1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static bool ksz_is_ksz88x3(struct ksz_device *dev)
30 {
31 	return dev->chip_id == 0x8830;
32 }
33 
34 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
35 {
36 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
37 }
38 
39 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
40 			 bool set)
41 {
42 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
43 			   bits, set ? bits : 0);
44 }
45 
46 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
47 {
48 	const u16 *regs;
49 	u16 ctrl_addr;
50 	int ret = 0;
51 
52 	regs = dev->info->regs;
53 
54 	mutex_lock(&dev->alu_mutex);
55 
56 	ctrl_addr = IND_ACC_TABLE(table) | addr;
57 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
58 	if (!ret)
59 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
60 
61 	mutex_unlock(&dev->alu_mutex);
62 
63 	return ret;
64 }
65 
66 int ksz8_reset_switch(struct ksz_device *dev)
67 {
68 	if (ksz_is_ksz88x3(dev)) {
69 		/* reset switch */
70 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
71 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
72 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
73 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
74 	} else {
75 		/* reset switch */
76 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
77 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
78 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
79 	}
80 
81 	return 0;
82 }
83 
84 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
85 {
86 	u8 hi, lo;
87 
88 	/* Number of queues can only be 1, 2, or 4. */
89 	switch (queue) {
90 	case 4:
91 	case 3:
92 		queue = PORT_QUEUE_SPLIT_4;
93 		break;
94 	case 2:
95 		queue = PORT_QUEUE_SPLIT_2;
96 		break;
97 	default:
98 		queue = PORT_QUEUE_SPLIT_1;
99 	}
100 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
101 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
102 	lo &= ~PORT_QUEUE_SPLIT_L;
103 	if (queue & PORT_QUEUE_SPLIT_2)
104 		lo |= PORT_QUEUE_SPLIT_L;
105 	hi &= ~PORT_QUEUE_SPLIT_H;
106 	if (queue & PORT_QUEUE_SPLIT_4)
107 		hi |= PORT_QUEUE_SPLIT_H;
108 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
109 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
110 
111 	/* Default is port based for egress rate limit. */
112 	if (queue != PORT_QUEUE_SPLIT_1)
113 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
114 			true);
115 }
116 
117 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
118 {
119 	const u32 *masks;
120 	const u16 *regs;
121 	u16 ctrl_addr;
122 	u32 data;
123 	u8 check;
124 	int loop;
125 
126 	masks = dev->info->masks;
127 	regs = dev->info->regs;
128 
129 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
130 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
131 
132 	mutex_lock(&dev->alu_mutex);
133 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
134 
135 	/* It is almost guaranteed to always read the valid bit because of
136 	 * slow SPI speed.
137 	 */
138 	for (loop = 2; loop > 0; loop--) {
139 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
140 
141 		if (check & masks[MIB_COUNTER_VALID]) {
142 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
143 			if (check & masks[MIB_COUNTER_OVERFLOW])
144 				*cnt += MIB_COUNTER_VALUE + 1;
145 			*cnt += data & MIB_COUNTER_VALUE;
146 			break;
147 		}
148 	}
149 	mutex_unlock(&dev->alu_mutex);
150 }
151 
152 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
153 			      u64 *dropped, u64 *cnt)
154 {
155 	const u32 *masks;
156 	const u16 *regs;
157 	u16 ctrl_addr;
158 	u32 data;
159 	u8 check;
160 	int loop;
161 
162 	masks = dev->info->masks;
163 	regs = dev->info->regs;
164 
165 	addr -= dev->info->reg_mib_cnt;
166 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
167 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
168 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
169 
170 	mutex_lock(&dev->alu_mutex);
171 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
172 
173 	/* It is almost guaranteed to always read the valid bit because of
174 	 * slow SPI speed.
