1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16 
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19 
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT			BIT(0)
22 #define NEW_XMII			BIT(1)
23 #define IS_9893				BIT(2)
24 
25 static const struct {
26 	int index;
27 	char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29 	{ 0x00, "rx_hi" },
30 	{ 0x01, "rx_undersize" },
31 	{ 0x02, "rx_fragments" },
32 	{ 0x03, "rx_oversize" },
33 	{ 0x04, "rx_jabbers" },
34 	{ 0x05, "rx_symbol_err" },
35 	{ 0x06, "rx_crc_err" },
36 	{ 0x07, "rx_align_err" },
37 	{ 0x08, "rx_mac_ctrl" },
38 	{ 0x09, "rx_pause" },
39 	{ 0x0A, "rx_bcast" },
40 	{ 0x0B, "rx_mcast" },
41 	{ 0x0C, "rx_ucast" },
42 	{ 0x0D, "rx_64_or_less" },
43 	{ 0x0E, "rx_65_127" },
44 	{ 0x0F, "rx_128_255" },
45 	{ 0x10, "rx_256_511" },
46 	{ 0x11, "rx_512_1023" },
47 	{ 0x12, "rx_1024_1522" },
48 	{ 0x13, "rx_1523_2000" },
49 	{ 0x14, "rx_2001" },
50 	{ 0x15, "tx_hi" },
51 	{ 0x16, "tx_late_col" },
52 	{ 0x17, "tx_pause" },
53 	{ 0x18, "tx_bcast" },
54 	{ 0x19, "tx_mcast" },
55 	{ 0x1A, "tx_ucast" },
56 	{ 0x1B, "tx_deferred" },
57 	{ 0x1C, "tx_total_col" },
58 	{ 0x1D, "tx_exc_col" },
59 	{ 0x1E, "tx_single_col" },
60 	{ 0x1F, "tx_mult_col" },
61 	{ 0x80, "rx_total" },
62 	{ 0x81, "tx_total" },
63 	{ 0x82, "rx_discards" },
64 	{ 0x83, "tx_discards" },
65 };
66 
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71 
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73 			 bool set)
74 {
75 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76 			   bits, set ? bits : 0);
77 }
78 
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81 	regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83 
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85 			       u32 bits, bool set)
86 {
87 	regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88 			   bits, set ? bits : 0);
89 }
90 
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93 	unsigned int val;
94 
95 	return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96 					val, !(val & VLAN_START), 10, 1000);
97 }
98 
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100 				  u32 *vlan_table)
101 {
102 	int ret;
103 
104 	mutex_lock(&dev->vlan_mutex);
105 
106 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108 
109 	/* wait to be cleared */
110 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
111 	if (ret) {
112 		dev_dbg(dev->dev, "Failed to read vlan table\n");
113 		goto exit;
114 	}
115 
116 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119 
120 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121 
122 exit:
123 	mutex_unlock(&dev->vlan_mutex);
124 
125 	return ret;
126 }
127 
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129 				  u32 *vlan_table)
130 {
131 	int ret;
132 
133 	mutex_lock(&dev->vlan_mutex);
134 
135 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138 
139 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141 
142 	/* wait to be cleared */
143 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
144 	if (ret) {
145 		dev_dbg(dev->dev, "Failed to write vlan table\n");
146 		goto exit;
147 	}
148 
149 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150 
151 	/* update vlan cache table */
152 	dev->vlan_cache[vid].table[0] = vlan_table[0];
153 	dev->vlan_cache[vid].table[1] = vlan_table[1];
154 	dev->vlan_cache[vid].table[2] = vlan_table[2];
155 
156 exit:
157 	mutex_unlock(&dev->vlan_mutex);
158 
159 	return ret;
160 }
161 
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169 
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177 
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180 	unsigned int val;
181 
182 	return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183 					val, !(val & ALU_START), 10, 1000);
184 }
185 
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188 	unsigned int val;
189 
190 	return regmap_read_poll_timeout(dev->regmap[2],
191 					REG_SW_ALU_STAT_CTRL__4,
192 					val, !(val & ALU_STAT_START),
193 					10, 1000);
194 }
195 
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198 	u8 data8;
199 	u32 data32;
200 
201 	/* reset switch */
202 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203 
204 	/* turn off SPI DO Edge select */
205 	regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206 			   SPI_AUTO_EDGE_DETECTION, 0);
207 
208 	/* default configuration */
209 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213 
214 	/* disable interrupts */
215 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218 
219 	/* set broadcast storm protection 10% rate */
220 	regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221 			   BROADCAST_STORM_RATE,
222 			   (BROADCAST_STORM_VALUE *
223 			   BROADCAST_STORM_PROT_RATE) / 100);
224 
225 	if (dev->synclko_125)
226 		ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227 			   SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228 
229 	return 0;
230 }
231 
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233 			      u64 *cnt)
234 {
235 	struct ksz_port *p = &dev->ports[port];
236 	unsigned int val;
237 	u32 data;
238 	int ret;
239 
240 	/* retain the flush/freeze bit */
241 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242 	data |= MIB_COUNTER_READ;
243 	data |= (addr << MIB_COUNTER_INDEX_S);
244 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245 
246 	ret = regmap_read_poll_timeout(dev->regmap[2],
247 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248 			val, !(val & MIB_COUNTER_READ), 10, 1000);
249 	/* failed to read MIB. get out of loop */
250 	if (ret) {
251 		dev_dbg(dev->dev, "Failed to get MIB\n");
252 		return;
253 	}
254 
255 	/* count resets upon read */
256 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257 	*cnt += data;
258 }
259 
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261 			      u64 *dropped, u64 *cnt)
262 {
263 	addr = ksz9477_mib_names[addr].index;
264 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266 
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270 	struct ksz_port *p = &dev->ports[port];
271 
272 	/* enable/disable the port for flush/freeze function */
273 	mutex_lock(&p->mib.cnt_mutex);
274 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275 
276 	/* used by MIB counter reading code to know freeze is enabled */
277 	p->freeze = freeze;
278 	mutex_unlock(&p->mib.cnt_mutex);
279 }
280 
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283 	struct ksz_port_mib *mib = &dev->ports[port].mib;
284 
285 	/* flush all enabled port MIB counters */
286 	mutex_lock(&mib->cnt_mutex);
287 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288 		     MIB_COUNTER_FLUSH_FREEZE);
289 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291 	mutex_unlock(&mib->cnt_mutex);
292 
293 	mib->cnt_ptr = 0;
294 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296 
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298 						      int port)
299 {
300 	enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
301 	struct ksz_device *dev = ds->priv;
302 
303 	if (dev->features & IS_9893)
304 		proto = DSA_TAG_PROTO_KSZ9893;
305 	return proto;
306 }
307 
308 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
309 {
310 	struct ksz_device *dev = ds->priv;
311 	u16 val = 0xffff;
312 
313 	/* No real PHY after this. Simulate the PHY.
