xref: /openbmc/linux/drivers/net/dsa/microchip/ksz8795.c (revision 61c1f340bc809a1ca1e3c8794207a91cde1a7c78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static const u8 ksz8795_regs[] = {
30 	[REG_IND_CTRL_0]		= 0x6E,
31 	[REG_IND_DATA_8]		= 0x70,
32 	[REG_IND_DATA_CHECK]		= 0x72,
33 	[REG_IND_DATA_HI]		= 0x71,
34 	[REG_IND_DATA_LO]		= 0x75,
35 	[REG_IND_MIB_CHECK]		= 0x74,
36 	[REG_IND_BYTE]			= 0xA0,
37 	[P_FORCE_CTRL]			= 0x0C,
38 	[P_LINK_STATUS]			= 0x0E,
39 	[P_LOCAL_CTRL]			= 0x07,
40 	[P_NEG_RESTART_CTRL]		= 0x0D,
41 	[P_REMOTE_STATUS]		= 0x08,
42 	[P_SPEED_STATUS]		= 0x09,
43 	[S_TAIL_TAG_CTRL]		= 0x0C,
44 };
45 
46 static const u32 ksz8795_masks[] = {
47 	[PORT_802_1P_REMAPPING]		= BIT(7),
48 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
49 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
50 	[MIB_COUNTER_VALID]		= BIT(5),
51 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
52 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
53 	[VLAN_TABLE_VALID]		= BIT(12),
54 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
55 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
56 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
57 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(26),
58 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(24, 20),
59 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
60 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(8),
61 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
62 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
63 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(26, 20),
64 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
65 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
66 };
67 
68 static const u8 ksz8795_shifts[] = {
69 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
70 	[VLAN_TABLE]			= 16,
71 	[STATIC_MAC_FWD_PORTS]		= 16,
72 	[STATIC_MAC_FID]		= 24,
73 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
74 	[DYNAMIC_MAC_ENTRIES]		= 29,
75 	[DYNAMIC_MAC_FID]		= 16,
76 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
77 	[DYNAMIC_MAC_SRC_PORT]		= 24,
78 };
79 
80 static const u8 ksz8863_regs[] = {
81 	[REG_IND_CTRL_0]		= 0x79,
82 	[REG_IND_DATA_8]		= 0x7B,
83 	[REG_IND_DATA_CHECK]		= 0x7B,
84 	[REG_IND_DATA_HI]		= 0x7C,
85 	[REG_IND_DATA_LO]		= 0x80,
86 	[REG_IND_MIB_CHECK]		= 0x80,
87 	[P_FORCE_CTRL]			= 0x0C,
88 	[P_LINK_STATUS]			= 0x0E,
89 	[P_LOCAL_CTRL]			= 0x0C,
90 	[P_NEG_RESTART_CTRL]		= 0x0D,
91 	[P_REMOTE_STATUS]		= 0x0E,
92 	[P_SPEED_STATUS]		= 0x0F,
93 	[S_TAIL_TAG_CTRL]		= 0x03,
94 };
95 
96 static const u32 ksz8863_masks[] = {
97 	[PORT_802_1P_REMAPPING]		= BIT(3),
98 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
99 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
100 	[MIB_COUNTER_VALID]		= BIT(6),
101 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
102 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
103 	[VLAN_TABLE_VALID]		= BIT(19),
104 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
105 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
106 	[STATIC_MAC_TABLE_FID]		= GENMASK(29, 26),
107 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
108 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
109 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(5, 0),
110 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
111 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
112 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 28),
113 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
114 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
115 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
116 };
117 
118 static u8 ksz8863_shifts[] = {
119 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
120 	[STATIC_MAC_FWD_PORTS]		= 16,
121 	[STATIC_MAC_FID]		= 22,
122 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
123 	[DYNAMIC_MAC_ENTRIES]		= 24,
124 	[DYNAMIC_MAC_FID]		= 16,
125 	[DYNAMIC_MAC_TIMESTAMP]		= 24,
126 	[DYNAMIC_MAC_SRC_PORT]		= 20,
127 };
128 
129 static bool ksz_is_ksz88x3(struct ksz_device *dev)
130 {
131 	return dev->chip_id == 0x8830;
132 }
133 
134 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
135 {
136 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
137 }
138 
139 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
140 			 bool set)
141 {
142 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
143 			   bits, set ? bits : 0);
144 }
145 
146 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
147 {
148 	struct ksz8 *ksz8 = dev->priv;
149 	const u8 *regs = ksz8->regs;
150 	u16 ctrl_addr;
151 	int ret = 0;
152 
153 	mutex_lock(&dev->alu_mutex);
154 
155 	ctrl_addr = IND_ACC_TABLE(table) | addr;
156 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
157 	if (!ret)
158 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
159 
160 	mutex_unlock(&dev->alu_mutex);
161 
162 	return ret;
163 }
164 
165 static int ksz8_reset_switch(struct ksz_device *dev)
166 {
167 	if (ksz_is_ksz88x3(dev)) {
168 		/* reset switch */
169 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
170 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
171 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
172 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
173 	} else {
174 		/* reset switch */
175 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
176 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
177 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
178 	}
179 
180 	return 0;
181 }
182 
183 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
184 {
185 	u8 hi, lo;
186 
187 	/* Number of queues can only be 1, 2, or 4. */
188 	switch (queue) {
189 	case 4:
190 	case 3:
191 		queue = PORT_QUEUE_SPLIT_4;
192 		break;
193 	case 2:
194 		queue = PORT_QUEUE_SPLIT_2;
195 		break;
196 	default:
197 		queue = PORT_QUEUE_SPLIT_1;
198 	}
199 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
200 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
201 	lo &= ~PORT_QUEUE_SPLIT_L;
202 	if (queue & PORT_QUEUE_SPLIT_2)
203 		lo |= PORT_QUEUE_SPLIT_L;
204 	hi &= ~PORT_QUEUE_SPLIT_H;
205 	if (queue & PORT_QUEUE_SPLIT_4)
206 		hi |= PORT_QUEUE_SPLIT_H;
207 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
208 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
209 
210 	/* Default is port based for egress rate limit. */
211 	if (queue != PORT_QUEUE_SPLIT_1)
212 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
213 			true);
214 }
215 
216 static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
217 {
218 	struct ksz8 *ksz8 = dev->priv;
219 	const u32 *masks;
220 	const u8 *regs;
221 	u16 ctrl_addr;
222 	u32 data;
223 	u8 check;
224 	int loop;
225 
226 	masks = ksz8->masks;
227 	regs = ksz8->regs;
228 
229 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
230 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
231 
232 	mutex_lock(&dev->alu_mutex);
233 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
234 
235 	/* It is almost guaranteed to always read the valid bit because of
236 	 * slow SPI speed.
