xref: /openbmc/linux/drivers/net/dsa/microchip/ksz8795.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
32 }
33 
34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53 	if (!ret)
54 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81 	u8 ctrl2 = 0;
82 
83 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87 
88 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91 
92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94 	u8 ctrl1 = 0, ctrl2 = 0;
95 	int ret;
96 
97 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 		ctrl1 |= SW_HUGE_PACKET;
101 
102 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103 	if (ret)
104 		return ret;
105 
106 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108 
109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111 	u16 frame_size;
112 
113 	if (!dsa_is_cpu_port(dev->ds, port))
114 		return 0;
115 
116 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117 
118 	switch (dev->chip_id) {
119 	case KSZ8795_CHIP_ID:
120 	case KSZ8794_CHIP_ID:
121 	case KSZ8765_CHIP_ID:
122 		return ksz8795_change_mtu(dev, frame_size);
123 	case KSZ8830_CHIP_ID:
124 		return ksz8863_change_mtu(dev, frame_size);
125 	}
126 
127 	return -EOPNOTSUPP;
128 }
129 
130 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131 {
132 	u8 hi, lo;
133 
134 	/* Number of queues can only be 1, 2, or 4. */
135 	switch (queue) {
136 	case 4:
137 	case 3:
138 		queue = PORT_QUEUE_SPLIT_4;
139 		break;
140 	case 2:
141 		queue = PORT_QUEUE_SPLIT_2;
142 		break;
143 	default:
144 		queue = PORT_QUEUE_SPLIT_1;
145 	}
146 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148 	lo &= ~PORT_QUEUE_SPLIT_L;
149 	if (queue & PORT_QUEUE_SPLIT_2)
150 		lo |= PORT_QUEUE_SPLIT_L;
151 	hi &= ~PORT_QUEUE_SPLIT_H;
152 	if (queue & PORT_QUEUE_SPLIT_4)
153 		hi |= PORT_QUEUE_SPLIT_H;
154 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156 
157 	/* Default is port based for egress rate limit. */
158 	if (queue != PORT_QUEUE_SPLIT_1)
159 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160 			true);
161 }
162 
163 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164 {
165 	const u32 *masks;
166 	const u16 *regs;
167 	u16 ctrl_addr;
168 	u32 data;
169 	u8 check;
170 	int loop;
171 
172 	masks = dev->info->masks;
173 	regs = dev->info->regs;
174 
175 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177 
178 	mutex_lock(&dev->alu_mutex);
179 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180 
181 	/* It is almost guaranteed to always read the valid bit because of
182 	 * slow SPI speed.
183 	 */
184 	for (loop = 2; loop > 0; loop--) {
185 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186 
187 		if (check & masks[MIB_COUNTER_VALID]) {
188 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189 			if (check & masks[MIB_COUNTER_OVERFLOW])
190 				*cnt += MIB_COUNTER_VALUE + 1;
191 			*cnt += data & MIB_COUNTER_VALUE;
192 			break;
193 		}
194 	}
195 	mutex_unlock(&dev->alu_mutex);
196 }
197 
198 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199 			      u64 *dropped, u64 *cnt)
200 {
201 	const u32 *masks;
202 	const u16 *regs;
203 	u16 ctrl_addr;
204 	u32 data;
205 	u8 check;
206 	int loop;
207 
208 	masks = dev->info->masks;
209 	regs = dev->info->regs;
210 
211 	addr -= dev->info->reg_mib_cnt;
212 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 
219 	/* It is almost guaranteed to always read the valid bit because of
220 	 * slow SPI speed.