314 	 * A fixed PHY can be setup in the device tree, but this function is
315 	 * still called for that port during initialization.
316 	 * For RGMII PHY there is no way to access it so the fixed PHY should
317 	 * be used.  For SGMII PHY the supporting code will be added later.
318 	 */
319 	if (addr >= dev->phy_port_cnt) {
320 		struct ksz_port *p = &dev->ports[addr];
321 
322 		switch (reg) {
323 		case MII_BMCR:
324 			val = 0x1140;
325 			break;
326 		case MII_BMSR:
327 			val = 0x796d;
328 			break;
329 		case MII_PHYSID1:
330 			val = 0x0022;
331 			break;
332 		case MII_PHYSID2:
333 			val = 0x1631;
334 			break;
335 		case MII_ADVERTISE:
336 			val = 0x05e1;
337 			break;
338 		case MII_LPA:
339 			val = 0xc5e1;
340 			break;
341 		case MII_CTRL1000:
342 			val = 0x0700;
343 			break;
344 		case MII_STAT1000:
345 			if (p->phydev.speed == SPEED_1000)
346 				val = 0x3800;
347 			else
348 				val = 0;
349 			break;
350 		}
351 	} else {
352 		ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
353 	}
354 
355 	return val;
356 }
357 
358 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
359 			       u16 val)
360 {
361 	struct ksz_device *dev = ds->priv;
362 
363 	/* No real PHY after this. */
364 	if (addr >= dev->phy_port_cnt)
365 		return 0;
366 
367 	/* No gigabit support.  Do not write to this register. */
368 	if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
369 		return 0;
370 	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
371 
372 	return 0;
373 }
374 
375 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
376 				u32 stringset, uint8_t *buf)
377 {
378 	int i;
379 
380 	if (stringset != ETH_SS_STATS)
381 		return;
382 
383 	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
384 		memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
385 		       ETH_GSTRING_LEN);
386 	}
387 }
388 
389 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
390 				    u8 member)
391 {
392 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
393 	dev->ports[port].member = member;
394 }
395 
396 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
397 				       u8 state)
398 {
399 	struct ksz_device *dev = ds->priv;
400 	struct ksz_port *p = &dev->ports[port];
401 	u8 data;
402 	int member = -1;
403 	int forward = dev->member;
404 
405 	ksz_pread8(dev, port, P_STP_CTRL, &data);
406 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
407 
408 	switch (state) {
409 	case BR_STATE_DISABLED:
410 		data |= PORT_LEARN_DISABLE;
411 		if (port != dev->cpu_port)
412 			member = 0;
413 		break;
414 	case BR_STATE_LISTENING:
415 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
416 		if (port != dev->cpu_port &&
417 		    p->stp_state == BR_STATE_DISABLED)
418 			member = dev->host_mask | p->vid_member;
419 		break;
420 	case BR_STATE_LEARNING:
421 		data |= PORT_RX_ENABLE;
422 		break;
423 	case BR_STATE_FORWARDING:
424 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
425 
426 		/* This function is also used internally. */
427 		if (port == dev->cpu_port)
428 			break;
429 
430 		member = dev->host_mask | p->vid_member;
431 		mutex_lock(&dev->dev_mutex);
432 
433 		/* Port is a member of a bridge. */
434 		if (dev->br_member & (1 << port)) {
435 			dev->member |= (1 << port);
436 			member = dev->member;
437 		}
438 		mutex_unlock(&dev->dev_mutex);
439 		break;
440 	case BR_STATE_BLOCKING:
441 		data |= PORT_LEARN_DISABLE;
442 		if (port != dev->cpu_port &&
443 		    p->stp_state == BR_STATE_DISABLED)
444 			member = dev->host_mask | p->vid_member;
445 		break;
446 	default:
447 		dev_err(ds->dev, "invalid STP state: %d\n", state);
448 		return;
449 	}
450 
451 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
452 	p->stp_state = state;
453 	mutex_lock(&dev->dev_mutex);
454 	if (data & PORT_RX_ENABLE)
455 		dev->rx_ports |= (1 << port);
456 	else
457 		dev->rx_ports &= ~(1 << port);
458 	if (data & PORT_TX_ENABLE)
459 		dev->tx_ports |= (1 << port);
460 	else
461 		dev->tx_ports &= ~(1 << port);
462 
463 	/* Port membership may share register with STP state. */
464 	if (member >= 0 && member != p->member)
465 		ksz9477_cfg_port_member(dev, port, (u8)member);
466 
467 	/* Check if forwarding needs to be updated. */
468 	if (state != BR_STATE_FORWARDING) {
469 		if (dev->br_member & (1 << port))
470 			dev->member &= ~(1 << port);
471 	}
472 
473 	/* When topology has changed the function ksz_update_port_member
474 	 * should be called to modify port forwarding behavior.
