1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static const u8 ksz8795_regs[] = {
30 	[REG_IND_CTRL_0]		= 0x6E,
31 	[REG_IND_DATA_8]		= 0x70,
32 	[REG_IND_DATA_CHECK]		= 0x72,
33 	[REG_IND_DATA_HI]		= 0x71,
34 	[REG_IND_DATA_LO]		= 0x75,
35 	[REG_IND_MIB_CHECK]		= 0x74,
36 	[REG_IND_BYTE]			= 0xA0,
37 	[P_FORCE_CTRL]			= 0x0C,
38 	[P_LINK_STATUS]			= 0x0E,
39 	[P_LOCAL_CTRL]			= 0x07,
40 	[P_NEG_RESTART_CTRL]		= 0x0D,
41 	[P_REMOTE_STATUS]		= 0x08,
42 	[P_SPEED_STATUS]		= 0x09,
43 	[S_TAIL_TAG_CTRL]		= 0x0C,
44 };
45 
46 static const u32 ksz8795_masks[] = {
47 	[PORT_802_1P_REMAPPING]		= BIT(7),
48 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
49 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
50 	[MIB_COUNTER_VALID]		= BIT(5),
51 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
52 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
53 	[VLAN_TABLE_VALID]		= BIT(12),
54 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
55 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
56 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
57 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(26),
58 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(24, 20),
59 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
60 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(8),
61 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
62 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
63 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(26, 20),
64 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
65 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
66 };
67 
68 static const u8 ksz8795_shifts[] = {
69 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
70 	[VLAN_TABLE]			= 16,
71 	[STATIC_MAC_FWD_PORTS]		= 16,
72 	[STATIC_MAC_FID]		= 24,
73 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
74 	[DYNAMIC_MAC_ENTRIES]		= 29,
75 	[DYNAMIC_MAC_FID]		= 16,
76 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
77 	[DYNAMIC_MAC_SRC_PORT]		= 24,
78 };
79 
80 static const u8 ksz8863_regs[] = {
81 	[REG_IND_CTRL_0]		= 0x79,
82 	[REG_IND_DATA_8]		= 0x7B,
83 	[REG_IND_DATA_CHECK]		= 0x7B,
84 	[REG_IND_DATA_HI]		= 0x7C,
85 	[REG_IND_DATA_LO]		= 0x80,
86 	[REG_IND_MIB_CHECK]		= 0x80,
87 	[P_FORCE_CTRL]			= 0x0C,
88 	[P_LINK_STATUS]			= 0x0E,
89 	[P_LOCAL_CTRL]			= 0x0C,
90 	[P_NEG_RESTART_CTRL]		= 0x0D,
91 	[P_REMOTE_STATUS]		= 0x0E,
92 	[P_SPEED_STATUS]		= 0x0F,
93 	[S_TAIL_TAG_CTRL]		= 0x03,
94 };
95 
96 static const u32 ksz8863_masks[] = {
97 	[PORT_802_1P_REMAPPING]		= BIT(3),
98 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
99 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
100 	[MIB_COUNTER_VALID]		= BIT(6),
101 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
102 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
103 	[VLAN_TABLE_VALID]		= BIT(19),
104 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
105 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
106 	[STATIC_MAC_TABLE_FID]		= GENMASK(29, 26),
107 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
108 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
109 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(5, 0),
110 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
111 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
112 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 28),
113 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
114 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
115 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
116 };
117 
118 static u8 ksz8863_shifts[] = {
119 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
120 	[STATIC_MAC_FWD_PORTS]		= 16,
121 	[STATIC_MAC_FID]		= 22,
122 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
123 	[DYNAMIC_MAC_ENTRIES]		= 24,
124 	[DYNAMIC_MAC_FID]		= 16,
125 	[DYNAMIC_MAC_TIMESTAMP]		= 24,
126 	[DYNAMIC_MAC_SRC_PORT]		= 20,
127 };
128 
129 struct mib_names {
130 	char string[ETH_GSTRING_LEN];
131 };
132 
133 static const struct mib_names ksz87xx_mib_names[] = {
134 	{ "rx_hi" },
135 	{ "rx_undersize" },
136 	{ "rx_fragments" },
137 	{ "rx_oversize" },
138 	{ "rx_jabbers" },
139 	{ "rx_symbol_err" },
140 	{ "rx_crc_err" },
141 	{ "rx_align_err" },
142 	{ "rx_mac_ctrl" },
143 	{ "rx_pause" },
144 	{ "rx_bcast" },
145 	{ "rx_mcast" },
146 	{ "rx_ucast" },
147 	{ "rx_64_or_less" },
148 	{ "rx_65_127" },
149 	{ "rx_128_255" },
150 	{ "rx_256_511" },
151 	{ "rx_512_1023" },
152 	{ "rx_1024_1522" },
153 	{ "rx_1523_2000" },
154 	{ "rx_2001" },
155 	{ "tx_hi" },
156 	{ "tx_late_col" },
157 	{ "tx_pause" },
158 	{ "tx_bcast" },
159 	{ "tx_mcast" },
160 	{ "tx_ucast" },
161 	{ "tx_deferred" },
162 	{ "tx_total_col" },
163 	{ "tx_exc_col" },
164 	{ "tx_single_col" },
165 	{ "tx_mult_col" },
166 	{ "rx_total" },
167 	{ "tx_total" },
168 	{ "rx_discards" },
169 	{ "tx_discards" },
170 };
171 
172 static const struct mib_names ksz88xx_mib_names[] = {
173 	{ "rx" },
174 	{ "rx_hi" },
175 	{ "rx_undersize" },
176 	{ "rx_fragments" },
177 	{ "rx_oversize" },
178 	{ "rx_jabbers" },
179 	{ "rx_symbol_err" },
180 	{ "rx_crc_err" },
181 	{ "rx_align_err" },
182 	{ "rx_mac_ctrl" },
183 	{ "rx_pause" },
184 	{ "rx_bcast" },
185 	{ "rx_mcast" },
186 	{ "rx_ucast" },
187 	{ "rx_64_or_less" },
188 	{ "rx_65_127" },
189 	{ "rx_128_255" },
190 	{ "rx_256_511" },
191 	{ "rx_512_1023" },
192 	{ "rx_1024_1522" },
193 	{ "tx" },
194 	{ "tx_hi" },
195 	{ "tx_late_col" },
196 	{ "tx_pause" },
197 	{ "tx_bcast" },
198 	{ "tx_mcast" },
199 	{ "tx_ucast" },
200 	{ "tx_deferred" },
201 	{ "tx_total_col" },
202 	{ "tx_exc_col" },
203 	{ "tx_single_col" },
204 	{ "tx_mult_col" },
205 	{ "rx_discards" },
206 	{ "tx_discards" },
207 };
208 
209 static bool ksz_is_ksz88x3(struct ksz_device *dev)
210 {
211 	return dev->chip_id == 0x8830;
212 }
213 
214 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
215 {
216 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
217 }
218 
219 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
220 			 bool set)
221 {
222 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
223 			   bits, set ? bits : 0);
224 }
225 
226 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
227 {
228 	struct ksz8 *ksz8 = dev->priv;
229 	const u8 *regs = ksz8->regs;
230 	u16 ctrl_addr;
231 	int ret = 0;
232 
233 	mutex_lock(&dev->alu_mutex);
234 
235 	ctrl_addr = IND_ACC_TABLE(table) | addr;
236 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
237 	if (!ret)
238 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
239 
240 	mutex_unlock(&dev->alu_mutex);
241 
242 	return ret;
243 }
244 
245 static int ksz8_reset_switch(struct ksz_device *dev)
246 {
247 	if (ksz_is_ksz88x3(dev)) {
248 		/* reset switch */
249 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
250 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
251 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
252 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
253 	} else {
254 		/* reset switch */
255 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
256 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
257 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
