1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip KSZ8795 switch driver 4 * 5 * Copyright (C) 2017 Microchip Technology Inc. 6 * Tristram Ha <Tristram.Ha@microchip.com> 7 */ 8 9 #include <linux/bitfield.h> 10 #include <linux/delay.h> 11 #include <linux/export.h> 12 #include <linux/gpio.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/platform_data/microchip-ksz.h> 16 #include <linux/phy.h> 17 #include <linux/etherdevice.h> 18 #include <linux/if_bridge.h> 19 #include <linux/micrel_phy.h> 20 #include <net/dsa.h> 21 #include <net/switchdev.h> 22 #include <linux/phylink.h> 23 24 #include "ksz_common.h" 25 #include "ksz8795_reg.h" 26 #include "ksz8.h" 27 28 static const u8 ksz8795_regs[] = { 29 [REG_IND_CTRL_0] = 0x6E, 30 [REG_IND_DATA_8] = 0x70, 31 [REG_IND_DATA_CHECK] = 0x72, 32 [REG_IND_DATA_HI] = 0x71, 33 [REG_IND_DATA_LO] = 0x75, 34 [REG_IND_MIB_CHECK] = 0x74, 35 [P_FORCE_CTRL] = 0x0C, 36 [P_LINK_STATUS] = 0x0E, 37 [P_LOCAL_CTRL] = 0x07, 38 [P_NEG_RESTART_CTRL] = 0x0D, 39 [P_REMOTE_STATUS] = 0x08, 40 [P_SPEED_STATUS] = 0x09, 41 [S_TAIL_TAG_CTRL] = 0x0C, 42 }; 43 44 static const u32 ksz8795_masks[] = { 45 [PORT_802_1P_REMAPPING] = BIT(7), 46 [SW_TAIL_TAG_ENABLE] = BIT(1), 47 [MIB_COUNTER_OVERFLOW] = BIT(6), 48 [MIB_COUNTER_VALID] = BIT(5), 49 [VLAN_TABLE_FID] = GENMASK(6, 0), 50 [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), 51 [VLAN_TABLE_VALID] = BIT(12), 52 [STATIC_MAC_TABLE_VALID] = BIT(21), 53 [STATIC_MAC_TABLE_USE_FID] = BIT(23), 54 [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), 55 [STATIC_MAC_TABLE_OVERRIDE] = BIT(26), 56 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(24, 20), 57 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), 58 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(8), 59 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 60 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), 61 [DYNAMIC_MAC_TABLE_FID] = GENMASK(26, 20), 62 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), 63 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), 64 }; 65 66 static const u8 ksz8795_shifts[] = { 67 [VLAN_TABLE_MEMBERSHIP_S] = 7, 68 [VLAN_TABLE] = 16, 69 [STATIC_MAC_FWD_PORTS] = 16, 70 [STATIC_MAC_FID] = 24, 71 [DYNAMIC_MAC_ENTRIES_H] = 3, 72 [DYNAMIC_MAC_ENTRIES] = 29, 73 [DYNAMIC_MAC_FID] = 16, 74 [DYNAMIC_MAC_TIMESTAMP] = 27, 75 [DYNAMIC_MAC_SRC_PORT] = 24, 76 }; 77 78 static const u8 ksz8863_regs[] = { 79 [REG_IND_CTRL_0] = 0x79, 80 [REG_IND_DATA_8] = 0x7B, 81 [REG_IND_DATA_CHECK] = 0x7B, 82 [REG_IND_DATA_HI] = 0x7C, 83 [REG_IND_DATA_LO] = 0x80, 84 [REG_IND_MIB_CHECK] = 0x80, 85 [P_FORCE_CTRL] = 0x0C, 86 [P_LINK_STATUS] = 0x0E, 87 [P_LOCAL_CTRL] = 0x0C, 88 [P_NEG_RESTART_CTRL] = 0x0D, 89 [P_REMOTE_STATUS] = 0x0E, 90 [P_SPEED_STATUS] = 0x0F, 91 [S_TAIL_TAG_CTRL] = 0x03, 92 }; 93 94 static const u32 ksz8863_masks[] = { 95 [PORT_802_1P_REMAPPING] = BIT(3), 96 [SW_TAIL_TAG_ENABLE] = BIT(6), 97 [MIB_COUNTER_OVERFLOW] = BIT(7), 98 [MIB_COUNTER_VALID] = BIT(6), 99 [VLAN_TABLE_FID] = GENMASK(15, 12), 100 [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), 101 [VLAN_TABLE_VALID] = BIT(19), 102 [STATIC_MAC_TABLE_VALID] = BIT(19), 103 [STATIC_MAC_TABLE_USE_FID] = BIT(21), 104 [STATIC_MAC_TABLE_FID] = GENMASK(29, 26), 105 [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), 106 [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), 107 [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(5, 0), 108 [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), 109 [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), 110 [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 28), 111 [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), 112 [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), 113 [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), 114 }; 115 116 static u8 ksz8863_shifts[] = { 117 [VLAN_TABLE_MEMBERSHIP_S] = 16, 118 [STATIC_MAC_FWD_PORTS] = 16, 119 [STATIC_MAC_FID] = 22, 120 [DYNAMIC_MAC_ENTRIES_H] = 3, 121 [DYNAMIC_MAC_ENTRIES] = 24, 122 [DYNAMIC_MAC_FID] = 16, 123 [DYNAMIC_MAC_TIMESTAMP] = 24, 124 [DYNAMIC_MAC_SRC_PORT] = 20, 125 }; 126 127 struct mib_names { 128 char string[ETH_GSTRING_LEN]; 129 }; 130 131 static const struct mib_names ksz87xx_mib_names[] = { 132 { "rx_hi" }, 133 { "rx_undersize" }, 134 { "rx_fragments" }, 135 { "rx_oversize" }, 136 { "rx_jabbers" }, 137 { "rx_symbol_err" }, 138 { "rx_crc_err" }, 139 { "rx_align_err" }, 140 { "rx_mac_ctrl" }, 141 { "rx_pause" }, 142 { "rx_bcast" }, 143 { "rx_mcast" }, 144 { "rx_ucast" }, 145 { "rx_64_or_less" }, 146 { "rx_65_127" }, 147 { "rx_128_255" }, 148 { "rx_256_511" }, 149 { "rx_512_1023" }, 150 { "rx_1024_1522" }, 151 { "rx_1523_2000" }, 152 { "rx_2001" }, 153 { "tx_hi" }, 154 { "tx_late_col" }, 155 { "tx_pause" }, 156 { "tx_bcast" }, 157 { "tx_mcast" }, 158 { "tx_ucast" }, 159 { "tx_deferred" }, 160 { "tx_total_col" }, 161 { "tx_exc_col" }, 162 { "tx_single_col" }, 163 { "tx_mult_col" }, 164 { "rx_total" }, 165 { "tx_total" }, 166 { "rx_discards" }, 167 { "tx_discards" }, 168 }; 169 170 static const struct mib_names ksz88xx_mib_names[] = { 171 { "rx" }, 172 { "rx_hi" }, 173 { "rx_undersize" }, 174 { "rx_fragments" }, 175 { "rx_oversize" }, 176 { "rx_jabbers" }, 177 { "rx_symbol_err" }, 178 { "rx_crc_err" }, 179 { "rx_align_err" }, 180 { "rx_mac_ctrl" }, 181 { "rx_pause" }, 182 { "rx_bcast" }, 183 { "rx_mcast" }, 184 { "rx_ucast" }, 185 { "rx_64_or_less" }, 186 { "rx_65_127" }, 187 { "rx_128_255" }, 188 { "rx_256_511" }, 189 { "rx_512_1023" }, 190 { "rx_1024_1522" }, 191 { "tx" }, 192 { "tx_hi" }, 193 { "tx_late_col" }, 194 { "tx_pause" }, 195 { "tx_bcast" }, 196 { "tx_mcast" }, 197 { "tx_ucast" }, 198 { "tx_deferred" }, 199 { "tx_total_col" }, 200 { "tx_exc_col" }, 201 { "tx_single_col" }, 202 { "tx_mult_col" }, 203 { "rx_discards" }, 204 { "tx_discards" }, 205 }; 206 207 static bool ksz_is_ksz88x3(struct ksz_device *dev) 208 { 209 return dev->chip_id == 0x8830; 210 } 211 212 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) 213 { 214 regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0); 215 } 216 217 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, 218 bool set) 219 { 220 regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset), 221 bits, set ? bits : 0); 222 } 223 224 static int