175 	 */
176 	for (loop = 2; loop > 0; loop--) {
177 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
178 
179 		if (check & masks[MIB_COUNTER_VALID]) {
180 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
181 			if (addr < 2) {
182 				u64 total;
183 
184 				total = check & MIB_TOTAL_BYTES_H;
185 				total <<= 32;
186 				*cnt += total;
187 				*cnt += data;
188 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
189 					total = MIB_TOTAL_BYTES_H + 1;
190 					total <<= 32;
191 					*cnt += total;
192 				}
193 			} else {
194 				if (check & masks[MIB_COUNTER_OVERFLOW])
195 					*cnt += MIB_PACKET_DROPPED + 1;
196 				*cnt += data & MIB_PACKET_DROPPED;
197 			}
198 			break;
199 		}
200 	}
201 	mutex_unlock(&dev->alu_mutex);
202 }
203 
204 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
205 			      u64 *dropped, u64 *cnt)
206 {
207 	u32 *last = (u32 *)dropped;
208 	const u16 *regs;
209 	u16 ctrl_addr;
210 	u32 data;
211 	u32 cur;
212 
213 	regs = dev->info->regs;
214 
215 	addr -= dev->info->reg_mib_cnt;
216 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
217 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
218 	ctrl_addr += port;
219 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
220 
221 	mutex_lock(&dev->alu_mutex);
222 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
223 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
224 	mutex_unlock(&dev->alu_mutex);
225 
226 	data &= MIB_PACKET_DROPPED;
227 	cur = last[addr];
228 	if (data != cur) {
229 		last[addr] = data;
230 		if (data < cur)
231 			data += MIB_PACKET_DROPPED + 1;
232 		data -= cur;
233 		*cnt += data;
234 	}
235 }
236 
237 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
238 		    u64 *dropped, u64 *cnt)
239 {
240 	if (ksz_is_ksz88x3(dev))
241 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
242 	else
243 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
244 }
245 
246 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
247 {
248 	if (ksz_is_ksz88x3(dev))
249 		return;
250 
251 	/* enable the port for flush/freeze function */
252 	if (freeze)
253 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
254 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
255 
256 	/* disable the port after freeze is done */
257 	if (!freeze)
258 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
259 }
260 
261 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
262 {
263 	struct ksz_port_mib *mib = &dev->ports[port].mib;
264 	u64 *dropped;
265 
266 	if (!ksz_is_ksz88x3(dev)) {
267 		/* flush all enabled port MIB counters */
268 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
269 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
270 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
271 	}
272 
273 	mib->cnt_ptr = 0;
274 
275 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
276 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
277 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
278 					&mib->counters[mib->cnt_ptr]);
279 		++mib->cnt_ptr;
280 	}
281 
282 	/* last one in storage */
283 	dropped = &mib->counters[dev->info->mib_cnt];
284 
285 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
286 	while (mib->cnt_ptr < dev->info->mib_cnt) {
287 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
288 					dropped, &mib->counters[mib->cnt_ptr]);
289 		++mib->cnt_ptr;
290 	}
291 }
292 
293 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
294 {
295 	const u16 *regs;
296 	u16 ctrl_addr;
297 
298 	regs = dev->info->regs;
299 
300 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
301 
302 	mutex_lock(&dev->alu_mutex);
303 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
304 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
305 	mutex_unlock(&dev->alu_mutex);
306 }
307 
308 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
309 {
310 	const u16 *regs;
311 	u16 ctrl_addr;
312 
313 	regs = dev->info->regs;
314 
315 	ctrl_addr = IND_ACC_TABLE(table) | addr;
316 
317 	mutex_lock(&dev->alu_mutex);
318 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
319 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
320 	mutex_unlock(&dev->alu_mutex);
321 }
322 
323 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
324 {
325 	int timeout = 100;
326 	const u32 *masks;
327 	const u16 *regs;
328 
329 	masks = dev->info->masks;
330 	regs = dev->info->regs;
331 
332 	do {
333 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
334 		timeout--;
335 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
336 
337 	/* Entry is not ready for accessing. */
338 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
339 		return -EAGAIN;
340 	/* Entry is ready for accessing. */
341 	} else {
342 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
