1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static const u8 ksz8795_regs[] = {
30 	[REG_IND_CTRL_0]		= 0x6E,
31 	[REG_IND_DATA_8]		= 0x70,
32 	[REG_IND_DATA_CHECK]		= 0x72,
33 	[REG_IND_DATA_HI]		= 0x71,
34 	[REG_IND_DATA_LO]		= 0x75,
35 	[REG_IND_MIB_CHECK]		= 0x74,
36 	[P_FORCE_CTRL]			= 0x0C,
37 	[P_LINK_STATUS]			= 0x0E,
38 	[P_LOCAL_CTRL]			= 0x07,
39 	[P_NEG_RESTART_CTRL]		= 0x0D,
40 	[P_REMOTE_STATUS]		= 0x08,
41 	[P_SPEED_STATUS]		= 0x09,
42 	[S_TAIL_TAG_CTRL]		= 0x0C,
43 };
44 
45 static const u32 ksz8795_masks[] = {
46 	[PORT_802_1P_REMAPPING]		= BIT(7),
47 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
48 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
49 	[MIB_COUNTER_VALID]		= BIT(5),
50 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
51 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
52 	[VLAN_TABLE_VALID]		= BIT(12),
53 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
54 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
55 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
56 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(26),
57 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(24, 20),
58 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
59 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(8),
60 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
61 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
62 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(26, 20),
63 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
64 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
65 };
66 
67 static const u8 ksz8795_shifts[] = {
68 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
69 	[VLAN_TABLE]			= 16,
70 	[STATIC_MAC_FWD_PORTS]		= 16,
71 	[STATIC_MAC_FID]		= 24,
72 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
73 	[DYNAMIC_MAC_ENTRIES]		= 29,
74 	[DYNAMIC_MAC_FID]		= 16,
75 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
76 	[DYNAMIC_MAC_SRC_PORT]		= 24,
77 };
78 
79 static const u8 ksz8863_regs[] = {
80 	[REG_IND_CTRL_0]		= 0x79,
81 	[REG_IND_DATA_8]		= 0x7B,
82 	[REG_IND_DATA_CHECK]		= 0x7B,
83 	[REG_IND_DATA_HI]		= 0x7C,
84 	[REG_IND_DATA_LO]		= 0x80,
85 	[REG_IND_MIB_CHECK]		= 0x80,
86 	[P_FORCE_CTRL]			= 0x0C,
87 	[P_LINK_STATUS]			= 0x0E,
88 	[P_LOCAL_CTRL]			= 0x0C,
89 	[P_NEG_RESTART_CTRL]		= 0x0D,
90 	[P_REMOTE_STATUS]		= 0x0E,
91 	[P_SPEED_STATUS]		= 0x0F,
92 	[S_TAIL_TAG_CTRL]		= 0x03,
93 };
94 
95 static const u32 ksz8863_masks[] = {
96 	[PORT_802_1P_REMAPPING]		= BIT(3),
97 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
98 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
99 	[MIB_COUNTER_VALID]		= BIT(6),
100 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
101 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
102 	[VLAN_TABLE_VALID]		= BIT(19),
103 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
104 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
105 	[STATIC_MAC_TABLE_FID]		= GENMASK(29, 26),
106 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
107 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
108 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(5, 0),
109 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
110 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
111 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 28),
112 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
113 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
114 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
115 };
116 
117 static u8 ksz8863_shifts[] = {
118 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
119 	[STATIC_MAC_FWD_PORTS]		= 16,
120 	[STATIC_MAC_FID]		= 22,
121 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
122 	[DYNAMIC_MAC_ENTRIES]		= 24,
123 	[DYNAMIC_MAC_FID]		= 16,
124 	[DYNAMIC_MAC_TIMESTAMP]		= 24,
125 	[DYNAMIC_MAC_SRC_PORT]		= 20,
126 };
127 
128 struct mib_names {
129 	char string[ETH_GSTRING_LEN];
130 };
131 
132 static const struct mib_names ksz87xx_mib_names[] = {
133 	{ "rx_hi" },
134 	{ "rx_undersize" },
135 	{ "rx_fragments" },
136 	{ "rx_oversize" },
137 	{ "rx_jabbers" },
138 	{ "rx_symbol_err" },
139 	{ "rx_crc_err" },
140 	{ "rx_align_err" },
141 	{ "rx_mac_ctrl" },
142 	{ "rx_pause" },
143 	{ "rx_bcast" },
144 	{ "rx_mcast" },
145 	{ "rx_ucast" },
146 	{ "rx_64_or_less" },
147 	{ "rx_65_127" },
148 	{ "rx_128_255" },
149 	{ "rx_256_511" },
150 	{ "rx_512_1023" },
151 	{ "rx_1024_1522" },
152 	{ "rx_1523_2000" },
153 	{ "rx_2001" },
154 	{ "tx_hi" },
155 	{ "tx_late_col" },
156 	{ "tx_pause" },
157 	{ "tx_bcast" },
158 	{ "tx_mcast" },
159 	{ "tx_ucast" },
160 	{ "tx_deferred" },
161 	{ "tx_total_col" },
162 	{ "tx_exc_col" },
163 	{ "tx_single_col" },
164 	{ "tx_mult_col" },
165 	{ "rx_total" },
166 	{ "tx_total" },
167 	{ "rx_discards" },
168 	{ "tx_discards" },
169 };
170 
171 static const struct mib_names ksz88xx_mib_names[] = {
172 	{ "rx" },
173 	{ "rx_hi" },
174 	{ "rx_undersize" },
175 	{ "rx_fragments" },
176 	{ "rx_oversize" },
177 	{ "rx_jabbers" },
178 	{ "rx_symbol_err" },
179 	{ "rx_crc_err" },
180 	{ "rx_align_err" },
181 	{ "rx_mac_ctrl" },
182 	{ "rx_pause" },
183 	{ "rx_bcast" },
184 	{ "rx_mcast" },
185 	{ "rx_ucast" },
186 	{ "rx_64_or_less" },
187 	{ "rx_65_127" },
188 	{ "rx_128_255" },
189 	{ "rx_256_511" },
190 	{ "rx_512_1023" },
191 	{ "rx_1024_1522" },
192 	{ "tx" },
193 	{ "tx_hi" },
194 	{ "tx_late_col" },
195 	{ "tx_pause" },
196 	{ "tx_bcast" },
197 	{ "tx_mcast" },
198 	{ "tx_ucast" },
199 	{ "tx_deferred" },
200 	{ "tx_total_col" },
201 	{ "tx_exc_col" },
202 	{ "tx_single_col" },
203 	{ "tx_mult_col" },
204 	{ "rx_discards" },
205 	{ "tx_discards" },
206 };
207 
208 static bool ksz_is_ksz88x3(struct ksz_device *dev)
209 {
210 	return dev->chip_id == 0x8830;
211 }
212 
213 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
214 {
215 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
216 }
217 
218 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
219 			 bool set)
220 {
221 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
222 			   bits, set ? bits : 0);
223 }
224 
225 static int ksz8_reset_switch(struct ksz_device *dev)
226 {
227 	if (ksz_is_ksz88x3(dev)) {
228 		/* reset switch */
229 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
230 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
231 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
232 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
233 	} else {
234 		/* reset switch */
235 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
236 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
237 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
238 	}
239 
240 	return 0;
241 }
242 
243 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
244 {
245 	u8 hi, lo;
246 
247 	/* Number of queues can only be 1, 2, or 4. */
248 	switch (queue) {
249 	case 4:
250 	case 3:
251 		queue = PORT_QUEUE_SPLIT_4;
252 		break;
253 	case 2:
254 		queue = PORT_QUEUE_SPLIT_2;
255 		break;
256 	default:
257 		queue = PORT_QUEUE_SPLIT_1;
258 	}
259 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
260 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
261 	lo &= ~PORT_QUEUE_SPLIT_L;
262 	if (queue & PORT_QUEUE_SPLIT_2)
263 		lo |= PORT_QUEUE_SPLIT_L;
264 	hi &= ~PORT_QUEUE_SPLIT_H;
265 	if (queue & PORT_QUEUE_SPLIT_4)
266 		hi |= PORT_QUEUE_SPLIT_H;
267 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
268 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
269 
270 	/* Default is port based for egress rate limit. */
271 	if (queue != PORT_QUEUE_SPLIT_1)
272 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
273 			true);
274 }
275 
276 static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
277 {
278 	struct ksz8 *ksz8 = dev->priv;
279 	const u32 *masks;
280 	const u8 *regs;
281 	u16 ctrl_addr;
282 	u32 data;
283 	u8 check;
284 	int loop;
285 
286 	masks = ksz8->masks;
287 	regs = ksz8->regs;
288 
289 	ctrl_addr = addr + dev->reg_mib_cnt * port;
290 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
291 
292 	mutex_lock(&dev->alu_mutex);
293 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
294 
295 	/* It is almost guaranteed to always read the valid bit because of
296 	 * slow SPI speed.