237 	 */
238 	for (loop = 2; loop > 0; loop--) {
239 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
240 
241 		if (check & masks[MIB_COUNTER_VALID]) {
242 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
243 			if (check & masks[MIB_COUNTER_OVERFLOW])
244 				*cnt += MIB_COUNTER_VALUE + 1;
245 			*cnt += data & MIB_COUNTER_VALUE;
246 			break;
247 		}
248 	}
249 	mutex_unlock(&dev->alu_mutex);
250 }
251 
252 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
253 			      u64 *dropped, u64 *cnt)
254 {
255 	struct ksz8 *ksz8 = dev->priv;
256 	const u32 *masks;
257 	const u8 *regs;
258 	u16 ctrl_addr;
259 	u32 data;
260 	u8 check;
261 	int loop;
262 
263 	masks = ksz8->masks;
264 	regs = ksz8->regs;
265 
266 	addr -= dev->info->reg_mib_cnt;
267 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
268 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
269 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
270 
271 	mutex_lock(&dev->alu_mutex);
272 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
273 
274 	/* It is almost guaranteed to always read the valid bit because of
275 	 * slow SPI speed.
276 	 */
277 	for (loop = 2; loop > 0; loop--) {
278 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
279 
280 		if (check & masks[MIB_COUNTER_VALID]) {
281 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
282 			if (addr < 2) {
283 				u64 total;
284 
285 				total = check & MIB_TOTAL_BYTES_H;
286 				total <<= 32;
287 				*cnt += total;
288 				*cnt += data;
289 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
290 					total = MIB_TOTAL_BYTES_H + 1;
291 					total <<= 32;
292 					*cnt += total;
293 				}
294 			} else {
295 				if (check & masks[MIB_COUNTER_OVERFLOW])
296 					*cnt += MIB_PACKET_DROPPED + 1;
297 				*cnt += data & MIB_PACKET_DROPPED;
298 			}
299 			break;
300 		}
301 	}
302 	mutex_unlock(&dev->alu_mutex);
303 }
304 
305 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
306 			      u64 *dropped, u64 *cnt)
307 {
308 	struct ksz8 *ksz8 = dev->priv;
309 	const u8 *regs = ksz8->regs;
310 	u32 *last = (u32 *)dropped;
311 	u16 ctrl_addr;
312 	u32 data;
313 	u32 cur;
314 
315 	addr -= dev->info->reg_mib_cnt;
316 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
317 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
318 	ctrl_addr += port;
319 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
320 
321 	mutex_lock(&dev->alu_mutex);
322 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
323 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
324 	mutex_unlock(&dev->alu_mutex);
325 
326 	data &= MIB_PACKET_DROPPED;
327 	cur = last[addr];
328 	if (data != cur) {
329 		last[addr] = data;
330 		if (data < cur)
331 			data += MIB_PACKET_DROPPED + 1;
332 		data -= cur;
333 		*cnt += data;
334 	}
335 }
336 
337 static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
338 			   u64 *dropped, u64 *cnt)
339 {
340 	if (ksz_is_ksz88x3(dev))
341 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
342 	else
343 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
344 }
345 
346 static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
347 {
348 	if (ksz_is_ksz88x3(dev))
349 		return;
350 
351 	/* enable the port for flush/freeze function */
352 	if (freeze)
353 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
354 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
355 
356 	/* disable the port after freeze is done */
357 	if (!freeze)
358 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
359 }
360 
361 static void ksz8_port_init_cnt(struct ksz_device *dev, int port)
362 {
363 	struct ksz_port_mib *mib = &dev->ports[port].mib;
364 	u64 *dropped;
365 
366 	if (!ksz_is_ksz88x3(dev)) {
367 		/* flush all enabled port MIB counters */
368 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
369 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
370 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
371 	}
372 
373 	mib->cnt_ptr = 0;
374 
375 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
376 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
377 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
378 					&mib->counters[mib->cnt_ptr]);
379 		++mib->cnt_ptr;
380 	}
381 
382 	/* last one in storage */
383 	dropped = &mib->counters[dev->info->mib_cnt];
384 
385 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
386 	while (mib->cnt_ptr < dev->info->mib_cnt) {
387 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
388 					dropped, &mib->counters[mib->cnt_ptr]);
389 		++mib->cnt_ptr;
390 	}
391 }
392 
393 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
394 {
395 	struct ksz8 *ksz8 = dev->priv;
396 	const u8 *regs = ksz8->regs;
397 	u16 ctrl_addr;
398 
399 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
400 
401 	mutex_lock(&dev->alu_mutex);
402 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
403 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
404 	mutex_unlock(&dev->alu_mutex);
405 }
406 
407 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
408 {
409 	struct ksz8 *ksz8 = dev->priv;
410 	const u8 *regs = ksz8->regs;
411 	u16 ctrl_addr;
412 
413 	ctrl_addr = IND_ACC_TABLE(table) | addr;
414 
415 	mutex_lock(&dev->alu_mutex);
416 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
417 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
418 	mutex_unlock(&dev->alu_mutex);
419 }
420 
421 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
422 {
423 	struct ksz8 *ksz8 = dev->priv;
424 	int timeout = 100;
425 	const u32 *masks;
426 	const u8 *regs;
427 
428 	masks = ksz8->masks;
429 	regs = ksz8->regs;
430 
431 	do {
432 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
433 		timeout--;
434 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
435 