475 	 */
476 	if (forward != dev->member)
477 		ksz_update_port_member(dev, port);
478 	mutex_unlock(&dev->dev_mutex);
479 }
480 
481 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
482 {
483 	u8 data;
484 
485 	regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
486 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
487 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
488 
489 	if (port < dev->mib_port_cnt) {
490 		/* flush individual port */
491 		ksz_pread8(dev, port, P_STP_CTRL, &data);
492 		if (!(data & PORT_LEARN_DISABLE))
493 			ksz_pwrite8(dev, port, P_STP_CTRL,
494 				    data | PORT_LEARN_DISABLE);
495 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
496 		ksz_pwrite8(dev, port, P_STP_CTRL, data);
497 	} else {
498 		/* flush all */
499 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
500 	}
501 }
502 
503 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
504 				       bool flag)
505 {
506 	struct ksz_device *dev = ds->priv;
507 
508 	if (flag) {
509 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
510 			     PORT_VLAN_LOOKUP_VID_0, true);
511 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
512 	} else {
513 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
514 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
515 			     PORT_VLAN_LOOKUP_VID_0, false);
516 	}
517 
518 	return 0;
519 }
520 
521 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
522 				  const struct switchdev_obj_port_vlan *vlan)
523 {
524 	struct ksz_device *dev = ds->priv;
525 	u32 vlan_table[3];
526 	u16 vid;
527 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
528 
529 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
530 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
531 			dev_dbg(dev->dev, "Failed to get vlan table\n");
532 			return;
533 		}
534 
535 		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
536 		if (untagged)
537 			vlan_table[1] |= BIT(port);
538 		else
539 			vlan_table[1] &= ~BIT(port);
540 		vlan_table[1] &= ~(BIT(dev->cpu_port));
541 
542 		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
543 
544 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
545 			dev_dbg(dev->dev, "Failed to set vlan table\n");
546 			return;
547 		}
548 
549 		/* change PVID */
550 		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
551 			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
552 	}
553 }
554 
555 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
556 				 const struct switchdev_obj_port_vlan *vlan)
557 {
558 	struct ksz_device *dev = ds->priv;
559 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
560 	u32 vlan_table[3];
561 	u16 vid;
562 	u16 pvid;
563 
564 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
565 	pvid = pvid & 0xFFF;
566 
567 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
568 		if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
569 			dev_dbg(dev->dev, "Failed to get vlan table\n");
570 			return -ETIMEDOUT;
571 		}
572 
573 		vlan_table[2] &= ~BIT(port);
574 
575 		if (pvid == vid)
576 			pvid = 1;
577 
578 		if (untagged)
579 			vlan_table[1] &= ~BIT(port);
580 
581 		if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
582 			dev_dbg(dev->dev, "Failed to set vlan table\n");
583 			return -ETIMEDOUT;
584 		}
585 	}
586 
587 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
588 
589 	return 0;
590 }
591 
592 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
593 				const unsigned char *addr, u16 vid)
594 {
595 	struct ksz_device *dev = ds->priv;
596 	u32 alu_table[4];
597 	u32 data;
598 	int ret = 0;
599 
600 	mutex_lock(&dev->alu_mutex);
601 
602 	/* find any entry with mac & vid */
603 	data = vid << ALU_FID_INDEX_S;
604 	data |= ((addr[0] << 8) | addr[1]);
605 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
606 
607 	data = ((addr[2] << 24) | (addr[3] << 16));
608 	data |= ((addr[4] << 8) | addr[5]);
609 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
610 
611 	/* start read operation */
612 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
613 
614 	/* wait to be finished */
615 	ret = ksz9477_wait_alu_ready(dev);
616 	if (ret) {
617 		dev_dbg(dev->dev, "Failed to read ALU\n");
618 		goto exit;
619 	}
620 
621 	/* read ALU entry */
622 	ksz9477_read_table(dev, alu_table);
623 
624 	/* update ALU entry */
625 	alu_table[0] = ALU_V_STATIC_VALID;
626 	alu_table[1] |= BIT(port);
627 	if (vid)
628 		alu_table[1] |= ALU_V_USE_FID;
629 	alu_table[2] = (vid << ALU_V_FID_S);
630 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
631 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
632 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
633 
634 	ksz9477_write_table(dev, alu_table);
635 
636 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
637 
638 	/* wait to be finished */
639 	ret = ksz9477_wait_alu_ready(dev);
640 	if (ret)
641 		dev_dbg(dev->dev, "Failed to write ALU\n");
642 
643 exit:
644 	mutex_unlock(&dev->alu_mutex);
645 
646 	return ret;
647 }
648 
649 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
650 				const unsigned char *addr, u16 vid)
651 {
652 	struct ksz_device *dev = ds->priv;
653 	u32 alu_table[4];
654 	u32 data;
655 	int ret = 0;
656 
657 	mutex_lock(&dev->alu_mutex);
658 
659 	/* read any entry with mac & vid */
660 	data = vid << ALU_FID_INDEX_S;
661 	data |= ((addr[0] << 8) | addr[1]);
662 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
663 
664 	data = ((addr[2] << 24) | (addr[3] << 16));
665 	data |= ((addr[4] << 8) | addr[5]);
666 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
667 
668 	/* start read operation */
669 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
670 
671 	/* wait to be finished */
672 	ret = ksz9477_wait_alu_ready(dev);
673 	if (ret) {
674 		dev_dbg(dev->dev, "Failed to read ALU\n");
675 		goto exit;
676 	}
677 
678 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
679 	if (alu_table[0] & ALU_V_STATIC_VALID) {
680 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
681 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
682 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
683 
684 		/* clear forwarding port */
685 		alu_table[2] &= ~BIT(port);
686 