ksz8_reset_switch(struct ksz_device *dev) 225 { 226 if (ksz_is_ksz88x3(dev)) { 227 /* reset switch */ 228 ksz_cfg(dev, KSZ8863_REG_SW_RESET, 229 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true); 230 ksz_cfg(dev, KSZ8863_REG_SW_RESET, 231 KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false); 232 } else { 233 /* reset switch */ 234 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 235 SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S); 236 ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0); 237 } 238 239 return 0; 240 } 241 242 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue) 243 { 244 u8 hi, lo; 245 246 /* Number of queues can only be 1, 2, or 4. */ 247 switch (queue) { 248 case 4: 249 case 3: 250 queue = PORT_QUEUE_SPLIT_4; 251 break; 252 case 2: 253 queue = PORT_QUEUE_SPLIT_2; 254 break; 255 default: 256 queue = PORT_QUEUE_SPLIT_1; 257 } 258 ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo); 259 ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi); 260 lo &= ~PORT_QUEUE_SPLIT_L; 261 if (queue & PORT_QUEUE_SPLIT_2) 262 lo |= PORT_QUEUE_SPLIT_L; 263 hi &= ~PORT_QUEUE_SPLIT_H; 264 if (queue & PORT_QUEUE_SPLIT_4) 265 hi |= PORT_QUEUE_SPLIT_H; 266 ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo); 267 ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi); 268 269 /* Default is port based for egress rate limit. */ 270 if (queue != PORT_QUEUE_SPLIT_1) 271 ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED, 272 true); 273 } 274 275 static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt) 276 { 277 struct ksz8 *ksz8 = dev->priv; 278 const u32 *masks; 279 const u8 *regs; 280 u16 ctrl_addr; 281 u32 data; 282 u8 check; 283 int loop; 284 285 masks = ksz8->masks; 286 regs = ksz8->regs; 287 288 ctrl_addr = addr + dev->reg_mib_cnt * port; 289 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); 290 291 mutex_lock(&dev->alu_mutex); 292 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); 293 294 /* It is almost guaranteed to always read the valid bit because of 295 * slow SPI speed. 296 */ 297 for (loop = 2; loop > 0; loop--) { 298 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check); 299 300 if (check & masks[MIB_COUNTER_VALID]) { 301 ksz_read32(dev, regs[REG_IND_DATA_LO], &data); 302 if (check & masks[MIB_COUNTER_OVERFLOW]) 303 *cnt += MIB_COUNTER_VALUE + 1; 304 *cnt += data & MIB_COUNTER_VALUE; 305 break; 306 } 307 } 308 mutex_unlock(&dev->alu_mutex); 309 } 310 311 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, 312 u64 *dropped, u64 *cnt) 313 { 314 struct ksz8 *ksz8 = dev->priv; 315 const u32 *masks; 316 const u8 *regs; 317 u16 ctrl_addr; 318 u32 data; 319 u8 check; 320 int loop; 321 322 masks = ksz8->masks; 323 regs = ksz8->regs; 324 325 addr -= dev->reg_mib_cnt; 326 ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port; 327 ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0; 328 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); 329 330 mutex_lock(&dev->alu_mutex); 331 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); 332 333 /* It is almost guaranteed to always read the valid bit because of 334 * slow SPI speed. 335 */ 336 for (loop = 2; loop > 0; loop--) { 337 ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check); 338 339 if (check & masks[MIB_COUNTER_VALID]) { 340 ksz_read32(dev, regs[REG_IND_DATA_LO], &data); 341 if (addr < 2) { 342 u64 total; 343 344 total = check & MIB_TOTAL_BYTES_H; 345 total <<= 32; 346 *cnt += total; 347 *cnt += data; 348 if (check & masks[MIB_COUNTER_OVERFLOW]) { 349 total = MIB_TOTAL_BYTES_H + 1; 350 total <<= 32; 351 *cnt += total; 352 } 353 } else { 354 if (check & masks[MIB_COUNTER_OVERFLOW]) 355 *cnt += MIB_PACKET_DROPPED + 1; 356 *cnt += data & MIB_PACKET_DROPPED; 357 } 358 break; 359 } 360 } 361 mutex_unlock(&dev->alu_mutex); 362 } 363 364 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, 365 u64 *dropped, u64 *cnt) 366 { 367 struct ksz8 *ksz8 = dev->priv; 368 const u8 *regs = ksz8->regs; 369 u32 *last = (u32 *)dropped; 370 u16 ctrl_addr; 371 u32 data; 372 u32 cur; 373 374 addr -= dev->reg_mib_cnt; 375 ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 : 376 KSZ8863_MIB_PACKET_DROPPED_RX_0; 377 ctrl_addr += port; 378 ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); 379 380 mutex_lock(&dev->alu_mutex); 381 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); 382 ksz_read32(dev, regs[REG_IND_DATA_LO], &data); 383 mutex_unlock(&dev->alu_mutex); 384 385 data &= MIB_PACKET_DROPPED; 386 cur = last[addr]; 387 if (data != cur) { 388 last[addr] = data; 389 if (data < cur) 390 data += MIB_PACKET_DROPPED + 1; 391 data -= cur; 392 *cnt += data; 393 } 394 } 395 396 static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, 397 u64 *dropped, u64 *cnt) 398 { 399 if (ksz_is_ksz88x3(dev)) 400 ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt); 401 else 402 ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt); 403 } 404 405 static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze) 406 { 407 if (ksz_is_ksz88x3(dev)) 408 return; 409 410 /* enable the port for flush/freeze function */ 411 if (freeze) 412 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true); 413 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze); 414 415 /* disable the port after freeze is done */ 416 if (!freeze) 417 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false); 418 } 419 420 static void ksz8_port_init_cnt(struct ksz_device *dev, int port) 421 { 422 struct ksz_port_mib *mib = &dev->ports[port].mib; 423 u64 *dropped; 424 425 if (!ksz_is_ksz88x3(dev)) { 426 /* flush all enabled port MIB counters */ 427 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true); 428 ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true); 429 ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false); 430 } 431 432 mib->cnt_ptr = 0; 433 434 /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ 435 while (mib->cnt_ptr < dev->reg_mib_cnt) { 436 dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, 437 &mib->counters[mib->cnt_ptr]); 438 ++mib->cnt_ptr; 439 } 440 441 /* last one in storage */ 442 dropped = &mib->counters[dev->mib_cnt]; 443 444 /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ 445 while (mib->cnt_ptr < dev->mib_cnt) { 446 dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, 447 dropped, &mib->counters[mib->cnt_ptr]); 448 ++mib->cnt_ptr; 449 } 450 mib->cnt_ptr = 0; 451 memset(mib->counters, 0, dev->mib_cnt * sizeof(u64)); 452 } 453 454 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data) 455 { 456 struct ksz8 *ksz8 = dev->priv; 457 const u8 *regs = ksz8->regs; 458 u16 ctrl_addr; 459 460 ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr; 461 462 mutex_lock(&dev->alu_mutex); 463 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); 464 ksz_read64(dev, regs[REG_IND_DATA_HI], data); 465 mutex_unlock(&dev->alu_mutex); 466 } 467 468 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data) 469 { 470 struct ksz8 *ksz8 = dev->priv; 471 const u8 *regs = ksz8->regs; 472 u16 ctrl_addr; 473 474 ctrl_addr = IND_ACC_TABLE(table) | addr; 475 476 mutex_lock(&dev->alu_mutex); 477 ksz_write64(dev, regs[REG_IND_DATA_HI], data); 478 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); 479 mutex_unlock(&dev->alu_mutex); 480 } 481 482 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data) 483 { 484 struct ksz8 *ksz8 = dev->priv; 485 int timeout = 100; 486 const u32 *masks; 487 const u8 *regs; 488 489 masks = ksz8->masks; 490 regs = ksz8->regs; 491 492 do { 493 ksz_read8(dev, regs[REG_IND_DATA_CHECK], data); 494 timeout--; 495 } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout); 496 497 /* Entry is not ready for accessing. */ 498 if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) { 499 return -EAGAIN; 500 /* Entry is ready for accessing. */ 501 } else { 502 ksz_read8(dev, regs[REG_IND_DATA_8], data); 503 504 /* There is no valid entry in the table. */ 505 if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) 506 return -ENXIO; 507 } 508 return 0; 509 } 510 511 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, 512 u8 *mac_addr, u8 *fid, u8 *src_port, 513 u8 *timestamp, u16 *entries) 514 { 515 struct ksz8 *ksz8 = dev->priv; 516 u32 data_hi, data_lo; 517 const u8 *shifts; 518 const u32 *masks; 519 const u8 *regs; 520 u16 ctrl_addr; 521 u8 data; 522 int rc; 523 524 shifts = ksz8->shifts; 525 masks = ksz8->masks; 526 regs = ksz8->regs; 527 528 ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr; 529 530 mutex_lock(&dev->alu_mutex); 531 ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); 532 533 rc = ksz8_valid_dyn_entry(dev, &data); 534 if (rc == -EAGAIN) { 535 if (addr == 0) 536 *entries = 0; 537 } else if (rc == -ENXIO) { 538 *entries = 0; 539 /* At least one valid entry in the table. */ 540 } else { 541 u64 buf = 0; 542 int cnt; 543 544 ksz_read64(dev, regs[REG_IND_DATA_HI], &buf); 545 data_hi = (u32)(buf >> 32); 546 data_lo = (u32)buf; 547 548 /* Check out how many valid entry in the table. */ 549 cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H]; 550 cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H]; 551 cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >> 552 shifts[DYNAMIC_MAC_ENTRIES]; 553 *entries = cnt + 1; 554 555 *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >> 556 shifts[DYNAMIC_MAC_FID]; 557 *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >> 558 shifts[DYNAMIC_MAC_SRC_PORT]; 559 *timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >> 560 shifts[DYNAMIC_MAC_TIMESTAMP]; 561 562 mac_addr[5] = (u8)data_lo; 563 mac_addr[4] = (u8)(data_lo >> 8); 564 mac_addr[3] = (u8)(data_lo >> 16); 565 mac_addr[2] = (u8)(data_lo >> 24); 566 567 mac_addr[1] = (u8)data_hi; 568 mac_addr[0] = (u8)(data_hi >> 8); 569 rc = 0; 570 } 571 mutex_unlock(&dev->alu_mutex); 572 573 return rc; 574 } 575 576 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr, 577 struct alu_struct *alu) 578 { 579 struct ksz8 *ksz8 = dev->priv; 580 u32 data_hi, data_lo; 581 const u8 *shifts; 582 const u32 *masks; 583 u64 data; 584 585 shifts = ksz8->shifts; 586 masks = ksz8->masks; 587 588 ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data); 589 data_hi = data >> 32; 590 data_lo = (u32)data; 591 if (data_hi & (masks[STATIC_MAC_TABLE_VALID] | 592 masks[STATIC_MAC_TABLE_OVERRIDE])) { 593 alu->mac[5] = (u8)data_lo; 594 alu->mac[4] = (u8)(data_lo >> 8); 595 alu->mac[3] = (u8)(data_lo >> 16); 596 alu->mac[2] = (u8)(data_lo >> 24); 597 alu->mac[1] = (u8)data_hi; 598 alu->mac[0] = (u8)(data_hi >> 8); 599 alu->port_forward = 600 (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >> 601 shifts[STATIC_MAC_FWD_PORTS]; 602 alu->is_override = 603 (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0; 604 data_hi >>= 1; 605 alu->is_static = true; 606 alu->is_use_fid = 607 (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0; 608 alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >> 609 shifts[STATIC_MAC_FID]; 610 return 0; 611 } 612 return -ENXIO; 613 } 614 615 static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr, 616 struct alu_struct *alu) 617 { 618 struct ksz8 *ksz8 = dev->priv; 619 u32 data_hi, data_lo; 620 const u8 *shifts; 621 const u32 *masks; 622 u64 data; 623 624 shifts = ksz8->shifts; 625 masks = ksz8->masks; 626 627 data_lo = ((u32)alu->mac[2] << 24) | 628 ((u32)alu->mac[3] << 16) | 629 ((u32)alu->mac[4] << 8) | alu->mac[5]; 630 data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1]; 631 data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS]; 632 633 if (alu->is_override) 634 data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE]; 635 if (alu->is_use_fid) { 636 data_hi |= masks[STATIC_MAC_TABLE_USE_FID]; 637 data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID]; 638 } 639 if (alu->is_static) 640 data_hi |= masks[STATIC_MAC_TABLE_VALID]; 641 else 642 data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE]; 643 644 data = (u64)data_hi << 32 | data_lo; 645 ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data); 646 } 647 648 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid, 649 u8 *member, u8 *valid) 650 { 651 struct ksz8 *ksz8 = dev->priv; 652 const u8 *shifts; 653 const u32 *masks; 654 655 shifts = ksz8->shifts; 656 masks = ksz8->masks; 657 658 *fid = vlan & masks[VLAN_TABLE_FID]; 659 *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >> 660 shifts[VLAN_TABLE_MEMBERSHIP_S]; 661 *valid = !!