436 	/* Entry is not ready for accessing. */
437 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
438 		return -EAGAIN;
439 	/* Entry is ready for accessing. */
440 	} else {
441 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
442 
443 		/* There is no valid entry in the table. */
444 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
445 			return -ENXIO;
446 	}
447 	return 0;
448 }
449 
450 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
451 				u8 *mac_addr, u8 *fid, u8 *src_port,
452 				u8 *timestamp, u16 *entries)
453 {
454 	struct ksz8 *ksz8 = dev->priv;
455 	u32 data_hi, data_lo;
456 	const u8 *shifts;
457 	const u32 *masks;
458 	const u8 *regs;
459 	u16 ctrl_addr;
460 	u8 data;
461 	int rc;
462 
463 	shifts = ksz8->shifts;
464 	masks = ksz8->masks;
465 	regs = ksz8->regs;
466 
467 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
468 
469 	mutex_lock(&dev->alu_mutex);
470 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
471 
472 	rc = ksz8_valid_dyn_entry(dev, &data);
473 	if (rc == -EAGAIN) {
474 		if (addr == 0)
475 			*entries = 0;
476 	} else if (rc == -ENXIO) {
477 		*entries = 0;
478 	/* At least one valid entry in the table. */
479 	} else {
480 		u64 buf = 0;
481 		int cnt;
482 
483 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
484 		data_hi = (u32)(buf >> 32);
485 		data_lo = (u32)buf;
486 
487 		/* Check out how many valid entry in the table. */
488 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
489 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
490 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
491 			shifts[DYNAMIC_MAC_ENTRIES];
492 		*entries = cnt + 1;
493 
494 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
495 			shifts[DYNAMIC_MAC_FID];
496 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
497 			shifts[DYNAMIC_MAC_SRC_PORT];
498 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
499 			shifts[DYNAMIC_MAC_TIMESTAMP];
500 
501 		mac_addr[5] = (u8)data_lo;
502 		mac_addr[4] = (u8)(data_lo >> 8);
503 		mac_addr[3] = (u8)(data_lo >> 16);
504 		mac_addr[2] = (u8)(data_lo >> 24);
505 
506 		mac_addr[1] = (u8)data_hi;
507 		mac_addr[0] = (u8)(data_hi >> 8);
508 		rc = 0;
509 	}
510 	mutex_unlock(&dev->alu_mutex);
511 
512 	return rc;
513 }
514 
515 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
516 				struct alu_struct *alu)
517 {
518 	struct ksz8 *ksz8 = dev->priv;
519 	u32 data_hi, data_lo;
520 	const u8 *shifts;
521 	const u32 *masks;
522 	u64 data;
523 
524 	shifts = ksz8->shifts;
525 	masks = ksz8->masks;
526 
527 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
528 	data_hi = data >> 32;
529 	data_lo = (u32)data;
530 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
531 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
532 		alu->mac[5] = (u8)data_lo;
533 		alu->mac[4] = (u8)(data_lo >> 8);
534 		alu->mac[3] = (u8)(data_lo >> 16);
535 		alu->mac[2] = (u8)(data_lo >> 24);
536 		alu->mac[1] = (u8)data_hi;
537 		alu->mac[0] = (u8)(data_hi >> 8);
538 		alu->port_forward =
539 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
540 				shifts[STATIC_MAC_FWD_PORTS];
541 		alu->is_override =
542 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
543 		data_hi >>= 1;
544 		alu->is_static = true;
545 		alu->is_use_fid =
546 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
547 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
548 				shifts[STATIC_MAC_FID];
549 		return 0;
550 	}
551 	return -ENXIO;
552 }
553 
554 static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
555 				 struct alu_struct *alu)
556 {
557 	struct ksz8 *ksz8 = dev->priv;
558 	u32 data_hi, data_lo;
559 	const u8 *shifts;
560 	const u32 *masks;
561 	u64 data;
562 
563 	shifts = ksz8->shifts;
564 	masks = ksz8->masks;
565 
566 	data_lo = ((u32)alu->mac[2] << 24) |
567 		((u32)alu->mac[3] << 16) |
568 		((u32)alu->mac[4] << 8) | alu->mac[5];
569 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
570 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
571 
572 	if (alu->is_override)
573 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
574 	if (alu->is_use_fid) {
575 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
576 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
577 	}
578 	if (alu->is_static)
579 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
580 	else
581 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
582 
583 	data = (u64)data_hi << 32 | data_lo;
584 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
585 }
586 
587 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
588 			   u8 *member, u8 *valid)
589 {
590 	struct ksz8 *ksz8 = dev->priv;
591 	const u8 *shifts;
592 	const u32 *masks;
593 
594 	shifts = ksz8->shifts;
595 	masks = ksz8->masks;
596 
597 	*fid = vlan & masks[VLAN_TABLE_FID];
598 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
599 			shifts[VLAN_TABLE_MEMBERSHIP_S];
600 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
601 }
602 
603 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
604 			 u16 *vlan)
605 {
606 	struct ksz8 *ksz8 = dev->priv;
607 	const u8 *shifts;
608 	const u32 *masks;
609 
610 	shifts = ksz8->shifts;
611 	masks = ksz8->masks;
612 
613 	*vlan = fid;
614 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
615 	if (valid)
616 		*vlan |= masks[VLAN_TABLE_VALID];
617 }
618 
619 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
620 {
621 	struct ksz8 *ksz8 = dev->priv;
622 	const u8 *shifts;
623 	u64 data;
624 	int i;
625 
626 	shifts = ksz8->shifts;
627 
628 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
629 	addr *= 4;
630 	for (i = 0; i < 4; i++) {
631 		dev->vlan_cache[addr + i].table[0] = (u16)data;
632 		data >>= shifts[VLAN_TABLE];
633 	}
634 }
635 
636 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
