1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17 
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21 
22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23 {
24 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
25 }
26 
27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 			 bool set)
29 {
30 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
31 			   bits, set ? bits : 0);
32 }
33 
34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35 {
36 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
37 }
38 
39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 			       u32 bits, bool set)
41 {
42 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
43 			   bits, set ? bits : 0);
44 }
45 
46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 {
48 	u16 frame_size, max_frame = 0;
49 	int i;
50 
51 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
52 
53 	/* Cache the per-port MTU setting */
54 	dev->ports[port].max_frame = frame_size;
55 
56 	for (i = 0; i < dev->info->port_cnt; i++)
57 		max_frame = max(max_frame, dev->ports[i].max_frame);
58 
59 	return regmap_update_bits(dev->regmap[1], REG_SW_MTU__2,
60 				  REG_SW_MTU_MASK, max_frame);
61 }
62 
63 int ksz9477_max_mtu(struct ksz_device *dev, int port)
64 {
65 	return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
66 }
67 
68 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
69 {
70 	unsigned int val;
71 
72 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
73 					val, !(val & VLAN_START), 10, 1000);
74 }
75 
76 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
77 				  u32 *vlan_table)
78 {
79 	int ret;
80 
81 	mutex_lock(&dev->vlan_mutex);
82 
83 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
84 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
85 
86 	/* wait to be cleared */
87 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
88 	if (ret) {
89 		dev_dbg(dev->dev, "Failed to read vlan table\n");
90 		goto exit;
91 	}
92 
93 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
94 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
95 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
96 
97 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
98 
99 exit:
100 	mutex_unlock(&dev->vlan_mutex);
101 
102 	return ret;
103 }
104 
105 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
106 				  u32 *vlan_table)
107 {
108 	int ret;
109 
110 	mutex_lock(&dev->vlan_mutex);
111 
112 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
113 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
114 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
115 
116 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
117 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
118 
119 	/* wait to be cleared */
120 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
121 	if (ret) {
122 		dev_dbg(dev->dev, "Failed to write vlan table\n");
123 		goto exit;
124 	}
125 
126 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
127 
128 	/* update vlan cache table */
129 	dev->vlan_cache[vid].table[0] = vlan_table[0];
130 	dev->vlan_cache[vid].table[1] = vlan_table[1];
131 	dev->vlan_cache[vid].table[2] = vlan_table[2];
132 
133 exit:
134 	mutex_unlock(&dev->vlan_mutex);
135 
136 	return ret;
137 }
138 
139 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
140 {
141 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
142 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
143 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
144 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
145 }
146 
147 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
148 {
149 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
150 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
151 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
152 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
153 }
154 
155 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
156 {
157 	unsigned int val;
158 
159 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
160 					val, !(val & ALU_START), 10, 1000);
161 }
162 
163 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
164 {
165 	unsigned int val;
166 
167 	return regmap_read_poll_timeout(dev->regmap[2],
168 					REG_SW_ALU_STAT_CTRL__4,
169 					val, !(val & ALU_STAT_START),
170 					10, 1000);
171 }
172 
173 int ksz9477_reset_switch(struct ksz_device *dev)
174 {
175 	u8 data8;
176 	u32 data32;
177 
178 	/* reset switch */
179 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
180 
181 	/* turn off SPI DO Edge select */
182 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
183 			   SPI_AUTO_EDGE_DETECTION, 0);
184 
185 	/* default configuration */
186 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
187 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
188 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
189 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
190 
191 	/* disable interrupts */
