1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
32 }
33 
34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53 	if (!ret)
54 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81 	u8 ctrl2 = 0;
82 
83 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87 
88 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91 
92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94 	u8 ctrl1 = 0, ctrl2 = 0;
95 	int ret;
96 
97 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 		ctrl1 |= SW_HUGE_PACKET;
101 
102 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103 	if (ret)
104 		return ret;
105 
106 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108 
109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111 	u16 frame_size;
112 
113 	if (!dsa_is_cpu_port(dev->ds, port))
114 		return 0;
115 
116 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117 
118 	switch (dev->chip_id) {
119 	case KSZ8795_CHIP_ID:
120 	case KSZ8794_CHIP_ID:
121 	case KSZ8765_CHIP_ID:
122 		return ksz8795_change_mtu(dev, frame_size);
123 	case KSZ8830_CHIP_ID:
124 		return ksz8863_change_mtu(dev, frame_size);
125 	}
126 
127 	return -EOPNOTSUPP;
128 }
129 
130 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131 {
132 	u8 hi, lo;
133 
134 	/* Number of queues can only be 1, 2, or 4. */
135 	switch (queue) {
136 	case 4:
137 	case 3:
138 		queue = PORT_QUEUE_SPLIT_4;
139 		break;
140 	case 2:
141 		queue = PORT_QUEUE_SPLIT_2;
142 		break;
143 	default:
144 		queue = PORT_QUEUE_SPLIT_1;
145 	}
146 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148 	lo &= ~PORT_QUEUE_SPLIT_L;
149 	if (queue & PORT_QUEUE_SPLIT_2)
150 		lo |= PORT_QUEUE_SPLIT_L;
151 	hi &= ~PORT_QUEUE_SPLIT_H;
152 	if (queue & PORT_QUEUE_SPLIT_4)
153 		hi |= PORT_QUEUE_SPLIT_H;
154 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156 
157 	/* Default is port based for egress rate limit. */
158 	if (queue != PORT_QUEUE_SPLIT_1)
159 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160 			true);
161 }
162 
163 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164 {
165 	const u32 *masks;
166 	const u16 *regs;
167 	u16 ctrl_addr;
168 	u32 data;
169 	u8 check;
170 	int loop;
171 
172 	masks = dev->info->masks;
173 	regs = dev->info->regs;
174 
175 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177 
178 	mutex_lock(&dev->alu_mutex);
179 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180 
181 	/* It is almost guaranteed to always read the valid bit because of
182 	 * slow SPI speed.
183 	 */
184 	for (loop = 2; loop > 0; loop--) {
185 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186 
187 		if (check & masks[MIB_COUNTER_VALID]) {
188 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189 			if (check & masks[MIB_COUNTER_OVERFLOW])
190 				*cnt += MIB_COUNTER_VALUE + 1;
191 			*cnt += data & MIB_COUNTER_VALUE;
192 			break;
193 		}
194 	}
195 	mutex_unlock(&dev->alu_mutex);
196 }
197 
198 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199 			      u64 *dropped, u64 *cnt)
200 {
201 	const u32 *masks;
202 	const u16 *regs;
203 	u16 ctrl_addr;
204 	u32 data;
205 	u8 check;
206 	int loop;
207 
208 	masks = dev->info->masks;
209 	regs = dev->info->regs;
210 
211 	addr -= dev->info->reg_mib_cnt;
212 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 
219 	/* It is almost guaranteed to always read the valid bit because of
220 	 * slow SPI speed.
