
391 	return val;
392 }
393 
394 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
395 			       u16 val)
396 {
397 	struct ksz_device *dev = ds->priv;
398 
399 	/* No real PHY after this. */
400 	if (addr >= dev->phy_port_cnt)
401 		return 0;
402 
403 	/* No gigabit support.  Do not write to this register. */
404 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
405 		return 0;
406 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
407 
408 	return 0;
409 }
410 
411 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
412 				u32 stringset, uint8_t *buf)
413 {
414 	int i;
415 
416 	if (stringset != ETH_SS_STATS)
417 		return;
418 
419 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
420 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
421 		       ETH_GSTRING_LEN);
422 	}
423 }
424 
425 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
426 				    u8 member)
427 {
428 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
429 	dev->ports[port].member = member;
430 }
431 
432 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
433 				       u8 state)
434 {
435 	struct ksz_device *dev = ds->priv;
436 	struct ksz_port *p = &dev->ports[port];
437 	u8 data;
438 	int member = -1;
439 	int forward = dev->member;
440 
441 	ksz_pread8(dev, port, P_STP_CTRL, &data);
442 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
443 
444 	switch (state) {
445 	case BR_STATE_DISABLED:
446 		data |= PORT_LEARN_DISABLE;
447 		if (port != dev->cpu_port)
448 			member = 0;
449 		break;
450 	case BR_STATE_LISTENING:
451 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
452 		if (port != dev->cpu_port &&
453 		    p->stp_state == BR_STATE_DISABLED)
454 			member = dev->host_mask | p->vid_member;
455 		break;
456 	case BR_STATE_LEARNING:
457 		data |= PORT_RX_ENABLE;
458 		break;
459 	case BR_STATE_FORWARDING:
460 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
461 
462 		/* This function is also used internally. */
463 		if (port == dev->cpu_port)
464 			break;
465 
466 		member = dev->host_mask | p->vid_member;
467 		mutex_lock(&dev->dev_mutex);
468 
469 		/* Port is a member of a bridge. */
470 		if (dev->br_member & (1 << port)) {
471 			dev->member |= (1 << port);
472 			member = dev->member;
473 		}
474 		mutex_unlock(&dev->dev_mutex);
475 		break;
476 	case BR_STATE_BLOCKING:
477 		data |= PORT_LEARN_DISABLE;
478 		if (port != dev->cpu_port &&
479 		    p->stp_state == BR_STATE_DISABLED)
480 			member = dev->host_mask | p->vid_member;
481 		break;
482 	default:
483 		dev_err(ds->dev, "invalid STP state: %d\n", state);
484 		return;
485 	}
486 
487 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
488 	p->stp_state = state;
489 	mutex_lock(&dev->dev_mutex);
490 	if (data & PORT_RX_ENABLE)
491 		dev->rx_ports |= (1 << port);
492 	else
493 		dev->rx_ports &= ~(1 << port);
494 	if (data & PORT_TX_ENABLE)
495 		dev->tx_ports |= (1 << port);
496 	else
497 		dev->tx_ports &= ~(1 << port);
498 
499 	/* Port membership may share register with STP state. */
500 	if (member >= 0 && member != p->member)
501 		ksz9477_cfg_port_member(dev, port, (u8)member);
502 
503 	/* Check if forwarding needs to be updated. */
504 	if (state != BR_STATE_FORWARDING) {
505 		if (dev->br_member & (1 << port))
506 			dev->member &= ~(1 << port);
507 	}
508 
509 	/* When topology has changed the function ksz_update_port_member
510 	 * should be called to modify port forwarding behavior.