258 	}
259 
260 	return 0;
261 }
262 
263 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
264 {
265 	u8 hi, lo;
266 
267 	/* Number of queues can only be 1, 2, or 4. */
268 	switch (queue) {
269 	case 4:
270 	case 3:
271 		queue = PORT_QUEUE_SPLIT_4;
272 		break;
273 	case 2:
274 		queue = PORT_QUEUE_SPLIT_2;
275 		break;
276 	default:
277 		queue = PORT_QUEUE_SPLIT_1;
278 	}
279 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
280 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
281 	lo &= ~PORT_QUEUE_SPLIT_L;
282 	if (queue & PORT_QUEUE_SPLIT_2)
283 		lo |= PORT_QUEUE_SPLIT_L;
284 	hi &= ~PORT_QUEUE_SPLIT_H;
285 	if (queue & PORT_QUEUE_SPLIT_4)
286 		hi |= PORT_QUEUE_SPLIT_H;
287 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
288 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
289 
290 	/* Default is port based for egress rate limit. */
291 	if (queue != PORT_QUEUE_SPLIT_1)
292 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
293 			true);
294 }
295 
296 static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
297 {
298 	struct ksz8 *ksz8 = dev->priv;
299 	const u32 *masks;
300 	const u8 *regs;
301 	u16 ctrl_addr;
302 	u32 data;
303 	u8 check;
304 	int loop;
305 
306 	masks = ksz8->masks;
307 	regs = ksz8->regs;
308 
309 	ctrl_addr = addr + dev->reg_mib_cnt * port;
310 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
311 
312 	mutex_lock(&dev->alu_mutex);
313 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
314 
315 	/* It is almost guaranteed to always read the valid bit because of
316 	 * slow SPI speed.
317 	 */
318 	for (loop = 2; loop > 0; loop--) {
319 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
320 
321 		if (check & masks[MIB_COUNTER_VALID]) {
322 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
323 			if (check & masks[MIB_COUNTER_OVERFLOW])
324 				*cnt += MIB_COUNTER_VALUE + 1;
325 			*cnt += data & MIB_COUNTER_VALUE;
326 			break;
327 		}
328 	}
329 	mutex_unlock(&dev->alu_mutex);
330 }
331 
332 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
333 			      u64 *dropped, u64 *cnt)
334 {
335 	struct ksz8 *ksz8 = dev->priv;
336 	const u32 *masks;
337 	const u8 *regs;
338 	u16 ctrl_addr;
339 	u32 data;
340 	u8 check;
341 	int loop;
342 
343 	masks = ksz8->masks;
344 	regs = ksz8->regs;
345 
346 	addr -= dev->reg_mib_cnt;
347 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
348 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
349 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
350 
351 	mutex_lock(&dev->alu_mutex);
352 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
353 
354 	/* It is almost guaranteed to always read the valid bit because of
355 	 * slow SPI speed.
356 	 */
357 	for (loop = 2; loop > 0; loop--) {
358 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
359 
360 		if (check & masks[MIB_COUNTER_VALID]) {
361 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
362 			if (addr < 2) {
363 				u64 total;
364 
365 				total = check & MIB_TOTAL_BYTES_H;
366 				total <<= 32;
367 				*cnt += total;
368 				*cnt += data;
369 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
370 					total = MIB_TOTAL_BYTES_H + 1;
371 					total <<= 32;
372 					*cnt += total;
373 				}
374 			} else {
375 				if (check & masks[MIB_COUNTER_OVERFLOW])
376 					*cnt += MIB_PACKET_DROPPED + 1;
377 				*cnt += data & MIB_PACKET_DROPPED;
378 			}
379 			break;
380 		}
381 	}
382 	mutex_unlock(&dev->alu_mutex);
383 }
384 
385 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
386 			      u64 *dropped, u64 *cnt)
387 {
388 	struct ksz8 *ksz8 = dev->priv;
389 	const u8 *regs = ksz8->regs;
390 	u32 *last = (u32 *)dropped;
391 	u16 ctrl_addr;
392 	u32 data;
393 	u32 cur;
394 
395 	addr -= dev->reg_mib_cnt;
396 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
397 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
398 	ctrl_addr += port;
399 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
400 
401 	mutex_lock(&dev->alu_mutex);
402 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
403 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
404 	mutex_unlock(&dev->alu_mutex);
405 
406 	data &= MIB_PACKET_DROPPED;
407 	cur = last[addr];
408 	if (data != cur) {
409 		last[addr] = data;
410 		if (data < cur)
411 			data += MIB_PACKET_DROPPED + 1;
412 		data -= cur;
413 		*cnt += data;
414 	}
415 }
416 
417 static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
418 			   u64 *dropped, u64 *cnt)
419 {
420 	if (ksz_is_ksz88x3(dev))
421 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
422 	else
423 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
424 }
425 
426 static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
427 {
428 	if (ksz_is_ksz88x3(dev))
429 		return;
430 
431 	/* enable the port for flush/freeze function */
432 	if (freeze)
433 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
434 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
435 
436 	/* disable the port after freeze is done */
437 	if (!freeze)
438 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
439 }
440 
441 static void ksz8_port_init_cnt(struct ksz_device *dev, int port)
442 {
443 	struct ksz_port_mib *mib = &dev->ports[port].mib;
444 	u64 *dropped;
445 
446 	if (!ksz_is_ksz88x3(dev)) {
447 		/* flush all enabled port MIB counters */
448 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
449 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
450 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
451 	}
452 
453 	mib->cnt_ptr = 0;
454 
455 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
456 	while (mib->cnt_ptr < dev->reg_mib_cnt) {
457 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
458 					&mib->counters[mib->cnt_ptr]);
459 		++mib->cnt_ptr;
460 	}
461 
462 	/* last one in storage */
463 	dropped = &mib->counters[dev->mib_cnt];
464 
465 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
466 	while (mib->cnt_ptr < dev->mib_cnt) {
467 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
468 					dropped, &mib->counters[mib->cnt_ptr]);
469 		++mib->cnt_ptr;
470 	}
471 	mib->cnt_ptr = 0;
472 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
473 }
474 
475 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
476 {
477 	struct ksz8 *ksz8 = dev->priv;
478 	const u8 *regs = ksz8->regs;
479 	u16 ctrl_addr;
480 
481 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
482 
483 	mutex_lock(&dev->alu_mutex);
484 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
485 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
486 	mutex_unlock(&dev->alu_mutex);
487 }
488 
489 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
490 {
491 	struct ksz8 *ksz8 = dev->priv;
492 	const u8 *regs = ksz8->regs;
493 	u16 ctrl_addr;
494 
495 	ctrl_addr = IND_ACC_TABLE(table) | addr;
496 
497 	mutex_lock(&dev->alu_mutex);
498 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
499 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
500 	mutex_unlock(&dev->alu_mutex);
501 }
502 
503 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
504 {
505 	struct ksz8 *ksz8 = dev->priv;
506 	int timeout = 100;
507 	const u32 *masks;