687 		/* if there is no port to forward, clear table */
688 		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
689 			alu_table[0] = 0;
690 			alu_table[1] = 0;
691 			alu_table[2] = 0;
692 			alu_table[3] = 0;
693 		}
694 	} else {
695 		alu_table[0] = 0;
696 		alu_table[1] = 0;
697 		alu_table[2] = 0;
698 		alu_table[3] = 0;
699 	}
700 
701 	ksz9477_write_table(dev, alu_table);
702 
703 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
704 
705 	/* wait to be finished */
706 	ret = ksz9477_wait_alu_ready(dev);
707 	if (ret)
708 		dev_dbg(dev->dev, "Failed to write ALU\n");
709 
710 exit:
711 	mutex_unlock(&dev->alu_mutex);
712 
713 	return ret;
714 }
715 
716 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
717 {
718 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
719 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
720 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
721 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
722 			ALU_V_PRIO_AGE_CNT_M;
723 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
724 
725 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
726 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
727 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
728 
729 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
730 
731 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
732 	alu->mac[1] = alu_table[2] & 0xFF;
733 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
734 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
735 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
736 	alu->mac[5] = alu_table[3] & 0xFF;
737 }
738 
739 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
740 				 dsa_fdb_dump_cb_t *cb, void *data)
741 {
742 	struct ksz_device *dev = ds->priv;
743 	int ret = 0;
744 	u32 ksz_data;
745 	u32 alu_table[4];
746 	struct alu_struct alu;
747 	int timeout;
748 
749 	mutex_lock(&dev->alu_mutex);
750 
751 	/* start ALU search */
752 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
753 
754 	do {
755 		timeout = 1000;
756 		do {
757 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
758 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
759 				break;
760 			usleep_range(1, 10);
761 		} while (timeout-- > 0);
762 
763 		if (!timeout) {
764 			dev_dbg(dev->dev, "Failed to search ALU\n");
765 			ret = -ETIMEDOUT;
766 			goto exit;
767 		}
768 
769 		/* read ALU table */
770 		ksz9477_read_table(dev, alu_table);
771 
772 		ksz9477_convert_alu(&alu, alu_table);
773 
774 		if (alu.port_forward & BIT(port)) {
775 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
776 			if (ret)
777 				goto exit;
778 		}
779 	} while (ksz_data & ALU_START);
780 
781 exit:
782 
783 	/* stop ALU search */
784 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
785 
786 	mutex_unlock(&dev->alu_mutex);
787 
788 	return ret;
789 }
790 
791 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
792 				 const struct switchdev_obj_port_mdb *mdb)
793 {
794 	struct ksz_device *dev = ds->priv;
795 	u32 static_table[4];
796 	u32 data;
797 	int index;
798 	u32 mac_hi, mac_lo;
799 
800 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
801 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
802 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
803 
804 	mutex_lock(&dev->alu_mutex);
805 
806 	for (index = 0; index < dev->num_statics; index++) {
807 		/* find empty slot first */
808 		data = (index << ALU_STAT_INDEX_S) |
809 			ALU_STAT_READ | ALU_STAT_START;
810 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
811 
812 		/* wait to be finished */
813 		if (ksz9477_wait_alu_sta_ready(dev)) {
814 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
815 			goto exit;
816 		}
817 
818 		/* read ALU static table */
819 		ksz9477_read_table(dev, static_table);
820 
821 		if (static_table[0] & ALU_V_STATIC_VALID) {
822 			/* check this has same vid & mac address */
823 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
824 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
825 			    static_table[3] == mac_lo) {
826 				/* found matching one */
827 				break;
828 			}
829 		} else {
830 			/* found empty one */
831 			break;
832 		}
833 	}
834 
835 	/* no available entry */
836 	if (index == dev->num_statics)
837 		goto exit;
838 
839 	/* add entry */
840 	static_table[0] = ALU_V_STATIC_VALID;
841 	static_table[1] |= BIT(port);
842 	if (mdb->vid)
843 		static_table[1] |= ALU_V_USE_FID;
844 	static_table[2] = (mdb->vid << ALU_V_FID_S);
845 	static_table[2] |= mac_hi;
846 	static_table[3] = mac_lo;
847 
848 	ksz9477_write_table(dev, static_table);
849 
850 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
851 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
852 
853 	/* wait to be finished */
854 	if (ksz9477_wait_alu_sta_ready(dev))
855 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
856 
857 exit:
858 	mutex_unlock(&dev->alu_mutex);
859 }
860 
861 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
862 				const struct switchdev_obj_port_mdb *mdb)
863 {
864 	struct ksz_device *dev = ds->priv;
865 	u32 static_table[4];
866 	u32 data;
867 	int index;
868 	int ret = 0;
869 	u32 mac_hi, mac_lo;
870 
871 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
872 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
873 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
874 
875 	mutex_lock(&dev->alu_mutex);
876 
877 	for (index = 0; index < dev->num_statics; index++) {
878 		/* find empty slot first */
879 		data = (index << ALU_STAT_INDEX_S) |
880 			ALU_STAT_READ | ALU_STAT_START;
881 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
882 
883 		/* wait to be finished */
884 		ret = ksz9477_wait_alu_sta_ready(dev);
885 		if (ret) {
886 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
887 			goto exit;
888 		}
889 
890 		/* read ALU static table */
891 		ksz9477_read_table(dev, static_table);
892 
893 		if (static_table[0] & ALU_V_STATIC_VALID) {
894 			/* check this has same vid & mac address */
895 
896 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
897 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
898 			    static_table[3] == mac_lo) {
899 				/* found matching one */