511 	 */
512 	if (forward != dev->member)
513 		ksz_update_port_member(dev, port);
514 	mutex_unlock(&dev->dev_mutex);
515 }
516 
517 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
518 {
519 	u8 data;
520 
521 	ksz_read8(dev, REG_SW_LUE_CTRL_2, &data);
522 	data &= ~(SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S);
523 	data |= (SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
524 	ksz_write8(dev, REG_SW_LUE_CTRL_2, data);
525 	if (port < dev->mib_port_cnt) {
526 		/* flush individual port */
527 		ksz_pread8(dev, port, P_STP_CTRL, &data);
528 		if (!(data & PORT_LEARN_DISABLE))
529 			ksz_pwrite8(dev, port, P_STP_CTRL,
530 				    data | PORT_LEARN_DISABLE);
531 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
532 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
533 	} else {
534 		/* flush all */
535 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
536 	}
537 }
538 
539 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
540 				       bool flag)
541 {
542 	struct ksz_device *dev = ds->priv;
543 
544 	if (flag) {
545 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
546 			     PORT_VLAN_LOOKUP_VID_0, true);
547 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
548 	} else {
549 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
550 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
551 			     PORT_VLAN_LOOKUP_VID_0, false);
552 	}
553 
554 	return 0;
555 }
556 
557 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
558 				  const struct switchdev_obj_port_vlan *vlan)
559 {
560 	struct ksz_device *dev = ds->priv;
561 	u32 vlan_table[3];
562 	u16 vid;
563 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
564 
565 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
566 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
567 			dev_dbg(dev->dev, "Failed to get vlan table\n");
568 			return;
569 		}
570 
571 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
572 		if (untagged)
573 			vlan_table[1] |= BIT(port);
574 		else
575 			vlan_table[1] &= ~BIT(port);
576 		vlan_table[1] &= ~(BIT(dev->cpu_port));
577 
578 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
579 
580 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
581 			dev_dbg(dev->dev, "Failed to set vlan table\n");
582 			return;
583 		}
584 
585 		/* change PVID */
586 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
587 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
588 	}
589 }
590 
591 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
592 				 const struct switchdev_obj_port_vlan *vlan)
593 {
594 	struct ksz_device *dev = ds->priv;
595 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
596 	u32 vlan_table[3];
597 	u16 vid;
598 	u16 pvid;
599 
600 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
601 	pvid = pvid & 0xFFF;
602 
603 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
604 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
605 			dev_dbg(dev->dev, "Failed to get vlan table\n");
606 			return -ETIMEDOUT;
607 		}
608 
609 		vlan_table[2] &= ~BIT(port);
610 
611 		if (pvid == vid)
612 			pvid = 1;
613 
614 		if (untagged)
615 			vlan_table[1] &= ~BIT(port);
616 
617 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
618 			dev_dbg(dev->dev, "Failed to set vlan table\n");
619 			return -ETIMEDOUT;
620 		}
621 	}
622 
623 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
624 
625 	return 0;
626 }
627 
628 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
629 				const unsigned char *addr, u16 vid)
630 {
631 	struct ksz_device *dev = ds->priv;
632 	u32 alu_table[4];
633 	u32 data;
634 	int ret = 0;
635 
636 	mutex_lock(&dev->alu_mutex);
637 
638 	/* find any entry with mac & vid */
639 	data = vid << ALU_FID_INDEX_S;
640 	data |= ((addr[0] << 8) | addr[1]);
641 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
642 
643 	data = ((addr[2] << 24) | (addr[3] << 16));
644 	data |= ((addr[4] << 8) | addr[5]);
645 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
646 
647 	/* start read operation */
648 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
649 
650 	/* wait to be finished */
651 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
652 	if (ret < 0) {
653 		dev_dbg(dev->dev, "Failed to read ALU\n");
654 		goto exit;
655 	}
656 
657 	/* read ALU entry */
658 	ksz9477_read_table(dev, alu_table);
659 
660 	/* update ALU entry */
661 	alu_table[0] = ALU_V_STATIC_VALID;
662 	alu_table[1] |= BIT(port);
663 	if (vid)
664 		alu_table[1] |= ALU_V_USE_FID;
665 	alu_table[2] = (vid << ALU_V_FID_S);
666 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