221 	 */
222 	for (loop = 2; loop > 0; loop--) {
223 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224 
225 		if (check & masks[MIB_COUNTER_VALID]) {
226 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227 			if (addr < 2) {
228 				u64 total;
229 
230 				total = check & MIB_TOTAL_BYTES_H;
231 				total <<= 32;
232 				*cnt += total;
233 				*cnt += data;
234 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 					total = MIB_TOTAL_BYTES_H + 1;
236 					total <<= 32;
237 					*cnt += total;
238 				}
239 			} else {
240 				if (check & masks[MIB_COUNTER_OVERFLOW])
241 					*cnt += MIB_PACKET_DROPPED + 1;
242 				*cnt += data & MIB_PACKET_DROPPED;
243 			}
244 			break;
245 		}
246 	}
247 	mutex_unlock(&dev->alu_mutex);
248 }
249 
250 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251 			      u64 *dropped, u64 *cnt)
252 {
253 	u32 *last = (u32 *)dropped;
254 	const u16 *regs;
255 	u16 ctrl_addr;
256 	u32 data;
257 	u32 cur;
258 
259 	regs = dev->info->regs;
260 
261 	addr -= dev->info->reg_mib_cnt;
262 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
264 	ctrl_addr += port;
265 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266 
267 	mutex_lock(&dev->alu_mutex);
268 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270 	mutex_unlock(&dev->alu_mutex);
271 
272 	data &= MIB_PACKET_DROPPED;
273 	cur = last[addr];
274 	if (data != cur) {
275 		last[addr] = data;
276 		if (data < cur)
277 			data += MIB_PACKET_DROPPED + 1;
278 		data -= cur;
279 		*cnt += data;
280 	}
281 }
282 
283 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284 		    u64 *dropped, u64 *cnt)
285 {
286 	if (ksz_is_ksz88x3(dev))
287 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288 	else
289 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290 }
291 
292 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293 {
294 	if (ksz_is_ksz88x3(dev))
295 		return;
296 
297 	/* enable the port for flush/freeze function */
298 	if (freeze)
299 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301 
302 	/* disable the port after freeze is done */
303 	if (!freeze)
304 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305 }
306 
307 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 {
309 	struct ksz_port_mib *mib = &dev->ports[port].mib;
310 	u64 *dropped;
311 
312 	if (!ksz_is_ksz88x3(dev)) {
313 		/* flush all enabled port MIB counters */
314 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317 	}
318 
319 	mib->cnt_ptr = 0;
320 
321 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324 					&mib->counters[mib->cnt_ptr]);
325 		++mib->cnt_ptr;
326 	}
327 
328 	/* last one in storage */
329 	dropped = &mib->counters[dev->info->mib_cnt];
330 
331 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332 	while (mib->cnt_ptr < dev->info->mib_cnt) {
333 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334 					dropped, &mib->counters[mib->cnt_ptr]);
335 		++mib->cnt_ptr;
336 	}
337 }
338 
339 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340 {
341 	const u16 *regs;
342 	u16 ctrl_addr;
343 	int ret;
344 
345 	regs = dev->info->regs;
346 
347 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
348 
349 	mutex_lock(&dev->alu_mutex);
350 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
351 	if (ret)
352 		goto unlock_alu;
353 
354 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
355 unlock_alu:
356 	mutex_unlock(&dev->alu_mutex);
357 
358 	return ret;
359 }
360 
361 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362 {
363 	const u16 *regs;
364 	u16 ctrl_addr;
365 	int ret;
366 
367 	regs = dev->info->regs;
368 
369 	ctrl_addr = IND_ACC_TABLE(table) | addr;
370 
371 	mutex_lock(&dev->alu_mutex);
372 	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
373 	if (ret)
374 		goto unlock_alu;
375 
376 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
377 unlock_alu:
378 	mutex_unlock(&dev->alu_mutex);
379 
380 	return ret;
381 }
382 
383 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384 {
385 	int timeout = 100;
386 	const u32 *masks;
387 	const u16 *regs;
388 
389 	masks = dev->info->masks;
390 	regs = dev->info->regs;
391 
392 	do {
393 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
394 		timeout--;
395 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396 
397 	/* Entry is not ready for accessing. */
398 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399 		return -EAGAIN;
400 	/* Entry is ready for accessing. */
401 	} else {
402 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
403 
404 		/* There is no valid entry in the table. */
405 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406 			return -ENXIO;
407 	}
408 	return 0;
409 }
410 
411 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
412 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
413 {
414 	u32 data_hi, data_lo;
415 	const u8 *shifts;
416 	const u32 *masks;
417 	const u16 *regs;
418 	u16 ctrl_addr;
419 	u8 data;
420 	int rc;