297 	 */
298 	for (loop = 2; loop > 0; loop--) {
299 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
300 
301 		if (check & masks[MIB_COUNTER_VALID]) {
302 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
303 			if (check & masks[MIB_COUNTER_OVERFLOW])
304 				*cnt += MIB_COUNTER_VALUE + 1;
305 			*cnt += data & MIB_COUNTER_VALUE;
306 			break;
307 		}
308 	}
309 	mutex_unlock(&dev->alu_mutex);
310 }
311 
312 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
313 			      u64 *dropped, u64 *cnt)
314 {
315 	struct ksz8 *ksz8 = dev->priv;
316 	const u32 *masks;
317 	const u8 *regs;
318 	u16 ctrl_addr;
319 	u32 data;
320 	u8 check;
321 	int loop;
322 
323 	masks = ksz8->masks;
324 	regs = ksz8->regs;
325 
326 	addr -= dev->reg_mib_cnt;
327 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
328 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
329 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
330 
331 	mutex_lock(&dev->alu_mutex);
332 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
333 
334 	/* It is almost guaranteed to always read the valid bit because of
335 	 * slow SPI speed.
336 	 */
337 	for (loop = 2; loop > 0; loop--) {
338 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
339 
340 		if (check & masks[MIB_COUNTER_VALID]) {
341 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
342 			if (addr < 2) {
343 				u64 total;
344 
345 				total = check & MIB_TOTAL_BYTES_H;
346 				total <<= 32;
347 				*cnt += total;
348 				*cnt += data;
349 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
350 					total = MIB_TOTAL_BYTES_H + 1;
351 					total <<= 32;
352 					*cnt += total;
353 				}
354 			} else {
355 				if (check & masks[MIB_COUNTER_OVERFLOW])
356 					*cnt += MIB_PACKET_DROPPED + 1;
357 				*cnt += data & MIB_PACKET_DROPPED;
358 			}
359 			break;
360 		}
361 	}
362 	mutex_unlock(&dev->alu_mutex);
363 }
364 
365 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
366 			      u64 *dropped, u64 *cnt)
367 {
368 	struct ksz8 *ksz8 = dev->priv;
369 	const u8 *regs = ksz8->regs;
370 	u32 *last = (u32 *)dropped;
371 	u16 ctrl_addr;
372 	u32 data;
373 	u32 cur;
374 
375 	addr -= dev->reg_mib_cnt;
376 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
377 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
378 	ctrl_addr += port;
379 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
380 
381 	mutex_lock(&dev->alu_mutex);
382 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
383 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
384 	mutex_unlock(&dev->alu_mutex);
385 
386 	data &= MIB_PACKET_DROPPED;
387 	cur = last[addr];
388 	if (data != cur) {
389 		last[addr] = data;
390 		if (data < cur)
391 			data += MIB_PACKET_DROPPED + 1;
392 		data -= cur;
393 		*cnt += data;
394 	}
395 }
396 
397 static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
398 			   u64 *dropped, u64 *cnt)
399 {
400 	if (ksz_is_ksz88x3(dev))
401 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
402 	else
403 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
404 }
405 
406 static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
407 {
408 	if (ksz_is_ksz88x3(dev))
409 		return;
410 
411 	/* enable the port for flush/freeze function */
412 	if (freeze)
413 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
414 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
415 
416 	/* disable the port after freeze is done */
417 	if (!freeze)
418 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
419 }
420 
421 static void ksz8_port_init_cnt(struct ksz_device *dev, int port)
422 {
423 	struct ksz_port_mib *mib = &dev->ports[port].mib;
424 	u64 *dropped;
425 
426 	if (!ksz_is_ksz88x3(dev)) {
427 		/* flush all enabled port MIB counters */
428 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
429 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
430 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
431 	}
432 
433 	mib->cnt_ptr = 0;
434 
435 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
436 	while (mib->cnt_ptr < dev->reg_mib_cnt) {
437 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
438 					&mib->counters[mib->cnt_ptr]);
439 		++mib->cnt_ptr;
440 	}
441 
442 	/* last one in storage */
443 	dropped = &mib->counters[dev->mib_cnt];
444 
445 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
446 	while (mib->cnt_ptr < dev->mib_cnt) {
447 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
448 					dropped, &mib->counters[mib->cnt_ptr]);
449 		++mib->cnt_ptr;
450 	}
451 	mib->cnt_ptr = 0;
452 	memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
453 }
454 
455 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
456 {
457 	struct ksz8 *ksz8 = dev->priv;
458 	const u8 *regs = ksz8->regs;
459 	u16 ctrl_addr;
460 
461 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
462 
463 	mutex_lock(&dev->alu_mutex);
464 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
465 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
466 	mutex_unlock(&dev->alu_mutex);
467 }
468 
469 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
470 {
471 	struct ksz8 *ksz8 = dev->priv;
472 	const u8 *regs = ksz8->regs;
473 	u16 ctrl_addr;
474 
475 	ctrl_addr = IND_ACC_TABLE(table) | addr;
476 
477 	mutex_lock(&dev->alu_mutex);
478 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
479 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
480 	mutex_unlock(&dev->alu_mutex);
481 }
482 
483 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
484 {
485 	struct ksz8 *ksz8 = dev->priv;
486 	int timeout = 100;
487 	const u32 *masks;
488 	const u8 *regs;
489 
490 	masks = ksz8->masks;
491 	regs = ksz8->regs;
492 
493 	do {
494 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
495 		timeout--;
496 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
497 
498 	/* Entry is not ready for accessing. */
499 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
500 		return -EAGAIN;
501 	/* Entry is ready for accessing. */
502 	} else {
503 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
504 
505 		/* There is no valid entry in the table. */
506 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
507 			return -ENXIO;
508 	}
509 	return 0;
510 }
511 
512 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
513 				u8 *mac_addr, u8 *fid, u8 *src_port,
514 				u8 *timestamp, u16 *entries)
515 {
516 	struct ksz8 *ksz8 = dev->priv;
517 	u32 data_hi, data_lo;
518 	const u8 *shifts;
519 	const u32 *masks;
520 	const u8 *regs;
521 	u16 ctrl_addr;
522 	u8 data;
523 	int rc;
524 
525 	shifts = ksz8->shifts;
526 	masks = ksz8->masks;
527 	regs = ksz8->regs;
528 