900 				break;
901 			}
902 		}
903 	}
904 
905 	/* no available entry */
906 	if (index == dev->num_statics)
907 		goto exit;
908 
909 	/* clear port */
910 	static_table[1] &= ~BIT(port);
911 
912 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
913 		/* delete entry */
914 		static_table[0] = 0;
915 		static_table[1] = 0;
916 		static_table[2] = 0;
917 		static_table[3] = 0;
918 	}
919 
920 	ksz9477_write_table(dev, static_table);
921 
922 	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
923 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
924 
925 	/* wait to be finished */
926 	ret = ksz9477_wait_alu_sta_ready(dev);
927 	if (ret)
928 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
929 
930 exit:
931 	mutex_unlock(&dev->alu_mutex);
932 
933 	return ret;
934 }
935 
936 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
937 				   struct dsa_mall_mirror_tc_entry *mirror,
938 				   bool ingress)
939 {
940 	struct ksz_device *dev = ds->priv;
941 
942 	if (ingress)
943 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
944 	else
945 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
946 
947 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
948 
949 	/* configure mirror port */
950 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
951 		     PORT_MIRROR_SNIFFER, true);
952 
953 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
954 
955 	return 0;
956 }
957 
958 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
959 				    struct dsa_mall_mirror_tc_entry *mirror)
960 {
961 	struct ksz_device *dev = ds->priv;
962 	u8 data;
963 
964 	if (mirror->ingress)
965 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
966 	else
967 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
968 
969 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
970 
971 	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
972 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
973 			     PORT_MIRROR_SNIFFER, false);
974 }
975 
976 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
977 			      struct phy_device *phy)
978 {
979 	/* Only apply to port with PHY. */
980 	if (port >= dev->phy_port_cnt)
981 		return;
982 
983 	/* The MAC actually cannot run in 1000 half-duplex mode. */
984 	phy_remove_link_mode(phy,
985 			     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
986 
987 	/* PHY does not support gigabit. */
988 	if (!(dev->features & GBIT_SUPPORT))
989 		phy_remove_link_mode(phy,
990 				     ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
991 }
992 
993 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
994 {
995 	bool gbit;
996 
997 	if (dev->features & NEW_XMII)
998 		gbit = !(data & PORT_MII_NOT_1GBIT);
999 	else
1000 		gbit = !!(data & PORT_MII_1000MBIT_S1);
1001 	return gbit;
1002 }
1003 
1004 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1005 {
1006 	if (dev->features & NEW_XMII) {
1007 		if (gbit)
1008 			*data &= ~PORT_MII_NOT_1GBIT;
1009 		else
1010 			*data |= PORT_MII_NOT_1GBIT;
1011 	} else {
1012 		if (gbit)
1013 			*data |= PORT_MII_1000MBIT_S1;
1014 		else
1015 			*data &= ~PORT_MII_1000MBIT_S1;
1016 	}
1017 }
1018 
1019 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1020 {
1021 	int mode;
1022 
1023 	if (dev->features & NEW_XMII) {
1024 		switch (data & PORT_MII_SEL_M) {
1025 		case PORT_MII_SEL:
1026 			mode = 0;
1027 			break;
1028 		case PORT_RMII_SEL:
1029 			mode = 1;
1030 			break;
1031 		case PORT_GMII_SEL:
1032 			mode = 2;
1033 			break;
1034 		default:
1035 			mode = 3;
1036 		}
1037 	} else {
1038 		switch (data & PORT_MII_SEL_M) {
1039 		case PORT_MII_SEL_S1:
1040 			mode = 0;
1041 			break;
1042 		case PORT_RMII_SEL_S1:
1043 			mode = 1;
1044 			break;
1045 		case PORT_GMII_SEL_S1:
1046 			mode = 2;
1047 			break;
1048 		default:
1049 			mode = 3;
1050 		}
1051 	}
1052 	return mode;
1053 }
1054 
1055 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1056 {
1057 	u8 xmii;
1058 
1059 	if (dev->features & NEW_XMII) {
1060 		switch (mode) {
1061 		case 0:
1062 			xmii = PORT_MII_SEL;
1063 			break;
1064 		case 1:
1065 			xmii = PORT_RMII_SEL;
1066 			break;
1067 		case 2:
1068 			xmii = PORT_GMII_SEL;
1069 			break;
1070 		default:
1071 			xmii = PORT_RGMII_SEL;
1072 			break;
1073 		}
1074 	} else {
1075 		switch (mode) {
1076 		case 0:
1077 			xmii = PORT_MII_SEL_S1;
1078 			break;
1079 		case 1:
1080 			xmii = PORT_RMII_SEL_S1;
1081 			break;
1082 		case 2:
1083 			xmii = PORT_GMII_SEL_S1;
1084 			break;
1085 		default:
1086 			xmii = PORT_RGMII_SEL_S1;
1087 			break;
1088 		}
1089 	}
1090 	*data &= ~PORT_MII_SEL_M;
1091 	*data |= xmii;
1092 }
1093 
1094 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1095 {
1096 	phy_interface_t interface;
1097 	bool gbit;
1098 	int mode;
1099 	u8 data8;
1100 
1101 	if (port < dev->phy_port_cnt)
1102 		return PHY_INTERFACE_MODE_NA;
1103 	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1104 	gbit = ksz9477_get_gbit(dev, data8);
1105 	mode = ksz9477_get_xmii(dev, data8);
1106 	switch (mode) {
1107 	case 2:
1108 		interface = PHY_INTERFACE_MODE_GMII;
1109 		if (gbit)
1110 			break;
1111 		/* fall through */
1112 	case 0:
1113 		interface = PHY_INTERFACE_MODE_MII;
1114 		break;
1115 	case 1:
1116 		interface = PHY_INTERFACE_MODE_RMII;
1117 		break;
1118 	default:
1119 		interface = PHY_INTERFACE_MODE_RGMII;
1120 		if (data8 & PORT_RGMII_ID_EG_ENABLE)
1121 			interface = PHY_INTERFACE_MODE_RGMII_TXID;
1122 		if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1123 			interface = PHY_INTERFACE_MODE_RGMII_RXID;
1124 			if (data8 & PORT_RGMII_ID_EG_ENABLE)
1125 				interface = PHY_INTERFACE_MODE_RGMII_ID;
1126 		}
1127 		break;
1128 	}
1129 	return interface;
1130 }
1131 
1132 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1133 				   u8 dev_addr, u16 reg_addr, u16 val)
1134 {
1135 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1136 		     MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1137 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1138 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1139 		     MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1140 	ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1141 }
1142 