(vlan & masks[VLAN_TABLE_VALID]); 662 } 663 664 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid, 665 u16 *vlan) 666 { 667 struct ksz8 *ksz8 = dev->priv; 668 const u8 *shifts; 669 const u32 *masks; 670 671 shifts = ksz8->shifts; 672 masks = ksz8->masks; 673 674 *vlan = fid; 675 *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S]; 676 if (valid) 677 *vlan |= masks[VLAN_TABLE_VALID]; 678 } 679 680 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr) 681 { 682 struct ksz8 *ksz8 = dev->priv; 683 const u8 *shifts; 684 u64 data; 685 int i; 686 687 shifts = ksz8->shifts; 688 689 ksz8_r_table(dev, TABLE_VLAN, addr, &data); 690 addr *= 4; 691 for (i = 0; i < 4; i++) { 692 dev->vlan_cache[addr + i].table[0] = (u16)data; 693 data >>= shifts[VLAN_TABLE]; 694 } 695 } 696 697 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan) 698 { 699 int index; 700 u16 *data; 701 u16 addr; 702 u64 buf; 703 704 data = (u16 *)&buf; 705 addr = vid / 4; 706 index = vid & 3; 707 ksz8_r_table(dev, TABLE_VLAN, addr, &buf); 708 *vlan = data[index]; 709 } 710 711 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan) 712 { 713 int index; 714 u16 *data; 715 u16 addr; 716 u64 buf; 717 718 data = (u16 *)&buf; 719 addr = vid / 4; 720 index = vid & 3; 721 ksz8_r_table(dev, TABLE_VLAN, addr, &buf); 722 data[index] = vlan; 723 dev->vlan_cache[vid].table[0] = vlan; 724 ksz8_w_table(dev, TABLE_VLAN, addr, buf); 725 } 726 727 static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val) 728 { 729 struct ksz8 *ksz8 = dev->priv; 730 u8 restart, speed, ctrl, link; 731 const u8 *regs = ksz8->regs; 732 int processed = true; 733 u8 val1, val2; 734 u16 data = 0; 735 u8 p = phy; 736 737 switch (reg) { 738 case MII_BMCR: 739 ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart); 740 ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed); 741 ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl); 742 if (restart & PORT_PHY_LOOPBACK) 743 data |= BMCR_LOOPBACK; 744 if (ctrl & PORT_FORCE_100_MBIT) 745 data |= BMCR_SPEED100; 746 if (ksz_is_ksz88x3(dev)) { 747 if ((ctrl & PORT_AUTO_NEG_ENABLE)) 748 data |= BMCR_ANENABLE; 749 } else { 750 if (!(ctrl & PORT_AUTO_NEG_DISABLE)) 751 data |= BMCR_ANENABLE; 752 } 753 if (restart & PORT_POWER_DOWN) 754 data |= BMCR_PDOWN; 755 if (restart & PORT_AUTO_NEG_RESTART) 756 data |= BMCR_ANRESTART; 757 if (ctrl & PORT_FORCE_FULL_DUPLEX) 758 data |= BMCR_FULLDPLX; 759 if (speed & PORT_HP_MDIX) 760 data |= KSZ886X_BMCR_HP_MDIX; 761 if (restart & PORT_FORCE_MDIX) 762 data |= KSZ886X_BMCR_FORCE_MDI; 763 if (restart & PORT_AUTO_MDIX_DISABLE) 764 data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX; 765 if (restart & PORT_TX_DISABLE) 766 data |= KSZ886X_BMCR_DISABLE_TRANSMIT; 767 if (restart & PORT_LED_OFF) 768 data |= KSZ886X_BMCR_DISABLE_LED; 769 break; 770 case MII_BMSR: 771 ksz_pread8(dev, p, regs[P_LINK_STATUS], &link); 772 data = BMSR_100FULL | 773 BMSR_100HALF | 774 BMSR_10FULL | 775 BMSR_10HALF | 776 BMSR_ANEGCAPABLE; 777 if (link & PORT_AUTO_NEG_COMPLETE) 778 data |= BMSR_ANEGCOMPLETE; 779 if (link & PORT_STAT_LINK_GOOD) 780 data |= BMSR_LSTATUS; 781 break; 782 case MII_PHYSID1: 783 data = KSZ8795_ID_HI; 784 break; 785 case MII_PHYSID2: 786 if (ksz_is_ksz88x3(dev)) 787 data = KSZ8863_ID_LO; 788 else 789 data = KSZ8795_ID_LO; 790 break; 791 case MII_ADVERTISE: 792 ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl); 793 data = ADVERTISE_CSMA; 794 if (ctrl & PORT_AUTO_NEG_SYM_PAUSE) 795 data |= ADVERTISE_PAUSE_CAP; 796 if (ctrl & PORT_AUTO_NEG_100BTX_FD) 797 data |= ADVERTISE_100FULL; 798 if (ctrl & PORT_AUTO_NEG_100BTX) 799 data |= ADVERTISE_100HALF; 800 if (ctrl & PORT_AUTO_NEG_10BT_FD) 801 data |= ADVERTISE_10FULL; 802 if (ctrl & PORT_AUTO_NEG_10BT) 803 data |= ADVERTISE_10HALF; 804 break; 805 case MII_LPA: 806 ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link); 807 data = LPA_SLCT; 808 if (link & PORT_REMOTE_SYM_PAUSE) 809 data |= LPA_PAUSE_CAP; 810 if (link & PORT_REMOTE_100BTX_FD) 811 data |= LPA_100FULL; 812 if (link & PORT_REMOTE_100BTX) 813 data |= LPA_100HALF; 814 if (link & PORT_REMOTE_10BT_FD) 815 data |= LPA_10FULL; 816 if (link & PORT_REMOTE_10BT) 817 data |= LPA_10HALF; 818 if (data & ~LPA_SLCT) 819 data |= LPA_LPACK; 820 break; 821 case PHY_REG_LINK_MD: 822 ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1); 823 ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2); 824 if (val1 & PORT_START_CABLE_DIAG) 825 data |= PHY_START_CABLE_DIAG; 826 827 if (val1 & PORT_CABLE_10M_SHORT) 828 data |= PHY_CABLE_10M_SHORT; 829 830 data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M, 831 FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1)); 832 833 data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M, 834 (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) | 835 FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2)); 836 break; 837 case PHY_REG_PHY_CTRL: 838 ksz_pread8(dev, p, regs[P_LINK_STATUS], &link); 839 if (link & PORT_MDIX_STATUS) 840 data |= KSZ886X_CTRL_MDIX_STAT; 841 break; 842 default: 843 processed = false; 844 break; 845 } 846 if (processed) 847 *val = data; 848 } 849 850 static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val) 851 { 852 struct ksz8 *ksz8 = dev->priv; 853 u8 restart, speed, ctrl, data; 854 const u8 *regs = ksz8->regs; 855 u8 p = phy; 856 857 switch (reg) { 858 case MII_BMCR: 859 860 /* Do not support PHY reset function. */ 861 if (val & BMCR_RESET) 862 break; 863 ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed); 864 data = speed; 865 if (val & KSZ886X_BMCR_HP_MDIX) 866 data |= PORT_HP_MDIX; 867 else 868 data &= ~PORT_HP_MDIX; 869 if (data != speed) 870 ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data); 871 ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl); 872 data = ctrl; 873 if (ksz_is_ksz88x3(dev)) { 874 if ((val & BMCR_ANENABLE)) 875 data |= PORT_AUTO_NEG_ENABLE; 876 else 877 data &= ~PORT_AUTO_NEG_ENABLE; 878 } else { 879 if (!