508 	const u8 *regs;
509 
510 	masks = ksz8->masks;
511 	regs = ksz8->regs;
512 
513 	do {
514 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
515 		timeout--;
516 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
517 
518 	/* Entry is not ready for accessing. */
519 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
520 		return -EAGAIN;
521 	/* Entry is ready for accessing. */
522 	} else {
523 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
524 
525 		/* There is no valid entry in the table. */
526 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
527 			return -ENXIO;
528 	}
529 	return 0;
530 }
531 
532 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
533 				u8 *mac_addr, u8 *fid, u8 *src_port,
534 				u8 *timestamp, u16 *entries)
535 {
536 	struct ksz8 *ksz8 = dev->priv;
537 	u32 data_hi, data_lo;
538 	const u8 *shifts;
539 	const u32 *masks;
540 	const u8 *regs;
541 	u16 ctrl_addr;
542 	u8 data;
543 	int rc;
544 
545 	shifts = ksz8->shifts;
546 	masks = ksz8->masks;
547 	regs = ksz8->regs;
548 
549 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
550 
551 	mutex_lock(&dev->alu_mutex);
552 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
553 
554 	rc = ksz8_valid_dyn_entry(dev, &data);
555 	if (rc == -EAGAIN) {
556 		if (addr == 0)
557 			*entries = 0;
558 	} else if (rc == -ENXIO) {
559 		*entries = 0;
560 	/* At least one valid entry in the table. */
561 	} else {
562 		u64 buf = 0;
563 		int cnt;
564 
565 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
566 		data_hi = (u32)(buf >> 32);
567 		data_lo = (u32)buf;
568 
569 		/* Check out how many valid entry in the table. */
570 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
571 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
572 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
573 			shifts[DYNAMIC_MAC_ENTRIES];
574 		*entries = cnt + 1;
575 
576 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
577 			shifts[DYNAMIC_MAC_FID];
578 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
579 			shifts[DYNAMIC_MAC_SRC_PORT];
580 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
581 			shifts[DYNAMIC_MAC_TIMESTAMP];
582 
583 		mac_addr[5] = (u8)data_lo;
584 		mac_addr[4] = (u8)(data_lo >> 8);
585 		mac_addr[3] = (u8)(data_lo >> 16);
586 		mac_addr[2] = (u8)(data_lo >> 24);
587 
588 		mac_addr[1] = (u8)data_hi;
589 		mac_addr[0] = (u8)(data_hi >> 8);
590 		rc = 0;
591 	}
592 	mutex_unlock(&dev->alu_mutex);
593 
594 	return rc;
595 }
596 
597 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
598 				struct alu_struct *alu)
599 {
600 	struct ksz8 *ksz8 = dev->priv;
601 	u32 data_hi, data_lo;
602 	const u8 *shifts;
603 	const u32 *masks;
604 	u64 data;
605 
606 	shifts = ksz8->shifts;
607 	masks = ksz8->masks;
608 
609 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
610 	data_hi = data >> 32;
611 	data_lo = (u32)data;
612 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
613 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
614 		alu->mac[5] = (u8)data_lo;
615 		alu->mac[4] = (u8)(data_lo >> 8);
616 		alu->mac[3] = (u8)(data_lo >> 16);
617 		alu->mac[2] = (u8)(data_lo >> 24);
618 		alu->mac[1] = (u8)data_hi;
619 		alu->mac[0] = (u8)(data_hi >> 8);
620 		alu->port_forward =
621 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
622 				shifts[STATIC_MAC_FWD_PORTS];
623 		alu->is_override =
624 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
625 		data_hi >>= 1;
626 		alu->is_static = true;
627 		alu->is_use_fid =
628 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
629 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
630 				shifts[STATIC_MAC_FID];
631 		return 0;
632 	}
633 	return -ENXIO;
634 }
635 
636 static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
637 				 struct alu_struct *alu)
638 {
639 	struct ksz8 *ksz8 = dev->priv;
640 	u32 data_hi, data_lo;
641 	const u8 *shifts;
642 	const u32 *masks;
643 	u64 data;
644 
645 	shifts = ksz8->shifts;
646 	masks = ksz8->masks;
647 
648 	data_lo = ((u32)alu->mac[2] << 24) |
649 		((u32)alu->mac[3] << 16) |
650 		((u32)alu->mac[4] << 8) | alu->mac[5];
651 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
652 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
653 
654 	if (alu->is_override)
655 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
656 	if (alu->is_use_fid) {
657 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
658 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
659 	}
660 	if (alu->is_static)
661 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
662 	else
663 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
664 
665 	data = (u64)data_hi << 32 | data_lo;
666 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
667 }
668 
669 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
670 			   u8 *member, u8 *valid)
671 {
672 	struct ksz8 *ksz8 = dev->priv;
673 	const u8 *shifts;
674 	const u32 *masks;
675 
676 	shifts = ksz8->shifts;
677 	masks = ksz8->masks;
678 
679 	*fid = vlan & masks[VLAN_TABLE_FID];
680 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
681 			shifts[VLAN_TABLE_MEMBERSHIP_S];
682 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
683 }
684 
685 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
686 			 u16 *vlan)
687 {
688 	struct ksz8 *ksz8 = dev->priv;
689 	const u8 *shifts;
690 	const u32 *masks;
691 
692 	shifts = ksz8->shifts;
693 	masks = ksz8->masks;
694 
695 	*vlan = fid;
696 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
697 	if (valid)
698 		*vlan |= masks[VLAN_TABLE_VALID];
699 }
700 
701 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
702 {
703 	struct ksz8 *ksz8 = dev->priv;
704 	const u8 *shifts;
705 	u64 data;
706 	int i;
707 
708 	shifts = ksz8->shifts;
709 
710 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
711 	addr *= 4;
712 	for (i = 0; i < 4; i++) {
713 		dev->vlan_cache[addr + i].table[0] = (u16)data;
714 		data >>= shifts[VLAN_TABLE];
715 	}
716 }
717 
718 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
719 {
720 	int index;
721 	u16 *data;
722 	u16 addr;
723 	u64 buf;
724 
725 	data = (u16 *)&buf;
726 	addr = vid / 4;
727 	index = vid & 3;
728 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
729 	*vlan = data[index];
730 }
731 
732 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
733 {
734 	int index;
735 	u16 *data;
736 	u16 addr;
737 	u64 buf;
738 
739 	data = (u16 *)&buf;
740 	addr = vid / 4;
741 	index = vid & 3;
742 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
743 	data[index] = vlan;
744 	dev->vlan_cache[vid].table[0] = vlan;
745 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
746 }
747 
748 static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
749 {
750 	struct ksz8 *ksz8 = dev->priv;
751 	u8 restart, speed, ctrl, link;
752 	const u8 *regs = ksz8->regs;
753 	int processed = true;
754 	u8 val1, val2;
755 	u16 data = 0;
756 	u8 p = phy;
757 
758 	switch (reg) {
759 	case MII_BMCR:
760 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
761 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
762 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
763 		if (restart & PORT_PHY_LOOPBACK)