221 	 */
222 	for (loop = 2; loop > 0; loop--) {
223 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224 
225 		if (check & masks[MIB_COUNTER_VALID]) {
226 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227 			if (addr < 2) {
228 				u64 total;
229 
230 				total = check & MIB_TOTAL_BYTES_H;
231 				total <<= 32;
232 				*cnt += total;
233 				*cnt += data;
234 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 					total = MIB_TOTAL_BYTES_H + 1;
236 					total <<= 32;
237 					*cnt += total;
238 				}
239 			} else {
240 				if (check & masks[MIB_COUNTER_OVERFLOW])
241 					*cnt += MIB_PACKET_DROPPED + 1;
242 				*cnt += data & MIB_PACKET_DROPPED;
243 			}
244 			break;
245 		}
246 	}
247 	mutex_unlock(&dev->alu_mutex);
248 }
249 
250 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251 			      u64 *dropped, u64 *cnt)
252 {
253 	u32 *last = (u32 *)dropped;
254 	const u16 *regs;
255 	u16 ctrl_addr;
256 	u32 data;
257 	u32 cur;
258 
259 	regs = dev->info->regs;
260 
261 	addr -= dev->info->reg_mib_cnt;
262 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
264 	ctrl_addr += port;
265 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266 
267 	mutex_lock(&dev->alu_mutex);
268 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270 	mutex_unlock(&dev->alu_mutex);
271 
272 	data &= MIB_PACKET_DROPPED;
273 	cur = last[addr];
274 	if (data != cur) {
275 		last[addr] = data;
276 		if (data < cur)
277 			data += MIB_PACKET_DROPPED + 1;
278 		data -= cur;
279 		*cnt += data;
280 	}
281 }
282 
283 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284 		    u64 *dropped, u64 *cnt)
285 {
286 	if (ksz_is_ksz88x3(dev))
287 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288 	else
289 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290 }
291 
292 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293 {
294 	if (ksz_is_ksz88x3(dev))
295 		return;
296 
297 	/* enable the port for flush/freeze function */
298 	if (freeze)
299 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301 
302 	/* disable the port after freeze is done */
303 	if (!freeze)
304 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305 }
306 
307 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 {
309 	struct ksz_port_mib *mib = &dev->ports[port].mib;
310 	u64 *dropped;
311 
312 	if (!ksz_is_ksz88x3(dev)) {
313 		/* flush all enabled port MIB counters */
314 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317 	}
318 
319 	mib->cnt_ptr = 0;
320 
321 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324 					&mib->counters[mib->cnt_ptr]);
325 		++mib->cnt_ptr;
326 	}
327 
328 	/* last one in storage */
329 	dropped = &mib->counters[dev->info->mib_cnt];
330 
331 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332 	while (mib->cnt_ptr < dev->info->mib_cnt) {
333 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334 					dropped, &mib->counters[mib->cnt_ptr]);
335 		++mib->cnt_ptr;
336 	}
337 }
338 
339 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340 {
341 	const u16 *regs;
342 	u16 ctrl_addr;
343 
344 	regs = dev->info->regs;
345 
346 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
347 
348 	mutex_lock(&dev->alu_mutex);
349 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
350 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
351 	mutex_unlock(&dev->alu_mutex);
352 }
353 
354 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
355 {
356 	const u16 *regs;
357 	u16 ctrl_addr;
358 
359 	regs = dev->info->regs;
360 
361 	ctrl_addr = IND_ACC_TABLE(table) | addr;
362 
363 	mutex_lock(&dev->alu_mutex);
364 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
365 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