529 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
530 
531 	mutex_lock(&dev->alu_mutex);
532 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
533 
534 	rc = ksz8_valid_dyn_entry(dev, &data);
535 	if (rc == -EAGAIN) {
536 		if (addr == 0)
537 			*entries = 0;
538 	} else if (rc == -ENXIO) {
539 		*entries = 0;
540 	/* At least one valid entry in the table. */
541 	} else {
542 		u64 buf = 0;
543 		int cnt;
544 
545 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
546 		data_hi = (u32)(buf >> 32);
547 		data_lo = (u32)buf;
548 
549 		/* Check out how many valid entry in the table. */
550 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
551 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
552 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
553 			shifts[DYNAMIC_MAC_ENTRIES];
554 		*entries = cnt + 1;
555 
556 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
557 			shifts[DYNAMIC_MAC_FID];
558 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
559 			shifts[DYNAMIC_MAC_SRC_PORT];
560 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
561 			shifts[DYNAMIC_MAC_TIMESTAMP];
562 
563 		mac_addr[5] = (u8)data_lo;
564 		mac_addr[4] = (u8)(data_lo >> 8);
565 		mac_addr[3] = (u8)(data_lo >> 16);
566 		mac_addr[2] = (u8)(data_lo >> 24);
567 
568 		mac_addr[1] = (u8)data_hi;
569 		mac_addr[0] = (u8)(data_hi >> 8);
570 		rc = 0;
571 	}
572 	mutex_unlock(&dev->alu_mutex);
573 
574 	return rc;
575 }
576 
577 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
578 				struct alu_struct *alu)
579 {
580 	struct ksz8 *ksz8 = dev->priv;
581 	u32 data_hi, data_lo;
582 	const u8 *shifts;
583 	const u32 *masks;
584 	u64 data;
585 
586 	shifts = ksz8->shifts;
587 	masks = ksz8->masks;
588 
589 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
590 	data_hi = data >> 32;
591 	data_lo = (u32)data;
592 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
593 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
594 		alu->mac[5] = (u8)data_lo;
595 		alu->mac[4] = (u8)(data_lo >> 8);
596 		alu->mac[3] = (u8)(data_lo >> 16);
597 		alu->mac[2] = (u8)(data_lo >> 24);
598 		alu->mac[1] = (u8)data_hi;
599 		alu->mac[0] = (u8)(data_hi >> 8);
600 		alu->port_forward =
601 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
602 				shifts[STATIC_MAC_FWD_PORTS];
603 		alu->is_override =
604 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
605 		data_hi >>= 1;
606 		alu->is_static = true;
607 		alu->is_use_fid =
608 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
609 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
610 				shifts[STATIC_MAC_FID];
611 		return 0;
612 	}
613 	return -ENXIO;
614 }
615 
616 static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
617 				 struct alu_struct *alu)
618 {
619 	struct ksz8 *ksz8 = dev->priv;
620 	u32 data_hi, data_lo;
621 	const u8 *shifts;
622 	const u32 *masks;
623 	u64 data;
624 
625 	shifts = ksz8->shifts;
626 	masks = ksz8->masks;
627 
628 	data_lo = ((u32)alu->mac[2] << 24) |
629 		((u32)alu->mac[3] << 16) |
630 		((u32)alu->mac[4] << 8) | alu->mac[5];
631 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
632 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
633 
634 	if (alu->is_override)
635 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
636 	if (alu->is_use_fid) {
637 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
638 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
639 	}
640 	if (alu->is_static)
641 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
642 	else
643 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
644 
645 	data = (u64)data_hi << 32 | data_lo;
646 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
647 }
648 
649 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
650 			   u8 *member, u8 *valid)
651 {
652 	struct ksz8 *ksz8 = dev->priv;
653 	const u8 *shifts;
654 	const u32 *masks;
655 
656 	shifts = ksz8->shifts;
657 	masks = ksz8->masks;
658 
659 	*fid = vlan & masks[VLAN_TABLE_FID];
660 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
661 			shifts[VLAN_TABLE_MEMBERSHIP_S];
662 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
663 }
664 
665 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
666 			 u16 *vlan)
667 {
668 	struct ksz8 *ksz8 = dev->priv;
669 	const u8 *shifts;
670 	const u32 *masks;
671 
672 	shifts = ksz8->shifts;
673 	masks = ksz8->masks;
674 
675 	*vlan = fid;
676 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
677 	if (valid)
678 		*vlan |= masks[VLAN_TABLE_VALID];
679 }
680 
681 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
682 {
683 	struct ksz8 *ksz8 = dev->priv;
684 	const u8 *shifts;
685 	u64 data;
686 	int i;
687 
688 	shifts = ksz8->shifts;
689 
690 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
691 	addr *= 4;
692 	for (i = 0; i < 4; i++) {
693 		dev->vlan_cache[addr + i].table[0] = (u16)data;
694 		data >>= shifts[VLAN_TABLE];
695 	}
696 }
697 
698 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
699 {
700 	int index;
701 	u16 *data;
702 	u16 addr;
703 	u64 buf;
704 
705 	data = (u16 *)&buf;
706 	addr = vid / 4;
707 	index = vid & 3;
708 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
709 	*vlan = data[index];
710 }
711 
712 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
713 {
714 	int index;
715 	u16 *data;
716 	u16 addr;
717 	u64 buf;
718 
719 	data = (u16 *)&buf;
720 	addr = vid / 4;
721 	index = vid & 3;
722 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
723 	data[index] = vlan;
724 	dev->vlan_cache[vid].table[0] = vlan;
725 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
726 }
727 
728 static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
729 {
730 	struct ksz8 *ksz8 = dev->priv;
731 	u8 restart, speed, ctrl, link;
732 	const u8 *regs = ksz8->regs;
733 	int processed = true;
734 	u8 val1, val2;
735 	u16 data = 0;
736 	u8 p = phy;
737 
738 	switch (reg) {
739 	case MII_BMCR:
740 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
741 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
742 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
743 		if (restart & PORT_PHY_LOOPBACK)
744 			data |= BMCR_LOOPBACK;
745 		if (ctrl & PORT_FORCE_100_MBIT)
746 			data |= BMCR_SPEED100;
747 		if (ksz_is_ksz88x3(dev)) {
748 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
749 				data |= BMCR_ANENABLE;
750 		} else {
751 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
752 				data |= BMCR_ANENABLE;
753 		}
754 		if (restart & PORT_POWER_DOWN)
755 			data |= BMCR_PDOWN;
756 		if (restart & PORT_AUTO_NEG_RESTART)
757 			data |= BMCR_ANRESTART;
758 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