1143 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1144 {
1145 	/* Apply PHY settings to address errata listed in
1146 	 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1147 	 * Silicon Errata and Data Sheet Clarification documents:
1148 	 *
1149 	 * Register settings are needed to improve PHY receive performance
1150 	 */
1151 	ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1152 	ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1153 	ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1154 	ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1155 	ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1156 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1157 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1158 
1159 	/* Transmit waveform amplitude can be improved
1160 	 * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1161 	 */
1162 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1163 
1164 	/* Energy Efficient Ethernet (EEE) feature select must
1165 	 * be manually disabled (except on KSZ8565 which is 100Mbit)
1166 	 */
1167 	if (dev->features & GBIT_SUPPORT)
1168 		ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1169 
1170 	/* Register settings are required to meet data sheet
1171 	 * supply current specifications
1172 	 */
1173 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1174 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1175 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1176 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1177 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1178 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1179 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1180 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1181 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1182 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1183 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1184 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1185 	ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1186 }
1187 
1188 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189 {
1190 	u8 data8;
1191 	u8 member;
1192 	u16 data16;
1193 	struct ksz_port *p = &dev->ports[port];
1194 
1195 	/* enable tag tail for host port */
1196 	if (cpu_port)
1197 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1198 			     true);
1199 
1200 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1201 
1202 	/* set back pressure */
1203 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1204 
1205 	/* enable broadcast storm limit */
1206 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1207 
1208 	/* disable DiffServ priority */
1209 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1210 
1211 	/* replace priority */
1212 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1213 		     false);
1214 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1215 			   MTI_PVID_REPLACE, false);
1216 
1217 	/* enable 802.1p priority */
1218 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1219 
1220 	if (port < dev->phy_port_cnt) {
1221 		/* do not force flow control */
1222 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1223 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1224 			     false);
1225 
1226 		if (dev->phy_errata_9477)
1227 			ksz9477_phy_errata_setup(dev, port);
1228 	} else {
1229 		/* force flow control */
1230 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1231 			     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1232 			     true);
1233 
1234 		/* configure MAC to 1G & RGMII mode */
1235 		ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1236 		switch (dev->interface) {
1237 		case PHY_INTERFACE_MODE_MII:
1238 			ksz9477_set_xmii(dev, 0, &data8);
1239 			ksz9477_set_gbit(dev, false, &data8);
1240 			p->phydev.speed = SPEED_100;
1241 			break;
1242 		case PHY_INTERFACE_MODE_RMII:
1243 			ksz9477_set_xmii(dev, 1, &data8);
1244 			ksz9477_set_gbit(dev, false, &data8);
1245 			p->phydev.speed = SPEED_100;
1246 			break;
1247 		case PHY_INTERFACE_MODE_GMII:
1248 			ksz9477_set_xmii(dev, 2, &data8);
1249 			ksz9477_set_gbit(dev, true, &data8);
1250 			p->phydev.speed = SPEED_1000;
1251 			break;
1252 		default:
1253 			ksz9477_set_xmii(dev, 3, &data8);
1254 			ksz9477_set_gbit(dev, true, &data8);
1255 			data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1256 			data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1257 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1258 			    dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1259 				data8 |= PORT_RGMII_ID_IG_ENABLE;
1260 			if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1261 			    dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1262 				data8 |= PORT_RGMII_ID_EG_ENABLE;
1263 			p->phydev.speed = SPEED_1000;
1264 			break;
1265 		}
1266 		ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1267 		p->phydev.duplex = 1;
1268 	}
1269 	mutex_lock(&dev->dev_mutex);
1270 	if (cpu_port) {
1271 		member = dev->port_mask;
1272 		dev->on_ports = dev->host_mask;
1273 		dev->live_ports = dev->host_mask;
1274 	} else {
1275 		member = dev->host_mask | p->vid_member;
1276 		dev->on_ports |= (1 << port);
1277 
1278 		/* Link was detected before port is enabled. */
1279 		if (p->phydev.link)
1280 			dev->live_ports |= (1 << port);
1281 	}
1282 	mutex_unlock(&dev->dev_mutex);
1283 	ksz9477_cfg_port_member(dev, port, member);
1284 
1285 	/* clear pending interrupts */
1286 	if (port < dev->phy_port_cnt)
1287 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1288 }
1289 
1290 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1291 {
1292 	struct ksz_device *dev = ds->priv;
1293 	struct ksz_port *p;
1294 	int i;
1295 
1296 	ds->num_ports = dev->port_cnt;
1297 
1298 	for (i = 0; i < dev->port_cnt; i++) {
1299 		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1300 			phy_interface_t interface;
1301 
1302 			dev->cpu_port = i;
1303 			dev->host_mask = (1 << dev->cpu_port);
1304 			dev->port_mask |= dev->host_mask;
1305 
1306 			/* Read from XMII register to determine host port
1307 			 * interface.  If set specifically in device tree
1308 			 * note the difference to help debugging.