366 	mutex_unlock(&dev->alu_mutex);
367 }
368 
369 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
370 {
371 	int timeout = 100;
372 	const u32 *masks;
373 	const u16 *regs;
374 
375 	masks = dev->info->masks;
376 	regs = dev->info->regs;
377 
378 	do {
379 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
380 		timeout--;
381 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
382 
383 	/* Entry is not ready for accessing. */
384 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
385 		return -EAGAIN;
386 	/* Entry is ready for accessing. */
387 	} else {
388 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
389 
390 		/* There is no valid entry in the table. */
391 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
392 			return -ENXIO;
393 	}
394 	return 0;
395 }
396 
397 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
398 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
399 {
400 	u32 data_hi, data_lo;
401 	const u8 *shifts;
402 	const u32 *masks;
403 	const u16 *regs;
404 	u16 ctrl_addr;
405 	u8 data;
406 	int rc;
407 
408 	shifts = dev->info->shifts;
409 	masks = dev->info->masks;
410 	regs = dev->info->regs;
411 
412 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
413 
414 	mutex_lock(&dev->alu_mutex);
415 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
416 
417 	rc = ksz8_valid_dyn_entry(dev, &data);
418 	if (rc == -EAGAIN) {
419 		if (addr == 0)
420 			*entries = 0;
421 	} else if (rc == -ENXIO) {
422 		*entries = 0;
423 	/* At least one valid entry in the table. */
424 	} else {
425 		u64 buf = 0;
426 		int cnt;
427 
428 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
429 		data_hi = (u32)(buf >> 32);
430 		data_lo = (u32)buf;
431 
432 		/* Check out how many valid entry in the table. */
433 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
434 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
435 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
436 			shifts[DYNAMIC_MAC_ENTRIES];
437 		*entries = cnt + 1;
438 
439 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
440 			shifts[DYNAMIC_MAC_FID];
441 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
442 			shifts[DYNAMIC_MAC_SRC_PORT];
443 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
444 			shifts[DYNAMIC_MAC_TIMESTAMP];
445 
446 		mac_addr[5] = (u8)data_lo;
447 		mac_addr[4] = (u8)(data_lo >> 8);
448 		mac_addr[3] = (u8)(data_lo >> 16);
449 		mac_addr[2] = (u8)(data_lo >> 24);
450 
451 		mac_addr[1] = (u8)data_hi;
452 		mac_addr[0] = (u8)(data_hi >> 8);
453 		rc = 0;
454 	}
455 	mutex_unlock(&dev->alu_mutex);
456 
457 	return rc;
458 }
459 
460 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
461 			 struct alu_struct *alu)
462 {
463 	u32 data_hi, data_lo;
464 	const u8 *shifts;
465 	const u32 *masks;
466 	u64 data;
467 
468 	shifts = dev->info->shifts;
469 	masks = dev->info->masks;
470 
471 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
472 	data_hi = data >> 32;
473 	data_lo = (u32)data;
474 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
475 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
476 		alu->mac[5] = (u8)data_lo;
477 		alu->mac[4] = (u8)(data_lo >> 8);
478 		alu->mac[3] = (u8)(data_lo >> 16);
479 		alu->mac[2] = (u8)(data_lo >> 24);
480 		alu->mac[1] = (u8)data_hi;
481 		alu->mac[0] = (u8)(data_hi >> 8);
482 		alu->port_forward =
483 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
484 				shifts[STATIC_MAC_FWD_PORTS];
485 		alu->is_override =
486 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
487 		data_hi >>= 1;
488 		alu->is_static = true;
489 		alu->is_use_fid =
490 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
491 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