764 			data |= BMCR_LOOPBACK;
765 		if (ctrl & PORT_FORCE_100_MBIT)
766 			data |= BMCR_SPEED100;
767 		if (ksz_is_ksz88x3(dev)) {
768 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
769 				data |= BMCR_ANENABLE;
770 		} else {
771 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
772 				data |= BMCR_ANENABLE;
773 		}
774 		if (restart & PORT_POWER_DOWN)
775 			data |= BMCR_PDOWN;
776 		if (restart & PORT_AUTO_NEG_RESTART)
777 			data |= BMCR_ANRESTART;
778 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
779 			data |= BMCR_FULLDPLX;
780 		if (speed & PORT_HP_MDIX)
781 			data |= KSZ886X_BMCR_HP_MDIX;
782 		if (restart & PORT_FORCE_MDIX)
783 			data |= KSZ886X_BMCR_FORCE_MDI;
784 		if (restart & PORT_AUTO_MDIX_DISABLE)
785 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
786 		if (restart & PORT_TX_DISABLE)
787 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
788 		if (restart & PORT_LED_OFF)
789 			data |= KSZ886X_BMCR_DISABLE_LED;
790 		break;
791 	case MII_BMSR:
792 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
793 		data = BMSR_100FULL |
794 		       BMSR_100HALF |
795 		       BMSR_10FULL |
796 		       BMSR_10HALF |
797 		       BMSR_ANEGCAPABLE;
798 		if (link & PORT_AUTO_NEG_COMPLETE)
799 			data |= BMSR_ANEGCOMPLETE;
800 		if (link & PORT_STAT_LINK_GOOD)
801 			data |= BMSR_LSTATUS;
802 		break;
803 	case MII_PHYSID1:
804 		data = KSZ8795_ID_HI;
805 		break;
806 	case MII_PHYSID2:
807 		if (ksz_is_ksz88x3(dev))
808 			data = KSZ8863_ID_LO;
809 		else
810 			data = KSZ8795_ID_LO;
811 		break;
812 	case MII_ADVERTISE:
813 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
814 		data = ADVERTISE_CSMA;
815 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
816 			data |= ADVERTISE_PAUSE_CAP;
817 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
818 			data |= ADVERTISE_100FULL;
819 		if (ctrl & PORT_AUTO_NEG_100BTX)
820 			data |= ADVERTISE_100HALF;
821 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
822 			data |= ADVERTISE_10FULL;
823 		if (ctrl & PORT_AUTO_NEG_10BT)
824 			data |= ADVERTISE_10HALF;
825 		break;
826 	case MII_LPA:
827 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
828 		data = LPA_SLCT;
829 		if (link & PORT_REMOTE_SYM_PAUSE)
830 			data |= LPA_PAUSE_CAP;
831 		if (link & PORT_REMOTE_100BTX_FD)
832 			data |= LPA_100FULL;
833 		if (link & PORT_REMOTE_100BTX)
834 			data |= LPA_100HALF;
835 		if (link & PORT_REMOTE_10BT_FD)
836 			data |= LPA_10FULL;
837 		if (link & PORT_REMOTE_10BT)
838 			data |= LPA_10HALF;
839 		if (data & ~LPA_SLCT)
840 			data |= LPA_LPACK;
841 		break;
842 	case PHY_REG_LINK_MD:
843 		ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
844 		ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
845 		if (val1 & PORT_START_CABLE_DIAG)
846 			data |= PHY_START_CABLE_DIAG;
847 
848 		if (val1 & PORT_CABLE_10M_SHORT)
849 			data |= PHY_CABLE_10M_SHORT;
850 
851 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
852 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
853 
854 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
855 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
856 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
857 		break;
858 	case PHY_REG_PHY_CTRL:
859 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
860 		if (link & PORT_MDIX_STATUS)
861 			data |= KSZ886X_CTRL_MDIX_STAT;
862 		break;
863 	default:
864 		processed = false;
865 		break;
866 	}
867 	if (processed)
868 		*val = data;
869 }
870 
871 static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
872 {
873 	struct ksz8 *ksz8 = dev->priv;
874 	u8 restart, speed, ctrl, data;
875 	const u8 *regs = ksz8->regs;
876 	u8 p = phy;
877 
878 	switch (reg) {
879 	case MII_BMCR:
880 
881 		/* Do not support PHY reset function. */
882 		if (val & BMCR_RESET)
883 			break;
884 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
885 		data = speed;
886 		if (val & KSZ886X_BMCR_HP_MDIX)
887 			data |= PORT_HP_MDIX;
888 		else
889 			data &= ~PORT_HP_MDIX;
890 		if (data != speed)
891 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
892 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
893 		data = ctrl;
894 		if (ksz_is_ksz88x3(dev)) {
895 			if ((val & BMCR_ANENABLE))
896 				data |= PORT_AUTO_NEG_ENABLE;
897 			else
898 				data &= ~PORT_AUTO_NEG_ENABLE;
899 		} else {
900 			if (!(val & BMCR_ANENABLE))
901 				data |= PORT_AUTO_NEG_DISABLE;
902 			else
903 				data &= ~PORT_AUTO_NEG_DISABLE;
904 
905 			/* Fiber port does not support auto-negotiation. */
906 			if (dev->ports[p].fiber)
907 				data |= PORT_AUTO_NEG_DISABLE;
908 		}
909 
910 		if (val & BMCR_SPEED100)
911 			data |= PORT_FORCE_100_MBIT;
912 		else
913 			data &= ~PORT_FORCE_100_MBIT;
914 		if (val & BMCR_FULLDPLX)
915 			data |= PORT_FORCE_FULL_DUPLEX;
916 		else
917 			data &= ~PORT_FORCE_FULL_DUPLEX;
918 		if (data != ctrl)
919 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
920 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
921 		data = restart;
922 		if (val & KSZ886X_BMCR_DISABLE_LED)
923 			data |= PORT_LED_OFF;
924 		else
925 			data &= ~PORT_LED_OFF;
926 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
927 			data |= PORT_TX_DISABLE;
928 		else
929 			data &= ~PORT_TX_DISABLE;
930 		if (val & BMCR_ANRESTART)
931 			data |= PORT_AUTO_NEG_RESTART;
932 		else
933 			data &= ~(PORT_AUTO_NEG_RESTART);
934 		if (val & BMCR_PDOWN)
935 			data |= PORT_POWER_DOWN;
936 		else
937 			data &= ~PORT_POWER_DOWN;
938 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
939 			data |= PORT_AUTO_MDIX_DISABLE;
940 		else
941 			data &= ~PORT_AUTO_MDIX_DISABLE;
942 		if (val & KSZ886X_BMCR_FORCE_MDI)
943 			data |= PORT_FORCE_MDIX;
944 		else
945 			data &= ~PORT_FORCE_MDIX;
946 		if (val & BMCR_LOOPBACK)
947 			data |= PORT_PHY_LOOPBACK;
948 		else
949 			data &= ~PORT_PHY_LOOPBACK;
950 		if (data != restart)
951 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
952 		break;
953 	case MII_ADVERTISE:
954 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
955 		data = ctrl;
956 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
957 			  PORT_AUTO_NEG_100BTX_FD |
958 			  PORT_AUTO_NEG_100BTX |
959 			  PORT_AUTO_NEG_10BT_FD |
960 			  PORT_AUTO_NEG_10BT);
961 		if (val & ADVERTISE_PAUSE_CAP)
962 			data |= PORT_AUTO_NEG_SYM_PAUSE;
963 		if (val & ADVERTISE_100FULL)
964 			data |= PORT_AUTO_NEG_100BTX_FD;
965 		if (val & ADVERTISE_100HALF)
966 			data |= PORT_AUTO_NEG_100BTX;
967 		if (val & ADVERTISE_10FULL)
968 			data |= PORT_AUTO_NEG_10BT_FD;
969 		if (val & ADVERTISE_10HALF)
970 			data |= PORT_AUTO_NEG_10BT;
971 		if (data != ctrl)
972 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
973 		break;
974 	case PHY_REG_LINK_MD:
975 		if (val & PHY_START_CABLE_DIAG)
976 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
977 		break;
978 	default:
979 		break;
980 	}
981 }
982 
983 static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds,
984 						   int port,
985 						   enum dsa_tag_protocol mp)
986 {
987 	struct ksz_device *dev = ds->priv;
988 
989 	/* ksz88x3 uses the same tag schema as KSZ9893 */
990 	return ksz_is_ksz88x3(dev) ?