343 
344 		/* There is no valid entry in the table. */
345 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
346 			return -ENXIO;
347 	}
348 	return 0;
349 }
350 
351 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
352 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
353 {
354 	u32 data_hi, data_lo;
355 	const u8 *shifts;
356 	const u32 *masks;
357 	const u16 *regs;
358 	u16 ctrl_addr;
359 	u8 data;
360 	int rc;
361 
362 	shifts = dev->info->shifts;
363 	masks = dev->info->masks;
364 	regs = dev->info->regs;
365 
366 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
367 
368 	mutex_lock(&dev->alu_mutex);
369 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
370 
371 	rc = ksz8_valid_dyn_entry(dev, &data);
372 	if (rc == -EAGAIN) {
373 		if (addr == 0)
374 			*entries = 0;
375 	} else if (rc == -ENXIO) {
376 		*entries = 0;
377 	/* At least one valid entry in the table. */
378 	} else {
379 		u64 buf = 0;
380 		int cnt;
381 
382 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
383 		data_hi = (u32)(buf >> 32);
384 		data_lo = (u32)buf;
385 
386 		/* Check out how many valid entry in the table. */
387 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
388 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
389 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
390 			shifts[DYNAMIC_MAC_ENTRIES];
391 		*entries = cnt + 1;
392 
393 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
394 			shifts[DYNAMIC_MAC_FID];
395 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
396 			shifts[DYNAMIC_MAC_SRC_PORT];
397 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
398 			shifts[DYNAMIC_MAC_TIMESTAMP];
399 
400 		mac_addr[5] = (u8)data_lo;
401 		mac_addr[4] = (u8)(data_lo >> 8);
402 		mac_addr[3] = (u8)(data_lo >> 16);
403 		mac_addr[2] = (u8)(data_lo >> 24);
404 
405 		mac_addr[1] = (u8)data_hi;
406 		mac_addr[0] = (u8)(data_hi >> 8);
407 		rc = 0;
408 	}
409 	mutex_unlock(&dev->alu_mutex);
410 
411 	return rc;
412 }
413 
414 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
415 			 struct alu_struct *alu)
416 {
417 	u32 data_hi, data_lo;
418 	const u8 *shifts;
419 	const u32 *masks;
420 	u64 data;
421 
422 	shifts = dev->info->shifts;
423 	masks = dev->info->masks;
424 
425 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
426 	data_hi = data >> 32;
427 	data_lo = (u32)data;
428 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
429 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
430 		alu->mac[5] = (u8)data_lo;
431 		alu->mac[4] = (u8)(data_lo >> 8);
432 		alu->mac[3] = (u8)(data_lo >> 16);
433 		alu->mac[2] = (u8)(data_lo >> 24);
434 		alu->mac[1] = (u8)data_hi;
435 		alu->mac[0] = (u8)(data_hi >> 8);
436 		alu->port_forward =
437 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
438 				shifts[STATIC_MAC_FWD_PORTS];
439 		alu->is_override =
440 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
441 		data_hi >>= 1;
442 		alu->is_static = true;
443 		alu->is_use_fid =
444 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
445 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
446 				shifts[STATIC_MAC_FID];
447 		return 0;
448 	}
449 	return -ENXIO;
450 }
451 
452 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
453 			  struct alu_struct *alu)
454 {
455 	u32 data_hi, data_lo;
456 	const u8 *shifts;
457 	const u32 *masks;
458 	u64 data;
459 
460 	shifts = dev->info->shifts;
461 	masks = dev->info->masks;
462 
463 	data_lo = ((u32)alu->mac[2] << 24) |
464 		((u32)alu->mac[3] << 16) |
465 		((u32)alu->mac[4] << 8) | alu->mac[5];
466 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
467 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
468 
469 	if (alu->is_override)
470 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
471 	if (alu->is_use_fid) {
472 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
473 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
474 	}
475 	if (alu->is_static)
476 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
477 	else
478 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
479 
480 	data = (u64)data_hi << 32 | data_lo;
481 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
482 }
483 
484 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
485 			   u8 *member, u8 *valid)
486 {
487 	const u8 *shifts;
488 	const u32 *masks;
489 
490 	shifts = dev->info->shifts;
491 	masks = dev->info->masks;
492 
493 	*fid = vlan & masks[VLAN_TABLE_FID];
494 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
495 			shifts[VLAN_TABLE_MEMBERSHIP_S];
496 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
497 }
498 
499 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
500 			 u16 *vlan)
501 {
502 	const u8 *shifts;