637 {
638 	int index;
639 	u16 *data;
640 	u16 addr;
641 	u64 buf;
642 
643 	data = (u16 *)&buf;
644 	addr = vid / 4;
645 	index = vid & 3;
646 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
647 	*vlan = data[index];
648 }
649 
650 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
651 {
652 	int index;
653 	u16 *data;
654 	u16 addr;
655 	u64 buf;
656 
657 	data = (u16 *)&buf;
658 	addr = vid / 4;
659 	index = vid & 3;
660 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
661 	data[index] = vlan;
662 	dev->vlan_cache[vid].table[0] = vlan;
663 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
664 }
665 
666 static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
667 {
668 	struct ksz8 *ksz8 = dev->priv;
669 	u8 restart, speed, ctrl, link;
670 	const u8 *regs = ksz8->regs;
671 	int processed = true;
672 	u8 val1, val2;
673 	u16 data = 0;
674 	u8 p = phy;
675 
676 	switch (reg) {
677 	case MII_BMCR:
678 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
679 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
680 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
681 		if (restart & PORT_PHY_LOOPBACK)
682 			data |= BMCR_LOOPBACK;
683 		if (ctrl & PORT_FORCE_100_MBIT)
684 			data |= BMCR_SPEED100;
685 		if (ksz_is_ksz88x3(dev)) {
686 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
687 				data |= BMCR_ANENABLE;
688 		} else {
689 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
690 				data |= BMCR_ANENABLE;
691 		}
692 		if (restart & PORT_POWER_DOWN)
693 			data |= BMCR_PDOWN;
694 		if (restart & PORT_AUTO_NEG_RESTART)
695 			data |= BMCR_ANRESTART;
696 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
697 			data |= BMCR_FULLDPLX;
698 		if (speed & PORT_HP_MDIX)
699 			data |= KSZ886X_BMCR_HP_MDIX;
700 		if (restart & PORT_FORCE_MDIX)
701 			data |= KSZ886X_BMCR_FORCE_MDI;
702 		if (restart & PORT_AUTO_MDIX_DISABLE)
703 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
704 		if (restart & PORT_TX_DISABLE)
705 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
706 		if (restart & PORT_LED_OFF)
707 			data |= KSZ886X_BMCR_DISABLE_LED;
708 		break;
709 	case MII_BMSR:
710 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
711 		data = BMSR_100FULL |
712 		       BMSR_100HALF |
713 		       BMSR_10FULL |
714 		       BMSR_10HALF |
715 		       BMSR_ANEGCAPABLE;
716 		if (link & PORT_AUTO_NEG_COMPLETE)
717 			data |= BMSR_ANEGCOMPLETE;
718 		if (link & PORT_STAT_LINK_GOOD)
719 			data |= BMSR_LSTATUS;
720 		break;
721 	case MII_PHYSID1:
722 		data = KSZ8795_ID_HI;
723 		break;
724 	case MII_PHYSID2:
725 		if (ksz_is_ksz88x3(dev))
726 			data = KSZ8863_ID_LO;
727 		else
728 			data = KSZ8795_ID_LO;
729 		break;
730 	case MII_ADVERTISE:
731 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
732 		data = ADVERTISE_CSMA;
733 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
734 			data |= ADVERTISE_PAUSE_CAP;
735 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
736 			data |= ADVERTISE_100FULL;
737 		if (ctrl & PORT_AUTO_NEG_100BTX)
738 			data |= ADVERTISE_100HALF;
739 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
740 			data |= ADVERTISE_10FULL;
741 		if (ctrl & PORT_AUTO_NEG_10BT)
742 			data |= ADVERTISE_10HALF;
743 		break;
744 	case MII_LPA:
745 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
746 		data = LPA_SLCT;
747 		if (link & PORT_REMOTE_SYM_PAUSE)
748 			data |= LPA_PAUSE_CAP;
749 		if (link & PORT_REMOTE_100BTX_FD)
750 			data |= LPA_100FULL;
751 		if (link & PORT_REMOTE_100BTX)
752 			data |= LPA_100HALF;
753 		if (link & PORT_REMOTE_10BT_FD)
754 			data |= LPA_10FULL;
755 		if (link & PORT_REMOTE_10BT)
756 			data |= LPA_10HALF;
757 		if (data & ~LPA_SLCT)
758 			data |= LPA_LPACK;
759 		break;
760 	case PHY_REG_LINK_MD:
761 		ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
762 		ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
763 		if (val1 & PORT_START_CABLE_DIAG)
764 			data |= PHY_START_CABLE_DIAG;
765 
766 		if (val1 & PORT_CABLE_10M_SHORT)
767 			data |= PHY_CABLE_10M_SHORT;
768 
769 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
770 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
771 
772 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
773 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
774 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
775 		break;
776 	case PHY_REG_PHY_CTRL:
777 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
778 		if (link & PORT_MDIX_STATUS)
779 			data |= KSZ886X_CTRL_MDIX_STAT;
780 		break;
781 	default:
782 		processed = false;
783 		break;
784 	}
785 	if (processed)
786 		*val = data;
787 }
788 
789 static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
790 {
791 	struct ksz8 *ksz8 = dev->priv;
792 	u8 restart, speed, ctrl, data;
793 	const u8 *regs = ksz8->regs;
794 	u8 p = phy;
795 
796 	switch (reg) {
797 	case MII_BMCR:
798 
799 		/* Do not support PHY reset function. */
800 		if (val & BMCR_RESET)
801 			break;
802 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
803 		data = speed;
804 		if (val & KSZ886X_BMCR_HP_MDIX)
805 			data |= PORT_HP_MDIX;
806 		else
807 			data &= ~PORT_HP_MDIX;
808 		if (data != speed)
809 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
810 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
811 		data = ctrl;
812 		if (ksz_is_ksz88x3(dev)) {
813 			if ((val & BMCR_ANENABLE))
814 				data |= PORT_AUTO_NEG_ENABLE;
815 			else
816 				data &= ~PORT_AUTO_NEG_ENABLE;
817 		} else {
818 			if (!(val & BMCR_ANENABLE))
819 				data |= PORT_AUTO_NEG_DISABLE;
820 			else
821 				data &= ~PORT_AUTO_NEG_DISABLE;
822 
823 			/* Fiber port does not support auto-negotiation. */
824 			if (dev->ports[p].fiber)
825 				data |= PORT_AUTO_NEG_DISABLE;
826 		}
827 