991 		DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795;
992 }
993 
994 static u32 ksz8_sw_get_phy_flags(struct dsa_switch *ds, int port)
995 {
996 	/* Silicon Errata Sheet (DS80000830A):
997 	 * Port 1 does not work with LinkMD Cable-Testing.
998 	 * Port 1 does not respond to received PAUSE control frames.
999 	 */
1000 	if (!port)
1001 		return MICREL_KSZ8_P1_ERRATA;
1002 
1003 	return 0;
1004 }
1005 
1006 static void ksz8_get_strings(struct dsa_switch *ds, int port,
1007 			     u32 stringset, uint8_t *buf)
1008 {
1009 	struct ksz_device *dev = ds->priv;
1010 	int i;
1011 
1012 	for (i = 0; i < dev->mib_cnt; i++) {
1013 		memcpy(buf + i * ETH_GSTRING_LEN,
1014 		       dev->mib_names[i].string, ETH_GSTRING_LEN);
1015 	}
1016 }
1017 
1018 static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1019 {
1020 	u8 data;
1021 
1022 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1023 	data &= ~PORT_VLAN_MEMBERSHIP;
1024 	data |= (member & dev->port_mask);
1025 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1026 }
1027 
1028 static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1029 {
1030 	struct ksz_device *dev = ds->priv;
1031 	struct ksz_port *p;
1032 	u8 data;
1033 
1034 	ksz_pread8(dev, port, P_STP_CTRL, &data);
1035 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
1036 
1037 	switch (state) {
1038 	case BR_STATE_DISABLED:
1039 		data |= PORT_LEARN_DISABLE;
1040 		break;
1041 	case BR_STATE_LISTENING:
1042 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
1043 		break;
1044 	case BR_STATE_LEARNING:
1045 		data |= PORT_RX_ENABLE;
1046 		break;
1047 	case BR_STATE_FORWARDING:
1048 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
1049 		break;
1050 	case BR_STATE_BLOCKING:
1051 		data |= PORT_LEARN_DISABLE;
1052 		break;
1053 	default:
1054 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1055 		return;
1056 	}
1057 
1058 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
1059 
1060 	p = &dev->ports[port];
1061 	p->stp_state = state;
1062 
1063 	ksz_update_port_member(dev, port);
1064 }
1065 
1066 static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1067 {
1068 	u8 learn[DSA_MAX_PORTS];
1069 	int first, index, cnt;
1070 	struct ksz_port *p;
1071 
1072 	if ((uint)port < dev->port_cnt) {
1073 		first = port;
1074 		cnt = port + 1;
1075 	} else {
1076 		/* Flush all ports. */
1077 		first = 0;
1078 		cnt = dev->port_cnt;
1079 	}
1080 	for (index = first; index < cnt; index++) {
1081 		p = &dev->ports[index];
1082 		if (!p->on)
1083 			continue;
1084 		ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
1085 		if (!(learn[index] & PORT_LEARN_DISABLE))
1086 			ksz_pwrite8(dev, index, P_STP_CTRL,
1087 				    learn[index] | PORT_LEARN_DISABLE);
1088 	}
1089 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1090 	for (index = first; index < cnt; index++) {
1091 		p = &dev->ports[index];
1092 		if (!p->on)
1093 			continue;
1094 		if (!(learn[index] & PORT_LEARN_DISABLE))
1095 			ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
1096 	}
1097 }
1098 
1099 static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag,
1100 				    struct netlink_ext_ack *extack)
1101 {
1102 	struct ksz_device *dev = ds->priv;
1103 
1104 	if (ksz_is_ksz88x3(dev))
1105 		return -ENOTSUPP;
1106 
1107 	/* Discard packets with VID not enabled on the switch */
1108 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1109 
1110 	/* Discard packets with VID not enabled on the ingress port */
1111 	for (port = 0; port < dev->phy_port_cnt; ++port)
1112 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1113 			     flag);
1114 
1115 	return 0;
1116 }
1117 
1118 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1119 {
1120 	if (ksz_is_ksz88x3(dev)) {
1121 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1122 			0x03 << (4 - 2 * port), state);
1123 	} else {
1124 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1125 	}
1126 }
1127 
1128 static int ksz8_port_vlan_add(struct dsa_switch *ds, int port,
1129 			      const struct switchdev_obj_port_vlan *vlan,
1130 			      struct netlink_ext_ack *extack)
1131 {
1132 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1133 	struct ksz_device *dev = ds->priv;
1134 	struct ksz_port *p = &dev->ports[port];
1135 	u16 data, new_pvid = 0;
1136 	u8 fid, member, valid;
1137 
1138 	if (ksz_is_ksz88x3(dev))
1139 		return -ENOTSUPP;
1140 
1141 	/* If a VLAN is added with untagged flag different from the
1142 	 * port's Remove Tag flag, we need to change the latter.
1143 	 * Ignore VID 0, which is always untagged.
1144 	 * Ignore CPU port, which will always be tagged.
1145 	 */
1146 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1147 	    port != dev->cpu_port) {
1148 		unsigned int vid;
1149 
1150 		/* Reject attempts to add a VLAN that requires the
1151 		 * Remove Tag flag to be changed, unless there are no
1152 		 * other VLANs currently configured.