667 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
668 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
669 
670 	ksz9477_write_table(dev, alu_table);
671 
672 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
673 
674 	/* wait to be finished */
675 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
676 	if (ret < 0)
677 		dev_dbg(dev->dev, "Failed to write ALU\n");
678 
679 exit:
680 	mutex_unlock(&dev->alu_mutex);
681 
682 	return ret;
683 }
684 
685 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
686 				const unsigned char *addr, u16 vid)
687 {
688 	struct ksz_device *dev = ds->priv;
689 	u32 alu_table[4];
690 	u32 data;
691 	int ret = 0;
692 
693 	mutex_lock(&dev->alu_mutex);
694 
695 	/* read any entry with mac & vid */
696 	data = vid << ALU_FID_INDEX_S;
697 	data |= ((addr[0] << 8) | addr[1]);
698 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
699 
700 	data = ((addr[2] << 24) | (addr[3] << 16));
701 	data |= ((addr[4] << 8) | addr[5]);
702 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
703 
704 	/* start read operation */
705 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
706 
707 	/* wait to be finished */
708 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
709 	if (ret < 0) {
710 		dev_dbg(dev->dev, "Failed to read ALU\n");
711 		goto exit;
712 	}
713 
714 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
715 	if (alu_table[0] & ALU_V_STATIC_VALID) {
716 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
717 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
718 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
719 
720 		/* clear forwarding port */
721 		alu_table[2] &= ~BIT(port);
722 
723 		/* if there is no port to forward, clear table */
724 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
725 			alu_table[0] = 0;
726 			alu_table[1] = 0;
727 			alu_table[2] = 0;
728 			alu_table[3] = 0;
729 		}
730 	} else {
731 		alu_table[0] = 0;
732 		alu_table[1] = 0;
733 		alu_table[2] = 0;
734 		alu_table[3] = 0;
735 	}
736 
737 	ksz9477_write_table(dev, alu_table);
738 
739 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
740 
741 	/* wait to be finished */
742 	ret = ksz9477_wait_alu_ready(dev, ALU_START, 1000);
743 	if (ret < 0)
744 		dev_dbg(dev->dev, "Failed to write ALU\n");
745 
746 exit:
747 	mutex_unlock(&dev->alu_mutex);
748 
749 	return ret;
750 }
751 
752 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
753 {
754 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
755 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
756 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
757 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
758 			ALU_V_PRIO_AGE_CNT_M;
759 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
760 
761 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
762 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
763 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
764 
765 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
766 
767 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
768 	alu->mac[1] = alu_table[2] & 0xFF;
769 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
770 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
771 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
772 	alu->mac[5] = alu_table[3] & 0xFF;
773 }
774 
775 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
776 				 dsa_fdb_dump_cb_t *cb, void *data)
777 {
778 	struct ksz_device *dev = ds->priv;
779 	int ret = 0;
780 	u32 ksz_data;
781 	u32 alu_table[4];
782 	struct alu_struct alu;
783 	int timeout;
784 
785 	mutex_lock(&dev->alu_mutex);
786 
787 	/* start ALU search */
788 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
789 
790 	do {
791 		timeout = 1000;
792 		do {
793 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
794 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
795 				break;
796 			usleep_range(1, 10);
797 		} while (timeout-- > 0);
798 
799 		if (!timeout) {
800 			dev_dbg(dev->dev, "Failed to search ALU\n");
801 			ret = -ETIMEDOUT;
802 			goto exit;
803 		}
804 
805 		/* read ALU table */
806 		ksz9477_read_table(dev, alu_table);
807 
808 		ksz9477_convert_alu(&alu, alu_table);
809 
810 		if (alu.port_forward & BIT(port)) {
811 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
812 			if (ret)
813 				goto exit;
814 		}
815 	} while (ksz_data & ALU_START);
816 
817 exit:
818 
819 	/* stop ALU search */
820 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
821 
822 	mutex_unlock(&dev->alu_mutex);
823 
824 	return ret;
825 }
826 
827 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
828 				 const struct switchdev_obj_port_mdb *mdb)