828 		if (val & BMCR_SPEED100)
829 			data |= PORT_FORCE_100_MBIT;
830 		else
831 			data &= ~PORT_FORCE_100_MBIT;
832 		if (val & BMCR_FULLDPLX)
833 			data |= PORT_FORCE_FULL_DUPLEX;
834 		else
835 			data &= ~PORT_FORCE_FULL_DUPLEX;
836 		if (data != ctrl)
837 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
838 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
839 		data = restart;
840 		if (val & KSZ886X_BMCR_DISABLE_LED)
841 			data |= PORT_LED_OFF;
842 		else
843 			data &= ~PORT_LED_OFF;
844 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
845 			data |= PORT_TX_DISABLE;
846 		else
847 			data &= ~PORT_TX_DISABLE;
848 		if (val & BMCR_ANRESTART)
849 			data |= PORT_AUTO_NEG_RESTART;
850 		else
851 			data &= ~(PORT_AUTO_NEG_RESTART);
852 		if (val & BMCR_PDOWN)
853 			data |= PORT_POWER_DOWN;
854 		else
855 			data &= ~PORT_POWER_DOWN;
856 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
857 			data |= PORT_AUTO_MDIX_DISABLE;
858 		else
859 			data &= ~PORT_AUTO_MDIX_DISABLE;
860 		if (val & KSZ886X_BMCR_FORCE_MDI)
861 			data |= PORT_FORCE_MDIX;
862 		else
863 			data &= ~PORT_FORCE_MDIX;
864 		if (val & BMCR_LOOPBACK)
865 			data |= PORT_PHY_LOOPBACK;
866 		else
867 			data &= ~PORT_PHY_LOOPBACK;
868 		if (data != restart)
869 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
870 		break;
871 	case MII_ADVERTISE:
872 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
873 		data = ctrl;
874 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
875 			  PORT_AUTO_NEG_100BTX_FD |
876 			  PORT_AUTO_NEG_100BTX |
877 			  PORT_AUTO_NEG_10BT_FD |
878 			  PORT_AUTO_NEG_10BT);
879 		if (val & ADVERTISE_PAUSE_CAP)
880 			data |= PORT_AUTO_NEG_SYM_PAUSE;
881 		if (val & ADVERTISE_100FULL)
882 			data |= PORT_AUTO_NEG_100BTX_FD;
883 		if (val & ADVERTISE_100HALF)
884 			data |= PORT_AUTO_NEG_100BTX;
885 		if (val & ADVERTISE_10FULL)
886 			data |= PORT_AUTO_NEG_10BT_FD;
887 		if (val & ADVERTISE_10HALF)
888 			data |= PORT_AUTO_NEG_10BT;
889 		if (data != ctrl)
890 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
891 		break;
892 	case PHY_REG_LINK_MD:
893 		if (val & PHY_START_CABLE_DIAG)
894 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
895 		break;
896 	default:
897 		break;
898 	}
899 }
900 
901 static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds,
902 						   int port,
903 						   enum dsa_tag_protocol mp)
904 {
905 	struct ksz_device *dev = ds->priv;
906 
907 	/* ksz88x3 uses the same tag schema as KSZ9893 */
908 	return ksz_is_ksz88x3(dev) ?
909 		DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795;
910 }
911 
912 static u32 ksz8_sw_get_phy_flags(struct dsa_switch *ds, int port)
913 {
914 	/* Silicon Errata Sheet (DS80000830A):
915 	 * Port 1 does not work with LinkMD Cable-Testing.
916 	 * Port 1 does not respond to received PAUSE control frames.
917 	 */
918 	if (!port)
919 		return MICREL_KSZ8_P1_ERRATA;
920 
921 	return 0;
922 }
923 
924 static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
925 {
926 	u8 data;
927 
928 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
929 	data &= ~PORT_VLAN_MEMBERSHIP;
930 	data |= (member & dev->port_mask);
931 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
932 }
933 
934 static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
935 {
936 	ksz_port_stp_state_set(ds, port, state, P_STP_CTRL);
937 }
938 
939 static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
940 {
941 	u8 learn[DSA_MAX_PORTS];
942 	int first, index, cnt;
943 	struct ksz_port *p;
944 
945 	if ((uint)port < dev->info->port_cnt) {
946 		first = port;
947 		cnt = port + 1;
948 	} else {
949 		/* Flush all ports. */
950 		first = 0;
951 		cnt = dev->info->port_cnt;
952 	}
953 	for (index = first; index < cnt; index++) {
954 		p = &dev->ports[index];
955 		if (!p->on)
956 			continue;
957 		ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
958 		if (!(learn[index] & PORT_LEARN_DISABLE))
959 			ksz_pwrite8(dev, index, P_STP_CTRL,
960 				    learn[index] | PORT_LEARN_DISABLE);
961 	}
962 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
963 	for (index = first; index < cnt; index++) {
964 		p = &dev->ports[index];
965 		if (!p->on)
966 			continue;
967 		if (!(learn[index] & PORT_LEARN_DISABLE))
968 			ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
969 	}
970 }
971 
972 static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag,
973 				    struct netlink_ext_ack *extack)
974 {
975 	struct ksz_device *dev = ds->priv;
976 
977 	if (ksz_is_ksz88x3(dev))
978 		return -ENOTSUPP;
979 
980 	/* Discard packets with VID not enabled on the switch */
981 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
982 
983 	/* Discard packets with VID not enabled on the ingress port */
984 	for (port = 0; port < dev->phy_port_cnt; ++port)
985 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
986 			     flag);
987 
988 	return 0;
989 }
990 
991 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
992 {
993 	if (ksz_is_ksz88x3(dev)) {
994 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
995 			0x03 << (4 - 2 * port), state);
996 	} else {
997 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
998 	}
999 }
1000 
1001 static int ksz8_port_vlan_add(struct dsa_switch *ds, int port,
1002 			      const struct switchdev_obj_port_vlan *vlan,
1003 			      struct netlink_ext_ack *extack)
1004 {
1005 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1006 	struct ksz_device *dev = ds->priv;
1007 	struct ksz_port *p = &dev->ports[port];
1008 	u16 data, new_pvid = 0;
1009 	u8 fid, member, valid;
1010 
1011 	if (ksz_is_ksz88x3(dev))
1012 		return -ENOTSUPP;
1013 
1014 	/* If a VLAN is added with untagged flag different from the
1015 	 * port's Remove Tag flag, we need to change the latter.