192 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
193 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
194 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
195 
196 	data8 = SW_ENABLE_REFCLKO;
197 	if (dev->synclko_disable)
198 		data8 = 0;
199 	else if (dev->synclko_125)
200 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
201 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
202 
203 	return 0;
204 }
205 
206 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
207 {
208 	struct ksz_port *p = &dev->ports[port];
209 	unsigned int val;
210 	u32 data;
211 	int ret;
212 
213 	/* retain the flush/freeze bit */
214 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
215 	data |= MIB_COUNTER_READ;
216 	data |= (addr << MIB_COUNTER_INDEX_S);
217 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
218 
219 	ret = regmap_read_poll_timeout(dev->regmap[2],
220 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
221 			val, !(val & MIB_COUNTER_READ), 10, 1000);
222 	/* failed to read MIB. get out of loop */
223 	if (ret) {
224 		dev_dbg(dev->dev, "Failed to get MIB\n");
225 		return;
226 	}
227 
228 	/* count resets upon read */
229 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
230 	*cnt += data;
231 }
232 
233 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
234 		       u64 *dropped, u64 *cnt)
235 {
236 	addr = dev->info->mib_names[addr].index;
237 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
238 }
239 
240 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
241 {
242 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
243 	struct ksz_port *p = &dev->ports[port];
244 
245 	/* enable/disable the port for flush/freeze function */
246 	mutex_lock(&p->mib.cnt_mutex);
247 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
248 
249 	/* used by MIB counter reading code to know freeze is enabled */
250 	p->freeze = freeze;
251 	mutex_unlock(&p->mib.cnt_mutex);
252 }
253 
254 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
255 {
256 	struct ksz_port_mib *mib = &dev->ports[port].mib;
257 
258 	/* flush all enabled port MIB counters */
259 	mutex_lock(&mib->cnt_mutex);
260 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
261 		     MIB_COUNTER_FLUSH_FREEZE);
262 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
263 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
264 	mutex_unlock(&mib->cnt_mutex);
265 }
266 
267 void ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
268 {
269 	u16 val = 0xffff;
270 
271 	/* No real PHY after this. Simulate the PHY.
272 	 * A fixed PHY can be setup in the device tree, but this function is
273 	 * still called for that port during initialization.
274 	 * For RGMII PHY there is no way to access it so the fixed PHY should
275 	 * be used.  For SGMII PHY the supporting code will be added later.
276 	 */
277 	if (addr >= dev->phy_port_cnt) {
278 		struct ksz_port *p = &dev->ports[addr];
279 
280 		switch (reg) {
281 		case MII_BMCR:
282 			val = 0x1140;
283 			break;
284 		case MII_BMSR:
285 			val = 0x796d;
286 			break;
287 		case MII_PHYSID1:
288 			val = 0x0022;
289 			break;
290 		case MII_PHYSID2:
291 			val = 0x1631;
292 			break;
293 		case MII_ADVERTISE:
294 			val = 0x05e1;
295 			break;
296 		case MII_LPA:
297 			val = 0xc5e1;
298 			break;
299 		case MII_CTRL1000:
300 			val = 0x0700;
301 			break;
302 		case MII_STAT1000:
303 			if (p->phydev.speed == SPEED_1000)
304 				val = 0x3800;
305 			else
306 				val = 0;
307 			break;
308 		}
309 	} else {
310 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
311 	}
312 
313 	*data = val;
314 }
315 
316 void ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
317 {
318 	/* No real PHY after this. */
319 	if (addr >= dev->phy_port_cnt)
320 		return;
321 
322 	/* No gigabit support.  Do not write to this register. */
323 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
324 		return;
325 
326 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
327 }
328 
329 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
330 {
331 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
332 }
333 
334 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
335 {
336 	const u16 *regs = dev->info->regs;
337 	u8 data;
338 
339 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
340 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
341 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
342 
343 	if (port < dev->info->port_cnt) {
344 		/* flush individual port */
345 		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
346 		if (!(data & PORT_LEARN_DISABLE))
347 			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
348 				    data | PORT_LEARN_DISABLE);
349 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
350 		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
351 	} else {
352 		/* flush all */
353 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
354 	}
355 }
356 
357 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