1153 		 */
1154 		for (vid = 1; vid < dev->num_vlans; ++vid) {
1155 			/* Skip the VID we are going to add or reconfigure */
1156 			if (vid == vlan->vid)
1157 				continue;
1158 
1159 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1160 				       &fid, &member, &valid);
1161 			if (valid && (member & BIT(port)))
1162 				return -EINVAL;
1163 		}
1164 
1165 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1166 		p->remove_tag = untagged;
1167 	}
1168 
1169 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1170 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1171 
1172 	/* First time to setup the VLAN entry. */
1173 	if (!valid) {
1174 		/* Need to find a way to map VID to FID. */
1175 		fid = 1;
1176 		valid = 1;
1177 	}
1178 	member |= BIT(port);
1179 
1180 	ksz8_to_vlan(dev, fid, member, valid, &data);
1181 	ksz8_w_vlan_table(dev, vlan->vid, data);
1182 
1183 	/* change PVID */
1184 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1185 		new_pvid = vlan->vid;
1186 
1187 	if (new_pvid) {
1188 		u16 vid;
1189 
1190 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1191 		vid &= ~VLAN_VID_MASK;
1192 		vid |= new_pvid;
1193 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1194 
1195 		ksz8_port_enable_pvid(dev, port, true);
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static int ksz8_port_vlan_del(struct dsa_switch *ds, int port,
1202 			      const struct switchdev_obj_port_vlan *vlan)
1203 {
1204 	struct ksz_device *dev = ds->priv;
1205 	u16 data, pvid;
1206 	u8 fid, member, valid;
1207 
1208 	if (ksz_is_ksz88x3(dev))
1209 		return -ENOTSUPP;
1210 
1211 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1212 	pvid = pvid & 0xFFF;
1213 
1214 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1215 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1216 
1217 	member &= ~BIT(port);
1218 
1219 	/* Invalidate the entry if no more member. */
1220 	if (!member) {
1221 		fid = 0;
1222 		valid = 0;
1223 	}
1224 
1225 	ksz8_to_vlan(dev, fid, member, valid, &data);
1226 	ksz8_w_vlan_table(dev, vlan->vid, data);
1227 
1228 	if (pvid == vlan->vid)
1229 		ksz8_port_enable_pvid(dev, port, false);
1230 
1231 	return 0;
1232 }
1233 
1234 static int ksz8_port_mirror_add(struct dsa_switch *ds, int port,
1235 				struct dsa_mall_mirror_tc_entry *mirror,
1236 				bool ingress, struct netlink_ext_ack *extack)
1237 {
1238 	struct ksz_device *dev = ds->priv;
1239 
1240 	if (ingress) {
1241 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1242 		dev->mirror_rx |= BIT(port);
1243 	} else {
1244 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1245 		dev->mirror_tx |= BIT(port);
1246 	}
1247 
1248 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1249 
1250 	/* configure mirror port */
1251 	if (dev->mirror_rx || dev->mirror_tx)
1252 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1253 			     PORT_MIRROR_SNIFFER, true);
1254 
1255 	return 0;
1256 }
1257 
1258 static void ksz8_port_mirror_del(struct dsa_switch *ds, int port,
1259 				 struct dsa_mall_mirror_tc_entry *mirror)
1260 {
1261 	struct ksz_device *dev = ds->priv;
1262 	u8 data;
1263 
1264 	if (mirror->ingress) {
1265 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1266 		dev->mirror_rx &= ~BIT(port);
1267 	} else {
1268 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1269 		dev->mirror_tx &= ~BIT(port);
1270 	}
1271 
1272 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1273 
1274 	if (!dev->mirror_rx && !dev->mirror_tx)
1275 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1276 			     PORT_MIRROR_SNIFFER, false);
1277 }
1278 
1279 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1280 {
1281 	struct ksz_port *p = &dev->ports[port];
1282 	u8 data8;
1283 
1284 	if (!p->interface && dev->compat_interface) {
1285 		dev_warn(dev->dev,
1286 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1287 			 "Please update your device tree.\n",
1288 			 port);
1289 		p->interface = dev->compat_interface;
1290 	}
1291 
1292 	/* Configure MII interface for proper network communication. */
1293 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1294 	data8 &= ~PORT_INTERFACE_TYPE;
1295 	data8 &= ~PORT_GMII_1GPS_MODE;
1296 	switch (p->interface) {
1297 	case PHY_INTERFACE_MODE_MII:
1298 		p->phydev.speed = SPEED_100;
1299 		break;
1300 	case PHY_INTERFACE_MODE_RMII:
1301 		data8 |= PORT_INTERFACE_RMII;
1302 		p->phydev.speed = SPEED_100;
1303 		break;
1304 	case PHY_INTERFACE_MODE_GMII:
1305 		data8 |= PORT_GMII_1GPS_MODE;
1306 		data8 |= PORT_INTERFACE_GMII;
1307 		p->phydev.speed = SPEED_1000;
1308 		break;
1309 	default:
1310 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1311 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1312 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1313 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1314 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1315 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1316 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1317 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1318 		data8 |= PORT_GMII_1GPS_MODE;
1319 		data8 |= PORT_INTERFACE_RGMII;
1320 		p->phydev.speed = SPEED_1000;
1321 		break;
1322 	}
1323 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1324 	p->phydev.duplex = 1;
1325 }
1326 
1327 static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1328 {
1329 	struct dsa_switch *ds = dev->ds;
1330 	struct ksz8 *ksz8 = dev->priv;
1331 	const u32 *masks;
1332 	u8 member;
1333 
1334 	masks = ksz8->masks;
1335 
1336 	/* enable broadcast storm limit */
1337 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1338 
1339 	if (!ksz_is_ksz88x3(dev))
1340 		ksz8795_set_prio_queue(dev, port, 4);
1341 
1342 	/* disable DiffServ priority */
1343 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1344 
1345 	/* replace priority */
1346 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1347 		     masks[PORT_802_1P_REMAPPING], false);
1348 
1349 	/* enable 802.1p priority */
1350 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1351 
1352 	if (cpu_port) {
1353 		if (!ksz_is_ksz88x3(dev))
1354 			ksz8795_cpu_interface_select(dev, port);
1355 
1356 		member = dsa_user_ports(ds);
1357 	} else {
1358 		member = BIT(dsa_upstream_port(ds, port));
1359 	}
1360 
1361 	ksz8_cfg_port_member(dev, port, member);
1362 }
1363 
1364 static void ksz8_config_cpu_port(struct dsa_switch *ds)
1365 {
1366 	struct ksz_device *dev = ds->priv;
1367 	struct ksz8 *ksz8 = dev->priv;
1368 	const u8 *regs = ksz8->regs;
1369 	struct ksz_port *p;
1370 	const u32 *masks;
1371 	u8 remote;
1372 	int i;
1373 
1374 	masks = ksz8->masks;
1375 
1376 	/* Switch marks the maximum frame with extra byte as oversize. */
1377 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1378 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1379 
1380 	p = &dev->ports[dev->cpu_port];
1381 	p->on = 1;
1382 
1383 	ksz8_port_setup(dev, dev->cpu_port, true);
1384 
1385 	for (i = 0; i < dev->phy_port_cnt; i++) {
1386 		p = &dev->ports[i];
1387 
1388 		ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1389 
1390 		/* Last port may be disabled. */
1391 		if (i == dev->phy_port_cnt)
1392 			break;
1393 		p->on = 1;
1394 		p->phy = 1;
1395 	}
1396 	for (i = 0; i < dev->phy_port_cnt; i++) {
1397 		p = &dev->ports[i];
1398 		if (!p->on)
1399 			continue;
1400 		if (!ksz_is_ksz88x3(dev)) {
1401 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1402 			if (remote & PORT_FIBER_MODE)
1403 				p->fiber = 1;
1404 		}
1405 		if (p->fiber)
1406 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1407 				     true);
1408 		else
1409 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1410 				     false);
1411 	}
1412 }
1413 
1414 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1415 {
1416 	struct ksz_device *dev = ds->priv;
1417 	int ret = 0;
1418 
1419 	/* KSZ87xx Errata DS80000687C.