759 			data |= BMCR_FULLDPLX;
760 		if (speed & PORT_HP_MDIX)
761 			data |= KSZ886X_BMCR_HP_MDIX;
762 		if (restart & PORT_FORCE_MDIX)
763 			data |= KSZ886X_BMCR_FORCE_MDI;
764 		if (restart & PORT_AUTO_MDIX_DISABLE)
765 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
766 		if (restart & PORT_TX_DISABLE)
767 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
768 		if (restart & PORT_LED_OFF)
769 			data |= KSZ886X_BMCR_DISABLE_LED;
770 		break;
771 	case MII_BMSR:
772 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
773 		data = BMSR_100FULL |
774 		       BMSR_100HALF |
775 		       BMSR_10FULL |
776 		       BMSR_10HALF |
777 		       BMSR_ANEGCAPABLE;
778 		if (link & PORT_AUTO_NEG_COMPLETE)
779 			data |= BMSR_ANEGCOMPLETE;
780 		if (link & PORT_STAT_LINK_GOOD)
781 			data |= BMSR_LSTATUS;
782 		break;
783 	case MII_PHYSID1:
784 		data = KSZ8795_ID_HI;
785 		break;
786 	case MII_PHYSID2:
787 		if (ksz_is_ksz88x3(dev))
788 			data = KSZ8863_ID_LO;
789 		else
790 			data = KSZ8795_ID_LO;
791 		break;
792 	case MII_ADVERTISE:
793 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
794 		data = ADVERTISE_CSMA;
795 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
796 			data |= ADVERTISE_PAUSE_CAP;
797 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
798 			data |= ADVERTISE_100FULL;
799 		if (ctrl & PORT_AUTO_NEG_100BTX)
800 			data |= ADVERTISE_100HALF;
801 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
802 			data |= ADVERTISE_10FULL;
803 		if (ctrl & PORT_AUTO_NEG_10BT)
804 			data |= ADVERTISE_10HALF;
805 		break;
806 	case MII_LPA:
807 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
808 		data = LPA_SLCT;
809 		if (link & PORT_REMOTE_SYM_PAUSE)
810 			data |= LPA_PAUSE_CAP;
811 		if (link & PORT_REMOTE_100BTX_FD)
812 			data |= LPA_100FULL;
813 		if (link & PORT_REMOTE_100BTX)
814 			data |= LPA_100HALF;
815 		if (link & PORT_REMOTE_10BT_FD)
816 			data |= LPA_10FULL;
817 		if (link & PORT_REMOTE_10BT)
818 			data |= LPA_10HALF;
819 		if (data & ~LPA_SLCT)
820 			data |= LPA_LPACK;
821 		break;
822 	case PHY_REG_LINK_MD:
823 		ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
824 		ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
825 		if (val1 & PORT_START_CABLE_DIAG)
826 			data |= PHY_START_CABLE_DIAG;
827 
828 		if (val1 & PORT_CABLE_10M_SHORT)
829 			data |= PHY_CABLE_10M_SHORT;
830 
831 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
832 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
833 
834 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
835 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
836 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
837 		break;
838 	case PHY_REG_PHY_CTRL:
839 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
840 		if (link & PORT_MDIX_STATUS)
841 			data |= KSZ886X_CTRL_MDIX_STAT;
842 		break;
843 	default:
844 		processed = false;
845 		break;
846 	}
847 	if (processed)
848 		*val = data;
849 }
850 
851 static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
852 {
853 	struct ksz8 *ksz8 = dev->priv;
854 	u8 restart, speed, ctrl, data;
855 	const u8 *regs = ksz8->regs;
856 	u8 p = phy;
857 
858 	switch (reg) {
859 	case MII_BMCR:
860 
861 		/* Do not support PHY reset function. */
862 		if (val & BMCR_RESET)
863 			break;
864 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
865 		data = speed;
866 		if (val & KSZ886X_BMCR_HP_MDIX)
867 			data |= PORT_HP_MDIX;
868 		else
869 			data &= ~PORT_HP_MDIX;
870 		if (data != speed)
871 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
872 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
873 		data = ctrl;
874 		if (ksz_is_ksz88x3(dev)) {
875 			if ((val & BMCR_ANENABLE))
876 				data |= PORT_AUTO_NEG_ENABLE;
877 			else
878 				data &= ~PORT_AUTO_NEG_ENABLE;
879 		} else {
880 			if (!(val & BMCR_ANENABLE))
881 				data |= PORT_AUTO_NEG_DISABLE;
882 			else
883 				data &= ~PORT_AUTO_NEG_DISABLE;
884 
885 			/* Fiber port does not support auto-negotiation. */
886 			if (dev->ports[p].fiber)
887 				data |= PORT_AUTO_NEG_DISABLE;
888 		}
889 
890 		if (val & BMCR_SPEED100)
891 			data |= PORT_FORCE_100_MBIT;
892 		else
893 			data &= ~PORT_FORCE_100_MBIT;
894 		if (val & BMCR_FULLDPLX)
895 			data |= PORT_FORCE_FULL_DUPLEX;
896 		else
897 			data &= ~PORT_FORCE_FULL_DUPLEX;
898 		if (data != ctrl)
899 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
900 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
901 		data = restart;
902 		if (val & KSZ886X_BMCR_DISABLE_LED)
903 			data |= PORT_LED_OFF;
904 		else
905 			data &= ~PORT_LED_OFF;
906 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
907 			data |= PORT_TX_DISABLE;
908 		else
909 			data &= ~PORT_TX_DISABLE;
910 		if (val & BMCR_ANRESTART)
911 			data |= PORT_AUTO_NEG_RESTART;
912 		else
913 			data &= ~(PORT_AUTO_NEG_RESTART);
914 		if (val & BMCR_PDOWN)
915 			data |= PORT_POWER_DOWN;
916 		else
917 			data &= ~PORT_POWER_DOWN;
918 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
919 			data |= PORT_AUTO_MDIX_DISABLE;
920 		else
921 			data &= ~PORT_AUTO_MDIX_DISABLE;
922 		if (val & KSZ886X_BMCR_FORCE_MDI)
923 			data |= PORT_FORCE_MDIX;
924 		else
925 			data &= ~PORT_FORCE_MDIX;
926 		if (val & BMCR_LOOPBACK)
927 			data |= PORT_PHY_LOOPBACK;
928 		else
929 			data &= ~PORT_PHY_LOOPBACK;
930 		if (data != restart)
931 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
932 		break;
933 	case MII_ADVERTISE:
934 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
935 		data = ctrl;
936 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
937 			  PORT_AUTO_NEG_100BTX_FD |
938 			  PORT_AUTO_NEG_100BTX |
939 			  PORT_AUTO_NEG_10BT_FD |
940 			  PORT_AUTO_NEG_10BT);
941 		if (val & ADVERTISE_PAUSE_CAP)
942 			data |= PORT_AUTO_NEG_SYM_PAUSE;
943 		if (val & ADVERTISE_100FULL)
944 			data |= PORT_AUTO_NEG_100BTX_FD;
945 		if (val & ADVERTISE_100HALF)
946 			data |= PORT_AUTO_NEG_100BTX;
947 		if (val & ADVERTISE_10FULL)
948 			data |= PORT_AUTO_NEG_10BT_FD;
949 		if (val & ADVERTISE_10HALF)
950 			data |= PORT_AUTO_NEG_10BT;
951 		if (data != ctrl)
952 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
953 		break;
954 	case PHY_REG_LINK_MD:
955 		if (val & PHY_START_CABLE_DIAG)
956 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
957 		break;
958 	default:
959 		break;
960 	}
961 }
962 
963 static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds,
964 						   int port,
965 						   enum dsa_tag_protocol mp)
966 {
967 	struct ksz_device *dev = ds->priv;
968 
969 	/* ksz88x3 uses the same tag schema as KSZ9893 */
970 	return ksz_is_ksz88x3(dev) ?