358 				bool flag, struct netlink_ext_ack *extack)
359 {
360 	if (flag) {
361 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
362 			     PORT_VLAN_LOOKUP_VID_0, true);
363 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
364 	} else {
365 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
366 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
367 			     PORT_VLAN_LOOKUP_VID_0, false);
368 	}
369 
370 	return 0;
371 }
372 
373 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
374 			  const struct switchdev_obj_port_vlan *vlan,
375 			  struct netlink_ext_ack *extack)
376 {
377 	u32 vlan_table[3];
378 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
379 	int err;
380 
381 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
382 	if (err) {
383 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
384 		return err;
385 	}
386 
387 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
388 	if (untagged)
389 		vlan_table[1] |= BIT(port);
390 	else
391 		vlan_table[1] &= ~BIT(port);
392 	vlan_table[1] &= ~(BIT(dev->cpu_port));
393 
394 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
395 
396 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
397 	if (err) {
398 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
399 		return err;
400 	}
401 
402 	/* change PVID */
403 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
404 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
405 
406 	return 0;
407 }
408 
409 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
410 			  const struct switchdev_obj_port_vlan *vlan)
411 {
412 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
413 	u32 vlan_table[3];
414 	u16 pvid;
415 
416 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
417 	pvid = pvid & 0xFFF;
418 
419 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
420 		dev_dbg(dev->dev, "Failed to get vlan table\n");
421 		return -ETIMEDOUT;
422 	}
423 
424 	vlan_table[2] &= ~BIT(port);
425 
426 	if (pvid == vlan->vid)
427 		pvid = 1;
428 
429 	if (untagged)
430 		vlan_table[1] &= ~BIT(port);
431 
432 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
433 		dev_dbg(dev->dev, "Failed to set vlan table\n");
434 		return -ETIMEDOUT;
435 	}
436 
437 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
438 
439 	return 0;
440 }
441 
442 int ksz9477_fdb_add(struct ksz_device *dev, int port,
443 		    const unsigned char *addr, u16 vid, struct dsa_db db)
444 {
445 	u32 alu_table[4];
446 	u32 data;
447 	int ret = 0;
448 
449 	mutex_lock(&dev->alu_mutex);
450 
451 	/* find any entry with mac & vid */
452 	data = vid << ALU_FID_INDEX_S;
453 	data |= ((addr[0] << 8) | addr[1]);
454 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
455 
456 	data = ((addr[2] << 24) | (addr[3] << 16));
457 	data |= ((addr[4] << 8) | addr[5]);
458 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
459 
460 	/* start read operation */
461 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
462 
463 	/* wait to be finished */
464 	ret = ksz9477_wait_alu_ready(dev);
465 	if (ret) {
466 		dev_dbg(dev->dev, "Failed to read ALU\n");
467 		goto exit;
468 	}
469 
470 	/* read ALU entry */
471 	ksz9477_read_table(dev, alu_table);
472 
473 	/* update ALU entry */
474 	alu_table[0] = ALU_V_STATIC_VALID;
475 	alu_table[1] |= BIT(port);
476 	if (vid)
477 		alu_table[1] |= ALU_V_USE_FID;
478 	alu_table[2] = (vid << ALU_V_FID_S);
479 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
480 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
481 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
482 
483 	ksz9477_write_table(dev, alu_table);
484 
485 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
486 
487 	/* wait to be finished */
488 	ret = ksz9477_wait_alu_ready(dev);
489 	if (ret)
490 		dev_dbg(dev->dev, "Failed to write ALU\n");
491 
492 exit:
493 	mutex_unlock(&dev->alu_mutex);
494 
495 	return ret;
496 }
497 
498 int ksz9477_fdb_del(struct ksz_device *dev, int port,
499 		    const unsigned char *addr, u16 vid, struct dsa_db db)
500 {
501 	u32 alu_table[4];
502 	u32 data;
503 	int ret = 0;
504 
505 	mutex_lock(&dev->alu_mutex);
506 
507 	/* read any entry with mac & vid */
508 	data = vid << ALU_FID_INDEX_S;
509 	data |= ((addr[0] << 8) | addr[1]);
510 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
511 
512 	data = ((addr[2] << 24) | (addr[3] << 16));
513 	data |= ((addr[4] << 8) | addr[5]);
514 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
515 
516 	/* start read operation */
517 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
518 
519 	/* wait to be finished */
520 	ret = ksz9477_wait_alu_ready(dev);
521 	if (ret) {
522 		dev_dbg(dev->dev, "Failed to read ALU\n");
523 		goto exit;
524 	}
525 
526 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
527 	if (alu_table[0] & ALU_V_STATIC_VALID) {
528 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
529 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