503 	const u32 *masks;
504 
505 	shifts = dev->info->shifts;
506 	masks = dev->info->masks;
507 
508 	*vlan = fid;
509 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
510 	if (valid)
511 		*vlan |= masks[VLAN_TABLE_VALID];
512 }
513 
514 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
515 {
516 	const u8 *shifts;
517 	u64 data;
518 	int i;
519 
520 	shifts = dev->info->shifts;
521 
522 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
523 	addr *= 4;
524 	for (i = 0; i < 4; i++) {
525 		dev->vlan_cache[addr + i].table[0] = (u16)data;
526 		data >>= shifts[VLAN_TABLE];
527 	}
528 }
529 
530 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
531 {
532 	int index;
533 	u16 *data;
534 	u16 addr;
535 	u64 buf;
536 
537 	data = (u16 *)&buf;
538 	addr = vid / 4;
539 	index = vid & 3;
540 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
541 	*vlan = data[index];
542 }
543 
544 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
545 {
546 	int index;
547 	u16 *data;
548 	u16 addr;
549 	u64 buf;
550 
551 	data = (u16 *)&buf;
552 	addr = vid / 4;
553 	index = vid & 3;
554 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
555 	data[index] = vlan;
556 	dev->vlan_cache[vid].table[0] = vlan;
557 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
558 }
559 
560 void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
561 {
562 	u8 restart, speed, ctrl, link;
563 	int processed = true;
564 	const u16 *regs;
565 	u8 val1, val2;
566 	u16 data = 0;
567 	u8 p = phy;
568 
569 	regs = dev->info->regs;
570 
571 	switch (reg) {
572 	case MII_BMCR:
573 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
574 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
575 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
576 		if (restart & PORT_PHY_LOOPBACK)
577 			data |= BMCR_LOOPBACK;
578 		if (ctrl & PORT_FORCE_100_MBIT)
579 			data |= BMCR_SPEED100;
580 		if (ksz_is_ksz88x3(dev)) {
581 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
582 				data |= BMCR_ANENABLE;
583 		} else {
584 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
585 				data |= BMCR_ANENABLE;
586 		}
587 		if (restart & PORT_POWER_DOWN)
588 			data |= BMCR_PDOWN;
589 		if (restart & PORT_AUTO_NEG_RESTART)
590 			data |= BMCR_ANRESTART;
591 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
592 			data |= BMCR_FULLDPLX;
593 		if (speed & PORT_HP_MDIX)
594 			data |= KSZ886X_BMCR_HP_MDIX;
595 		if (restart & PORT_FORCE_MDIX)
596 			data |= KSZ886X_BMCR_FORCE_MDI;
597 		if (restart & PORT_AUTO_MDIX_DISABLE)
598 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
599 		if (restart & PORT_TX_DISABLE)
600 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
601 		if (restart & PORT_LED_OFF)
602 			data |= KSZ886X_BMCR_DISABLE_LED;
603 		break;
604 	case MII_BMSR:
605 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
606 		data = BMSR_100FULL |
607 		       BMSR_100HALF |
608 		       BMSR_10FULL |
609 		       BMSR_10HALF |
610 		       BMSR_ANEGCAPABLE;
611 		if (link & PORT_AUTO_NEG_COMPLETE)
612 			data |= BMSR_ANEGCOMPLETE;
613 		if (link & PORT_STAT_LINK_GOOD)
614 			data |= BMSR_LSTATUS;
615 		break;
616 	case MII_PHYSID1:
617 		data = KSZ8795_ID_HI;
618 		break;
619 	case MII_PHYSID2:
620 		if (ksz_is_ksz88x3(dev))
621 			data = KSZ8863_ID_LO;
622 		else
623 			data = KSZ8795_ID_LO;
624 		break;
625 	case MII_ADVERTISE:
626 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
627 		data = ADVERTISE_CSMA;
628 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
629 			data |= ADVERTISE_PAUSE_CAP;
630 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
631 			data |= ADVERTISE_100FULL;
632 		if (ctrl & PORT_AUTO_NEG_100BTX)
633 			data |= ADVERTISE_100HALF;
634 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
635 			data |= ADVERTISE_10FULL;
636 		if (ctrl & PORT_AUTO_NEG_10BT)
637 			data |= ADVERTISE_10HALF;
638 		break;
639 	case MII_LPA:
640 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
641 		data = LPA_SLCT;
642 		if (link & PORT_REMOTE_SYM_PAUSE)
643 			data |= LPA_PAUSE_CAP;
644 		if (link & PORT_REMOTE_100BTX_FD)
645 			data |= LPA_100FULL;
646 		if (link & PORT_REMOTE_100BTX)
647 			data |= LPA_100HALF;
648 		if (link & PORT_REMOTE_10BT_FD)
649 			data |= LPA_10FULL;
650 		if (link & PORT_REMOTE_10BT)
651 			data |= LPA_10HALF;
652 		if (data & ~LPA_SLCT)
653 			data |= LPA_LPACK;
654 		break;
655 	case PHY_REG_LINK_MD:
656 		ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
657 		ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
658 		if (val1 & PORT_START_CABLE_DIAG)
659 			data |= PHY_START_CABLE_DIAG;
660 
661 		if (val1 & PORT_CABLE_10M_SHORT)
662 			data |= PHY_CABLE_10M_SHORT;
663 
664 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