1016 	 * Ignore VID 0, which is always untagged.
1017 	 * Ignore CPU port, which will always be tagged.
1018 	 */
1019 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1020 	    port != dev->cpu_port) {
1021 		unsigned int vid;
1022 
1023 		/* Reject attempts to add a VLAN that requires the
1024 		 * Remove Tag flag to be changed, unless there are no
1025 		 * other VLANs currently configured.
1026 		 */
1027 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1028 			/* Skip the VID we are going to add or reconfigure */
1029 			if (vid == vlan->vid)
1030 				continue;
1031 
1032 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1033 				       &fid, &member, &valid);
1034 			if (valid && (member & BIT(port)))
1035 				return -EINVAL;
1036 		}
1037 
1038 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1039 		p->remove_tag = untagged;
1040 	}
1041 
1042 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1043 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1044 
1045 	/* First time to setup the VLAN entry. */
1046 	if (!valid) {
1047 		/* Need to find a way to map VID to FID. */
1048 		fid = 1;
1049 		valid = 1;
1050 	}
1051 	member |= BIT(port);
1052 
1053 	ksz8_to_vlan(dev, fid, member, valid, &data);
1054 	ksz8_w_vlan_table(dev, vlan->vid, data);
1055 
1056 	/* change PVID */
1057 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1058 		new_pvid = vlan->vid;
1059 
1060 	if (new_pvid) {
1061 		u16 vid;
1062 
1063 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1064 		vid &= ~VLAN_VID_MASK;
1065 		vid |= new_pvid;
1066 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1067 
1068 		ksz8_port_enable_pvid(dev, port, true);
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 static int ksz8_port_vlan_del(struct dsa_switch *ds, int port,
1075 			      const struct switchdev_obj_port_vlan *vlan)
1076 {
1077 	struct ksz_device *dev = ds->priv;
1078 	u16 data, pvid;
1079 	u8 fid, member, valid;
1080 
1081 	if (ksz_is_ksz88x3(dev))
1082 		return -ENOTSUPP;
1083 
1084 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1085 	pvid = pvid & 0xFFF;
1086 
1087 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1088 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1089 
1090 	member &= ~BIT(port);
1091 
1092 	/* Invalidate the entry if no more member. */
1093 	if (!member) {
1094 		fid = 0;
1095 		valid = 0;
1096 	}
1097 
1098 	ksz8_to_vlan(dev, fid, member, valid, &data);
1099 	ksz8_w_vlan_table(dev, vlan->vid, data);
1100 
1101 	if (pvid == vlan->vid)
1102 		ksz8_port_enable_pvid(dev, port, false);
1103 
1104 	return 0;
1105 }
1106 
1107 static int ksz8_port_mirror_add(struct dsa_switch *ds, int port,
1108 				struct dsa_mall_mirror_tc_entry *mirror,
1109 				bool ingress, struct netlink_ext_ack *extack)
1110 {
1111 	struct ksz_device *dev = ds->priv;
1112 
1113 	if (ingress) {
1114 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1115 		dev->mirror_rx |= BIT(port);
1116 	} else {
1117 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1118 		dev->mirror_tx |= BIT(port);
1119 	}
1120 
1121 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1122 
1123 	/* configure mirror port */
1124 	if (dev->mirror_rx || dev->mirror_tx)
1125 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1126 			     PORT_MIRROR_SNIFFER, true);
1127 
1128 	return 0;
1129 }
1130 
1131 static void ksz8_port_mirror_del(struct dsa_switch *ds, int port,
1132 				 struct dsa_mall_mirror_tc_entry *mirror)
1133 {
1134 	struct ksz_device *dev = ds->priv;
1135 	u8 data;
1136 
1137 	if (mirror->ingress) {
1138 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1139 		dev->mirror_rx &= ~BIT(port);
1140 	} else {
1141 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1142 		dev->mirror_tx &= ~BIT(port);
1143 	}
1144 
1145 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1146 
1147 	if (!dev->mirror_rx && !dev->mirror_tx)
1148 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1149 			     PORT_MIRROR_SNIFFER, false);
1150 }
1151 
1152 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1153 {
1154 	struct ksz_port *p = &dev->ports[port];
1155 	u8 data8;
1156 
1157 	if (!p->interface && dev->compat_interface) {
1158 		dev_warn(dev->dev,
1159 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1160 			 "Please update your device tree.\n",
1161 			 port);
1162 		p->interface = dev->compat_interface;
1163 	}
1164 
1165 	/* Configure MII interface for proper network communication. */
1166 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1167 	data8 &= ~PORT_INTERFACE_TYPE;
1168 	data8 &= ~PORT_GMII_1GPS_MODE;
1169 	switch (p->interface) {
1170 	case PHY_INTERFACE_MODE_MII:
1171 		p->phydev.speed = SPEED_100;
1172 		break;
1173 	case PHY_INTERFACE_MODE_RMII:
1174 		data8 |= PORT_INTERFACE_RMII;
1175 		p->phydev.speed = SPEED_100;
1176 		break;
1177 	case PHY_INTERFACE_MODE_GMII:
1178 		data8 |= PORT_GMII_1GPS_MODE;
1179 		data8 |= PORT_INTERFACE_GMII;
1180 		p->phydev.speed = SPEED_1000;
1181 		break;
1182 	default:
1183 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1184 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1185 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1186 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1187 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1188 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1189 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1190 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1191 		data8 |= PORT_GMII_1GPS_MODE;
1192 		data8 |= PORT_INTERFACE_RGMII;
1193 		p->phydev.speed = SPEED_1000;
1194 		break;
1195 	}
1196 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1197 	p->phydev.duplex = 1;