530 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
531 
532 		/* clear forwarding port */
533 		alu_table[2] &= ~BIT(port);
534 
535 		/* if there is no port to forward, clear table */
536 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
537 			alu_table[0] = 0;
538 			alu_table[1] = 0;
539 			alu_table[2] = 0;
540 			alu_table[3] = 0;
541 		}
542 	} else {
543 		alu_table[0] = 0;
544 		alu_table[1] = 0;
545 		alu_table[2] = 0;
546 		alu_table[3] = 0;
547 	}
548 
549 	ksz9477_write_table(dev, alu_table);
550 
551 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
552 
553 	/* wait to be finished */
554 	ret = ksz9477_wait_alu_ready(dev);
555 	if (ret)
556 		dev_dbg(dev->dev, "Failed to write ALU\n");
557 
558 exit:
559 	mutex_unlock(&dev->alu_mutex);
560 
561 	return ret;
562 }
563 
564 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
565 {
566 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
567 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
568 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
569 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
570 			ALU_V_PRIO_AGE_CNT_M;
571 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
572 
573 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
574 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
575 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
576 
577 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
578 
579 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
580 	alu->mac[1] = alu_table[2] & 0xFF;
581 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
582 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
583 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
584 	alu->mac[5] = alu_table[3] & 0xFF;
585 }
586 
587 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
588 		     dsa_fdb_dump_cb_t *cb, void *data)
589 {
590 	int ret = 0;
591 	u32 ksz_data;
592 	u32 alu_table[4];
593 	struct alu_struct alu;
594 	int timeout;
595 
596 	mutex_lock(&dev->alu_mutex);
597 
598 	/* start ALU search */
599 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
600 
601 	do {
602 		timeout = 1000;
603 		do {
604 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
605 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
606 				break;
607 			usleep_range(1, 10);
608 		} while (timeout-- > 0);
609 
610 		if (!timeout) {
611 			dev_dbg(dev->dev, "Failed to search ALU\n");
612 			ret = -ETIMEDOUT;
613 			goto exit;
614 		}
615 
616 		if (!(ksz_data & ALU_VALID))
617 			continue;
618 
619 		/* read ALU table */
620 		ksz9477_read_table(dev, alu_table);
621 
622 		ksz9477_convert_alu(&alu, alu_table);
623 
624 		if (alu.port_forward & BIT(port)) {
625 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
626 			if (ret)
627 				goto exit;
628 		}
629 	} while (ksz_data & ALU_START);
630 
631 exit:
632 
633 	/* stop ALU search */
634 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
635 
636 	mutex_unlock(&dev->alu_mutex);
637 
638 	return ret;
639 }
640 
641 int ksz9477_mdb_add(struct ksz_device *dev, int port,
642 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
643 {
644 	u32 static_table[4];
645 	const u8 *shifts;
646 	const u32 *masks;
647 	u32 data;
648 	int index;
649 	u32 mac_hi, mac_lo;
650 	int err = 0;
651 
652 	shifts = dev->info->shifts;
653 	masks = dev->info->masks;
654 
655 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
656 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
657 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
658 
659 	mutex_lock(&dev->alu_mutex);
660 
661 	for (index = 0; index < dev->info->num_statics; index++) {
662 		/* find empty slot first */
663 		data = (index << shifts[ALU_STAT_INDEX]) |
664 			masks[ALU_STAT_READ] | ALU_STAT_START;
665 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
666 
667 		/* wait to be finished */
668 		err = ksz9477_wait_alu_sta_ready(dev);
669 		if (err) {
670 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
671 			goto exit;
672 		}
673 
674 		/* read ALU static table */
675 		ksz9477_read_table(dev, static_table);
676 
677 		if (static_table[0] & ALU_V_STATIC_VALID) {
678 			/* check this has same vid & mac address */
679 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
680 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
681 			    static_table[3] == mac_lo) {
682 				/* found matching one */
683 				break;
684 			}
685 		} else {
686 			/* found empty one */
687 			break;
688 		}
689 	}
690 
691 	/* no available entry */
692 	if (index == dev->info->num_statics) {
693 		err = -ENOSPC;
694 		goto exit;
695 	}
696 
697 	/* add entry */
698 	static_table[0] = ALU_V_STATIC_VALID;
699 	static_table[1] |= BIT(port);
700 	if (mdb->vid)
701 		static_table[1] |= ALU_V_USE_FID;
702 	static_table[2] = (mdb->vid << ALU_V_FID_S);
703 	static_table[2] |= mac_hi;
704 	static_table[3] = mac_lo;
705 
706 	ksz9477_write_table(dev, static_table);
707 
708 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