971 		DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795;
972 }
973 
974 static u32 ksz8_sw_get_phy_flags(struct dsa_switch *ds, int port)
975 {
976 	/* Silicon Errata Sheet (DS80000830A):
977 	 * Port 1 does not work with LinkMD Cable-Testing.
978 	 * Port 1 does not respond to received PAUSE control frames.
979 	 */
980 	if (!port)
981 		return MICREL_KSZ8_P1_ERRATA;
982 
983 	return 0;
984 }
985 
986 static void ksz8_get_strings(struct dsa_switch *ds, int port,
987 			     u32 stringset, uint8_t *buf)
988 {
989 	struct ksz_device *dev = ds->priv;
990 	int i;
991 
992 	for (i = 0; i < dev->mib_cnt; i++) {
993 		memcpy(buf + i * ETH_GSTRING_LEN,
994 		       dev->mib_names[i].string, ETH_GSTRING_LEN);
995 	}
996 }
997 
998 static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
999 {
1000 	u8 data;
1001 
1002 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1003 	data &= ~PORT_VLAN_MEMBERSHIP;
1004 	data |= (member & dev->port_mask);
1005 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1006 }
1007 
1008 static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1009 {
1010 	struct ksz_device *dev = ds->priv;
1011 	struct ksz_port *p;
1012 	u8 data;
1013 
1014 	ksz_pread8(dev, port, P_STP_CTRL, &data);
1015 	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
1016 
1017 	switch (state) {
1018 	case BR_STATE_DISABLED:
1019 		data |= PORT_LEARN_DISABLE;
1020 		break;
1021 	case BR_STATE_LISTENING:
1022 		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
1023 		break;
1024 	case BR_STATE_LEARNING:
1025 		data |= PORT_RX_ENABLE;
1026 		break;
1027 	case BR_STATE_FORWARDING:
1028 		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
1029 		break;
1030 	case BR_STATE_BLOCKING:
1031 		data |= PORT_LEARN_DISABLE;
1032 		break;
1033 	default:
1034 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1035 		return;
1036 	}
1037 
1038 	ksz_pwrite8(dev, port, P_STP_CTRL, data);
1039 
1040 	p = &dev->ports[port];
1041 	p->stp_state = state;
1042 
1043 	ksz_update_port_member(dev, port);
1044 }
1045 
1046 static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1047 {
1048 	u8 learn[DSA_MAX_PORTS];
1049 	int first, index, cnt;
1050 	struct ksz_port *p;
1051 
1052 	if ((uint)port < dev->port_cnt) {
1053 		first = port;
1054 		cnt = port + 1;
1055 	} else {
1056 		/* Flush all ports. */
1057 		first = 0;
1058 		cnt = dev->port_cnt;
1059 	}
1060 	for (index = first; index < cnt; index++) {
1061 		p = &dev->ports[index];
1062 		if (!p->on)
1063 			continue;
1064 		ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
1065 		if (!(learn[index] & PORT_LEARN_DISABLE))
1066 			ksz_pwrite8(dev, index, P_STP_CTRL,
1067 				    learn[index] | PORT_LEARN_DISABLE);
1068 	}
1069 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1070 	for (index = first; index < cnt; index++) {
1071 		p = &dev->ports[index];
1072 		if (!p->on)
1073 			continue;
1074 		if (!(learn[index] & PORT_LEARN_DISABLE))
1075 			ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
1076 	}
1077 }
1078 
1079 static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag,
1080 				    struct netlink_ext_ack *extack)
1081 {
1082 	struct ksz_device *dev = ds->priv;
1083 
1084 	if (ksz_is_ksz88x3(dev))
1085 		return -ENOTSUPP;
1086 
1087 	/* Discard packets with VID not enabled on the switch */
1088 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1089 
1090 	/* Discard packets with VID not enabled on the ingress port */
1091 	for (port = 0; port < dev->phy_port_cnt; ++port)
1092 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1093 			     flag);
1094 
1095 	return 0;
1096 }
1097 
1098 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1099 {
1100 	if (ksz_is_ksz88x3(dev)) {
1101 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1102 			0x03 << (4 - 2 * port), state);
1103 	} else {
1104 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1105 	}
1106 }
1107 
1108 static int ksz8_port_vlan_add(struct dsa_switch *ds, int port,
1109 			      const struct switchdev_obj_port_vlan *vlan,
1110 			      struct netlink_ext_ack *extack)
1111 {
1112 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1113 	struct ksz_device *dev = ds->priv;
1114 	struct ksz_port *p = &dev->ports[port];
1115 	u16 data, new_pvid = 0;
1116 	u8 fid, member, valid;
1117 
1118 	if (ksz_is_ksz88x3(dev))
1119 		return -ENOTSUPP;
1120 
1121 	/* If a VLAN is added with untagged flag different from the
1122 	 * port's Remove Tag flag, we need to change the latter.
1123 	 * Ignore VID 0, which is always untagged.
1124 	 * Ignore CPU port, which will always be tagged.
1125 	 */
1126 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1127 	    port != dev->cpu_port) {
1128 		unsigned int vid;
1129 
1130 		/* Reject attempts to add a VLAN that requires the
1131 		 * Remove Tag flag to be changed, unless there are no
1132 		 * other VLANs currently configured.