829 {
830 	struct ksz_device *dev = ds->priv;
831 	u32 static_table[4];
832 	u32 data;
833 	int index;
834 	u32 mac_hi, mac_lo;
835 
836 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
837 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
838 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
839 
840 	mutex_lock(&dev->alu_mutex);
841 
842 	for (index = 0; index < dev->num_statics; index++) {
843 		/* find empty slot first */
844 		data = (index << ALU_STAT_INDEX_S) |
845 			ALU_STAT_READ | ALU_STAT_START;
846 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
847 
848 		/* wait to be finished */
849 		if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
850 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
851 			goto exit;
852 		}
853 
854 		/* read ALU static table */
855 		ksz9477_read_table(dev, static_table);
856 
857 		if (static_table[0] & ALU_V_STATIC_VALID) {
858 			/* check this has same vid & mac address */
859 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
860 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
861 			    static_table[3] == mac_lo) {
862 				/* found matching one */
863 				break;
864 			}
865 		} else {
866 			/* found empty one */
867 			break;
868 		}
869 	}
870 
871 	/* no available entry */
872 	if (index == dev->num_statics)
873 		goto exit;
874 
875 	/* add entry */
876 	static_table[0] = ALU_V_STATIC_VALID;
877 	static_table[1] |= BIT(port);
878 	if (mdb->vid)
879 		static_table[1] |= ALU_V_USE_FID;
880 	static_table[2] = (mdb->vid << ALU_V_FID_S);
881 	static_table[2] |= mac_hi;
882 	static_table[3] = mac_lo;
883 
884 	ksz9477_write_table(dev, static_table);
885 
886 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
887 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
888 
889 	/* wait to be finished */
890 	if (ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
891 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
892 
893 exit:
894 	mutex_unlock(&dev->alu_mutex);
895 }
896 
897 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
898 				const struct switchdev_obj_port_mdb *mdb)
899 {
900 	struct ksz_device *dev = ds->priv;
901 	u32 static_table[4];
902 	u32 data;
903 	int index;
904 	int ret = 0;
905 	u32 mac_hi, mac_lo;
906 
907 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
908 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
909 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
910 
911 	mutex_lock(&dev->alu_mutex);
912 
913 	for (index = 0; index < dev->num_statics; index++) {
914 		/* find empty slot first */
915 		data = (index << ALU_STAT_INDEX_S) |
916 			ALU_STAT_READ | ALU_STAT_START;
917 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
918 
919 		/* wait to be finished */
920 		ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
921 		if (ret < 0) {
922 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
923 			goto exit;
924 		}
925 
926 		/* read ALU static table */
927 		ksz9477_read_table(dev, static_table);
928 
929 		if (static_table[0] & ALU_V_STATIC_VALID) {
930 			/* check this has same vid & mac address */
931 
932 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
933 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
934 			    static_table[3] == mac_lo) {
935 				/* found matching one */
936 				break;
937 			}
938 		}
939 	}
940 
941 	/* no available entry */
942 	if (index == dev->num_statics)
943 		goto exit;
944 
945 	/* clear port */
946 	static_table[1] &= ~BIT(port);
947 
948 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
949 		/* delete entry */
950 		static_table[0] = 0;
951 		static_table[1] = 0;
952 		static_table[2] = 0;
953 		static_table[3] = 0;
954 	}
955 
956 	ksz9477_write_table(dev, static_table);
957 
958 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
959 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
960 
961 	/* wait to be finished */
962 	ret = ksz9477_wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
963 	if (ret < 0)
964 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
965 
966 exit:
967 	mutex_unlock(&dev->alu_mutex);
968 
969 	return ret;
970 }
971 
972 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
973 				   struct dsa_mall_mirror_tc_entry *mirror,
974 				   bool ingress)
975 {
976 	struct ksz_device *dev = ds->priv;
977 
978 	if (ingress)
979 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
980 	else
981 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
982 
983 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
984 
985 	/* configure mirror port */
986 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
987 		     PORT_MIRROR_SNIFFER, true);