709 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
710 
711 	/* wait to be finished */
712 	if (ksz9477_wait_alu_sta_ready(dev))
713 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
714 
715 exit:
716 	mutex_unlock(&dev->alu_mutex);
717 	return err;
718 }
719 
720 int ksz9477_mdb_del(struct ksz_device *dev, int port,
721 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
722 {
723 	u32 static_table[4];
724 	const u8 *shifts;
725 	const u32 *masks;
726 	u32 data;
727 	int index;
728 	int ret = 0;
729 	u32 mac_hi, mac_lo;
730 
731 	shifts = dev->info->shifts;
732 	masks = dev->info->masks;
733 
734 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
735 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
736 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
737 
738 	mutex_lock(&dev->alu_mutex);
739 
740 	for (index = 0; index < dev->info->num_statics; index++) {
741 		/* find empty slot first */
742 		data = (index << shifts[ALU_STAT_INDEX]) |
743 			masks[ALU_STAT_READ] | ALU_STAT_START;
744 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
745 
746 		/* wait to be finished */
747 		ret = ksz9477_wait_alu_sta_ready(dev);
748 		if (ret) {
749 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
750 			goto exit;
751 		}
752 
753 		/* read ALU static table */
754 		ksz9477_read_table(dev, static_table);
755 
756 		if (static_table[0] & ALU_V_STATIC_VALID) {
757 			/* check this has same vid & mac address */
758 
759 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
760 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
761 			    static_table[3] == mac_lo) {
762 				/* found matching one */
763 				break;
764 			}
765 		}
766 	}
767 
768 	/* no available entry */
769 	if (index == dev->info->num_statics)
770 		goto exit;
771 
772 	/* clear port */
773 	static_table[1] &= ~BIT(port);
774 
775 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
776 		/* delete entry */
777 		static_table[0] = 0;
778 		static_table[1] = 0;
779 		static_table[2] = 0;
780 		static_table[3] = 0;
781 	}
782 
783 	ksz9477_write_table(dev, static_table);
784 
785 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
786 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
787 
788 	/* wait to be finished */
789 	ret = ksz9477_wait_alu_sta_ready(dev);
790 	if (ret)
791 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
792 
793 exit:
794 	mutex_unlock(&dev->alu_mutex);
795 
796 	return ret;
797 }
798 
799 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
800 			    struct dsa_mall_mirror_tc_entry *mirror,
801 			    bool ingress, struct netlink_ext_ack *extack)
802 {
803 	u8 data;
804 	int p;
805 
806 	/* Limit to one sniffer port
807 	 * Check if any of the port is already set for sniffing
808 	 * If yes, instruct the user to remove the previous entry & exit
809 	 */
810 	for (p = 0; p < dev->info->port_cnt; p++) {
811 		/* Skip the current sniffing port */
812 		if (p == mirror->to_local_port)
813 			continue;
814 
815 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
816 
817 		if (data & PORT_MIRROR_SNIFFER) {
818 			NL_SET_ERR_MSG_MOD(extack,
819 					   "Sniffer port is already configured, delete existing rules & retry");
820 			return -EBUSY;
821 		}
822 	}
823 
824 	if (ingress)
825 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
826 	else
827 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
828 
829 	/* configure mirror port */
830 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
831 		     PORT_MIRROR_SNIFFER, true);
832 
833 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
834 
835 	return 0;
836 }
837 
838 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
839 			     struct dsa_mall_mirror_tc_entry *mirror)
840 {
841 	bool in_use = false;
842 	u8 data;
843 	int p;
844 
845 	if (mirror->ingress)
846 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
847 	else
848 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
849 
850 
851 	/* Check if any of the port is still referring to sniffer port */
852 	for (p = 0; p < dev->info->port_cnt; p++) {
853 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
854 
855 		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
856 			in_use = true;
857 			break;
858 		}
859 	}
860 
861 	/* delete sniffing if there are no other mirroring rules */
862 	if (!in_use)
863 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
864 			     PORT_MIRROR_SNIFFER, false);
865 }
866 
867 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
868 {
869 	phy_interface_t interface;
870 	bool gbit;
871 
872 	if (port < dev->phy_port_cnt)
873 		return PHY_INTERFACE_MODE_NA;
874 
875 	gbit = ksz_get_gbit(dev, port);
876 
877 	interface = ksz_get_xmii(dev, port, gbit);
878 
879 	return interface;
880 }
881 
882 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
883 				   u8 dev_addr, u16 reg_addr, u16 val)
884 {
885 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