421 
422 	shifts = dev->info->shifts;
423 	masks = dev->info->masks;
424 	regs = dev->info->regs;
425 
426 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
427 
428 	mutex_lock(&dev->alu_mutex);
429 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
430 
431 	rc = ksz8_valid_dyn_entry(dev, &data);
432 	if (rc == -EAGAIN) {
433 		if (addr == 0)
434 			*entries = 0;
435 	} else if (rc == -ENXIO) {
436 		*entries = 0;
437 	/* At least one valid entry in the table. */
438 	} else {
439 		u64 buf = 0;
440 		int cnt;
441 
442 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
443 		data_hi = (u32)(buf >> 32);
444 		data_lo = (u32)buf;
445 
446 		/* Check out how many valid entry in the table. */
447 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
448 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
449 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
450 			shifts[DYNAMIC_MAC_ENTRIES];
451 		*entries = cnt + 1;
452 
453 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
454 			shifts[DYNAMIC_MAC_FID];
455 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
456 			shifts[DYNAMIC_MAC_SRC_PORT];
457 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
458 			shifts[DYNAMIC_MAC_TIMESTAMP];
459 
460 		mac_addr[5] = (u8)data_lo;
461 		mac_addr[4] = (u8)(data_lo >> 8);
462 		mac_addr[3] = (u8)(data_lo >> 16);
463 		mac_addr[2] = (u8)(data_lo >> 24);
464 
465 		mac_addr[1] = (u8)data_hi;
466 		mac_addr[0] = (u8)(data_hi >> 8);
467 		rc = 0;
468 	}
469 	mutex_unlock(&dev->alu_mutex);
470 
471 	return rc;
472 }
473 
474 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475 				struct alu_struct *alu, bool *valid)
476 {
477 	u32 data_hi, data_lo;
478 	const u8 *shifts;
479 	const u32 *masks;
480 	u64 data;
481 	int ret;
482 
483 	shifts = dev->info->shifts;
484 	masks = dev->info->masks;
485 
486 	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
487 	if (ret)
488 		return ret;
489 
490 	data_hi = data >> 32;
491 	data_lo = (u32)data;
492 
493 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
494 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
495 		*valid = false;
496 		return 0;
497 	}
498 
499 	alu->mac[5] = (u8)data_lo;
500 	alu->mac[4] = (u8)(data_lo >> 8);
501 	alu->mac[3] = (u8)(data_lo >> 16);
502 	alu->mac[2] = (u8)(data_lo >> 24);
503 	alu->mac[1] = (u8)data_hi;
504 	alu->mac[0] = (u8)(data_hi >> 8);
505 	alu->port_forward =
506 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
507 			shifts[STATIC_MAC_FWD_PORTS];
508 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509 	data_hi >>= 1;
510 	alu->is_static = true;
511 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
512 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
513 		shifts[STATIC_MAC_FID];
514 
515 	*valid = true;
516 
517 	return 0;
518 }
519 
520 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
521 				struct alu_struct *alu)
522 {
523 	u32 data_hi, data_lo;
524 	const u8 *shifts;
525 	const u32 *masks;
526 	u64 data;
527 
528 	shifts = dev->info->shifts;
529 	masks = dev->info->masks;
530 
531 	data_lo = ((u32)alu->mac[2] << 24) |
532 		((u32)alu->mac[3] << 16) |
533 		((u32)alu->mac[4] << 8) | alu->mac[5];
534 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
535 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
536 
537 	if (alu->is_override)
538 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
539 	if (alu->is_use_fid) {
540 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
541 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
542 	}
543 	if (alu->is_static)
544 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
545 	else
546 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
547 
548 	data = (u64)data_hi << 32 | data_lo;
549 
550 	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
551 }
552 
553 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
554 			   u8 *member, u8 *valid)
555 {
556 	const u8 *shifts;
557 	const u32 *masks;
558 
559 	shifts = dev->info->shifts;
560 	masks = dev->info->masks;
561 
562 	*fid = vlan & masks[VLAN_TABLE_FID];
563 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
564 			shifts[VLAN_TABLE_MEMBERSHIP_S];
565 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
566 }
567 
568 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
569 			 u16 *vlan)
570 {
571 	const u8 *shifts;
572 	const u32 *masks;
573 
574 	shifts = dev->info->shifts;
575 	masks = dev->info->masks;
576 
577 	*vlan = fid;
578 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
579 	if (valid)
580 		*vlan |= masks[VLAN_TABLE_VALID];
581 }
582 
583 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
584 {
585 	const u8 *shifts;
586 	u64 data;
587 	int i;
588 
589 	shifts = dev->info->shifts;
590 
591 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
592 	addr *= 4;
593 	for (i = 0; i < 4; i++) {
594 		dev->vlan_cache[addr + i].table[0] = (u16)data;
595 		data >>= shifts[VLAN_TABLE];
596 	}
597 }
598 