988 
989 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
990 
991 	return 0;
992 }
993 
994 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
995 				    struct dsa_mall_mirror_tc_entry *mirror)
996 {
997 	struct ksz_device *dev = ds->priv;
998 	u8 data;
999 
1000 	if (mirror->ingress)
1001 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1002 	else
1003 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1004 
1005 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1006 
1007 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1008 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1009 			     PORT_MIRROR_SNIFFER, false);
1010 }
1011 
1012 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
1013 			      struct phy_device *phy)
1014 {
1015 	/* Only apply to port with PHY. */
1016 	if (port >= dev->phy_port_cnt)
1017 		return;
1018 
1019 	/* The MAC actually cannot run in 1000 half-duplex mode. */
1020 	phy_remove_link_mode(phy,
1021 			     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1022 
1023 	/* PHY does not support gigabit. */
1024 	if (!(dev->features & GBIT_SUPPORT))
1025 		phy_remove_link_mode(phy,
1026 				     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
1027 }
1028 
1029 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
1030 {
1031 	bool gbit;
1032 
1033 	if (dev->features & NEW_XMII)
1034 		gbit = !(data & PORT_MII_NOT_1GBIT);
1035 	else
1036 		gbit = !!(data & PORT_MII_1000MBIT_S1);
1037 	return gbit;
1038 }
1039 
1040 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1041 {
1042 	if (dev->features & NEW_XMII) {
1043 		if (gbit)
1044 			*data &= ~PORT_MII_NOT_1GBIT;
1045 		else
1046 			*data |= PORT_MII_NOT_1GBIT;
1047 	} else {
1048 		if (gbit)
1049 			*data |= PORT_MII_1000MBIT_S1;
1050 		else
1051 			*data &= ~PORT_MII_1000MBIT_S1;
1052 	}
1053 }
1054 
1055 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1056 {
1057 	int mode;
1058 
1059 	if (dev->features & NEW_XMII) {
1060 		switch (data & PORT_MII_SEL_M) {
1061 		case PORT_MII_SEL:
1062 			mode = 0;
1063 			break;
1064 		case PORT_RMII_SEL:
1065 			mode = 1;
1066 			break;
1067 		case PORT_GMII_SEL:
1068 			mode = 2;
1069 			break;
1070 		default:
1071 			mode = 3;
1072 		}
1073 	} else {
1074 		switch (data & PORT_MII_SEL_M) {
1075 		case PORT_MII_SEL_S1:
1076 			mode = 0;
1077 			break;
1078 		case PORT_RMII_SEL_S1:
1079 			mode = 1;
1080 			break;
1081 		case PORT_GMII_SEL_S1:
1082 			mode = 2;
1083 			break;
1084 		default:
1085 			mode = 3;
1086 		}
1087 	}
1088 	return mode;
1089 }
1090 
1091 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1092 {
1093 	u8 xmii;
1094 
1095 	if (dev->features & NEW_XMII) {
1096 		switch (mode) {
1097 		case 0:
1098 			xmii = PORT_MII_SEL;
1099 			break;
1100 		case 1:
1101 			xmii = PORT_RMII_SEL;
1102 			break;
1103 		case 2:
1104 			xmii = PORT_GMII_SEL;
1105 			break;
1106 		default:
1107 			xmii = PORT_RGMII_SEL;
1108 			break;
1109 		}
1110 	} else {
1111 		switch (mode) {
1112 		case 0:
1113 			xmii = PORT_MII_SEL_S1;
1114 			break;
1115 		case 1:
1116 			xmii = PORT_RMII_SEL_S1;
1117 			break;
1118 		case 2:
1119 			xmii = PORT_GMII_SEL_S1;
1120 			break;
1121 		default:
1122 			xmii = PORT_RGMII_SEL_S1;
1123 			break;
1124 		}
1125 	}
1126 	*data &= ~PORT_MII_SEL_M;
1127 	*data |= xmii;
1128 }
1129 
1130 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1131 {
1132 	phy_interface_t interface;
1133 	bool gbit;
1134 	int mode;
1135 	u8 data8;
1136 
1137 	if (port < dev->phy_port_cnt)
1138 		return PHY_INTERFACE_MODE_NA;
1139 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1140 	gbit = ksz9477_get_gbit(dev, data8);
1141 	mode = ksz9477_get_xmii(dev, data8);
1142 	switch (mode) {
1143 	case 2:
1144 		interface = PHY_INTERFACE_MODE_GMII;
1145 		if (gbit)
1146 			break;
1147 		/* fall through */
1148 	case 0:
1149 		interface = PHY_INTERFACE_MODE_MII;
1150 		break;
1151 	case 1:
1152 		interface = PHY_INTERFACE_MODE_RMII;
1153 		break;
1154 	default:
1155 		interface = PHY_INTERFACE_MODE_RGMII;
1156 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1157 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1158 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1159 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1160 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1161 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1162 		}
1163 		break;
1164 	}
1165 	return interface;
1166 }
1167 
1168 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1169 {
1170 	u8 data8;
1171 	u8 member;
1172 	u16 data16;
1173 	struct ksz_port *p = &dev->ports[port];
1174 