886 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
887 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
888 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
889 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
890 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
891 }
892 
893 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
894 {
895 	/* Apply PHY settings to address errata listed in
896 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
897 	 * Silicon Errata and Data Sheet Clarification documents:
898 	 *
899 	 * Register settings are needed to improve PHY receive performance
900 	 */
901 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
902 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
903 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
904 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
905 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
906 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
907 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
908 
909 	/* Transmit waveform amplitude can be improved
910 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
911 	 */
912 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
913 
914 	/* Energy Efficient Ethernet (EEE) feature select must
915 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
916 	 */
917 	if (dev->features & GBIT_SUPPORT)
918 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
919 
920 	/* Register settings are required to meet data sheet
921 	 * supply current specifications
922 	 */
923 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
924 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
925 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
926 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
927 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
928 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
929 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
930 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
931 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
932 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
933 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
934 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
935 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
936 }
937 
938 void ksz9477_get_caps(struct ksz_device *dev, int port,
939 		      struct phylink_config *config)
940 {
941 	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
942 				   MAC_SYM_PAUSE;
943 
944 	if (dev->features & GBIT_SUPPORT)
945 		config->mac_capabilities |= MAC_1000FD;
946 }
947 
948 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
949 {
950 	struct dsa_switch *ds = dev->ds;
951 	u16 data16;
952 	u8 member;
953 
954 	/* enable tag tail for host port */
955 	if (cpu_port)
956 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
957 			     true);
958 
959 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
960 
961 	/* set back pressure */
962 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
963 
964 	/* enable broadcast storm limit */
965 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
966 
967 	/* disable DiffServ priority */
968 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
969 
970 	/* replace priority */
971 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
972 		     false);
973 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
974 			   MTI_PVID_REPLACE, false);
975 
976 	/* enable 802.1p priority */
977 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
978 
979 	if (port < dev->phy_port_cnt) {
980 		/* do not force flow control */
981 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
982 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
983 			     false);
984 
985 		if (dev->info->phy_errata_9477)
986 			ksz9477_phy_errata_setup(dev, port);
987 	} else {
988 		/* force flow control */
989 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
990 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
991 			     true);
992 	}
993 
994 	if (cpu_port)
995 		member = dsa_user_ports(ds);
996 	else
997 		member = BIT(dsa_upstream_port(ds, port));
998 
999 	ksz9477_cfg_port_member(dev, port, member);
1000 
1001 	/* clear pending interrupts */
1002 	if (port < dev->phy_port_cnt)
1003 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1004 }
1005 
1006 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1007 {
1008 	struct ksz_device *dev = ds->priv;
1009 	struct ksz_port *p;
1010 	int i;
1011 
1012 	for (i = 0; i < dev->info->port_cnt; i++) {
1013 		if (dsa_is_cpu_port(ds, i) &&
1014 		    (dev->info->cpu_ports & (1 << i))) {
1015 			phy_interface_t interface;
1016 			const char *prev_msg;
1017 			const char *prev_mode;
1018 
1019 			dev->cpu_port = i;
1020 			p = &dev->ports[i];
1021 
1022 			/* Read from XMII register to determine host port
1023 			 * interface.  If set specifically in device tree
1024 			 * note the difference to help debugging.