1420 	 * Module 2: Link drops with some EEE link partners.
1421 	 *   An issue with the EEE next page exchange between the
1422 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1423 	 *   the link dropping.
1424 	 */
1425 	if (dev->ksz87xx_eee_link_erratum)
1426 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1427 
1428 	return ret;
1429 }
1430 
1431 static int ksz8_setup(struct dsa_switch *ds)
1432 {
1433 	struct ksz_device *dev = ds->priv;
1434 	struct alu_struct alu;
1435 	int i, ret = 0;
1436 
1437 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1438 				       dev->num_vlans, GFP_KERNEL);
1439 	if (!dev->vlan_cache)
1440 		return -ENOMEM;
1441 
1442 	ret = ksz8_reset_switch(dev);
1443 	if (ret) {
1444 		dev_err(ds->dev, "failed to reset switch\n");
1445 		return ret;
1446 	}
1447 
1448 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1449 
1450 	/* Enable automatic fast aging when link changed detected. */
1451 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1452 
1453 	/* Enable aggressive back off algorithm in half duplex mode. */
1454 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1455 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1456 
1457 	/*
1458 	 * Make sure unicast VLAN boundary is set as default and
1459 	 * enable no excessive collision drop.
1460 	 */
1461 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1462 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1463 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1464 
1465 	ksz8_config_cpu_port(ds);
1466 
1467 	ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
1468 
1469 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1470 
1471 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1472 
1473 	if (!ksz_is_ksz88x3(dev))
1474 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1475 
1476 	/* set broadcast storm protection 10% rate */
1477 	regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
1478 			   BROADCAST_STORM_RATE,
1479 			   (BROADCAST_STORM_VALUE *
1480 			   BROADCAST_STORM_PROT_RATE) / 100);
1481 
1482 	for (i = 0; i < (dev->num_vlans / 4); i++)
1483 		ksz8_r_vlan_entries(dev, i);
1484 
1485 	/* Setup STP address for STP operation. */
1486 	memset(&alu, 0, sizeof(alu));
1487 	ether_addr_copy(alu.mac, eth_stp_addr);
1488 	alu.is_static = true;
1489 	alu.is_override = true;
1490 	alu.port_forward = dev->host_mask;
1491 
1492 	ksz8_w_sta_mac_table(dev, 0, &alu);
1493 
1494 	ksz_init_mib_timer(dev);
1495 
1496 	ds->configure_vlan_while_not_filtering = false;
1497 
1498 	return ksz8_handle_global_errata(ds);
1499 }
1500 
1501 static void ksz8_get_caps(struct dsa_switch *ds, int port,
1502 			  struct phylink_config *config)
1503 {
1504 	struct ksz_device *dev = ds->priv;
1505 
1506 	if (port == dev->cpu_port) {
1507 		__set_bit(PHY_INTERFACE_MODE_RMII,
1508 			  config->supported_interfaces);
1509 		__set_bit(PHY_INTERFACE_MODE_MII,
1510 			  config->supported_interfaces);
1511 	} else {
1512 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1513 			  config->supported_interfaces);
1514 	}
1515 
1516 	config->mac_capabilities = MAC_10 | MAC_100;
1517 
1518 	/* Silicon Errata Sheet (DS80000830A):
1519 	 * "Port 1 does not respond to received flow control PAUSE frames"
1520 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1521 	 * switches.
1522 	 */
1523 	if (!ksz_is_ksz88x3(dev) || port)
1524 		config->mac_capabilities |= MAC_SYM_PAUSE;
1525 
1526 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1527 	if (!ksz_is_ksz88x3(dev))
1528 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1529 }
1530 
1531 static const struct dsa_switch_ops ksz8_switch_ops = {
1532 	.get_tag_protocol	= ksz8_get_tag_protocol,
1533 	.get_phy_flags		= ksz8_sw_get_phy_flags,
1534 	.setup			= ksz8_setup,
1535 	.phy_read		= ksz_phy_read16,
1536 	.phy_write		= ksz_phy_write16,
1537 	.phylink_get_caps	= ksz8_get_caps,
1538 	.phylink_mac_link_down	= ksz_mac_link_down,
1539 	.port_enable		= ksz_enable_port,
1540 	.get_strings		= ksz8_get_strings,
1541 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1542 	.get_sset_count		= ksz_sset_count,
1543 	.port_bridge_join	= ksz_port_bridge_join,
1544 	.port_bridge_leave	= ksz_port_bridge_leave,
1545 	.port_stp_state_set	= ksz8_port_stp_state_set,
1546 	.port_fast_age		= ksz_port_fast_age,
1547 	.port_vlan_filtering	= ksz8_port_vlan_filtering,
1548 	.port_vlan_add		= ksz8_port_vlan_add,
1549 	.port_vlan_del		= ksz8_port_vlan_del,
1550 	.port_fdb_dump		= ksz_port_fdb_dump,
1551 	.port_mdb_add           = ksz_port_mdb_add,
1552 	.port_mdb_del           = ksz_port_mdb_del,
1553 	.port_mirror_add	= ksz8_port_mirror_add,
1554 	.port_mirror_del	= ksz8_port_mirror_del,
1555 };
1556 
1557 static u32 ksz8_get_port_addr(int port, int offset)
1558 {
1559 	return PORT_CTRL_ADDR(port, offset);
1560 }
1561 
1562 static int ksz8_switch_detect(struct ksz_device *dev)
1563 {
1564 	u8 id1, id2;
1565 	u16 id16;
1566 	int ret;
1567 
1568 	/* read chip id */
1569 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
1570 	if (ret)
1571 		return ret;
1572 
1573 	id1 = id16 >> 8;
1574 	id2 = id16 & SW_CHIP_ID_M;
1575 
1576 	switch (id1) {
1577 	case KSZ87_FAMILY_ID:
1578 		if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
1579 			return -ENODEV;
1580 
1581 		if (id2 == CHIP_ID_95) {
1582 			u8 val;
1583 
1584 			id2 = 0x95;
1585 			ksz_read8(dev, REG_PORT_STATUS_0, &val);
1586 			if (val & PORT_FIBER_MODE)
1587 				id2 = 0x65;
1588 		} else if (id2 == CHIP_ID_94) {
1589 			id2 = 0x94;
1590 		}
1591 		break;
1592 	case KSZ88_FAMILY_ID:
1593 		if (id2 != CHIP_ID_63)
1594 			return -ENODEV;
1595 		break;
1596 	default:
1597 		dev_err(dev->dev, "invalid family id: %d\n", id1);
1598 		return -ENODEV;
1599 	}
1600 	id16 &= ~0xff;
1601 	id16 |= id2;
1602 	dev->chip_id = id16;
1603 
1604 	return 0;
1605 }
1606 
1607 struct ksz_chip_data {
1608 	u16 chip_id;
1609 	const char *dev_name;
1610 	int num_vlans;
1611 	int num_alus;
1612 	int num_statics;
1613 	int cpu_ports;
1614 	int port_cnt;
1615 	bool ksz87xx_eee_link_erratum;
1616 };
1617 
1618 static const struct ksz_chip_data ksz8_switch_chips[] = {
1619 	{
1620 		.chip_id = 0x8795,
1621 		.dev_name = "KSZ8795",
1622 		.num_vlans = 4096,
1623 		.num_alus = 0,
1624 		.num_statics = 8,
1625 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1626 		.port_cnt = 5,		/* total cpu and user ports */
1627 		.ksz87xx_eee_link_erratum = true,
1628 	},
1629 	{
1630 		/*
1631 		 * WARNING
1632 		 * =======
1633 		 * KSZ8794 is similar to KSZ8795, except the port map
1634 		 * contains a gap between external and CPU ports, the
1635 		 * port map is NOT continuous. The per-port register
1636 		 * map is shifted accordingly too, i.e. registers at
1637 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1638 		 * used on KSZ8795 for external port 3.