492 				shifts[STATIC_MAC_FID];
493 		return 0;
494 	}
495 	return -ENXIO;
496 }
497 
498 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
499 			  struct alu_struct *alu)
500 {
501 	u32 data_hi, data_lo;
502 	const u8 *shifts;
503 	const u32 *masks;
504 	u64 data;
505 
506 	shifts = dev->info->shifts;
507 	masks = dev->info->masks;
508 
509 	data_lo = ((u32)alu->mac[2] << 24) |
510 		((u32)alu->mac[3] << 16) |
511 		((u32)alu->mac[4] << 8) | alu->mac[5];
512 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
513 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
514 
515 	if (alu->is_override)
516 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
517 	if (alu->is_use_fid) {
518 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
519 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
520 	}
521 	if (alu->is_static)
522 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
523 	else
524 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
525 
526 	data = (u64)data_hi << 32 | data_lo;
527 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
528 }
529 
530 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
531 			   u8 *member, u8 *valid)
532 {
533 	const u8 *shifts;
534 	const u32 *masks;
535 
536 	shifts = dev->info->shifts;
537 	masks = dev->info->masks;
538 
539 	*fid = vlan & masks[VLAN_TABLE_FID];
540 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
541 			shifts[VLAN_TABLE_MEMBERSHIP_S];
542 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
543 }
544 
545 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
546 			 u16 *vlan)
547 {
548 	const u8 *shifts;
549 	const u32 *masks;
550 
551 	shifts = dev->info->shifts;
552 	masks = dev->info->masks;
553 
554 	*vlan = fid;
555 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
556 	if (valid)
557 		*vlan |= masks[VLAN_TABLE_VALID];
558 }
559 
560 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
561 {
562 	const u8 *shifts;
563 	u64 data;
564 	int i;
565 
566 	shifts = dev->info->shifts;
567 
568 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
569 	addr *= 4;
570 	for (i = 0; i < 4; i++) {
571 		dev->vlan_cache[addr + i].table[0] = (u16)data;
572 		data >>= shifts[VLAN_TABLE];
573 	}
574 }
575 
576 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
577 {
578 	int index;
579 	u16 *data;
580 	u16 addr;
581 	u64 buf;
582 
583 	data = (u16 *)&buf;
584 	addr = vid / 4;
585 	index = vid & 3;
586 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
587 	*vlan = data[index];
588 }
589 
590 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
591 {
592 	int index;
593 	u16 *data;
594 	u16 addr;
595 	u64 buf;
596 
597 	data = (u16 *)&buf;
598 	addr = vid / 4;
599 	index = vid & 3;
600 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
601 	data[index] = vlan;
602 	dev->vlan_cache[vid].table[0] = vlan;
603 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
604 }
605 
606 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
607 {
608 	u8 restart, speed, ctrl, link;
609 	int processed = true;
610 	const u16 *regs;
611 	u8 val1, val2;
612 	u16 data = 0;
613 	u8 p = phy;
614 	int ret;
615 
616 	regs = dev->info->regs;
617 
618 	switch (reg) {
619 	case MII_BMCR:
620 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
621 		if (ret)
622 			return ret;
623 
624 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
625 		if (ret)
626 			return ret;
627 
628 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
629 		if (ret)
630 			return ret;
631 
632 		if (restart & PORT_PHY_LOOPBACK)
633 			data |= BMCR_LOOPBACK;
634 		if (ctrl & PORT_FORCE_100_MBIT)
635 			data |= BMCR_SPEED100;
636 		if (ksz_is_ksz88x3(dev)) {
637 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