1025 			 */
1026 			interface = ksz9477_get_interface(dev, i);
1027 			if (!p->interface) {
1028 				if (dev->compat_interface) {
1029 					dev_warn(dev->dev,
1030 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1031 						 "Please update your device tree.\n",
1032 						 i);
1033 					p->interface = dev->compat_interface;
1034 				} else {
1035 					p->interface = interface;
1036 				}
1037 			}
1038 			if (interface && interface != p->interface) {
1039 				prev_msg = " instead of ";
1040 				prev_mode = phy_modes(interface);
1041 			} else {
1042 				prev_msg = "";
1043 				prev_mode = "";
1044 			}
1045 			dev_info(dev->dev,
1046 				 "Port%d: using phy mode %s%s%s\n",
1047 				 i,
1048 				 phy_modes(p->interface),
1049 				 prev_msg,
1050 				 prev_mode);
1051 
1052 			/* enable cpu port */
1053 			ksz9477_port_setup(dev, i, true);
1054 			p->on = 1;
1055 		}
1056 	}
1057 
1058 	for (i = 0; i < dev->info->port_cnt; i++) {
1059 		if (i == dev->cpu_port)
1060 			continue;
1061 		p = &dev->ports[i];
1062 
1063 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1064 		p->on = 1;
1065 		if (i < dev->phy_port_cnt)
1066 			p->phy = 1;
1067 		if (dev->chip_id == 0x00947700 && i == 6) {
1068 			p->sgmii = 1;
1069 
1070 			/* SGMII PHY detection code is not implemented yet. */
1071 			p->phy = 0;
1072 		}
1073 	}
1074 }
1075 
1076 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1077 {
1078 	const u32 *masks;
1079 	u32 data;
1080 	int ret;
1081 
1082 	masks = dev->info->masks;
1083 
1084 	/* Enable Reserved multicast table */
1085 	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1086 
1087 	/* Set the Override bit for forwarding BPDU packet to CPU */
1088 	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1089 			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1094 
1095 	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1096 	if (ret < 0)
1097 		return ret;
1098 
1099 	/* wait to be finished */
1100 	ret = ksz9477_wait_alu_sta_ready(dev);
1101 	if (ret < 0) {
1102 		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1103 		return ret;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 int ksz9477_setup(struct dsa_switch *ds)
1110 {
1111 	struct ksz_device *dev = ds->priv;
1112 	int ret = 0;
1113 
1114 	/* Required for port partitioning. */
1115 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1116 		      true);
1117 
1118 	/* Do not work correctly with tail tagging. */
1119 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1120 
1121 	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1122 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1123 
1124 	/* Now we can configure default MTU value */
1125 	ret = regmap_update_bits(dev->regmap[1], REG_SW_MTU__2, REG_SW_MTU_MASK,
1126 				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1127 	if (ret)
1128 		return ret;
1129 
1130 	/* queue based egress rate limit */
1131 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1132 
1133 	/* enable global MIB counter freeze function */
1134 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1135 
1136 	return 0;
1137 }
1138 
1139 u32 ksz9477_get_port_addr(int port, int offset)
1140 {
1141 	return PORT_CTRL_ADDR(port, offset);
1142 }
1143 
1144 int ksz9477_switch_init(struct ksz_device *dev)
1145 {
1146 	u8 data8;
1147 	int ret;
1148 
1149 	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1150 
1151 	/* turn off SPI DO Edge select */
1152 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1153 	if (ret)
1154 		return ret;
1155 
1156 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1157 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1158 	if (ret)
1159 		return ret;
1160 
1161 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* Number of ports can be reduced depending on chip. */
1166 	dev->phy_port_cnt = 5;
1167 
1168 	/* Default capability is gigabit capable. */
1169 	dev->features = GBIT_SUPPORT;
1170 
1171 	if (dev->chip_id == KSZ9893_CHIP_ID) {
1172 		dev->features |= IS_9893;
1173 
1174 		/* Chip does not support gigabit. */
1175 		if (data8 & SW_QW_ABLE)
1176 			dev->features &= ~GBIT_SUPPORT;
1177 		dev->phy_port_cnt = 2;
1178 	} else {
1179 		/* Chip does not support gigabit. */
1180 		if (!(data8 & SW_GIGABIT_ABLE))
1181 			dev->features &= ~GBIT_SUPPORT;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 void ksz9477_switch_exit(struct ksz_device *dev)
1188 {
1189 	ksz9477_reset_switch(dev);
1190 }
1191 
1192 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1193 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1194 MODULE_LICENSE("GPL");
1195