1309 			 */
1310 			interface = ksz9477_get_interface(dev, i);
1311 			if (!dev->interface)
1312 				dev->interface = interface;
1313 			if (interface && interface != dev->interface)
1314 				dev_info(dev->dev,
1315 					 "use %s instead of %s\n",
1316 					  phy_modes(dev->interface),
1317 					  phy_modes(interface));
1318 
1319 			/* enable cpu port */
1320 			ksz9477_port_setup(dev, i, true);
1321 			p = &dev->ports[dev->cpu_port];
1322 			p->vid_member = dev->port_mask;
1323 			p->on = 1;
1324 		}
1325 	}
1326 
1327 	dev->member = dev->host_mask;
1328 
1329 	for (i = 0; i < dev->mib_port_cnt; i++) {
1330 		if (i == dev->cpu_port)
1331 			continue;
1332 		p = &dev->ports[i];
1333 
1334 		/* Initialize to non-zero so that ksz_cfg_port_member() will
1335 		 * be called.
1336 		 */
1337 		p->vid_member = (1 << i);
1338 		p->member = dev->port_mask;
1339 		ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1340 		p->on = 1;
1341 		if (i < dev->phy_port_cnt)
1342 			p->phy = 1;
1343 		if (dev->chip_id == 0x00947700 && i == 6) {
1344 			p->sgmii = 1;
1345 
1346 			/* SGMII PHY detection code is not implemented yet. */
1347 			p->phy = 0;
1348 		}
1349 	}
1350 }
1351 
1352 static int ksz9477_setup(struct dsa_switch *ds)
1353 {
1354 	struct ksz_device *dev = ds->priv;
1355 	int ret = 0;
1356 
1357 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1358 				       dev->num_vlans, GFP_KERNEL);
1359 	if (!dev->vlan_cache)
1360 		return -ENOMEM;
1361 
1362 	ret = ksz9477_reset_switch(dev);
1363 	if (ret) {
1364 		dev_err(ds->dev, "failed to reset switch\n");
1365 		return ret;
1366 	}
1367 
1368 	/* Required for port partitioning. */
1369 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1370 		      true);
1371 
1372 	/* Do not work correctly with tail tagging. */
1373 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1374 
1375 	/* accept packet up to 2000bytes */
1376 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1377 
1378 	ksz9477_config_cpu_port(ds);
1379 
1380 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1381 
1382 	/* queue based egress rate limit */
1383 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1384 
1385 	/* enable global MIB counter freeze function */
1386 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1387 
1388 	/* start switch */
1389 	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1390 
1391 	ksz_init_mib_timer(dev);
1392 
1393 	return 0;
1394 }
1395 
1396 static const struct dsa_switch_ops ksz9477_switch_ops = {
1397 	.get_tag_protocol	= ksz9477_get_tag_protocol,
1398 	.setup			= ksz9477_setup,
1399 	.phy_read		= ksz9477_phy_read16,
1400 	.phy_write		= ksz9477_phy_write16,
1401 	.adjust_link		= ksz_adjust_link,
1402 	.port_enable		= ksz_enable_port,
1403 	.port_disable		= ksz_disable_port,
1404 	.get_strings		= ksz9477_get_strings,
1405 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1406 	.get_sset_count		= ksz_sset_count,
1407 	.port_bridge_join	= ksz_port_bridge_join,
1408 	.port_bridge_leave	= ksz_port_bridge_leave,
1409 	.port_stp_state_set	= ksz9477_port_stp_state_set,
1410 	.port_fast_age		= ksz_port_fast_age,
1411 	.port_vlan_filtering	= ksz9477_port_vlan_filtering,
1412 	.port_vlan_prepare	= ksz_port_vlan_prepare,
1413 	.port_vlan_add		= ksz9477_port_vlan_add,
1414 	.port_vlan_del		= ksz9477_port_vlan_del,
1415 	.port_fdb_dump		= ksz9477_port_fdb_dump,
1416 	.port_fdb_add		= ksz9477_port_fdb_add,
1417 	.port_fdb_del		= ksz9477_port_fdb_del,
1418 	.port_mdb_prepare       = ksz_port_mdb_prepare,
1419 	.port_mdb_add           = ksz9477_port_mdb_add,
1420 	.port_mdb_del           = ksz9477_port_mdb_del,
1421 	.port_mirror_add	= ksz9477_port_mirror_add,
1422 	.port_mirror_del	= ksz9477_port_mirror_del,
1423 };
1424 
1425 static u32 ksz9477_get_port_addr(int port, int offset)
1426 {
1427 	return PORT_CTRL_ADDR(port, offset);
1428 }
1429 
1430 static int ksz9477_switch_detect(struct ksz_device *dev)
1431 {
1432 	u8 data8;
1433 	u8 id_hi;
1434 	u8 id_lo;
1435 	u32 id32;
1436 	int ret;
1437 
1438 	/* turn off SPI DO Edge select */
1439 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1440 	if (ret)
1441 		return ret;
1442 
1443 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1444 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1445 	if (ret)
1446 		return ret;
1447 
1448 	/* read chip id */
1449 	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1450 	if (ret)
1451 		return ret;
1452 	ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1453 	if (ret)
1454 		return ret;
1455 
1456 	/* Number of ports can be reduced depending on chip. */
1457 	dev->mib_port_cnt = TOTAL_PORT_NUM;
1458 	dev->phy_port_cnt = 5;
1459 
1460 	/* Default capability is gigabit capable. */
1461 	dev->features = GBIT_SUPPORT;