638 				data |= BMCR_ANENABLE;
639 		} else {
640 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
641 				data |= BMCR_ANENABLE;
642 		}
643 		if (restart & PORT_POWER_DOWN)
644 			data |= BMCR_PDOWN;
645 		if (restart & PORT_AUTO_NEG_RESTART)
646 			data |= BMCR_ANRESTART;
647 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
648 			data |= BMCR_FULLDPLX;
649 		if (speed & PORT_HP_MDIX)
650 			data |= KSZ886X_BMCR_HP_MDIX;
651 		if (restart & PORT_FORCE_MDIX)
652 			data |= KSZ886X_BMCR_FORCE_MDI;
653 		if (restart & PORT_AUTO_MDIX_DISABLE)
654 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
655 		if (restart & PORT_TX_DISABLE)
656 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
657 		if (restart & PORT_LED_OFF)
658 			data |= KSZ886X_BMCR_DISABLE_LED;
659 		break;
660 	case MII_BMSR:
661 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
662 		if (ret)
663 			return ret;
664 
665 		data = BMSR_100FULL |
666 		       BMSR_100HALF |
667 		       BMSR_10FULL |
668 		       BMSR_10HALF |
669 		       BMSR_ANEGCAPABLE;
670 		if (link & PORT_AUTO_NEG_COMPLETE)
671 			data |= BMSR_ANEGCOMPLETE;
672 		if (link & PORT_STAT_LINK_GOOD)
673 			data |= BMSR_LSTATUS;
674 		break;
675 	case MII_PHYSID1:
676 		data = KSZ8795_ID_HI;
677 		break;
678 	case MII_PHYSID2:
679 		if (ksz_is_ksz88x3(dev))
680 			data = KSZ8863_ID_LO;
681 		else
682 			data = KSZ8795_ID_LO;
683 		break;
684 	case MII_ADVERTISE:
685 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
686 		if (ret)
687 			return ret;
688 
689 		data = ADVERTISE_CSMA;
690 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
691 			data |= ADVERTISE_PAUSE_CAP;
692 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
693 			data |= ADVERTISE_100FULL;
694 		if (ctrl & PORT_AUTO_NEG_100BTX)
695 			data |= ADVERTISE_100HALF;
696 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
697 			data |= ADVERTISE_10FULL;
698 		if (ctrl & PORT_AUTO_NEG_10BT)
699 			data |= ADVERTISE_10HALF;
700 		break;
701 	case MII_LPA:
702 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
703 		if (ret)
704 			return ret;
705 
706 		data = LPA_SLCT;
707 		if (link & PORT_REMOTE_SYM_PAUSE)
708 			data |= LPA_PAUSE_CAP;
709 		if (link & PORT_REMOTE_100BTX_FD)
710 			data |= LPA_100FULL;
711 		if (link & PORT_REMOTE_100BTX)
712 			data |= LPA_100HALF;
713 		if (link & PORT_REMOTE_10BT_FD)
714 			data |= LPA_10FULL;
715 		if (link & PORT_REMOTE_10BT)
716 			data |= LPA_10HALF;
717 		if (data & ~LPA_SLCT)
718 			data |= LPA_LPACK;
719 		break;
720 	case PHY_REG_LINK_MD:
721 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
722 		if (ret)
723 			return ret;
724 
725 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
726 		if (ret)
727 			return ret;
728 
729 		if (val1 & PORT_START_CABLE_DIAG)
730 			data |= PHY_START_CABLE_DIAG;
731 
732 		if (val1 & PORT_CABLE_10M_SHORT)
733 			data |= PHY_CABLE_10M_SHORT;
734 
735 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
736 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
737 
738 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
739 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
740 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
741 		break;
742 	case PHY_REG_PHY_CTRL:
743 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
744 		if (ret)
745 			return ret;
746 
747 		if (link & PORT_MDIX_STATUS)
748 			data |= KSZ886X_CTRL_MDIX_STAT;
749 		break;
750 	default:
751 		processed = false;
752 		break;
753 	}
754 	if (processed)
755 		*val = data;
756 
757 	return 0;
758 }
759 
760 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
761 {
762 	u8 restart, speed, ctrl, data;
763 	const u16 *regs;
764 	u8 p = phy;