1198 }
1199 
1200 static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1201 {
1202 	struct dsa_switch *ds = dev->ds;
1203 	struct ksz8 *ksz8 = dev->priv;
1204 	const u32 *masks;
1205 	u8 member;
1206 
1207 	masks = ksz8->masks;
1208 
1209 	/* enable broadcast storm limit */
1210 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1211 
1212 	if (!ksz_is_ksz88x3(dev))
1213 		ksz8795_set_prio_queue(dev, port, 4);
1214 
1215 	/* disable DiffServ priority */
1216 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1217 
1218 	/* replace priority */
1219 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1220 		     masks[PORT_802_1P_REMAPPING], false);
1221 
1222 	/* enable 802.1p priority */
1223 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1224 
1225 	if (cpu_port) {
1226 		if (!ksz_is_ksz88x3(dev))
1227 			ksz8795_cpu_interface_select(dev, port);
1228 
1229 		member = dsa_user_ports(ds);
1230 	} else {
1231 		member = BIT(dsa_upstream_port(ds, port));
1232 	}
1233 
1234 	ksz8_cfg_port_member(dev, port, member);
1235 }
1236 
1237 static void ksz8_config_cpu_port(struct dsa_switch *ds)
1238 {
1239 	struct ksz_device *dev = ds->priv;
1240 	struct ksz8 *ksz8 = dev->priv;
1241 	const u8 *regs = ksz8->regs;
1242 	struct ksz_port *p;
1243 	const u32 *masks;
1244 	u8 remote;
1245 	int i;
1246 
1247 	masks = ksz8->masks;
1248 
1249 	/* Switch marks the maximum frame with extra byte as oversize. */
1250 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1251 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1252 
1253 	p = &dev->ports[dev->cpu_port];
1254 	p->on = 1;
1255 
1256 	ksz8_port_setup(dev, dev->cpu_port, true);
1257 
1258 	for (i = 0; i < dev->phy_port_cnt; i++) {
1259 		p = &dev->ports[i];
1260 
1261 		ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1262 
1263 		/* Last port may be disabled. */
1264 		if (i == dev->phy_port_cnt)
1265 			break;
1266 		p->on = 1;
1267 		p->phy = 1;
1268 	}
1269 	for (i = 0; i < dev->phy_port_cnt; i++) {
1270 		p = &dev->ports[i];
1271 		if (!p->on)
1272 			continue;
1273 		if (!ksz_is_ksz88x3(dev)) {
1274 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1275 			if (remote & PORT_FIBER_MODE)
1276 				p->fiber = 1;
1277 		}
1278 		if (p->fiber)
1279 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1280 				     true);
1281 		else
1282 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1283 				     false);
1284 	}
1285 }
1286 
1287 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1288 {
1289 	struct ksz_device *dev = ds->priv;
1290 	int ret = 0;
1291 
1292 	/* KSZ87xx Errata DS80000687C.
1293 	 * Module 2: Link drops with some EEE link partners.
1294 	 *   An issue with the EEE next page exchange between the
1295 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1296 	 *   the link dropping.
1297 	 */
1298 	if (dev->info->ksz87xx_eee_link_erratum)
1299 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1300 
1301 	return ret;
1302 }
1303 
1304 static int ksz8_setup(struct dsa_switch *ds)
1305 {
1306 	struct ksz_device *dev = ds->priv;
1307 	struct alu_struct alu;
1308 	int i, ret = 0;
1309 
1310 	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1311 				       dev->info->num_vlans, GFP_KERNEL);
1312 	if (!dev->vlan_cache)
1313 		return -ENOMEM;
1314 
1315 	ret = ksz8_reset_switch(dev);
1316 	if (ret) {
1317 		dev_err(ds->dev, "failed to reset switch\n");
1318 		return ret;
1319 	}
1320 
1321 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1322 
1323 	/* Enable automatic fast aging when link changed detected. */
1324 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1325 
1326 	/* Enable aggressive back off algorithm in half duplex mode. */
1327 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1328 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1329 
1330 	/*
1331 	 * Make sure unicast VLAN boundary is set as default and
1332 	 * enable no excessive collision drop.
1333 	 */
1334 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1335 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1336 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1337 
1338 	ksz8_config_cpu_port(ds);
1339 
1340 	ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
1341 
1342 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1343 
1344 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1345 
1346 	if (!ksz_is_ksz88x3(dev))
1347 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1348 
1349 	/* set broadcast storm protection 10% rate */
1350 	regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
1351 			   BROADCAST_STORM_RATE,
1352 			   (BROADCAST_STORM_VALUE *
1353 			   BROADCAST_STORM_PROT_RATE) / 100);
1354 
1355 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1356 		ksz8_r_vlan_entries(dev, i);
1357 
1358 	/* Setup STP address for STP operation. */
1359 	memset(&alu, 0, sizeof(alu));
1360 	ether_addr_copy(alu.mac, eth_stp_addr);
1361 	alu.is_static = true;
1362 	alu.is_override = true;
1363 	alu.port_forward = dev->info->cpu_ports;
1364 
1365 	ksz8_w_sta_mac_table(dev, 0, &alu);
1366 
1367 	ksz_init_mib_timer(dev);
1368 
1369 	ds->configure_vlan_while_not_filtering = false;
1370 
1371 	return ksz8_handle_global_errata(ds);
1372 }
1373 
1374 static void ksz8_get_caps(struct dsa_switch *ds, int port,
1375 			  struct phylink_config *config)
1376 {
1377 	struct ksz_device *dev = ds->priv;
1378 
1379 	ksz_phylink_get_caps(ds, port, config);
1380 
1381 	config->mac_capabilities = MAC_10 | MAC_100;
1382 
1383 	/* Silicon Errata Sheet (DS80000830A):
1384 	 * "Port 1 does not respond to received flow control PAUSE frames"
1385 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1386 	 * switches.