665 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
666 
667 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
668 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
669 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
670 		break;
671 	case PHY_REG_PHY_CTRL:
672 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
673 		if (link & PORT_MDIX_STATUS)
674 			data |= KSZ886X_CTRL_MDIX_STAT;
675 		break;
676 	default:
677 		processed = false;
678 		break;
679 	}
680 	if (processed)
681 		*val = data;
682 }
683 
684 void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
685 {
686 	u8 restart, speed, ctrl, data;
687 	const u16 *regs;
688 	u8 p = phy;
689 
690 	regs = dev->info->regs;
691 
692 	switch (reg) {
693 	case MII_BMCR:
694 
695 		/* Do not support PHY reset function. */
696 		if (val & BMCR_RESET)
697 			break;
698 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
699 		data = speed;
700 		if (val & KSZ886X_BMCR_HP_MDIX)
701 			data |= PORT_HP_MDIX;
702 		else
703 			data &= ~PORT_HP_MDIX;
704 		if (data != speed)
705 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
706 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
707 		data = ctrl;
708 		if (ksz_is_ksz88x3(dev)) {
709 			if ((val & BMCR_ANENABLE))
710 				data |= PORT_AUTO_NEG_ENABLE;
711 			else
712 				data &= ~PORT_AUTO_NEG_ENABLE;
713 		} else {
714 			if (!(val & BMCR_ANENABLE))
715 				data |= PORT_AUTO_NEG_DISABLE;
716 			else
717 				data &= ~PORT_AUTO_NEG_DISABLE;
718 
719 			/* Fiber port does not support auto-negotiation. */
720 			if (dev->ports[p].fiber)
721 				data |= PORT_AUTO_NEG_DISABLE;
722 		}
723 
724 		if (val & BMCR_SPEED100)
725 			data |= PORT_FORCE_100_MBIT;
726 		else
727 			data &= ~PORT_FORCE_100_MBIT;
728 		if (val & BMCR_FULLDPLX)
729 			data |= PORT_FORCE_FULL_DUPLEX;
730 		else
731 			data &= ~PORT_FORCE_FULL_DUPLEX;
732 		if (data != ctrl)
733 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
734 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
735 		data = restart;
736 		if (val & KSZ886X_BMCR_DISABLE_LED)
737 			data |= PORT_LED_OFF;
738 		else
739 			data &= ~PORT_LED_OFF;
740 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
741 			data |= PORT_TX_DISABLE;
742 		else
743 			data &= ~PORT_TX_DISABLE;
744 		if (val & BMCR_ANRESTART)
745 			data |= PORT_AUTO_NEG_RESTART;
746 		else
747 			data &= ~(PORT_AUTO_NEG_RESTART);
748 		if (val & BMCR_PDOWN)
749 			data |= PORT_POWER_DOWN;
750 		else
751 			data &= ~PORT_POWER_DOWN;
752 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
753 			data |= PORT_AUTO_MDIX_DISABLE;
754 		else
755 			data &= ~PORT_AUTO_MDIX_DISABLE;
756 		if (val & KSZ886X_BMCR_FORCE_MDI)
757 			data |= PORT_FORCE_MDIX;
758 		else
759 			data &= ~PORT_FORCE_MDIX;
760 		if (val & BMCR_LOOPBACK)
761 			data |= PORT_PHY_LOOPBACK;
762 		else
763 			data &= ~PORT_PHY_LOOPBACK;
764 		if (data != restart)
765 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
766 		break;
767 	case MII_ADVERTISE:
768 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
769 		data = ctrl;
770 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
771 			  PORT_AUTO_NEG_100BTX_FD |
772 			  PORT_AUTO_NEG_100BTX |
773 			  PORT_AUTO_NEG_10BT_FD |
774 			  PORT_AUTO_NEG_10BT);
775 		if (val & ADVERTISE_PAUSE_CAP)
776 			data |= PORT_AUTO_NEG_SYM_PAUSE;
777 		if (val & ADVERTISE_100FULL)
778 			data |= PORT_AUTO_NEG_100BTX_FD;
779 		if (val & ADVERTISE_100HALF)
780 			data |= PORT_AUTO_NEG_100BTX;
781 		if (val & ADVERTISE_10FULL)
782 			data |= PORT_AUTO_NEG_10BT_FD;
783 		if (val & ADVERTISE_10HALF)
784 			data |= PORT_AUTO_NEG_10BT;
785 		if (data != ctrl)
786 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
787 		break;
788 	case PHY_REG_LINK_MD:
789 		if (val & PHY_START_CABLE_DIAG)
790 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
791 		break;
792 	default:
793 		break;
794 	}
795 }
796 
797 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
798 {
799 	u8 data;
800 
801 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
802 	data &= ~PORT_VLAN_MEMBERSHIP;
803 	data |= (member & dev->port_mask);
804 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
805 }
806 
807 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
808 {
809 	u8 learn[DSA_MAX_PORTS];
810 	int first, index, cnt;
811 	struct ksz_port *p;
812 	const u16 *regs;
813 
814 	regs = dev->info->regs;
815 
816 	if ((uint)port < dev->info->port_cnt) {
817 		first = port;
818 		cnt = port + 1;
819 	} else {
820 		/* Flush all ports. */
821 		first = 0;
822 		cnt = dev->info->port_cnt;
823 	}
824 	for (index = first; index < cnt; index++) {
825 		p = &dev->ports[index];
826 		if (!p->on)
827 			continue;
828 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