765 	int ret;
766 
767 	regs = dev->info->regs;
768 
769 	switch (reg) {
770 	case MII_BMCR:
771 
772 		/* Do not support PHY reset function. */
773 		if (val & BMCR_RESET)
774 			break;
775 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
776 		if (ret)
777 			return ret;
778 
779 		data = speed;
780 		if (val & KSZ886X_BMCR_HP_MDIX)
781 			data |= PORT_HP_MDIX;
782 		else
783 			data &= ~PORT_HP_MDIX;
784 
785 		if (data != speed) {
786 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
787 			if (ret)
788 				return ret;
789 		}
790 
791 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
792 		if (ret)
793 			return ret;
794 
795 		data = ctrl;
796 		if (ksz_is_ksz88x3(dev)) {
797 			if ((val & BMCR_ANENABLE))
798 				data |= PORT_AUTO_NEG_ENABLE;
799 			else
800 				data &= ~PORT_AUTO_NEG_ENABLE;
801 		} else {
802 			if (!(val & BMCR_ANENABLE))
803 				data |= PORT_AUTO_NEG_DISABLE;
804 			else
805 				data &= ~PORT_AUTO_NEG_DISABLE;
806 
807 			/* Fiber port does not support auto-negotiation. */
808 			if (dev->ports[p].fiber)
809 				data |= PORT_AUTO_NEG_DISABLE;
810 		}
811 
812 		if (val & BMCR_SPEED100)
813 			data |= PORT_FORCE_100_MBIT;
814 		else
815 			data &= ~PORT_FORCE_100_MBIT;
816 		if (val & BMCR_FULLDPLX)
817 			data |= PORT_FORCE_FULL_DUPLEX;
818 		else
819 			data &= ~PORT_FORCE_FULL_DUPLEX;
820 
821 		if (data != ctrl) {
822 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
823 			if (ret)
824 				return ret;
825 		}
826 
827 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
828 		if (ret)
829 			return ret;
830 
831 		data = restart;
832 		if (val & KSZ886X_BMCR_DISABLE_LED)
833 			data |= PORT_LED_OFF;
834 		else
835 			data &= ~PORT_LED_OFF;
836 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
837 			data |= PORT_TX_DISABLE;
838 		else
839 			data &= ~PORT_TX_DISABLE;
840 		if (val & BMCR_ANRESTART)
841 			data |= PORT_AUTO_NEG_RESTART;
842 		else
843 			data &= ~(PORT_AUTO_NEG_RESTART);
844 		if (val & BMCR_PDOWN)
845 			data |= PORT_POWER_DOWN;
846 		else
847 			data &= ~PORT_POWER_DOWN;
848 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
849 			data |= PORT_AUTO_MDIX_DISABLE;
850 		else
851 			data &= ~PORT_AUTO_MDIX_DISABLE;
852 		if (val & KSZ886X_BMCR_FORCE_MDI)
853 			data |= PORT_FORCE_MDIX;
854 		else
855 			data &= ~PORT_FORCE_MDIX;
856 		if (val & BMCR_LOOPBACK)
857 			data |= PORT_PHY_LOOPBACK;
858 		else
859 			data &= ~PORT_PHY_LOOPBACK;
860 
861 		if (data != restart) {
862 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
863 					  data);
864 			if (ret)
865 				return ret;
866 		}
867 		break;
868 	case MII_ADVERTISE:
869 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
870 		if (ret)
871 			return ret;
872 
873 		data = ctrl;
874 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
875 			  PORT_AUTO_NEG_100BTX_FD |
876 			  PORT_AUTO_NEG_100BTX |
877 			  PORT_AUTO_NEG_10BT_FD |
878 			  PORT_AUTO_NEG_10BT);
879 		if (val & ADVERTISE_PAUSE_CAP)
880 			data |= PORT_AUTO_NEG_SYM_PAUSE;
881 		if (val & ADVERTISE_100FULL)
882 			data |= PORT_AUTO_NEG_100BTX_FD;
883 		if (val & ADVERTISE_100HALF)
884 			data |= PORT_AUTO_NEG_100BTX;
885 		if (val & ADVERTISE_10FULL)
886 			data |= PORT_AUTO_NEG_10BT_FD;
887 		if (val & ADVERTISE_10HALF)
888 			data |= PORT_AUTO_NEG_10BT;
889 
890 		if (data != ctrl) {
891 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
892 			if (ret)
893 				return ret;
894 		}
895 		break;
896 	case PHY_REG_LINK_MD:
897 		if (val & PHY_START_CABLE_DIAG)
898 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
899 		break;
900 	default:
901 		break;
902 	}
903 
904 	return 0;
905 }
906 
907 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