1639 		 *           external  cpu
1640 		 * KSZ8794   0,1,2      4
1641 		 * KSZ8795   0,1,2,3    4
1642 		 * KSZ8765   0,1,2,3    4
1643 		 */
1644 		.chip_id = 0x8794,
1645 		.dev_name = "KSZ8794",
1646 		.num_vlans = 4096,
1647 		.num_alus = 0,
1648 		.num_statics = 8,
1649 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1650 		.port_cnt = 4,		/* total cpu and user ports */
1651 		.ksz87xx_eee_link_erratum = true,
1652 	},
1653 	{
1654 		.chip_id = 0x8765,
1655 		.dev_name = "KSZ8765",
1656 		.num_vlans = 4096,
1657 		.num_alus = 0,
1658 		.num_statics = 8,
1659 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1660 		.port_cnt = 5,		/* total cpu and user ports */
1661 		.ksz87xx_eee_link_erratum = true,
1662 	},
1663 	{
1664 		.chip_id = 0x8830,
1665 		.dev_name = "KSZ8863/KSZ8873",
1666 		.num_vlans = 16,
1667 		.num_alus = 0,
1668 		.num_statics = 8,
1669 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1670 		.port_cnt = 3,
1671 	},
1672 };
1673 
1674 static int ksz8_switch_init(struct ksz_device *dev)
1675 {
1676 	struct ksz8 *ksz8 = dev->priv;
1677 	int i;
1678 
1679 	dev->ds->ops = &ksz8_switch_ops;
1680 
1681 	for (i = 0; i < ARRAY_SIZE(ksz8_switch_chips); i++) {
1682 		const struct ksz_chip_data *chip = &ksz8_switch_chips[i];
1683 
1684 		if (dev->chip_id == chip->chip_id) {
1685 			dev->name = chip->dev_name;
1686 			dev->num_vlans = chip->num_vlans;
1687 			dev->num_alus = chip->num_alus;
1688 			dev->num_statics = chip->num_statics;
1689 			dev->port_cnt = fls(chip->cpu_ports);
1690 			dev->cpu_port = fls(chip->cpu_ports) - 1;
1691 			dev->phy_port_cnt = dev->port_cnt - 1;
1692 			dev->cpu_ports = chip->cpu_ports;
1693 			dev->host_mask = chip->cpu_ports;
1694 			dev->port_mask = (BIT(dev->phy_port_cnt) - 1) |
1695 					 chip->cpu_ports;
1696 			dev->ksz87xx_eee_link_erratum =
1697 				chip->ksz87xx_eee_link_erratum;
1698 			break;
1699 		}
1700 	}
1701 
1702 	/* no switch found */
1703 	if (!dev->cpu_ports)
1704 		return -ENODEV;
1705 
1706 	if (ksz_is_ksz88x3(dev)) {
1707 		ksz8->regs = ksz8863_regs;
1708 		ksz8->masks = ksz8863_masks;
1709 		ksz8->shifts = ksz8863_shifts;
1710 		dev->mib_cnt = ARRAY_SIZE(ksz88xx_mib_names);
1711 		dev->mib_names = ksz88xx_mib_names;
1712 	} else {
1713 		ksz8->regs = ksz8795_regs;
1714 		ksz8->masks = ksz8795_masks;
1715 		ksz8->shifts = ksz8795_shifts;
1716 		dev->mib_cnt = ARRAY_SIZE(ksz87xx_mib_names);
1717 		dev->mib_names = ksz87xx_mib_names;
1718 	}
1719 
1720 	dev->reg_mib_cnt = MIB_COUNTER_NUM;
1721 
1722 	dev->ports = devm_kzalloc(dev->dev,
1723 				  dev->port_cnt * sizeof(struct ksz_port),
1724 				  GFP_KERNEL);
1725 	if (!dev->ports)
1726 		return -ENOMEM;
1727 	for (i = 0; i < dev->port_cnt; i++) {
1728 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1729 		dev->ports[i].mib.counters =
1730 			devm_kzalloc(dev->dev,
1731 				     sizeof(u64) *
1732 				     (dev->mib_cnt + 1),
1733 				     GFP_KERNEL);
1734 		if (!dev->ports[i].mib.counters)
1735 			return -ENOMEM;
1736 	}
1737 
1738 	/* set the real number of ports */
1739 	dev->ds->num_ports = dev->port_cnt;
1740 
1741 	/* We rely on software untagging on the CPU port, so that we
1742 	 * can support both tagged and untagged VLANs
1743 	 */
1744 	dev->ds->untag_bridge_pvid = true;
1745 
1746 	/* VLAN filtering is partly controlled by the global VLAN
1747 	 * Enable flag
1748 	 */
1749 	dev->ds->vlan_filtering_is_global = true;
1750 
1751 	return 0;
1752 }
1753 
1754 static void ksz8_switch_exit(struct ksz_device *dev)
1755 {
1756 	ksz8_reset_switch(dev);
1757 }
1758 
1759 static const struct ksz_dev_ops ksz8_dev_ops = {
1760 	.get_port_addr = ksz8_get_port_addr,
1761 	.cfg_port_member = ksz8_cfg_port_member,
1762 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
1763 	.port_setup = ksz8_port_setup,
1764 	.r_phy = ksz8_r_phy,
1765 	.w_phy = ksz8_w_phy,
1766 	.r_dyn_mac_table = ksz8_r_dyn_mac_table,
1767 	.r_sta_mac_table = ksz8_r_sta_mac_table,
1768 	.w_sta_mac_table = ksz8_w_sta_mac_table,
1769 	.r_mib_cnt = ksz8_r_mib_cnt,
1770 	.r_mib_pkt = ksz8_r_mib_pkt,
1771 	.freeze_mib = ksz8_freeze_mib,
1772 	.port_init_cnt = ksz8_port_init_cnt,
1773 	.shutdown = ksz8_reset_switch,
1774 	.detect = ksz8_switch_detect,
1775 	.init = ksz8_switch_init,
1776 	.exit = ksz8_switch_exit,
1777 };
1778 
1779 int ksz8_switch_register(struct ksz_device *dev)
1780 {
1781 	return ksz_switch_register(dev, &ksz8_dev_ops);
1782 }
1783 EXPORT_SYMBOL(ksz8_switch_register);
1784 
1785 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1786 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1787 MODULE_LICENSE("GPL");
1788