1133 		 */
1134 		for (vid = 1; vid < dev->num_vlans; ++vid) {
1135 			/* Skip the VID we are going to add or reconfigure */
1136 			if (vid == vlan->vid)
1137 				continue;
1138 
1139 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1140 				       &fid, &member, &valid);
1141 			if (valid && (member & BIT(port)))
1142 				return -EINVAL;
1143 		}
1144 
1145 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1146 		p->remove_tag = untagged;
1147 	}
1148 
1149 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1150 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1151 
1152 	/* First time to setup the VLAN entry. */
1153 	if (!valid) {
1154 		/* Need to find a way to map VID to FID. */
1155 		fid = 1;
1156 		valid = 1;
1157 	}
1158 	member |= BIT(port);
1159 
1160 	ksz8_to_vlan(dev, fid, member, valid, &data);
1161 	ksz8_w_vlan_table(dev, vlan->vid, data);
1162 
1163 	/* change PVID */
1164 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1165 		new_pvid = vlan->vid;
1166 
1167 	if (new_pvid) {
1168 		u16 vid;
1169 
1170 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1171 		vid &= ~VLAN_VID_MASK;
1172 		vid |= new_pvid;
1173 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1174 
1175 		ksz8_port_enable_pvid(dev, port, true);
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static int ksz8_port_vlan_del(struct dsa_switch *ds, int port,
1182 			      const struct switchdev_obj_port_vlan *vlan)
1183 {
1184 	struct ksz_device *dev = ds->priv;
1185 	u16 data, pvid;
1186 	u8 fid, member, valid;
1187 
1188 	if (ksz_is_ksz88x3(dev))
1189 		return -ENOTSUPP;
1190 
1191 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1192 	pvid = pvid & 0xFFF;
1193 
1194 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1195 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1196 
1197 	member &= ~BIT(port);
1198 
1199 	/* Invalidate the entry if no more member. */
1200 	if (!member) {
1201 		fid = 0;
1202 		valid = 0;
1203 	}
1204 
1205 	ksz8_to_vlan(dev, fid, member, valid, &data);
1206 	ksz8_w_vlan_table(dev, vlan->vid, data);
1207 
1208 	if (pvid == vlan->vid)
1209 		ksz8_port_enable_pvid(dev, port, false);
1210 
1211 	return 0;
1212 }
1213 
1214 static int ksz8_port_mirror_add(struct dsa_switch *ds, int port,
1215 				struct dsa_mall_mirror_tc_entry *mirror,
1216 				bool ingress)
1217 {
1218 	struct ksz_device *dev = ds->priv;
1219 
1220 	if (ingress) {
1221 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1222 		dev->mirror_rx |= BIT(port);
1223 	} else {
1224 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1225 		dev->mirror_tx |= BIT(port);
1226 	}
1227 
1228 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1229 
1230 	/* configure mirror port */
1231 	if (dev->mirror_rx || dev->mirror_tx)
1232 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1233 			     PORT_MIRROR_SNIFFER, true);
1234 
1235 	return 0;
1236 }
1237 
1238 static void ksz8_port_mirror_del(struct dsa_switch *ds, int port,
1239 				 struct dsa_mall_mirror_tc_entry *mirror)
1240 {
1241 	struct ksz_device *dev = ds->priv;
1242 	u8 data;
1243 
1244 	if (mirror->ingress) {
1245 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1246 		dev->mirror_rx &= ~BIT(port);
1247 	} else {
1248 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1249 		dev->mirror_tx &= ~BIT(port);
1250 	}
1251 
1252 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1253 
1254 	if (!dev->mirror_rx && !dev->mirror_tx)
1255 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1256 			     PORT_MIRROR_SNIFFER, false);
1257 }
1258 
1259 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1260 {
1261 	struct ksz_port *p = &dev->ports[port];
1262 	u8 data8;
1263 
1264 	if (!p->interface && dev->compat_interface) {
1265 		dev_warn(dev->dev,
1266 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1267 			 "Please update your device tree.\n",
1268 			 port);
1269 		p->interface = dev->compat_interface;
1270 	}
1271 
1272 	/* Configure MII interface for proper network communication. */
1273 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1274 	data8 &= ~PORT_INTERFACE_TYPE;
1275 	data8 &= ~PORT_GMII_1GPS_MODE;
1276 	switch (p->interface) {
1277 	case PHY_INTERFACE_MODE_MII:
1278 		p->phydev.speed = SPEED_100;
1279 		break;
1280 	case PHY_INTERFACE_MODE_RMII:
1281 		data8 |= PORT_INTERFACE_RMII;
1282 		p->phydev.speed = SPEED_100;
1283 		break;
1284 	case PHY_INTERFACE_MODE_GMII:
1285 		data8 |= PORT_GMII_1GPS_MODE;
1286 		data8 |= PORT_INTERFACE_GMII;
1287 		p->phydev.speed = SPEED_1000;
1288 		break;
1289 	default:
1290 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1291 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1292 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1293 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1294 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1295 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1296 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1297 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1298 		data8 |= PORT_GMII_1GPS_MODE;
1299 		data8 |= PORT_INTERFACE_RGMII;
1300 		p->phydev.speed = SPEED_1000;
1301 		break;
1302 	}
1303 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1304 	p->phydev.duplex = 1;
1305 }
1306 
1307 static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1308 {
1309 	struct dsa_switch *ds = dev->ds;
1310 	struct ksz8 *ksz8 = dev->priv;
1311 	const u32 *masks;
1312 	u8 member;
1313 
1314 	masks = ksz8->masks;
1315 
1316 	/* enable broadcast storm limit */
1317 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1318 
1319 	if (!ksz_is_ksz88x3(dev))
1320 		ksz8795_set_prio_queue(dev, port, 4);
1321 
1322 	/* disable DiffServ priority */
1323 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1324 
1325 	/* replace priority */
1326 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1327 		     masks[PORT_802_1P_REMAPPING], false);
1328 
1329 	/* enable 802.1p priority */
1330 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1331 
1332 	if (cpu_port) {
1333 		if (!ksz_is_ksz88x3(dev))
1334 			ksz8795_cpu_interface_select(dev, port);
1335 
1336 		member = dsa_user_ports(ds);
1337 	} else {
1338 		member = BIT(dsa_upstream_port(ds, port));
1339 	}
1340 
1341 	ksz8_cfg_port_member(dev, port, member);
1342 }
1343 
1344 static void ksz8_config_cpu_port(struct dsa_switch *ds)
1345 {
1346 	struct ksz_device *dev = ds->priv;
1347 	struct ksz8 *ksz8 = dev->priv;
1348 	const u8 *regs = ksz8->regs;
1349 	struct ksz_port *p;
1350 	const u32 *masks;
1351 	u8 remote;
1352 	int i;
1353 
1354 	masks = ksz8->masks;
1355 
1356 	/* Switch marks the maximum frame with extra byte as oversize. */
1357 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1358 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1359 
1360 	p = &dev->ports[dev->cpu_port];
1361 	p->on = 1;
1362 
1363 	ksz8_port_setup(dev, dev->cpu_port, true);
1364 
1365 	for (i = 0; i < dev->phy_port_cnt; i++) {
1366 		p = &dev->ports[i];
1367 
1368 		ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1369 
1370 		/* Last port may be disabled. */
1371 		if (i == dev->phy_port_cnt)
1372 			break;
1373 		p->on = 1;
1374 		p->phy = 1;
1375 	}
1376 	for (i = 0; i < dev->phy_port_cnt; i++) {
1377 		p = &dev->ports[i];
1378 		if (!p->on)
1379 			continue;
1380 		if (!ksz_is_ksz88x3(dev)) {
1381 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1382 			if (remote & PORT_FIBER_MODE)
1383 				p->fiber = 1;
1384 		}
1385 		if (p->fiber)
1386 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1387 				     true);
1388 		else
1389 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1390 				     false);
1391 	}
1392 }
1393 
1394 static int ksz8_setup(struct dsa_switch *ds)
1395 {
1396 	struct ksz_device *dev = ds->priv;
1397 	struct alu_struct alu;
1398 	int i, ret = 0;
1399 
1400 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1401 				       dev->num_vlans, GFP_KERNEL);
1402 	if (!dev->vlan_cache)
1403 		return -ENOMEM;
1404 
1405 	ret = ksz8_reset_switch(dev);
1406 	if (ret) {
1407 		dev_err(ds->dev, "failed to reset switch\n");
1408 		return ret;
1409 	}
1410 
1411 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1412 
1413 	/* Enable automatic fast aging when link changed detected. */
1414 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1415 
1416 	/* Enable aggressive back off algorithm in half duplex mode. */
1417 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1418 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1419 
1420 	/*
1421 	 * Make sure unicast VLAN boundary is set as default and
1422 	 * enable no excessive collision drop.