599 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
600 {
601 	int index;
602 	u16 *data;
603 	u16 addr;
604 	u64 buf;
605 
606 	data = (u16 *)&buf;
607 	addr = vid / 4;
608 	index = vid & 3;
609 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
610 	*vlan = data[index];
611 }
612 
613 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
614 {
615 	int index;
616 	u16 *data;
617 	u16 addr;
618 	u64 buf;
619 
620 	data = (u16 *)&buf;
621 	addr = vid / 4;
622 	index = vid & 3;
623 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
624 	data[index] = vlan;
625 	dev->vlan_cache[vid].table[0] = vlan;
626 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
627 }
628 
629 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
630 {
631 	u8 restart, speed, ctrl, link;
632 	int processed = true;
633 	const u16 *regs;
634 	u8 val1, val2;
635 	u16 data = 0;
636 	u8 p = phy;
637 	int ret;
638 
639 	regs = dev->info->regs;
640 
641 	switch (reg) {
642 	case MII_BMCR:
643 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
644 		if (ret)
645 			return ret;
646 
647 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
648 		if (ret)
649 			return ret;
650 
651 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
652 		if (ret)
653 			return ret;
654 
655 		if (restart & PORT_PHY_LOOPBACK)
656 			data |= BMCR_LOOPBACK;
657 		if (ctrl & PORT_FORCE_100_MBIT)
658 			data |= BMCR_SPEED100;
659 		if (ksz_is_ksz88x3(dev)) {
660 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
661 				data |= BMCR_ANENABLE;
662 		} else {
663 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
664 				data |= BMCR_ANENABLE;
665 		}
666 		if (restart & PORT_POWER_DOWN)
667 			data |= BMCR_PDOWN;
668 		if (restart & PORT_AUTO_NEG_RESTART)
669 			data |= BMCR_ANRESTART;
670 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
671 			data |= BMCR_FULLDPLX;
672 		if (speed & PORT_HP_MDIX)
673 			data |= KSZ886X_BMCR_HP_MDIX;
674 		if (restart & PORT_FORCE_MDIX)
675 			data |= KSZ886X_BMCR_FORCE_MDI;
676 		if (restart & PORT_AUTO_MDIX_DISABLE)
677 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
678 		if (restart & PORT_TX_DISABLE)
679 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
680 		if (restart & PORT_LED_OFF)
681 			data |= KSZ886X_BMCR_DISABLE_LED;
682 		break;
683 	case MII_BMSR:
684 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
685 		if (ret)
686 			return ret;
687 
688 		data = BMSR_100FULL |
689 		       BMSR_100HALF |
690 		       BMSR_10FULL |
691 		       BMSR_10HALF |
692 		       BMSR_ANEGCAPABLE;
693 		if (link & PORT_AUTO_NEG_COMPLETE)
694 			data |= BMSR_ANEGCOMPLETE;
695 		if (link & PORT_STAT_LINK_GOOD)
696 			data |= BMSR_LSTATUS;
697 		break;
698 	case MII_PHYSID1:
699 		data = KSZ8795_ID_HI;
700 		break;
701 	case MII_PHYSID2:
702 		if (ksz_is_ksz88x3(dev))
703 			data = KSZ8863_ID_LO;
704 		else
705 			data = KSZ8795_ID_LO;
706 		break;
707 	case MII_ADVERTISE:
708 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
709 		if (ret)
710 			return ret;
711 
712 		data = ADVERTISE_CSMA;
713 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
714 			data |= ADVERTISE_PAUSE_CAP;
715 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
716 			data |= ADVERTISE_100FULL;
717 		if (ctrl & PORT_AUTO_NEG_100BTX)
718 			data |= ADVERTISE_100HALF;
719 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
720 			data |= ADVERTISE_10FULL;
721 		if (ctrl & PORT_AUTO_NEG_10BT)
722 			data |= ADVERTISE_10HALF;
723 		break;
724 	case MII_LPA:
725 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
726 		if (ret)
727 			return ret;
728 
729 		data = LPA_SLCT;
730 		if (link & PORT_REMOTE_SYM_PAUSE)
731 			data |= LPA_PAUSE_CAP;
732 		if (link & PORT_REMOTE_100BTX_FD)
733 			data |= LPA_100FULL;
734 		if (link & PORT_REMOTE_100BTX)
735 			data |= LPA_100HALF;
736 		if (link & PORT_REMOTE_10BT_FD)
737 			data |= LPA_10FULL;
738 		if (link & PORT_REMOTE_10BT)
739 			data |= LPA_10HALF;
740 		if (data & ~LPA_SLCT)
741 			data |= LPA_LPACK;
742 		break;
743 	case PHY_REG_LINK_MD:
744 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
745 		if (ret)
746 			return ret;
747 
748 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
749 		if (ret)
750 			return ret;
751 
752 		if (val1 & PORT_START_CABLE_DIAG)
753 			data |= PHY_START_CABLE_DIAG;
754 
755 		if (val1 & PORT_CABLE_10M_SHORT)
756 			data |= PHY_CABLE_10M_SHORT;
757 
758 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
759 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
760 
761 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
762 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
763 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
764 		break;
765 	case PHY_REG_PHY_CTRL:
766 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
767 		if (ret)
768 			return ret;
769 
770 		if (link & PORT_MDIX_STATUS)
771 			data |= KSZ886X_CTRL_MDIX_STAT;
772 		break;
773 	default:
774 		processed = false;