829 		if (!(learn[index] & PORT_LEARN_DISABLE))
830 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
831 				    learn[index] | PORT_LEARN_DISABLE);
832 	}
833 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
834 	for (index = first; index < cnt; index++) {
835 		p = &dev->ports[index];
836 		if (!p->on)
837 			continue;
838 		if (!(learn[index] & PORT_LEARN_DISABLE))
839 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
840 	}
841 }
842 
843 int ksz8_fdb_dump(struct ksz_device *dev, int port,
844 		  dsa_fdb_dump_cb_t *cb, void *data)
845 {
846 	int ret = 0;
847 	u16 i = 0;
848 	u16 entries = 0;
849 	u8 timestamp = 0;
850 	u8 fid;
851 	u8 member;
852 	struct alu_struct alu;
853 
854 	do {
855 		alu.is_static = false;
856 		ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
857 					   &timestamp, &entries);
858 		if (!ret && (member & BIT(port))) {
859 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
860 			if (ret)
861 				break;
862 		}
863 		i++;
864 	} while (i < entries);
865 	if (i >= entries)
866 		ret = 0;
867 
868 	return ret;
869 }
870 
871 int ksz8_mdb_add(struct ksz_device *dev, int port,
872 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
873 {
874 	struct alu_struct alu;
875 	int index;
876 	int empty = 0;
877 
878 	alu.port_forward = 0;
879 	for (index = 0; index < dev->info->num_statics; index++) {
880 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
881 			/* Found one already in static MAC table. */
882 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
883 			    alu.fid == mdb->vid)
884 				break;
885 		/* Remember the first empty entry. */
886 		} else if (!empty) {
887 			empty = index + 1;
888 		}
889 	}
890 
891 	/* no available entry */
892 	if (index == dev->info->num_statics && !empty)
893 		return -ENOSPC;
894 
895 	/* add entry */
896 	if (index == dev->info->num_statics) {
897 		index = empty - 1;
898 		memset(&alu, 0, sizeof(alu));
899 		memcpy(alu.mac, mdb->addr, ETH_ALEN);
900 		alu.is_static = true;
901 	}
902 	alu.port_forward |= BIT(port);
903 	if (mdb->vid) {
904 		alu.is_use_fid = true;
905 
906 		/* Need a way to map VID to FID. */
907 		alu.fid = mdb->vid;
908 	}
909 	ksz8_w_sta_mac_table(dev, index, &alu);
910 
911 	return 0;
912 }
913 
914 int ksz8_mdb_del(struct ksz_device *dev, int port,
915 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
916 {
917 	struct alu_struct alu;
918 	int index;
919 
920 	for (index = 0; index < dev->info->num_statics; index++) {
921 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
922 			/* Found one already in static MAC table. */
923 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
924 			    alu.fid == mdb->vid)
925 				break;
926 		}
927 	}
928 
929 	/* no available entry */
930 	if (index == dev->info->num_statics)
931 		goto exit;
932 
933 	/* clear port */
934 	alu.port_forward &= ~BIT(port);
935 	if (!alu.port_forward)
936 		alu.is_static = false;
937 	ksz8_w_sta_mac_table(dev, index, &alu);
938 
939 exit:
940 	return 0;
941 }
942 
943 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
944 			     struct netlink_ext_ack *extack)
945 {
946 	if (ksz_is_ksz88x3(dev))
947 		return -ENOTSUPP;
948 
949 	/* Discard packets with VID not enabled on the switch */
950 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
951 
952 	/* Discard packets with VID not enabled on the ingress port */
953 	for (port = 0; port < dev->phy_port_cnt; ++port)
954 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
955 			     flag);
956 
957 	return 0;
958 }
959 
960 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
961 {
962 	if (ksz_is_ksz88x3(dev)) {
963 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
964 			0x03 << (4 - 2 * port), state);
965 	} else {
966 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
967 	}
968 }
969 
970 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
971 		       const struct switchdev_obj_port_vlan *vlan,
972 		       struct netlink_ext_ack *extack)
973 {
974 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
975 	struct ksz_port *p = &dev->ports[port];
976 	u16 data, new_pvid = 0;
977 	u8 fid, member, valid;
978 
979 	if (ksz_is_ksz88x3(dev))
980 		return -ENOTSUPP;
981 
982 	/* If a VLAN is added with untagged flag different from the
983 	 * port's Remove Tag flag, we need to change the latter.
984 	 * Ignore VID 0, which is always untagged.
985 	 * Ignore CPU port, which will always be tagged.
986 	 */
987 	if (untagged != p->remove_tag && vlan->vid != 0 &&
988 	    port != dev->cpu_port) {
989 		unsigned int vid;
990 
991 		/* Reject attempts to add a VLAN that requires the
992 		 * Remove Tag flag to be changed, unless there are no
993 		 * other VLANs currently configured.