1423 	 */
1424 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1425 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1426 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1427 
1428 	ksz8_config_cpu_port(ds);
1429 
1430 	ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
1431 
1432 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1433 
1434 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1435 
1436 	if (!ksz_is_ksz88x3(dev))
1437 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1438 
1439 	/* set broadcast storm protection 10% rate */
1440 	regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
1441 			   BROADCAST_STORM_RATE,
1442 			   (BROADCAST_STORM_VALUE *
1443 			   BROADCAST_STORM_PROT_RATE) / 100);
1444 
1445 	for (i = 0; i < (dev->num_vlans / 4); i++)
1446 		ksz8_r_vlan_entries(dev, i);
1447 
1448 	/* Setup STP address for STP operation. */
1449 	memset(&alu, 0, sizeof(alu));
1450 	ether_addr_copy(alu.mac, eth_stp_addr);
1451 	alu.is_static = true;
1452 	alu.is_override = true;
1453 	alu.port_forward = dev->host_mask;
1454 
1455 	ksz8_w_sta_mac_table(dev, 0, &alu);
1456 
1457 	ksz_init_mib_timer(dev);
1458 
1459 	ds->configure_vlan_while_not_filtering = false;
1460 
1461 	return 0;
1462 }
1463 
1464 static void ksz8_validate(struct dsa_switch *ds, int port,
1465 			  unsigned long *supported,
1466 			  struct phylink_link_state *state)
1467 {
1468 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1469 	struct ksz_device *dev = ds->priv;
1470 
1471 	if (port == dev->cpu_port) {
1472 		if (state->interface != PHY_INTERFACE_MODE_RMII &&
1473 		    state->interface != PHY_INTERFACE_MODE_MII &&
1474 		    state->interface != PHY_INTERFACE_MODE_NA)
1475 			goto unsupported;
1476 	} else {
1477 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1478 		    state->interface != PHY_INTERFACE_MODE_NA)
1479 			goto unsupported;
1480 	}
1481 
1482 	/* Allow all the expected bits */
1483 	phylink_set_port_modes(mask);
1484 	phylink_set(mask, Autoneg);
1485 
1486 	/* Silicon Errata Sheet (DS80000830A):
1487 	 * "Port 1 does not respond to received flow control PAUSE frames"
1488 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1489 	 * switches.
1490 	 */
1491 	if (!ksz_is_ksz88x3(dev) || port)
1492 		phylink_set(mask, Pause);
1493 
1494 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1495 	if (!ksz_is_ksz88x3(dev))
1496 		phylink_set(mask, Asym_Pause);
1497 
1498 	/* 10M and 100M are only supported */
1499 	phylink_set(mask, 10baseT_Half);
1500 	phylink_set(mask, 10baseT_Full);
1501 	phylink_set(mask, 100baseT_Half);
1502 	phylink_set(mask, 100baseT_Full);
1503 
1504 	linkmode_and(supported, supported, mask);
1505 	linkmode_and(state->advertising, state->advertising, mask);
1506 
1507 	return;
1508 
1509 unsupported:
1510 	linkmode_zero(supported);
1511 	dev_err(ds->dev, "Unsupported interface: %s, port: %d\n",
1512 		phy_modes(state->interface), port);
1513 }
1514 
1515 static const struct dsa_switch_ops ksz8_switch_ops = {
1516 	.get_tag_protocol	= ksz8_get_tag_protocol,
1517 	.get_phy_flags		= ksz8_sw_get_phy_flags,
1518 	.setup			= ksz8_setup,
1519 	.phy_read		= ksz_phy_read16,
1520 	.phy_write		= ksz_phy_write16,
1521 	.phylink_validate	= ksz8_validate,
1522 	.phylink_mac_link_down	= ksz_mac_link_down,
1523 	.port_enable		= ksz_enable_port,
1524 	.get_strings		= ksz8_get_strings,
1525 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1526 	.get_sset_count		= ksz_sset_count,
1527 	.port_bridge_join	= ksz_port_bridge_join,
1528 	.port_bridge_leave	= ksz_port_bridge_leave,
1529 	.port_stp_state_set	= ksz8_port_stp_state_set,
1530 	.port_fast_age		= ksz_port_fast_age,
1531 	.port_vlan_filtering	= ksz8_port_vlan_filtering,
1532 	.port_vlan_add		= ksz8_port_vlan_add,
1533 	.port_vlan_del		= ksz8_port_vlan_del,
1534 	.port_fdb_dump		= ksz_port_fdb_dump,
1535 	.port_mdb_add           = ksz_port_mdb_add,
1536 	.port_mdb_del           = ksz_port_mdb_del,
1537 	.port_mirror_add	= ksz8_port_mirror_add,
1538 	.port_mirror_del	= ksz8_port_mirror_del,
1539 };
1540 
1541 static u32 ksz8_get_port_addr(int port, int offset)
1542 {
1543 	return PORT_CTRL_ADDR(port, offset);
1544 }
1545 
1546 static int ksz8_switch_detect(struct ksz_device *dev)
1547 {
1548 	u8 id1, id2;
1549 	u16 id16;
1550 	int ret;
1551 
1552 	/* read chip id */
1553 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
1554 	if (ret)
1555 		return ret;
1556 
1557 	id1 = id16 >> 8;
1558 	id2 = id16 & SW_CHIP_ID_M;
1559 
1560 	switch (id1) {
1561 	case KSZ87_FAMILY_ID:
1562 		if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
1563 			return -ENODEV;
1564 
1565 		if (id2 == CHIP_ID_95) {
1566 			u8 val;
1567 
1568 			id2 = 0x95;
1569 			ksz_read8(dev, REG_PORT_STATUS_0, &val);
1570 			if (val & PORT_FIBER_MODE)
1571 				id2 = 0x65;
1572 		} else if (id2 == CHIP_ID_94) {
1573 			id2 = 0x94;
1574 		}
1575 		break;
1576 	case KSZ88_FAMILY_ID:
1577 		if (id2 != CHIP_ID_63)
1578 			return -ENODEV;
1579 		break;
1580 	default:
1581 		dev_err(dev->dev, "invalid family id: %d\n", id1);
1582 		return -ENODEV;
1583 	}
1584 	id16 &= ~0xff;
1585 	id16 |= id2;
1586 	dev->chip_id = id16;
1587 
1588 	return 0;
1589 }
1590 
1591 struct ksz_chip_data {
1592 	u16 chip_id;
1593 	const char *dev_name;
1594 	int num_vlans;
1595 	int num_alus;
1596 	int num_statics;
1597 	int cpu_ports;
1598 	int port_cnt;
1599 };
1600 
1601 static const struct ksz_chip_data ksz8_switch_chips[] = {
1602 	{
1603 		.chip_id = 0x8795,
1604 		.dev_name = "KSZ8795",
1605 		.num_vlans = 4096,
1606 		.num_alus = 0,
1607 		.num_statics = 8,
1608 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1609 		.port_cnt = 5,		/* total cpu and user ports */
1610 	},
1611 	{
1612 		/*
1613 		 * WARNING
1614 		 * =======
1615 		 * KSZ8794 is similar to KSZ8795, except the port map
1616 		 * contains a gap between external and CPU ports, the
1617 		 * port map is NOT continuous. The per-port register
1618 		 * map is shifted accordingly too, i.e. registers at
1619 		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1620 		 * used on KSZ8795 for external port 3.