775 		break;
776 	}
777 	if (processed)
778 		*val = data;
779 
780 	return 0;
781 }
782 
783 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
784 {
785 	u8 restart, speed, ctrl, data;
786 	const u16 *regs;
787 	u8 p = phy;
788 	int ret;
789 
790 	regs = dev->info->regs;
791 
792 	switch (reg) {
793 	case MII_BMCR:
794 
795 		/* Do not support PHY reset function. */
796 		if (val & BMCR_RESET)
797 			break;
798 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
799 		if (ret)
800 			return ret;
801 
802 		data = speed;
803 		if (val & KSZ886X_BMCR_HP_MDIX)
804 			data |= PORT_HP_MDIX;
805 		else
806 			data &= ~PORT_HP_MDIX;
807 
808 		if (data != speed) {
809 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
810 			if (ret)
811 				return ret;
812 		}
813 
814 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
815 		if (ret)
816 			return ret;
817 
818 		data = ctrl;
819 		if (ksz_is_ksz88x3(dev)) {
820 			if ((val & BMCR_ANENABLE))
821 				data |= PORT_AUTO_NEG_ENABLE;
822 			else
823 				data &= ~PORT_AUTO_NEG_ENABLE;
824 		} else {
825 			if (!(val & BMCR_ANENABLE))
826 				data |= PORT_AUTO_NEG_DISABLE;
827 			else
828 				data &= ~PORT_AUTO_NEG_DISABLE;
829 
830 			/* Fiber port does not support auto-negotiation. */
831 			if (dev->ports[p].fiber)
832 				data |= PORT_AUTO_NEG_DISABLE;
833 		}
834 
835 		if (val & BMCR_SPEED100)
836 			data |= PORT_FORCE_100_MBIT;
837 		else
838 			data &= ~PORT_FORCE_100_MBIT;
839 		if (val & BMCR_FULLDPLX)
840 			data |= PORT_FORCE_FULL_DUPLEX;
841 		else
842 			data &= ~PORT_FORCE_FULL_DUPLEX;
843 
844 		if (data != ctrl) {
845 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
846 			if (ret)
847 				return ret;
848 		}
849 
850 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
851 		if (ret)
852 			return ret;
853 
854 		data = restart;
855 		if (val & KSZ886X_BMCR_DISABLE_LED)
856 			data |= PORT_LED_OFF;
857 		else
858 			data &= ~PORT_LED_OFF;
859 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
860 			data |= PORT_TX_DISABLE;
861 		else
862 			data &= ~PORT_TX_DISABLE;
863 		if (val & BMCR_ANRESTART)
864 			data |= PORT_AUTO_NEG_RESTART;
865 		else
866 			data &= ~(PORT_AUTO_NEG_RESTART);
867 		if (val & BMCR_PDOWN)
868 			data |= PORT_POWER_DOWN;
869 		else
870 			data &= ~PORT_POWER_DOWN;
871 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
872 			data |= PORT_AUTO_MDIX_DISABLE;
873 		else
874 			data &= ~PORT_AUTO_MDIX_DISABLE;
875 		if (val & KSZ886X_BMCR_FORCE_MDI)
876 			data |= PORT_FORCE_MDIX;
877 		else
878 			data &= ~PORT_FORCE_MDIX;
879 		if (val & BMCR_LOOPBACK)
880 			data |= PORT_PHY_LOOPBACK;
881 		else
882 			data &= ~PORT_PHY_LOOPBACK;
883 
884 		if (data != restart) {
885 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
886 					  data);
887 			if (ret)
888 				return ret;
889 		}
890 		break;
891 	case MII_ADVERTISE:
892 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
893 		if (ret)
894 			return ret;
895 
896 		data = ctrl;
897 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
898 			  PORT_AUTO_NEG_100BTX_FD |
899 			  PORT_AUTO_NEG_100BTX |
900 			  PORT_AUTO_NEG_10BT_FD |
901 			  PORT_AUTO_NEG_10BT);
902 		if (val & ADVERTISE_PAUSE_CAP)
903 			data |= PORT_AUTO_NEG_SYM_PAUSE;
904 		if (val & ADVERTISE_100FULL)
905 			data |= PORT_AUTO_NEG_100BTX_FD;
906 		if (val & ADVERTISE_100HALF)
907 			data |= PORT_AUTO_NEG_100BTX;
908 		if (val & ADVERTISE_10FULL)
909 			data |= PORT_AUTO_NEG_10BT_FD;
910 		if (val & ADVERTISE_10HALF)
911 			data |= PORT_AUTO_NEG_10BT;
912 
913 		if (data != ctrl) {
914 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
915 			if (ret)
916 				return ret;
917 		}
918 		break;
919 	case PHY_REG_LINK_MD:
920 		if (val & PHY_START_CABLE_DIAG)
921 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
922 		break;
923 	default:
924 		break;
925 	}
926 
927 	return 0;
928 }
929 
930 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
931 {
932 	u8 data;
933 
934 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
935 	data &= ~PORT_VLAN_MEMBERSHIP;
936 	data |= (member & dev->port_mask);
937 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
938 }
939 
940 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
941 {
942 	u8 learn[DSA_MAX_PORTS];
943 	int first, index, cnt;
944 	struct ksz_port *p;
945 	const u16 *regs;
946 
947 	regs = dev->info->regs;
948 
949 	if ((uint)port < dev->info->port_cnt) {
950 		first = port;
951 		cnt = port + 1;
952 	} else {
953 		/* Flush all ports. */
954 		first = 0;
955 		cnt = dev->info->port_cnt;
956 	}
957 	for (index = first; index < cnt; index++) {
958 		p = &dev->ports[index];
959 		if (!p->on)
960 			continue;
961 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
962 		if (!(learn[index] & PORT_LEARN_DISABLE))
963 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
964 				    learn[index] | PORT_LEARN_DISABLE);
965 	}
966 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