1175 	/* enable tag tail for host port */
1176 	if (cpu_port)
1177 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1178 			     true);
1179 
1180 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1181 
1182 	/* set back pressure */
1183 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1184 
1185 	/* enable broadcast storm limit */
1186 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1187 
1188 	/* disable DiffServ priority */
1189 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1190 
1191 	/* replace priority */
1192 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1193 		     false);
1194 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1195 			   MTI_PVID_REPLACE, false);
1196 
1197 	/* enable 802.1p priority */
1198 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1199 
1200 	if (port < dev->phy_port_cnt) {
1201 		/* do not force flow control */
1202 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1203 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1204 			     false);
1205 
1206 	} else {
1207 		/* force flow control */
1208 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1209 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1210 			     true);
1211 
1212 		/* configure MAC to 1G & RGMII mode */
1213 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1214 		switch (dev->interface) {
1215 		case PHY_INTERFACE_MODE_MII:
1216 			ksz9477_set_xmii(dev, 0, &data8);
1217 			ksz9477_set_gbit(dev, false, &data8);
1218 			p->phydev.speed = SPEED_100;
1219 			break;
1220 		case PHY_INTERFACE_MODE_RMII:
1221 			ksz9477_set_xmii(dev, 1, &data8);
1222 			ksz9477_set_gbit(dev, false, &data8);
1223 			p->phydev.speed = SPEED_100;
1224 			break;
1225 		case PHY_INTERFACE_MODE_GMII:
1226 			ksz9477_set_xmii(dev, 2, &data8);
1227 			ksz9477_set_gbit(dev, true, &data8);
1228 			p->phydev.speed = SPEED_1000;
1229 			break;
1230 		default:
1231 			ksz9477_set_xmii(dev, 3, &data8);
1232 			ksz9477_set_gbit(dev, true, &data8);
1233 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1234 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1235 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1236 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1237 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1238 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1239 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1240 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1241 			p->phydev.speed = SPEED_1000;
1242 			break;
1243 		}
1244 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1245 		p->phydev.duplex = 1;
1246 	}
1247 	mutex_lock(&dev->dev_mutex);
1248 	if (cpu_port) {
1249 		member = dev->port_mask;
1250 		dev->on_ports = dev->host_mask;
1251 		dev->live_ports = dev->host_mask;
1252 	} else {
1253 		member = dev->host_mask | p->vid_member;
1254 		dev->on_ports |= (1 << port);
1255 
1256 		/* Link was detected before port is enabled. */
1257 		if (p->phydev.link)
1258 			dev->live_ports |= (1 << port);
1259 	}
1260 	mutex_unlock(&dev->dev_mutex);
1261 	ksz9477_cfg_port_member(dev, port, member);
1262 
1263 	/* clear pending interrupts */
1264 	if (port < dev->phy_port_cnt)
1265 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1266 }
1267 
1268 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1269 {
1270 	struct ksz_device *dev = ds->priv;
1271 	struct ksz_port *p;
1272 	int i;
1273 
1274 	ds->num_ports = dev->port_cnt;
1275 
1276 	for (i = 0; i < dev->port_cnt; i++) {
1277 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1278 			phy_interface_t interface;
1279 
1280 			dev->cpu_port = i;
1281 			dev->host_mask = (1 << dev->cpu_port);
1282 			dev->port_mask |= dev->host_mask;
1283 
1284 			/* Read from XMII register to determine host port
1285 			 * interface.  If set specifically in device tree
1286 			 * note the difference to help debugging.
1287 			 */
1288 			interface = ksz9477_get_interface(dev, i);
1289 			if (!dev->interface)
1290 				dev->interface = interface;
1291 			if (interface && interface != dev->interface)
1292 				dev_info(dev->dev,
1293 					 "use %s instead of %s\n",
1294 					  phy_modes(dev->interface),
1295 					  phy_modes(interface));
1296 
1297 			/* enable cpu port */
1298 			ksz9477_port_setup(dev, i, true);
1299 			p = &dev->ports[dev->cpu_port];
1300 			p->vid_member = dev->port_mask;
1301 			p->on = 1;
1302 		}
1303 	}
1304 
1305 	dev->member = dev->host_mask;
1306 
1307 	for (i = 0; i < dev->mib_port_cnt; i++) {
1308 		if (i == dev->cpu_port)
1309 			continue;
1310 		p = &dev->ports[i];
1311 
1312 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1313 		 * be called.