1621 		 *           external  cpu
1622 		 * KSZ8794   0,1,2      4
1623 		 * KSZ8795   0,1,2,3    4
1624 		 * KSZ8765   0,1,2,3    4
1625 		 */
1626 		.chip_id = 0x8794,
1627 		.dev_name = "KSZ8794",
1628 		.num_vlans = 4096,
1629 		.num_alus = 0,
1630 		.num_statics = 8,
1631 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1632 		.port_cnt = 4,		/* total cpu and user ports */
1633 	},
1634 	{
1635 		.chip_id = 0x8765,
1636 		.dev_name = "KSZ8765",
1637 		.num_vlans = 4096,
1638 		.num_alus = 0,
1639 		.num_statics = 8,
1640 		.cpu_ports = 0x10,	/* can be configured as cpu port */
1641 		.port_cnt = 5,		/* total cpu and user ports */
1642 	},
1643 	{
1644 		.chip_id = 0x8830,
1645 		.dev_name = "KSZ8863/KSZ8873",
1646 		.num_vlans = 16,
1647 		.num_alus = 0,
1648 		.num_statics = 8,
1649 		.cpu_ports = 0x4,	/* can be configured as cpu port */
1650 		.port_cnt = 3,
1651 	},
1652 };
1653 
1654 static int ksz8_switch_init(struct ksz_device *dev)
1655 {
1656 	struct ksz8 *ksz8 = dev->priv;
1657 	int i;
1658 
1659 	dev->ds->ops = &ksz8_switch_ops;
1660 
1661 	for (i = 0; i < ARRAY_SIZE(ksz8_switch_chips); i++) {
1662 		const struct ksz_chip_data *chip = &ksz8_switch_chips[i];
1663 
1664 		if (dev->chip_id == chip->chip_id) {
1665 			dev->name = chip->dev_name;
1666 			dev->num_vlans = chip->num_vlans;
1667 			dev->num_alus = chip->num_alus;
1668 			dev->num_statics = chip->num_statics;
1669 			dev->port_cnt = fls(chip->cpu_ports);
1670 			dev->cpu_port = fls(chip->cpu_ports) - 1;
1671 			dev->phy_port_cnt = dev->port_cnt - 1;
1672 			dev->cpu_ports = chip->cpu_ports;
1673 			dev->host_mask = chip->cpu_ports;
1674 			dev->port_mask = (BIT(dev->phy_port_cnt) - 1) |
1675 					 chip->cpu_ports;
1676 			break;
1677 		}
1678 	}
1679 
1680 	/* no switch found */
1681 	if (!dev->cpu_ports)
1682 		return -ENODEV;
1683 
1684 	if (ksz_is_ksz88x3(dev)) {
1685 		ksz8->regs = ksz8863_regs;
1686 		ksz8->masks = ksz8863_masks;
1687 		ksz8->shifts = ksz8863_shifts;
1688 		dev->mib_cnt = ARRAY_SIZE(ksz88xx_mib_names);
1689 		dev->mib_names = ksz88xx_mib_names;
1690 	} else {
1691 		ksz8->regs = ksz8795_regs;
1692 		ksz8->masks = ksz8795_masks;
1693 		ksz8->shifts = ksz8795_shifts;
1694 		dev->mib_cnt = ARRAY_SIZE(ksz87xx_mib_names);
1695 		dev->mib_names = ksz87xx_mib_names;
1696 	}
1697 
1698 	dev->reg_mib_cnt = MIB_COUNTER_NUM;
1699 
1700 	dev->ports = devm_kzalloc(dev->dev,
1701 				  dev->port_cnt * sizeof(struct ksz_port),
1702 				  GFP_KERNEL);
1703 	if (!dev->ports)
1704 		return -ENOMEM;
1705 	for (i = 0; i < dev->port_cnt; i++) {
1706 		mutex_init(&dev->ports[i].mib.cnt_mutex);
1707 		dev->ports[i].mib.counters =
1708 			devm_kzalloc(dev->dev,
1709 				     sizeof(u64) *
1710 				     (dev->mib_cnt + 1),
1711 				     GFP_KERNEL);
1712 		if (!dev->ports[i].mib.counters)
1713 			return -ENOMEM;
1714 	}
1715 
1716 	/* set the real number of ports */
1717 	dev->ds->num_ports = dev->port_cnt;
1718 
1719 	/* We rely on software untagging on the CPU port, so that we
1720 	 * can support both tagged and untagged VLANs
1721 	 */
1722 	dev->ds->untag_bridge_pvid = true;
1723 
1724 	/* VLAN filtering is partly controlled by the global VLAN
1725 	 * Enable flag
1726 	 */
1727 	dev->ds->vlan_filtering_is_global = true;
1728 
1729 	return 0;
1730 }
1731 
1732 static void ksz8_switch_exit(struct ksz_device *dev)
1733 {
1734 	ksz8_reset_switch(dev);
1735 }
1736 
1737 static const struct ksz_dev_ops ksz8_dev_ops = {
1738 	.get_port_addr = ksz8_get_port_addr,
1739 	.cfg_port_member = ksz8_cfg_port_member,
1740 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
1741 	.port_setup = ksz8_port_setup,
1742 	.r_phy = ksz8_r_phy,
1743 	.w_phy = ksz8_w_phy,
1744 	.r_dyn_mac_table = ksz8_r_dyn_mac_table,
1745 	.r_sta_mac_table = ksz8_r_sta_mac_table,
1746 	.w_sta_mac_table = ksz8_w_sta_mac_table,
1747 	.r_mib_cnt = ksz8_r_mib_cnt,
1748 	.r_mib_pkt = ksz8_r_mib_pkt,
1749 	.freeze_mib = ksz8_freeze_mib,
1750 	.port_init_cnt = ksz8_port_init_cnt,
1751 	.shutdown = ksz8_reset_switch,
1752 	.detect = ksz8_switch_detect,
1753 	.init = ksz8_switch_init,
1754 	.exit = ksz8_switch_exit,
1755 };
1756 
1757 int ksz8_switch_register(struct ksz_device *dev)
1758 {
1759 	return ksz_switch_register(dev, &ksz8_dev_ops);
1760 }
1761 EXPORT_SYMBOL(ksz8_switch_register);
1762 
1763 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1764 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1765 MODULE_LICENSE("GPL");
1766