1462 
1463 	id_hi = (u8)(id32 >> 16);
1464 	id_lo = (u8)(id32 >> 8);
1465 	if ((id_lo & 0xf) == 3) {
1466 		/* Chip is from KSZ9893 design. */
1467 		dev->features |= IS_9893;
1468 
1469 		/* Chip does not support gigabit. */
1470 		if (data8 & SW_QW_ABLE)
1471 			dev->features &= ~GBIT_SUPPORT;
1472 		dev->mib_port_cnt = 3;
1473 		dev->phy_port_cnt = 2;
1474 	} else {
1475 		/* Chip uses new XMII register definitions. */
1476 		dev->features |= NEW_XMII;
1477 
1478 		/* Chip does not support gigabit. */
1479 		if (!(data8 & SW_GIGABIT_ABLE))
1480 			dev->features &= ~GBIT_SUPPORT;
1481 	}
1482 
1483 	/* Change chip id to known ones so it can be matched against them. */
1484 	id32 = (id_hi << 16) | (id_lo << 8);
1485 
1486 	dev->chip_id = id32;
1487 
1488 	return 0;
1489 }
1490 
1491 struct ksz_chip_data {
1492 	u32 chip_id;
1493 	const char *dev_name;
1494 	int num_vlans;
1495 	int num_alus;
1496 	int num_statics;
1497 	int cpu_ports;
1498 	int port_cnt;
1499 	bool phy_errata_9477;
1500 };
1501 
1502 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1503 	{
1504 		.chip_id = 0x00947700,
1505 		.dev_name = "KSZ9477",
1506 		.num_vlans = 4096,
1507 		.num_alus = 4096,
1508 		.num_statics = 16,
1509 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1510 		.port_cnt = 7,		/* total physical port count */
1511 		.phy_errata_9477 = true,
1512 	},
1513 	{
1514 		.chip_id = 0x00989700,
1515 		.dev_name = "KSZ9897",
1516 		.num_vlans = 4096,
1517 		.num_alus = 4096,
1518 		.num_statics = 16,
1519 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1520 		.port_cnt = 7,		/* total physical port count */
1521 		.phy_errata_9477 = true,
1522 	},
1523 	{
1524 		.chip_id = 0x00989300,
1525 		.dev_name = "KSZ9893",
1526 		.num_vlans = 4096,
1527 		.num_alus = 4096,
1528 		.num_statics = 16,
1529 		.cpu_ports = 0x07,	/* can be configured as cpu port */
1530 		.port_cnt = 3,		/* total port count */
1531 	},
1532 	{
1533 		.chip_id = 0x00956700,
1534 		.dev_name = "KSZ9567",
1535 		.num_vlans = 4096,
1536 		.num_alus = 4096,
1537 		.num_statics = 16,
1538 		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1539 		.port_cnt = 7,		/* total physical port count */
1540 	},
1541 };
1542 
1543 static int ksz9477_switch_init(struct ksz_device *dev)
1544 {
1545 	int i;
1546 
1547 	dev->ds->ops = &ksz9477_switch_ops;
1548 
1549 	for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1550 		const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1551 
1552 		if (dev->chip_id == chip->chip_id) {
1553 			dev->name = chip->dev_name;
1554 			dev->num_vlans = chip->num_vlans;
1555 			dev->num_alus = chip->num_alus;
1556 			dev->num_statics = chip->num_statics;
1557 			dev->port_cnt = chip->port_cnt;
1558 			dev->cpu_ports = chip->cpu_ports;
1559 			dev->phy_errata_9477 = chip->phy_errata_9477;
1560 
1561 			break;
1562 		}
1563 	}
1564 
1565 	/* no switch found */
1566 	if (!dev->port_cnt)
1567 		return -ENODEV;
1568 
1569 	dev->port_mask = (1 << dev->port_cnt) - 1;
1570 
1571 	dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1572 	dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1573 
1574 	i = dev->mib_port_cnt;
1575 	dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1576 				  GFP_KERNEL);
1577 	if (!dev->ports)
1578 		return -ENOMEM;
1579 	for (i = 0; i < dev->mib_port_cnt; i++) {
1580 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1581 		dev->ports[i].mib.counters =
1582 			devm_kzalloc(dev->dev,
1583 				     sizeof(u64) *
1584 				     (TOTAL_SWITCH_COUNTER_NUM + 1),
1585 				     GFP_KERNEL);
1586 		if (!dev->ports[i].mib.counters)
1587 			return -ENOMEM;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static void ksz9477_switch_exit(struct ksz_device *dev)
1594 {
1595 	ksz9477_reset_switch(dev);
1596 }
1597 
1598 static const struct ksz_dev_ops ksz9477_dev_ops = {
1599 	.get_port_addr = ksz9477_get_port_addr,
1600 	.cfg_port_member = ksz9477_cfg_port_member,
1601 	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1602 	.phy_setup = ksz9477_phy_setup,
1603 	.port_setup = ksz9477_port_setup,
1604 	.r_mib_cnt = ksz9477_r_mib_cnt,
1605 	.r_mib_pkt = ksz9477_r_mib_pkt,
1606 	.freeze_mib = ksz9477_freeze_mib,
1607 	.port_init_cnt = ksz9477_port_init_cnt,
1608 	.shutdown = ksz9477_reset_switch,
1609 	.detect = ksz9477_switch_detect,
1610 	.init = ksz9477_switch_init,
1611 	.exit = ksz9477_switch_exit,
1612 };
1613 
1614 int ksz9477_switch_register(struct ksz_device *dev)
1615 {
1616 	return ksz_switch_register(dev, &ksz9477_dev_ops);
1617 }
1618 EXPORT_SYMBOL(ksz9477_switch_register);
1619 
1620 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1621 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1622 MODULE_LICENSE("GPL");
1623