1387 	 */
1388 	if (!ksz_is_ksz88x3(dev) || port)
1389 		config->mac_capabilities |= MAC_SYM_PAUSE;
1390 
1391 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1392 	if (!ksz_is_ksz88x3(dev))
1393 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1394 }
1395 
1396 static const struct dsa_switch_ops ksz8_switch_ops = {
1397 	.get_tag_protocol	= ksz8_get_tag_protocol,
1398 	.get_phy_flags		= ksz8_sw_get_phy_flags,
1399 	.setup			= ksz8_setup,
1400 	.phy_read		= ksz_phy_read16,
1401 	.phy_write		= ksz_phy_write16,
1402 	.phylink_get_caps	= ksz8_get_caps,
1403 	.phylink_mac_link_down	= ksz_mac_link_down,
1404 	.port_enable		= ksz_enable_port,
1405 	.get_strings		= ksz_get_strings,
1406 	.get_ethtool_stats	= ksz_get_ethtool_stats,
1407 	.get_sset_count		= ksz_sset_count,
1408 	.port_bridge_join	= ksz_port_bridge_join,
1409 	.port_bridge_leave	= ksz_port_bridge_leave,
1410 	.port_stp_state_set	= ksz8_port_stp_state_set,
1411 	.port_fast_age		= ksz_port_fast_age,
1412 	.port_vlan_filtering	= ksz8_port_vlan_filtering,
1413 	.port_vlan_add		= ksz8_port_vlan_add,
1414 	.port_vlan_del		= ksz8_port_vlan_del,
1415 	.port_fdb_dump		= ksz_port_fdb_dump,
1416 	.port_mdb_add           = ksz_port_mdb_add,
1417 	.port_mdb_del           = ksz_port_mdb_del,
1418 	.port_mirror_add	= ksz8_port_mirror_add,
1419 	.port_mirror_del	= ksz8_port_mirror_del,
1420 };
1421 
1422 static u32 ksz8_get_port_addr(int port, int offset)
1423 {
1424 	return PORT_CTRL_ADDR(port, offset);
1425 }
1426 
1427 static int ksz8_switch_detect(struct ksz_device *dev)
1428 {
1429 	u8 id1, id2;
1430 	u16 id16;
1431 	int ret;
1432 
1433 	/* read chip id */
1434 	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
1435 	if (ret)
1436 		return ret;
1437 
1438 	id1 = id16 >> 8;
1439 	id2 = id16 & SW_CHIP_ID_M;
1440 
1441 	switch (id1) {
1442 	case KSZ87_FAMILY_ID:
1443 		if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
1444 			return -ENODEV;
1445 
1446 		if (id2 == CHIP_ID_95) {
1447 			u8 val;
1448 
1449 			id2 = 0x95;
1450 			ksz_read8(dev, REG_PORT_STATUS_0, &val);
1451 			if (val & PORT_FIBER_MODE)
1452 				id2 = 0x65;
1453 		} else if (id2 == CHIP_ID_94) {
1454 			id2 = 0x94;
1455 		}
1456 		break;
1457 	case KSZ88_FAMILY_ID:
1458 		if (id2 != CHIP_ID_63)
1459 			return -ENODEV;
1460 		break;
1461 	default:
1462 		dev_err(dev->dev, "invalid family id: %d\n", id1);
1463 		return -ENODEV;
1464 	}
1465 	id16 &= ~0xff;
1466 	id16 |= id2;
1467 	dev->chip_id = id16;
1468 
1469 	return 0;
1470 }
1471 
1472 static int ksz8_switch_init(struct ksz_device *dev)
1473 {
1474 	struct ksz8 *ksz8 = dev->priv;
1475 
1476 	dev->ds->ops = &ksz8_switch_ops;
1477 
1478 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1479 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1480 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1481 
1482 	if (ksz_is_ksz88x3(dev)) {
1483 		ksz8->regs = ksz8863_regs;
1484 		ksz8->masks = ksz8863_masks;
1485 		ksz8->shifts = ksz8863_shifts;
1486 	} else {
1487 		ksz8->regs = ksz8795_regs;
1488 		ksz8->masks = ksz8795_masks;
1489 		ksz8->shifts = ksz8795_shifts;
1490 	}
1491 
1492 	/* We rely on software untagging on the CPU port, so that we
1493 	 * can support both tagged and untagged VLANs
1494 	 */
1495 	dev->ds->untag_bridge_pvid = true;
1496 
1497 	/* VLAN filtering is partly controlled by the global VLAN
1498 	 * Enable flag
1499 	 */
1500 	dev->ds->vlan_filtering_is_global = true;
1501 
1502 	return 0;
1503 }
1504 
1505 static void ksz8_switch_exit(struct ksz_device *dev)
1506 {
1507 	ksz8_reset_switch(dev);
1508 }
1509 
1510 static const struct ksz_dev_ops ksz8_dev_ops = {
1511 	.get_port_addr = ksz8_get_port_addr,
1512 	.cfg_port_member = ksz8_cfg_port_member,
1513 	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
1514 	.port_setup = ksz8_port_setup,
1515 	.r_phy = ksz8_r_phy,
1516 	.w_phy = ksz8_w_phy,
1517 	.r_dyn_mac_table = ksz8_r_dyn_mac_table,
1518 	.r_sta_mac_table = ksz8_r_sta_mac_table,
1519 	.w_sta_mac_table = ksz8_w_sta_mac_table,
1520 	.r_mib_cnt = ksz8_r_mib_cnt,
1521 	.r_mib_pkt = ksz8_r_mib_pkt,
1522 	.freeze_mib = ksz8_freeze_mib,
1523 	.port_init_cnt = ksz8_port_init_cnt,
1524 	.shutdown = ksz8_reset_switch,
1525 	.detect = ksz8_switch_detect,
1526 	.init = ksz8_switch_init,
1527 	.exit = ksz8_switch_exit,
1528 };
1529 
1530 int ksz8_switch_register(struct ksz_device *dev)
1531 {
1532 	return ksz_switch_register(dev, &ksz8_dev_ops);
1533 }
1534 EXPORT_SYMBOL(ksz8_switch_register);
1535 
1536 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1537 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1538 MODULE_LICENSE("GPL");
1539