(val & BMCR_ANENABLE)) 880 data |= PORT_AUTO_NEG_DISABLE; 881 else 882 data &= ~PORT_AUTO_NEG_DISABLE; 883 884 /* Fiber port does not support auto-negotiation. */ 885 if (dev->ports[p].fiber) 886 data |= PORT_AUTO_NEG_DISABLE; 887 } 888 889 if (val & BMCR_SPEED100) 890 data |= PORT_FORCE_100_MBIT; 891 else 892 data &= ~PORT_FORCE_100_MBIT; 893 if (val & BMCR_FULLDPLX) 894 data |= PORT_FORCE_FULL_DUPLEX; 895 else 896 data &= ~PORT_FORCE_FULL_DUPLEX; 897 if (data != ctrl) 898 ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data); 899 ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart); 900 data = restart; 901 if (val & KSZ886X_BMCR_DISABLE_LED) 902 data |= PORT_LED_OFF; 903 else 904 data &= ~PORT_LED_OFF; 905 if (val & KSZ886X_BMCR_DISABLE_TRANSMIT) 906 data |= PORT_TX_DISABLE; 907 else 908 data &= ~PORT_TX_DISABLE; 909 if (val & BMCR_ANRESTART) 910 data |= PORT_AUTO_NEG_RESTART; 911 else 912 data &= ~(PORT_AUTO_NEG_RESTART); 913 if (val & BMCR_PDOWN) 914 data |= PORT_POWER_DOWN; 915 else 916 data &= ~PORT_POWER_DOWN; 917 if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX) 918 data |= PORT_AUTO_MDIX_DISABLE; 919 else 920 data &= ~PORT_AUTO_MDIX_DISABLE; 921 if (val & KSZ886X_BMCR_FORCE_MDI) 922 data |= PORT_FORCE_MDIX; 923 else 924 data &= ~PORT_FORCE_MDIX; 925 if (val & BMCR_LOOPBACK) 926 data |= PORT_PHY_LOOPBACK; 927 else 928 data &= ~PORT_PHY_LOOPBACK; 929 if (data != restart) 930 ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data); 931 break; 932 case MII_ADVERTISE: 933 ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl); 934 data = ctrl; 935 data &= ~(PORT_AUTO_NEG_SYM_PAUSE | 936 PORT_AUTO_NEG_100BTX_FD | 937 PORT_AUTO_NEG_100BTX | 938 PORT_AUTO_NEG_10BT_FD | 939 PORT_AUTO_NEG_10BT); 940 if (val & ADVERTISE_PAUSE_CAP) 941 data |= PORT_AUTO_NEG_SYM_PAUSE; 942 if (val & ADVERTISE_100FULL) 943 data |= PORT_AUTO_NEG_100BTX_FD; 944 if (val & ADVERTISE_100HALF) 945 data |= PORT_AUTO_NEG_100BTX; 946 if (val & ADVERTISE_10FULL) 947 data |= PORT_AUTO_NEG_10BT_FD; 948 if (val & ADVERTISE_10HALF) 949 data |= PORT_AUTO_NEG_10BT; 950 if (data != ctrl) 951 ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data); 952 break; 953 case PHY_REG_LINK_MD: 954 if (val & PHY_START_CABLE_DIAG) 955 ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true); 956 break; 957 default: 958 break; 959 } 960 } 961 962 static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds, 963 int port, 964 enum dsa_tag_protocol mp) 965 { 966 struct ksz_device *dev = ds->priv; 967 968 /* ksz88x3 uses the same tag schema as KSZ9893 */ 969 return ksz_is_ksz88x3(dev) ? 970 DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795; 971 } 972 973 static u32 ksz8_sw_get_phy_flags(struct dsa_switch *ds, int port) 974 { 975 /* Silicon Errata Sheet (DS80000830A): 976 * Port 1 does not work with LinkMD Cable-Testing. 977 * Port 1 does not respond to received PAUSE control frames. 978 */ 979 if (!port) 980 return MICREL_KSZ8_P1_ERRATA; 981 982 return 0; 983 } 984 985 static void ksz8_get_strings(struct dsa_switch *ds, int port, 986 u32 stringset, uint8_t *buf) 987 { 988 struct ksz_device *dev = ds->priv; 989 int i; 990 991 for (i = 0; i < dev->mib_cnt; i++) { 992 memcpy(buf + i * ETH_GSTRING_LEN, 993 dev->mib_names[i].string, ETH_GSTRING_LEN); 994 } 995 } 996 997 static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member) 998 { 999 u8 data; 1000 1001 ksz_pread8(dev, port, P_MIRROR_CTRL, &data); 1002 data &= ~PORT_VLAN_MEMBERSHIP; 1003 data |= (member & dev->port_mask); 1004 ksz_pwrite8(dev, port, P_MIRROR_CTRL, data); 1005 } 1006 1007 static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1008 { 1009 struct ksz_device *dev = ds->priv; 1010 struct ksz_port *p; 1011 u8 data; 1012 1013 ksz_pread8(dev, port, P_STP_CTRL, &data); 1014 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); 1015 1016 switch (state) { 1017 case BR_STATE_DISABLED: 1018 data |= PORT_LEARN_DISABLE; 1019 break; 1020 case BR_STATE_LISTENING: 1021 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); 1022 break; 1023 case BR_STATE_LEARNING: 1024 data |= PORT_RX_ENABLE; 1025 break; 1026 case BR_STATE_FORWARDING: 1027 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); 1028 break; 1029 case BR_STATE_BLOCKING: 1030 data |= PORT_LEARN_DISABLE; 1031 break; 1032 default: 1033 dev_err(ds->dev, "invalid STP state: %d\n", state); 1034 return; 1035 } 1036 1037 ksz_pwrite8(dev, port, P_STP_CTRL, data); 1038 1039 p = &dev->ports[port]; 1040 p->stp_state = state; 1041 1042 ksz_update_port_member(dev, port); 1043 } 1044 1045 static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port) 1046 { 1047 u8 learn[DSA_MAX_PORTS]; 1048 int first, index, cnt; 1049 struct ksz_port *p; 1050 1051 if ((uint)port < dev->port_cnt) { 1052 first = port; 1053 cnt = port + 1; 1054 } else { 1055 /* Flush all ports. */ 1056 first = 0; 1057 cnt = dev->port_cnt; 1058 } 1059 for (index = first; index < cnt; index++) { 1060 p = &dev->ports[index]; 1061 if (!p->on) 1062 continue; 1063 ksz_pread8(dev, index, P_STP_CTRL, &learn[index]); 1064 if (!(learn[index] & PORT_LEARN_DISABLE)) 1065 ksz_pwrite8(dev, index, P_STP_CTRL, 1066 learn[index] | PORT_LEARN_DISABLE); 1067 } 1068 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true); 1069 for (index = first; index < cnt; index++) { 1070 p = &dev->ports[index]; 1071 if (!p->on) 1072 continue; 1073 if (!(learn[index] & PORT_LEARN_DISABLE)) 1074 ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]); 1075 } 1076 } 1077 1078 static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag, 1079 struct netlink_ext_ack *extack) 1080 { 1081 struct ksz_device *dev = ds->priv; 1082 1083 if (ksz_is_ksz88x3(dev)) 1084 return -ENOTSUPP; 1085 1086 /* Discard packets with VID not enabled on the switch */ 1087 ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag); 1088 1089 /* Discard packets with VID not enabled on the ingress port */ 1090 for (port = 0; port < dev->phy_port_cnt; ++port) 1091 ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER, 1092 flag); 1093 1094 return 0; 1095 } 1096 1097 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state) 1098 { 1099 if (ksz_is_ksz88x3(dev)) { 1100 ksz_cfg(dev, REG_SW_INSERT_SRC_PVID, 1101 0x03 << (4 - 2 * port), state); 1102 } else { 1103 ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00); 1104 } 1105 } 1106 1107 static int ksz8_port_vlan_add(struct dsa_switch *ds, int port, 1108 const struct switchdev_obj_port_vlan *vlan, 1109 struct netlink_ext_ack *extack) 1110 { 1111 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1112 struct ksz_device *dev = ds->priv; 1113 struct ksz_port *p = &dev->ports[port]; 1114 u16 data, new_pvid = 0; 1115 u8 fid, member, valid; 1116 1117 if (ksz_is_ksz88x3(dev)) 1118 return -ENOTSUPP; 1119 1120 /* If a VLAN is added with untagged flag different from the 1121 * port's Remove Tag flag, we need to change the latter. 