967 	for (index = first; index < cnt; index++) {
968 		p = &dev->ports[index];
969 		if (!p->on)
970 			continue;
971 		if (!(learn[index] & PORT_LEARN_DISABLE))
972 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
973 	}
974 }
975 
976 int ksz8_fdb_dump(struct ksz_device *dev, int port,
977 		  dsa_fdb_dump_cb_t *cb, void *data)
978 {
979 	int ret = 0;
980 	u16 i = 0;
981 	u16 entries = 0;
982 	u8 timestamp = 0;
983 	u8 fid;
984 	u8 src_port;
985 	u8 mac[ETH_ALEN];
986 
987 	do {
988 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
989 					   &timestamp, &entries);
990 		if (!ret && port == src_port) {
991 			ret = cb(mac, fid, false, data);
992 			if (ret)
993 				break;
994 		}
995 		i++;
996 	} while (i < entries);
997 	if (i >= entries)
998 		ret = 0;
999 
1000 	return ret;
1001 }
1002 
1003 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1004 			    const unsigned char *addr, u16 vid)
1005 {
1006 	struct alu_struct alu;
1007 	int index, ret;
1008 	int empty = 0;
1009 
1010 	alu.port_forward = 0;
1011 	for (index = 0; index < dev->info->num_statics; index++) {
1012 		bool valid;
1013 
1014 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1015 		if (ret)
1016 			return ret;
1017 		if (!valid) {
1018 			/* Remember the first empty entry. */
1019 			if (!empty)
1020 				empty = index + 1;
1021 			continue;
1022 		}
1023 
1024 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1025 			break;
1026 	}
1027 
1028 	/* no available entry */
1029 	if (index == dev->info->num_statics && !empty)
1030 		return -ENOSPC;
1031 
1032 	/* add entry */
1033 	if (index == dev->info->num_statics) {
1034 		index = empty - 1;
1035 		memset(&alu, 0, sizeof(alu));
1036 		memcpy(alu.mac, addr, ETH_ALEN);
1037 		alu.is_static = true;
1038 	}
1039 	alu.port_forward |= BIT(port);
1040 	if (vid) {
1041 		alu.is_use_fid = true;
1042 
1043 		/* Need a way to map VID to FID. */
1044 		alu.fid = vid;
1045 	}
1046 
1047 	return ksz8_w_sta_mac_table(dev, index, &alu);
1048 }
1049 
1050 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1051 			    const unsigned char *addr, u16 vid)
1052 {
1053 	struct alu_struct alu;
1054 	int index, ret;
1055 
1056 	for (index = 0; index < dev->info->num_statics; index++) {
1057 		bool valid;
1058 
1059 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1060 		if (ret)
1061 			return ret;
1062 		if (!valid)
1063 			continue;
1064 
1065 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1066 			break;
1067 	}
1068 
1069 	/* no available entry */
1070 	if (index == dev->info->num_statics)
1071 		return 0;
1072 
1073 	/* clear port */
1074 	alu.port_forward &= ~BIT(port);
1075 	if (!alu.port_forward)
1076 		alu.is_static = false;
1077 
1078 	return ksz8_w_sta_mac_table(dev, index, &alu);
1079 }
1080 
1081 int ksz8_mdb_add(struct ksz_device *dev, int port,
1082 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1083 {
1084 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1085 }
1086 
1087 int ksz8_mdb_del(struct ksz_device *dev, int port,
1088 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1089 {
1090 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1091 }
1092 
1093 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1094 		 u16 vid, struct dsa_db db)
1095 {
1096 	return ksz8_add_sta_mac(dev, port, addr, vid);
1097 }
1098 
1099 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1100 		 u16 vid, struct dsa_db db)
1101 {
1102 	return ksz8_del_sta_mac(dev, port, addr, vid);
1103 }
1104 
1105 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1106 			     struct netlink_ext_ack *extack)
1107 {
1108 	if (ksz_is_ksz88x3(dev))
1109 		return -ENOTSUPP;
1110 
1111 	/* Discard packets with VID not enabled on the switch */
1112 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1113 
1114 	/* Discard packets with VID not enabled on the ingress port */
1115 	for (port = 0; port < dev->phy_port_cnt; ++port)
1116 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1117 			     flag);
1118 
1119 	return 0;
1120 }
1121 
1122 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1123 {
1124 	if (ksz_is_ksz88x3(dev)) {
1125 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1126 			0x03 << (4 - 2 * port), state);
1127 	} else {
1128 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1129 	}
1130 }
1131 
1132 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1133 		       const struct switchdev_obj_port_vlan *vlan,
1134 		       struct netlink_ext_ack *extack)
1135 {
1136 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1137 	struct ksz_port *p = &dev->ports[port];
1138 	u16 data, new_pvid = 0;
1139 	u8 fid, member, valid;
1140 
1141 	if (ksz_is_ksz88x3(dev))
1142 		return -ENOTSUPP;
1143 
1144 	/* If a VLAN is added with untagged flag different from the
1145 	 * port's Remove Tag flag, we need to change the latter.
1146 	 * Ignore VID 0, which is always untagged.
1147 	 * Ignore CPU port, which will always be tagged.