1314 		 */
1315 		p->vid_member = (1 << i);
1316 		p->member = dev->port_mask;
1317 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1318 		p->on = 1;
1319 		if (i < dev->phy_port_cnt)
1320 			p->phy = 1;
1321 		if (dev->chip_id == 0x00947700 && i == 6) {
1322 			p->sgmii = 1;
1323 
1324 			/* SGMII PHY detection code is not implemented yet. */
1325 			p->phy = 0;
1326 		}
1327 	}
1328 }
1329 
1330 static int ksz9477_setup(struct dsa_switch *ds)
1331 {
1332 	struct ksz_device *dev = ds->priv;
1333 	int ret = 0;
1334 
1335 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1336 				       dev->num_vlans, GFP_KERNEL);
1337 	if (!dev->vlan_cache)
1338 		return -ENOMEM;
1339 
1340 	ret = ksz9477_reset_switch(dev);
1341 	if (ret) {
1342 		dev_err(ds->dev, "failed to reset switch\n");
1343 		return ret;
1344 	}
1345 
1346 	/* Required for port partitioning. */
1347 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1348 		      true);
1349 
1350 	/* Do not work correctly with tail tagging. */
1351 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1352 
1353 	/* accept packet up to 2000bytes */
1354 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1355 
1356 	ksz9477_config_cpu_port(ds);
1357 
1358 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1359 
1360 	/* queue based egress rate limit */
1361 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1362 
1363 	/* enable global MIB counter freeze function */
1364 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1365 
1366 	/* start switch */
1367 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1368 
1369 	ksz_init_mib_timer(dev);
1370 
1371 	return 0;
1372 }
1373 
1374 static const struct dsa_switch_ops ksz9477_switch_ops = {
1375 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1376 	.setup			= ksz9477_setup,
1377 	.phy_read		= ksz9477_phy_read16,
1378 	.phy_write		= ksz9477_phy_write16,
1379 	.adjust_link		= ksz_adjust_link,
1380 	.port_enable		= ksz_enable_port,
1381 	.port_disable		= ksz_disable_port,
1382 	.get_strings		= ksz9477_get_strings,
1383 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1384 	.get_sset_count		= ksz_sset_count,
1385 	.port_bridge_join	= ksz_port_bridge_join,
1386 	.port_bridge_leave	= ksz_port_bridge_leave,
1387 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1388 	.port_fast_age		= ksz_port_fast_age,
1389 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1390 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1391 	.port_vlan_add		= ksz9477_port_vlan_add,
1392 	.port_vlan_del		= ksz9477_port_vlan_del,
1393 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1394 	.port_fdb_add		= ksz9477_port_fdb_add,
1395 	.port_fdb_del		= ksz9477_port_fdb_del,
1396 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1397 	.port_mdb_add           = ksz9477_port_mdb_add,
1398 	.port_mdb_del           = ksz9477_port_mdb_del,
1399 	.port_mirror_add	= ksz9477_port_mirror_add,
1400 	.port_mirror_del	= ksz9477_port_mirror_del,
1401 };
1402 
1403 static u32 ksz9477_get_port_addr(int port, int offset)
1404 {
1405 	return PORT_CTRL_ADDR(port, offset);
1406 }
1407 
1408 static int ksz9477_switch_detect(struct ksz_device *dev)
1409 {
1410 	u8 data8;
1411 	u8 id_hi;
1412 	u8 id_lo;
1413 	u32 id32;
1414 	int ret;
1415 
1416 	/* turn off SPI DO Edge select */
1417 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1418 	if (ret)
1419 		return ret;
1420 
1421 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1422 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1423 	if (ret)
1424 		return ret;
1425 
1426 	/* read chip id */
1427 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1428 	if (ret)
1429 		return ret;
1430 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1431 	if (ret)
1432 		return ret;
1433 
1434 	/* Number of ports can be reduced depending on chip. */
1435 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1436 	dev->phy_port_cnt = 5;
1437 
1438 	/* Default capability is gigabit capable. */
1439 	dev->features = GBIT_SUPPORT;
1440 
1441 	id_hi = (u8)(id32 >> 16);
1442 	id_lo = (u8)(id32 >> 8);
1443 	if ((id_lo & 0xf) == 3) {
1444 		/* Chip is from KSZ9893 design. */