1122 * Ignore VID 0, which is always untagged. 1123 * Ignore CPU port, which will always be tagged. 1124 */ 1125 if (untagged != p->remove_tag && vlan->vid != 0 && 1126 port != dev->cpu_port) { 1127 unsigned int vid; 1128 1129 /* Reject attempts to add a VLAN that requires the 1130 * Remove Tag flag to be changed, unless there are no 1131 * other VLANs currently configured. 1132 */ 1133 for (vid = 1; vid < dev->num_vlans; ++vid) { 1134 /* Skip the VID we are going to add or reconfigure */ 1135 if (vid == vlan->vid) 1136 continue; 1137 1138 ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0], 1139 &fid, &member, &valid); 1140 if (valid && (member & BIT(port))) 1141 return -EINVAL; 1142 } 1143 1144 ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged); 1145 p->remove_tag = untagged; 1146 } 1147 1148 ksz8_r_vlan_table(dev, vlan->vid, &data); 1149 ksz8_from_vlan(dev, data, &fid, &member, &valid); 1150 1151 /* First time to setup the VLAN entry. */ 1152 if (!valid) { 1153 /* Need to find a way to map VID to FID. */ 1154 fid = 1; 1155 valid = 1; 1156 } 1157 member |= BIT(port); 1158 1159 ksz8_to_vlan(dev, fid, member, valid, &data); 1160 ksz8_w_vlan_table(dev, vlan->vid, data); 1161 1162 /* change PVID */ 1163 if (vlan->flags & BRIDGE_VLAN_INFO_PVID) 1164 new_pvid = vlan->vid; 1165 1166 if (new_pvid) { 1167 u16 vid; 1168 1169 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid); 1170 vid &= ~VLAN_VID_MASK; 1171 vid |= new_pvid; 1172 ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid); 1173 1174 ksz8_port_enable_pvid(dev, port, true); 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int ksz8_port_vlan_del(struct dsa_switch *ds, int port, 1181 const struct switchdev_obj_port_vlan *vlan) 1182 { 1183 struct ksz_device *dev = ds->priv; 1184 u16 data, pvid; 1185 u8 fid, member, valid; 1186 1187 if (ksz_is_ksz88x3(dev)) 1188 return -ENOTSUPP; 1189 1190 ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid); 1191 pvid = pvid & 0xFFF; 1192 1193 ksz8_r_vlan_table(dev, vlan->vid, &data); 1194 ksz8_from_vlan(dev, data, &fid, &member, &valid); 1195 1196 member &= ~BIT(port); 1197 1198 /* Invalidate the entry if no more member. */ 1199 if (!member) { 1200 fid = 0; 1201 valid = 0; 1202 } 1203 1204 ksz8_to_vlan(dev, fid, member, valid, &data); 1205 ksz8_w_vlan_table(dev, vlan->vid, data); 1206 1207 if (pvid == vlan->vid) 1208 ksz8_port_enable_pvid(dev, port, false); 1209 1210 return 0; 1211 } 1212 1213 static int ksz8_port_mirror_add(struct dsa_switch *ds, int port, 1214 struct dsa_mall_mirror_tc_entry *mirror, 1215 bool ingress) 1216 { 1217 struct ksz_device *dev = ds->priv; 1218 1219 if (ingress) { 1220 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); 1221 dev->mirror_rx |= BIT(port); 1222 } else { 1223 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); 1224 dev->mirror_tx |= BIT(port); 1225 } 1226 1227 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); 1228 1229 /* configure mirror port */ 1230 if (dev->mirror_rx || dev->mirror_tx) 1231 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, 1232 PORT_MIRROR_SNIFFER, true); 1233 1234 return 0; 1235 } 1236 1237 static void ksz8_port_mirror_del(struct dsa_switch *ds, int port, 1238 struct dsa_mall_mirror_tc_entry *mirror) 1239 { 1240 struct ksz_device *dev = ds->priv; 1241 u8 data; 1242 1243 if (mirror->ingress) { 1244 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); 1245 dev->mirror_rx &= ~BIT(port); 1246 } else { 1247 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); 1248 dev->mirror_tx &= ~BIT(port); 1249 } 1250 1251 ksz_pread8(dev, port, P_MIRROR_CTRL, &data); 1252 1253 if (!dev->mirror_rx && !dev->mirror_tx) 1254 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, 1255 PORT_MIRROR_SNIFFER, false); 1256 } 1257 1258 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port) 1259 { 1260 struct ksz_port *p = &dev->ports[port]; 1261 u8 data8; 1262 1263 if (!p->interface && dev->compat_interface) { 1264 dev_warn(dev->dev, 1265 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. " 1266 "Please update your device tree.\n", 1267 port); 1268 p->interface = dev->compat_interface; 1269 } 1270 1271 /* Configure MII interface for proper network communication. */ 1272 ksz_read8(dev, REG_PORT_5_CTRL_6, &data8); 1273 data8 &= ~PORT_INTERFACE_TYPE; 1274 data8 &= ~PORT_GMII_1GPS_MODE; 1275 switch (p->interface) { 1276 case PHY_INTERFACE_MODE_MII: 1277 p->phydev.speed = SPEED_100; 1278 break; 1279 case PHY_INTERFACE_MODE_RMII: 1280 data8 |= PORT_INTERFACE_RMII; 1281 p->phydev.speed = SPEED_100; 1282 break; 1283 case PHY_INTERFACE_MODE_GMII: 1284 data8 |= PORT_GMII_1GPS_MODE; 1285 data8 |= PORT_INTERFACE_GMII; 1286 p->phydev.speed = SPEED_1000; 1287 break; 1288 default: 1289 data8 &= ~PORT_RGMII_ID_IN_ENABLE; 1290 data8 &= ~PORT_RGMII_ID_OUT_ENABLE; 1291 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID || 1292 p->interface == PHY_INTERFACE_MODE_RGMII_RXID) 1293 data8 |= PORT_RGMII_ID_IN_ENABLE; 1294 if (p->interface == PHY_INTERFACE_MODE_RGMII_ID || 1295 p->interface == PHY_INTERFACE_MODE_RGMII_TXID) 1296 data8 |= PORT_RGMII_ID_OUT_ENABLE; 1297 data8 |= PORT_GMII_1GPS_MODE; 1298 data8 |= PORT_INTERFACE_RGMII; 1299 p->phydev.speed = SPEED_1000; 1300 break; 1301 } 1302 ksz_write8(dev, REG_PORT_5_CTRL_6, data8); 1303 p->phydev.duplex = 1; 1304 } 1305 1306 static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port) 1307 { 1308 struct dsa_switch *ds = dev->ds; 1309 struct ksz8 *ksz8 = dev->priv; 1310 const u32 *masks; 1311 u8 member; 1312 1313 masks = ksz8->masks; 1314 1315 /* enable broadcast storm limit */ 1316 ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); 1317 1318 if (!ksz_is_ksz88x3(dev)) 1319 ksz8795_set_prio_queue(dev, port, 4); 1320 1321 /* disable DiffServ priority */ 1322 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false); 1323 1324 /* replace priority */ 1325 ksz_port_cfg(dev, port, P_802_1P_CTRL, 1326 masks[PORT_802_1P_REMAPPING], false); 1327 1328 /* enable 802.1p priority */ 1329 ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true); 1330 1331 if (cpu_port) { 1332 if (!ksz_is_ksz88x3(dev)) 1333 ksz8795_cpu_interface_select(dev, port); 1334 1335 member = dsa_user_ports(ds); 1336 } else { 1337 member = BIT(dsa_upstream_port(ds, port)); 1338 } 1339 1340 ksz8_cfg_port_member(dev, port, member); 1341 } 1342 1343 static void ksz8_config_cpu_port(struct dsa_switch *ds) 1344 { 1345 struct ksz_device *dev = ds->priv; 1346 struct ksz8 *ksz8 = dev->priv; 1347 const u8 *regs = ksz8->regs; 1348 struct ksz_port *p; 1349 const u32 *masks; 1350 u8 remote; 1351 int i; 1352 1353 masks = ksz8->masks; 1354 1355 /* Switch marks the maximum frame with extra byte as oversize. */ 1356 ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true); 1357 ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true); 1358 1359 p = &dev->ports[dev->cpu_port]; 1360 p->on = 1; 1361 1362 ksz8_port_setup(dev, dev->cpu_port, true); 1363 1364 for (i = 0; i < dev->phy_port_cnt; i++) { 1365 p = &dev->ports[i]; 1366 1367 ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED); 1368 1369 /* Last port may be disabled. */ 1370 if (i == dev->phy_port_cnt) 1371 break; 1372 p->on = 1; 1373 p->phy = 1; 1374 } 1375 for (i = 0; i < dev->phy_port_cnt; i++) { 1376 p = &dev->ports[i]; 1377 if (!p->on) 1378 continue; 1379 if (!ksz_is_ksz88x3(dev)) { 1380 ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote); 1381 if (remote & PORT_FIBER_MODE) 1382 p->fiber = 1; 1383 } 1384 if (p->fiber) 1385 ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL, 1386 true); 1387 else 1388 ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL, 1389 false); 1390 } 1391 } 1392 1393 static int ksz8_setup(struct dsa_switch *ds) 1394 { 1395 struct ksz_device *dev = ds->priv; 1396 struct alu_struct alu; 1397 int i, ret = 0; 1398 1399 dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), 1400 dev->num_vlans, GFP_KERNEL); 1401 if (!dev->vlan_cache) 1402 return -ENOMEM; 1403 1404 ret = ksz8_reset_switch(dev); 1405 if (ret) { 1406 dev_err(ds->dev, "failed to reset switch\n"); 1407 return ret; 1408 } 1409 1410 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true); 1411 1412 /* Enable automatic fast aging when link changed detected. */ 1413 ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true); 1414 1415 /* Enable aggressive back off algorithm in half duplex mode. */ 1416 regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1, 1417 SW_AGGR_BACKOFF, SW_AGGR_BACKOFF); 1418 1419 /* 1420 * Make sure unicast VLAN boundary is set as default and 1421 * enable no excessive collision drop. 1422 */ 1423 regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2, 1424 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP, 1425 UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP); 1426 1427 ksz8_config_cpu_port(ds); 1428 1429 ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true); 1430 1431 ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false); 1432 1433 ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); 1434 1435 if (!ksz_is_ksz88x3(dev)) 1436 ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true); 1437 1438 /* set broadcast storm protection 10% rate */ 1439 regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL, 1440 BROADCAST_STORM_RATE, 1441 (BROADCAST_STORM_VALUE * 1442 BROADCAST_STORM_PROT_RATE) / 100); 1443 1444 for (i = 0; i < (dev->num_vlans / 4); i++) 1445 ksz8_r_vlan_entries(dev, i); 1446 1447 /* Setup STP address for STP operation. */ 1448 memset(&alu, 0, sizeof(alu)); 1449 ether_addr_copy(alu.mac, eth_stp_addr); 1450 alu.is_static = true; 1451 alu.is_override = true; 1452 alu.port_forward = dev->host_mask; 1453 1454 ksz8_w_sta_mac_table(dev, 0, &alu); 1455 1456 ksz_init_mib_timer(dev); 1457 1458 ds->configure_vlan_while_not_filtering = false; 1459 1460 return 0; 1461 } 1462 1463 static void ksz8_validate(struct dsa_switch *ds, int port, 1464 unsigned long *supported, 1465 struct phylink_link_state *state) 1466 { 1467 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1468 struct ksz_device *dev = ds->priv; 1469 1470 if (port == dev->cpu_port) { 1471 if (state->interface != PHY_INTERFACE_MODE_RMII && 1472 state->interface != PHY_INTERFACE_MODE_MII && 1473 state->interface != PHY_INTERFACE_MODE_NA) 1474 goto unsupported; 1475 } else { 1476 if (state->interface != PHY_INTERFACE_MODE_INTERNAL && 1477 state->interface != PHY_INTERFACE_MODE_NA) 1478 goto unsupported; 1479 } 1480 1481 /* Allow all the expected bits */ 1482 phylink_set_port_modes(mask); 1483 phylink_set(mask, Autoneg); 1484 1485 /* Silicon Errata Sheet (DS80000830A): 1486 * "Port 1 does not respond to received flow control PAUSE frames" 1487 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3 1488 * switches. 1489 */ 1490 if (!ksz_is_ksz88x3(dev) || port) 1491 phylink_set(mask, Pause); 1492 1493 /* Asym pause is not supported on KSZ8863 and KSZ8873 */ 1494 if (!ksz_is_ksz88x3(dev)) 1495 phylink_set(mask, Asym_Pause); 1496 1497 /* 10M and 100M are only supported */ 1498 phylink_set(mask, 10baseT_Half); 1499 phylink_set(mask, 10baseT_Full); 1500 phylink_set(mask, 100baseT_Half); 1501 phylink_set(mask, 100baseT_Full); 1502 1503 linkmode_and(supported, supported, mask); 1504 linkmode_and(state->advertising, state->advertising, mask); 1505 1506 return; 1507 1508 unsupported: 1509 linkmode_zero(supported); 1510 dev_err(ds->dev, "Unsupported interface: %s, port: %d\n", 1511 phy_modes(state->interface), port); 1512 } 1513 1514 static const struct dsa_switch_ops ksz8_switch_ops = { 1515 .get_tag_protocol = ksz8_get_tag_protocol, 1516 .get_phy_flags = ksz8_sw_get_phy_flags, 1517 .setup = ksz8_setup, 1518 .phy_read = ksz_phy_read16, 1519 .phy_write = ksz_phy_write16, 1520 .phylink_validate = ksz8_validate, 1521 .phylink_mac_link_down = ksz_mac_link_down, 1522 .port_enable = ksz_enable_port, 1523 .get_strings = ksz8_get_strings, 1524 .get_ethtool_stats = ksz_get_ethtool_stats, 1525 .get_sset_count = ksz_sset_count, 1526 .port_bridge_join = ksz_port_bridge_join, 1527 .port_bridge_leave = ksz_port_bridge_leave, 1528 .port_stp_state_set = ksz8_port_stp_state_set, 1529 .port_fast_age = ksz_port_fast_age, 1530 .port_vlan_filtering = ksz8_port_vlan_filtering, 1531 .port_vlan_add = ksz8_port_vlan_add, 1532 .port_vlan_del = ksz8_port_vlan_del, 1533 .port_fdb_dump = ksz_port_fdb_dump, 1534 .port_mdb_add = ksz_port_mdb_add, 