1148 	 */
1149 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1150 	    port != dev->cpu_port) {
1151 		unsigned int vid;
1152 
1153 		/* Reject attempts to add a VLAN that requires the
1154 		 * Remove Tag flag to be changed, unless there are no
1155 		 * other VLANs currently configured.
1156 		 */
1157 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1158 			/* Skip the VID we are going to add or reconfigure */
1159 			if (vid == vlan->vid)
1160 				continue;
1161 
1162 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1163 				       &fid, &member, &valid);
1164 			if (valid && (member & BIT(port)))
1165 				return -EINVAL;
1166 		}
1167 
1168 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1169 		p->remove_tag = untagged;
1170 	}
1171 
1172 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1173 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1174 
1175 	/* First time to setup the VLAN entry. */
1176 	if (!valid) {
1177 		/* Need to find a way to map VID to FID. */
1178 		fid = 1;
1179 		valid = 1;
1180 	}
1181 	member |= BIT(port);
1182 
1183 	ksz8_to_vlan(dev, fid, member, valid, &data);
1184 	ksz8_w_vlan_table(dev, vlan->vid, data);
1185 
1186 	/* change PVID */
1187 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1188 		new_pvid = vlan->vid;
1189 
1190 	if (new_pvid) {
1191 		u16 vid;
1192 
1193 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1194 		vid &= ~VLAN_VID_MASK;
1195 		vid |= new_pvid;
1196 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1197 
1198 		ksz8_port_enable_pvid(dev, port, true);
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1205 		       const struct switchdev_obj_port_vlan *vlan)
1206 {
1207 	u16 data, pvid;
1208 	u8 fid, member, valid;
1209 
1210 	if (ksz_is_ksz88x3(dev))
1211 		return -ENOTSUPP;
1212 
1213 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1214 	pvid = pvid & 0xFFF;
1215 
1216 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1217 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1218 
1219 	member &= ~BIT(port);
1220 
1221 	/* Invalidate the entry if no more member. */
1222 	if (!member) {
1223 		fid = 0;
1224 		valid = 0;
1225 	}
1226 
1227 	ksz8_to_vlan(dev, fid, member, valid, &data);
1228 	ksz8_w_vlan_table(dev, vlan->vid, data);
1229 
1230 	if (pvid == vlan->vid)
1231 		ksz8_port_enable_pvid(dev, port, false);
1232 
1233 	return 0;
1234 }
1235 
1236 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1237 			 struct dsa_mall_mirror_tc_entry *mirror,
1238 			 bool ingress, struct netlink_ext_ack *extack)
1239 {
1240 	if (ingress) {
1241 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1242 		dev->mirror_rx |= BIT(port);
1243 	} else {
1244 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1245 		dev->mirror_tx |= BIT(port);
1246 	}
1247 
1248 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1249 
1250 	/* configure mirror port */
1251 	if (dev->mirror_rx || dev->mirror_tx)
1252 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1253 			     PORT_MIRROR_SNIFFER, true);
1254 
1255 	return 0;
1256 }
1257 
1258 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1259 			  struct dsa_mall_mirror_tc_entry *mirror)
1260 {
1261 	u8 data;
1262 
1263 	if (mirror->ingress) {
1264 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1265 		dev->mirror_rx &= ~BIT(port);
1266 	} else {
1267 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1268 		dev->mirror_tx &= ~BIT(port);
1269 	}
1270 
1271 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1272 
1273 	if (!dev->mirror_rx && !dev->mirror_tx)
1274 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1275 			     PORT_MIRROR_SNIFFER, false);
1276 }
1277 
1278 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1279 {
1280 	struct ksz_port *p = &dev->ports[port];
1281 
1282 	if (!p->interface && dev->compat_interface) {
1283 		dev_warn(dev->dev,
1284 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1285 			 "Please update your device tree.\n",
1286 			 port);
1287 		p->interface = dev->compat_interface;
1288 	}
1289 }
1290 
1291 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1292 {
1293 	struct dsa_switch *ds = dev->ds;
1294 	const u32 *masks;
1295 	u8 member;
1296 
1297 	masks = dev->info->masks;
1298 
1299 	/* enable broadcast storm limit */
1300 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1301 
1302 	if (!ksz_is_ksz88x3(dev))
1303 		ksz8795_set_prio_queue(dev, port, 4);
1304 
1305 	/* disable DiffServ priority */
1306 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1307 
1308 	/* replace priority */
1309 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1310 		     masks[PORT_802_1P_REMAPPING], false);
1311 
1312 	/* enable 802.1p priority */
1313 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1314 
1315 	if (cpu_port) {
1316 		if (!ksz_is_ksz88x3(dev))
1317 			ksz8795_cpu_interface_select(dev, port);
1318 
1319 		member = dsa_user_ports(ds);
1320 	} else {
1321 		member = BIT(dsa_upstream_port(ds, port));
1322 	}
1323 