1445 		dev->features |= IS_9893;
1446 
1447 		/* Chip does not support gigabit. */
1448 		if (data8 & SW_QW_ABLE)
1449 			dev->features &= ~GBIT_SUPPORT;
1450 		dev->mib_port_cnt = 3;
1451 		dev->phy_port_cnt = 2;
1452 	} else {
1453 		/* Chip uses new XMII register definitions. */
1454 		dev->features |= NEW_XMII;
1455 
1456 		/* Chip does not support gigabit. */
1457 		if (!(data8 & SW_GIGABIT_ABLE))
1458 			dev->features &= ~GBIT_SUPPORT;
1459 	}
1460 
1461 	/* Change chip id to known ones so it can be matched against them. */
1462 	id32 = (id_hi << 16) | (id_lo << 8);
1463 
1464 	dev->chip_id = id32;
1465 
1466 	return 0;
1467 }
1468 
1469 struct ksz_chip_data {
1470 	u32 chip_id;
1471 	const char *dev_name;
1472 	int num_vlans;
1473 	int num_alus;
1474 	int num_statics;
1475 	int cpu_ports;
1476 	int port_cnt;
1477 };
1478 
1479 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1480 	{
1481 		.chip_id = 0x00947700,
1482 		.dev_name = "KSZ9477",
1483 		.num_vlans = 4096,
1484 		.num_alus = 4096,
1485 		.num_statics = 16,
1486 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1487 		.port_cnt = 7,		/* total physical port count */
1488 	},
1489 	{
1490 		.chip_id = 0x00989700,
1491 		.dev_name = "KSZ9897",
1492 		.num_vlans = 4096,
1493 		.num_alus = 4096,
1494 		.num_statics = 16,
1495 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1496 		.port_cnt = 7,		/* total physical port count */
1497 	},
1498 	{
1499 		.chip_id = 0x00989300,
1500 		.dev_name = "KSZ9893",
1501 		.num_vlans = 4096,
1502 		.num_alus = 4096,
1503 		.num_statics = 16,
1504 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1505 		.port_cnt = 3,		/* total port count */
1506 	},
1507 };
1508 
1509 static int ksz9477_switch_init(struct ksz_device *dev)
1510 {
1511 	int i;
1512 
1513 	dev->ds->ops = &ksz9477_switch_ops;
1514 
1515 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1516 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1517 
1518 		if (dev->chip_id == chip->chip_id) {
1519 			dev->name = chip->dev_name;
1520 			dev->num_vlans = chip->num_vlans;
1521 			dev->num_alus = chip->num_alus;
1522 			dev->num_statics = chip->num_statics;
1523 			dev->port_cnt = chip->port_cnt;
1524 			dev->cpu_ports = chip->cpu_ports;
1525 
1526 			break;
1527 		}
1528 	}
1529 
1530 	/* no switch found */
1531 	if (!dev->port_cnt)
1532 		return -ENODEV;
1533 
1534 	dev->port_mask = (1 << dev->port_cnt) - 1;
1535 
1536 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1537 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1538 
1539 	i = dev->mib_port_cnt;
1540 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1541 				  GFP_KERNEL);
1542 	if (!dev->ports)
1543 		return -ENOMEM;
1544 	for (i = 0; i < dev->mib_port_cnt; i++) {
1545 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1546 		dev->ports[i].mib.counters =
1547 			devm_kzalloc(dev->dev,
1548 				     sizeof(u64) *
1549 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1550 				     GFP_KERNEL);
1551 		if (!dev->ports[i].mib.counters)
1552 			return -ENOMEM;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static void ksz9477_switch_exit(struct ksz_device *dev)
1559 {
1560 	ksz9477_reset_switch(dev);
1561 }
1562 
1563 static const struct ksz_dev_ops ksz9477_dev_ops = {
1564 	.get_port_addr = ksz9477_get_port_addr,
1565 	.cfg_port_member = ksz9477_cfg_port_member,
1566 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1567 	.phy_setup = ksz9477_phy_setup,
1568 	.port_setup = ksz9477_port_setup,
1569 	.r_mib_cnt = ksz9477_r_mib_cnt,
1570 	.r_mib_pkt = ksz9477_r_mib_pkt,
1571 	.freeze_mib = ksz9477_freeze_mib,
1572 	.port_init_cnt = ksz9477_port_init_cnt,
1573 	.shutdown = ksz9477_reset_switch,
1574 	.detect = ksz9477_switch_detect,
1575 	.init = ksz9477_switch_init,
1576 	.exit = ksz9477_switch_exit,
1577 };
1578 
1579 int ksz9477_switch_register(struct ksz_device *dev)
1580 {
1581 	return ksz_switch_register(dev, &ksz9477_dev_ops);
1582 }
1583 EXPORT_SYMBOL(ksz9477_switch_register);
1584 
1585 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1586 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1587 MODULE_LICENSE("GPL");
1588