1535 .port_mdb_del = ksz_port_mdb_del, 1536 .port_mirror_add = ksz8_port_mirror_add, 1537 .port_mirror_del = ksz8_port_mirror_del, 1538 }; 1539 1540 static u32 ksz8_get_port_addr(int port, int offset) 1541 { 1542 return PORT_CTRL_ADDR(port, offset); 1543 } 1544 1545 static int ksz8_switch_detect(struct ksz_device *dev) 1546 { 1547 u8 id1, id2; 1548 u16 id16; 1549 int ret; 1550 1551 /* read chip id */ 1552 ret = ksz_read16(dev, REG_CHIP_ID0, &id16); 1553 if (ret) 1554 return ret; 1555 1556 id1 = id16 >> 8; 1557 id2 = id16 & SW_CHIP_ID_M; 1558 1559 switch (id1) { 1560 case KSZ87_FAMILY_ID: 1561 if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95)) 1562 return -ENODEV; 1563 1564 if (id2 == CHIP_ID_95) { 1565 u8 val; 1566 1567 id2 = 0x95; 1568 ksz_read8(dev, REG_PORT_STATUS_0, &val); 1569 if (val & PORT_FIBER_MODE) 1570 id2 = 0x65; 1571 } else if (id2 == CHIP_ID_94) { 1572 id2 = 0x94; 1573 } 1574 break; 1575 case KSZ88_FAMILY_ID: 1576 if (id2 != CHIP_ID_63) 1577 return -ENODEV; 1578 break; 1579 default: 1580 dev_err(dev->dev, "invalid family id: %d\n", id1); 1581 return -ENODEV; 1582 } 1583 id16 &= ~0xff; 1584 id16 |= id2; 1585 dev->chip_id = id16; 1586 1587 return 0; 1588 } 1589 1590 struct ksz_chip_data { 1591 u16 chip_id; 1592 const char *dev_name; 1593 int num_vlans; 1594 int num_alus; 1595 int num_statics; 1596 int cpu_ports; 1597 int port_cnt; 1598 }; 1599 1600 static const struct ksz_chip_data ksz8_switch_chips[] = { 1601 { 1602 .chip_id = 0x8795, 1603 .dev_name = "KSZ8795", 1604 .num_vlans = 4096, 1605 .num_alus = 0, 1606 .num_statics = 8, 1607 .cpu_ports = 0x10, /* can be configured as cpu port */ 1608 .port_cnt = 5, /* total cpu and user ports */ 1609 }, 1610 { 1611 /* 1612 * WARNING 1613 * ======= 1614 * KSZ8794 is similar to KSZ8795, except the port map 1615 * contains a gap between external and CPU ports, the 1616 * port map is NOT continuous. The per-port register 1617 * map is shifted accordingly too, i.e. registers at 1618 * offset 0x40 are NOT used on KSZ8794 and they ARE 1619 * used on KSZ8795 for external port 3. 1620 * external cpu 1621 * KSZ8794 0,1,2 4 1622 * KSZ8795 0,1,2,3 4 1623 * KSZ8765 0,1,2,3 4 1624 */ 1625 .chip_id = 0x8794, 1626 .dev_name = "KSZ8794", 1627 .num_vlans = 4096, 1628 .num_alus = 0, 1629 .num_statics = 8, 1630 .cpu_ports = 0x10, /* can be configured as cpu port */ 1631 .port_cnt = 4, /* total cpu and user ports */ 1632 }, 1633 { 1634 .chip_id = 0x8765, 1635 .dev_name = "KSZ8765", 1636 .num_vlans = 4096, 1637 .num_alus = 0, 1638 .num_statics = 8, 1639 .cpu_ports = 0x10, /* can be configured as cpu port */ 1640 .port_cnt = 5, /* total cpu and user ports */ 1641 }, 1642 { 1643 .chip_id = 0x8830, 1644 .dev_name = "KSZ8863/KSZ8873", 1645 .num_vlans = 16, 1646 .num_alus = 0, 1647 .num_statics = 8, 1648 .cpu_ports = 0x4, /* can be configured as cpu port */ 1649 .port_cnt = 3, 1650 }, 1651 }; 1652 1653 static int ksz8_switch_init(struct ksz_device *dev) 1654 { 1655 struct ksz8 *ksz8 = dev->priv; 1656 int i; 1657 1658 dev->ds->ops = &ksz8_switch_ops; 1659 1660 for (i = 0; i < ARRAY_SIZE(ksz8_switch_chips); i++) { 1661 const struct ksz_chip_data *chip = &ksz8_switch_chips[i]; 1662 1663 if (dev->chip_id == chip->chip_id) { 1664 dev->name = chip->dev_name; 1665 dev->num_vlans = chip->num_vlans; 1666 dev->num_alus = chip->num_alus; 1667 dev->num_statics = chip->num_statics; 1668 dev->port_cnt = fls(chip->cpu_ports); 1669 dev->cpu_port = fls(chip->cpu_ports) - 1; 1670 dev->phy_port_cnt = dev->port_cnt - 1; 1671 dev->cpu_ports = chip->cpu_ports; 1672 dev->host_mask = chip->cpu_ports; 1673 dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | 1674 chip->cpu_ports; 1675 break; 1676 } 1677 } 1678 1679 /* no switch found */ 1680 if (!dev->cpu_ports) 1681 return -ENODEV; 1682 1683 if (ksz_is_ksz88x3(dev)) { 1684 ksz8->regs = ksz8863_regs; 1685 ksz8->masks = ksz8863_masks; 1686 ksz8->shifts = ksz8863_shifts; 1687 dev->mib_cnt = ARRAY_SIZE(ksz88xx_mib_names); 1688 dev->mib_names = ksz88xx_mib_names; 1689 } else { 1690 ksz8->regs = ksz8795_regs; 1691 ksz8->masks = ksz8795_masks; 1692 ksz8->shifts = ksz8795_shifts; 1693 dev->mib_cnt = ARRAY_SIZE(ksz87xx_mib_names); 1694 dev->mib_names = ksz87xx_mib_names; 1695 } 1696 1697 dev->reg_mib_cnt = MIB_COUNTER_NUM; 1698 1699 dev->ports = devm_kzalloc(dev->dev, 1700 dev->port_cnt * sizeof(struct ksz_port), 1701 GFP_KERNEL); 1702 if (!dev->ports) 1703 return -ENOMEM; 1704 for (i = 0; i < dev->port_cnt; i++) { 1705 mutex_init(&dev->ports[i].mib.cnt_mutex); 1706 dev->ports[i].mib.counters = 1707 devm_kzalloc(dev->dev, 1708 sizeof(u64) * 1709 (dev->mib_cnt + 1), 1710 GFP_KERNEL); 1711 if (!dev->ports[i].mib.counters) 1712 return -ENOMEM; 1713 } 1714 1715 /* set the real number of ports */ 1716 dev->ds->num_ports = dev->port_cnt; 1717 1718 /* We rely on software untagging on the CPU port, so that we 1719 * can support both tagged and untagged VLANs 1720 */ 1721 dev->ds->untag_bridge_pvid = true; 1722 1723 /* VLAN filtering is partly controlled by the global VLAN 1724 * Enable flag 1725 */ 1726 dev->ds->vlan_filtering_is_global = true; 1727 1728 return 0; 1729 } 1730 1731 static void ksz8_switch_exit(struct ksz_device *dev) 1732 { 1733 ksz8_reset_switch(dev); 1734 } 1735 1736 static const struct ksz_dev_ops ksz8_dev_ops = { 1737 .get_port_addr = ksz8_get_port_addr, 1738 .cfg_port_member = ksz8_cfg_port_member, 1739 .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, 1740 .port_setup = ksz8_port_setup, 1741 .r_phy = ksz8_r_phy, 1742 .w_phy = ksz8_w_phy, 1743 .r_dyn_mac_table = ksz8_r_dyn_mac_table, 1744 .r_sta_mac_table = ksz8_r_sta_mac_table, 1745 .w_sta_mac_table = ksz8_w_sta_mac_table, 1746 .r_mib_cnt = ksz8_r_mib_cnt, 1747 .r_mib_pkt = ksz8_r_mib_pkt, 1748 .freeze_mib = ksz8_freeze_mib, 1749 .port_init_cnt = ksz8_port_init_cnt, 1750 .shutdown = ksz8_reset_switch, 1751 .detect = ksz8_switch_detect, 1752 .init = ksz8_switch_init, 1753 .exit = ksz8_switch_exit, 1754 }; 1755 1756 int ksz8_switch_register(struct ksz_device *dev) 1757 { 1758 return ksz_switch_register(dev, &ksz8_dev_ops); 1759 } 1760 EXPORT_SYMBOL(ksz8_switch_register); 1761 1762 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>"); 1763 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver"); 1764 MODULE_LICENSE("GPL"); 1765