994 		 */
995 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
996 			/* Skip the VID we are going to add or reconfigure */
997 			if (vid == vlan->vid)
998 				continue;
999 
1000 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1001 				       &fid, &member, &valid);
1002 			if (valid && (member & BIT(port)))
1003 				return -EINVAL;
1004 		}
1005 
1006 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1007 		p->remove_tag = untagged;
1008 	}
1009 
1010 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1011 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1012 
1013 	/* First time to setup the VLAN entry. */
1014 	if (!valid) {
1015 		/* Need to find a way to map VID to FID. */
1016 		fid = 1;
1017 		valid = 1;
1018 	}
1019 	member |= BIT(port);
1020 
1021 	ksz8_to_vlan(dev, fid, member, valid, &data);
1022 	ksz8_w_vlan_table(dev, vlan->vid, data);
1023 
1024 	/* change PVID */
1025 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1026 		new_pvid = vlan->vid;
1027 
1028 	if (new_pvid) {
1029 		u16 vid;
1030 
1031 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1032 		vid &= ~VLAN_VID_MASK;
1033 		vid |= new_pvid;
1034 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1035 
1036 		ksz8_port_enable_pvid(dev, port, true);
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1043 		       const struct switchdev_obj_port_vlan *vlan)
1044 {
1045 	u16 data, pvid;
1046 	u8 fid, member, valid;
1047 
1048 	if (ksz_is_ksz88x3(dev))
1049 		return -ENOTSUPP;
1050 
1051 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1052 	pvid = pvid & 0xFFF;
1053 
1054 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1055 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1056 
1057 	member &= ~BIT(port);
1058 
1059 	/* Invalidate the entry if no more member. */
1060 	if (!member) {
1061 		fid = 0;
1062 		valid = 0;
1063 	}
1064 
1065 	ksz8_to_vlan(dev, fid, member, valid, &data);
1066 	ksz8_w_vlan_table(dev, vlan->vid, data);
1067 
1068 	if (pvid == vlan->vid)
1069 		ksz8_port_enable_pvid(dev, port, false);
1070 
1071 	return 0;
1072 }
1073 
1074 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1075 			 struct dsa_mall_mirror_tc_entry *mirror,
1076 			 bool ingress, struct netlink_ext_ack *extack)
1077 {
1078 	if (ingress) {
1079 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1080 		dev->mirror_rx |= BIT(port);
1081 	} else {
1082 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1083 		dev->mirror_tx |= BIT(port);
1084 	}
1085 
1086 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1087 
1088 	/* configure mirror port */
1089 	if (dev->mirror_rx || dev->mirror_tx)
1090 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1091 			     PORT_MIRROR_SNIFFER, true);
1092 
1093 	return 0;
1094 }
1095 
1096 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1097 			  struct dsa_mall_mirror_tc_entry *mirror)
1098 {
1099 	u8 data;
1100 
1101 	if (mirror->ingress) {
1102 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1103 		dev->mirror_rx &= ~BIT(port);
1104 	} else {
1105 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1106 		dev->mirror_tx &= ~BIT(port);
1107 	}
1108 
1109 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1110 
1111 	if (!dev->mirror_rx && !dev->mirror_tx)
1112 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1113 			     PORT_MIRROR_SNIFFER, false);
1114 }
1115 
1116 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1117 {
1118 	struct ksz_port *p = &dev->ports[port];
1119 	u8 data8;
1120 
1121 	if (!p->interface && dev->compat_interface) {
1122 		dev_warn(dev->dev,
1123 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1124 			 "Please update your device tree.\n",
1125 			 port);
1126 		p->interface = dev->compat_interface;
1127 	}
1128 
1129 	/* Configure MII interface for proper network communication. */
1130 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1131 	data8 &= ~PORT_INTERFACE_TYPE;
1132 	data8 &= ~PORT_GMII_1GPS_MODE;
1133 	switch (p->interface) {
1134 	case PHY_INTERFACE_MODE_MII:
1135 		p->phydev.speed = SPEED_100;
1136 		break;
1137 	case PHY_INTERFACE_MODE_RMII:
1138 		data8 |= PORT_INTERFACE_RMII;
1139 		p->phydev.speed = SPEED_100;
1140 		break;
1141 	case PHY_INTERFACE_MODE_GMII:
1142 		data8 |= PORT_GMII_1GPS_MODE;
1143 		data8 |= PORT_INTERFACE_GMII;
1144 		p->phydev.speed = SPEED_1000;
1145 		break;
1146 	default:
1147 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1148 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1149 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1150 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1151 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1152 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1153 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1154 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1155 		data8 |= PORT_GMII_1GPS_MODE;
1156 		data8 |= PORT_INTERFACE_RGMII;
1157 		p->phydev.speed = SPEED_1000;
1158 		break;
1159 	}
1160 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1161 	p->phydev.duplex = 1;
1162 }
1163 
1164 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1165 {
1166 	struct dsa_switch *ds = dev->ds;
1167 	const u32 *masks;
1168 	u8 member;
1169 
1170 	masks = dev->info->masks;
1171 
1172 	/* enable broadcast storm limit */
1173 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1174 
1175 	if (!ksz_is_ksz88x3(dev))
1176 		ksz8795_set_prio_queue(dev, port, 4);
1177 
1178 	/* disable DiffServ priority */
1179 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1180 
1181 	/* replace priority */