1324 	ksz8_cfg_port_member(dev, port, member);
1325 }
1326 
1327 void ksz8_config_cpu_port(struct dsa_switch *ds)
1328 {
1329 	struct ksz_device *dev = ds->priv;
1330 	struct ksz_port *p;
1331 	const u32 *masks;
1332 	const u16 *regs;
1333 	u8 remote;
1334 	int i;
1335 
1336 	masks = dev->info->masks;
1337 	regs = dev->info->regs;
1338 
1339 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1340 
1341 	p = &dev->ports[dev->cpu_port];
1342 	p->on = 1;
1343 
1344 	ksz8_port_setup(dev, dev->cpu_port, true);
1345 
1346 	for (i = 0; i < dev->phy_port_cnt; i++) {
1347 		p = &dev->ports[i];
1348 
1349 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1350 
1351 		/* Last port may be disabled. */
1352 		if (i == dev->phy_port_cnt)
1353 			break;
1354 		p->on = 1;
1355 	}
1356 	for (i = 0; i < dev->phy_port_cnt; i++) {
1357 		p = &dev->ports[i];
1358 		if (!p->on)
1359 			continue;
1360 		if (!ksz_is_ksz88x3(dev)) {
1361 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1362 			if (remote & KSZ8_PORT_FIBER_MODE)
1363 				p->fiber = 1;
1364 		}
1365 		if (p->fiber)
1366 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1367 				     PORT_FORCE_FLOW_CTRL, true);
1368 		else
1369 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1370 				     PORT_FORCE_FLOW_CTRL, false);
1371 	}
1372 }
1373 
1374 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1375 {
1376 	struct ksz_device *dev = ds->priv;
1377 	int ret = 0;
1378 
1379 	/* KSZ87xx Errata DS80000687C.
1380 	 * Module 2: Link drops with some EEE link partners.
1381 	 *   An issue with the EEE next page exchange between the
1382 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1383 	 *   the link dropping.
1384 	 */
1385 	if (dev->info->ksz87xx_eee_link_erratum)
1386 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1387 
1388 	return ret;
1389 }
1390 
1391 int ksz8_enable_stp_addr(struct ksz_device *dev)
1392 {
1393 	struct alu_struct alu;
1394 
1395 	/* Setup STP address for STP operation. */
1396 	memset(&alu, 0, sizeof(alu));
1397 	ether_addr_copy(alu.mac, eth_stp_addr);
1398 	alu.is_static = true;
1399 	alu.is_override = true;
1400 	alu.port_forward = dev->info->cpu_ports;
1401 
1402 	return ksz8_w_sta_mac_table(dev, 0, &alu);
1403 }
1404 
1405 int ksz8_setup(struct dsa_switch *ds)
1406 {
1407 	struct ksz_device *dev = ds->priv;
1408 	int i;
1409 
1410 	ds->mtu_enforcement_ingress = true;
1411 
1412 	/* We rely on software untagging on the CPU port, so that we
1413 	 * can support both tagged and untagged VLANs
1414 	 */
1415 	ds->untag_bridge_pvid = true;
1416 
1417 	/* VLAN filtering is partly controlled by the global VLAN
1418 	 * Enable flag
1419 	 */
1420 	ds->vlan_filtering_is_global = true;
1421 
1422 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1423 
1424 	/* Enable automatic fast aging when link changed detected. */
1425 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1426 
1427 	/* Enable aggressive back off algorithm in half duplex mode. */
1428 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1429 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1430 
1431 	/*
1432 	 * Make sure unicast VLAN boundary is set as default and
1433 	 * enable no excessive collision drop.
1434 	 */
1435 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1436 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1437 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1438 
1439 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1440 
1441 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1442 
1443 	if (!ksz_is_ksz88x3(dev))
1444 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1445 
1446 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1447 		ksz8_r_vlan_entries(dev, i);
1448 
1449 	return ksz8_handle_global_errata(ds);
1450 }
1451 
1452 void ksz8_get_caps(struct ksz_device *dev, int port,
1453 		   struct phylink_config *config)
1454 {
1455 	config->mac_capabilities = MAC_10 | MAC_100;
1456 
1457 	/* Silicon Errata Sheet (DS80000830A):
1458 	 * "Port 1 does not respond to received flow control PAUSE frames"
1459 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1460 	 * switches.
1461 	 */
1462 	if (!ksz_is_ksz88x3(dev) || port)
1463 		config->mac_capabilities |= MAC_SYM_PAUSE;
1464 
1465 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1466 	if (!ksz_is_ksz88x3(dev))
1467 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1468 }
1469 
1470 u32 ksz8_get_port_addr(int port, int offset)
1471 {
1472 	return PORT_CTRL_ADDR(port, offset);
1473 }
1474 
1475 int ksz8_switch_init(struct ksz_device *dev)
1476 {
1477 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1478 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1479 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1480 
1481 	return 0;
1482 }
1483 
1484 void ksz8_switch_exit(struct ksz_device *dev)
1485 {
1486 	ksz8_reset_switch(dev);
1487 }
1488 
1489 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1490 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1491 MODULE_LICENSE("GPL");
1492