1182 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1183 		     masks[PORT_802_1P_REMAPPING], false);
1184 
1185 	/* enable 802.1p priority */
1186 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1187 
1188 	if (cpu_port) {
1189 		if (!ksz_is_ksz88x3(dev))
1190 			ksz8795_cpu_interface_select(dev, port);
1191 
1192 		member = dsa_user_ports(ds);
1193 	} else {
1194 		member = BIT(dsa_upstream_port(ds, port));
1195 	}
1196 
1197 	ksz8_cfg_port_member(dev, port, member);
1198 }
1199 
1200 void ksz8_config_cpu_port(struct dsa_switch *ds)
1201 {
1202 	struct ksz_device *dev = ds->priv;
1203 	struct ksz_port *p;
1204 	const u32 *masks;
1205 	const u16 *regs;
1206 	u8 remote;
1207 	int i;
1208 
1209 	masks = dev->info->masks;
1210 	regs = dev->info->regs;
1211 
1212 	/* Switch marks the maximum frame with extra byte as oversize. */
1213 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1214 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1215 
1216 	p = &dev->ports[dev->cpu_port];
1217 	p->on = 1;
1218 
1219 	ksz8_port_setup(dev, dev->cpu_port, true);
1220 
1221 	for (i = 0; i < dev->phy_port_cnt; i++) {
1222 		p = &dev->ports[i];
1223 
1224 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1225 
1226 		/* Last port may be disabled. */
1227 		if (i == dev->phy_port_cnt)
1228 			break;
1229 		p->on = 1;
1230 		p->phy = 1;
1231 	}
1232 	for (i = 0; i < dev->phy_port_cnt; i++) {
1233 		p = &dev->ports[i];
1234 		if (!p->on)
1235 			continue;
1236 		if (!ksz_is_ksz88x3(dev)) {
1237 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1238 			if (remote & KSZ8_PORT_FIBER_MODE)
1239 				p->fiber = 1;
1240 		}
1241 		if (p->fiber)
1242 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1243 				     PORT_FORCE_FLOW_CTRL, true);
1244 		else
1245 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1246 				     PORT_FORCE_FLOW_CTRL, false);
1247 	}
1248 }
1249 
1250 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1251 {
1252 	struct ksz_device *dev = ds->priv;
1253 	int ret = 0;
1254 
1255 	/* KSZ87xx Errata DS80000687C.
1256 	 * Module 2: Link drops with some EEE link partners.
1257 	 *   An issue with the EEE next page exchange between the
1258 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1259 	 *   the link dropping.
1260 	 */
1261 	if (dev->info->ksz87xx_eee_link_erratum)
1262 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1263 
1264 	return ret;
1265 }
1266 
1267 int ksz8_enable_stp_addr(struct ksz_device *dev)
1268 {
1269 	struct alu_struct alu;
1270 
1271 	/* Setup STP address for STP operation. */
1272 	memset(&alu, 0, sizeof(alu));
1273 	ether_addr_copy(alu.mac, eth_stp_addr);
1274 	alu.is_static = true;
1275 	alu.is_override = true;
1276 	alu.port_forward = dev->info->cpu_ports;
1277 
1278 	ksz8_w_sta_mac_table(dev, 0, &alu);
1279 
1280 	return 0;
1281 }
1282 
1283 int ksz8_setup(struct dsa_switch *ds)
1284 {
1285 	struct ksz_device *dev = ds->priv;
1286 	int i;
1287 
1288 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1289 
1290 	/* Enable automatic fast aging when link changed detected. */
1291 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1292 
1293 	/* Enable aggressive back off algorithm in half duplex mode. */
1294 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1295 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1296 
1297 	/*
1298 	 * Make sure unicast VLAN boundary is set as default and
1299 	 * enable no excessive collision drop.
1300 	 */
1301 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1302 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1303 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1304 
1305 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1306 
1307 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1308 
1309 	if (!ksz_is_ksz88x3(dev))
1310 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1311 
1312 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1313 		ksz8_r_vlan_entries(dev, i);
1314 
1315 	return ksz8_handle_global_errata(ds);
1316 }
1317 
1318 void ksz8_get_caps(struct ksz_device *dev, int port,
1319 		   struct phylink_config *config)
1320 {
1321 	config->mac_capabilities = MAC_10 | MAC_100;
1322 
1323 	/* Silicon Errata Sheet (DS80000830A):
1324 	 * "Port 1 does not respond to received flow control PAUSE frames"
1325 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1326 	 * switches.
1327 	 */
1328 	if (!ksz_is_ksz88x3(dev) || port)
1329 		config->mac_capabilities |= MAC_SYM_PAUSE;
1330 
1331 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1332 	if (!ksz_is_ksz88x3(dev))
1333 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1334 }
1335 
1336 u32 ksz8_get_port_addr(int port, int offset)
1337 {
1338 	return PORT_CTRL_ADDR(port, offset);
1339 }
1340 
1341 int ksz8_switch_init(struct ksz_device *dev)
1342 {
1343 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1344 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1345 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1346 
1347 	/* We rely on software untagging on the CPU port, so that we
1348 	 * can support both tagged and untagged VLANs
1349 	 */
1350 	dev->ds->untag_bridge_pvid = true;
1351 
1352 	/* VLAN filtering is partly controlled by the global VLAN
1353 	 * Enable flag
1354 	 */
1355 	dev->ds->vlan_filtering_is_global = true;
1356 
1357 	return 0;
1358 }
1359 
1360 void ksz8_switch_exit(struct ksz_device *dev)
1361 {
1362 	ksz8_reset_switch(dev);
1363 }
1364 
1365 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1366 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1367 MODULE_LICENSE("GPL");
1368