908 {
909 	u8 data;
910 
911 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
912 	data &= ~PORT_VLAN_MEMBERSHIP;
913 	data |= (member & dev->port_mask);
914 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
915 }
916 
917 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
918 {
919 	u8 learn[DSA_MAX_PORTS];
920 	int first, index, cnt;
921 	struct ksz_port *p;
922 	const u16 *regs;
923 
924 	regs = dev->info->regs;
925 
926 	if ((uint)port < dev->info->port_cnt) {
927 		first = port;
928 		cnt = port + 1;
929 	} else {
930 		/* Flush all ports. */
931 		first = 0;
932 		cnt = dev->info->port_cnt;
933 	}
934 	for (index = first; index < cnt; index++) {
935 		p = &dev->ports[index];
936 		if (!p->on)
937 			continue;
938 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
939 		if (!(learn[index] & PORT_LEARN_DISABLE))
940 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
941 				    learn[index] | PORT_LEARN_DISABLE);
942 	}
943 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
944 	for (index = first; index < cnt; index++) {
945 		p = &dev->ports[index];
946 		if (!p->on)
947 			continue;
948 		if (!(learn[index] & PORT_LEARN_DISABLE))
949 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
950 	}
951 }
952 
953 int ksz8_fdb_dump(struct ksz_device *dev, int port,
954 		  dsa_fdb_dump_cb_t *cb, void *data)
955 {
956 	int ret = 0;
957 	u16 i = 0;
958 	u16 entries = 0;
959 	u8 timestamp = 0;
960 	u8 fid;
961 	u8 src_port;
962 	u8 mac[ETH_ALEN];
963 
964 	do {
965 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
966 					   &timestamp, &entries);
967 		if (!ret && port == src_port) {
968 			ret = cb(mac, fid, false, data);
969 			if (ret)
970 				break;
971 		}
972 		i++;
973 	} while (i < entries);
974 	if (i >= entries)
975 		ret = 0;
976 
977 	return ret;
978 }
979 
980 int ksz8_mdb_add(struct ksz_device *dev, int port,
981 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
982 {
983 	struct alu_struct alu;
984 	int index;
985 	int empty = 0;
986 
987 	alu.port_forward = 0;
988 	for (index = 0; index < dev->info->num_statics; index++) {
989 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
990 			/* Found one already in static MAC table. */
991 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
992 			    alu.fid == mdb->vid)
993 				break;
994 		/* Remember the first empty entry. */
995 		} else if (!empty) {
996 			empty = index + 1;
997 		}
998 	}
999 
1000 	/* no available entry */
1001 	if (index == dev->info->num_statics && !empty)
1002 		return -ENOSPC;
1003 
1004 	/* add entry */
1005 	if (index == dev->info->num_statics) {
1006 		index = empty - 1;
1007 		memset(&alu, 0, sizeof(alu));
1008 		memcpy(alu.mac, mdb->addr, ETH_ALEN);
1009 		alu.is_static = true;
1010 	}
1011 	alu.port_forward |= BIT(port);
1012 	if (mdb->vid) {
1013 		alu.is_use_fid = true;
1014 
1015 		/* Need a way to map VID to FID. */
1016 		alu.fid = mdb->vid;
1017 	}
1018 	ksz8_w_sta_mac_table(dev, index, &alu);
1019 
1020 	return 0;
1021 }
1022 
1023 int ksz8_mdb_del(struct ksz_device *dev, int port,
1024 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1025 {
1026 	struct alu_struct alu;
1027 	int index;
1028 
1029 	for (index = 0; index < dev->info->num_statics; index++) {
1030 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
1031 			/* Found one already in static MAC table. */
1032 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
1033 			    alu.fid == mdb->vid)
1034 				break;
1035 		}
1036 	}
1037 
1038 	/* no available entry */
1039 	if (index == dev->info->num_statics)
1040 		goto exit;
1041 
1042 	/* clear port */
1043 	alu.port_forward &= ~BIT(port);
1044 	if (!alu.port_forward)
1045 		alu.is_static = false;
1046 	ksz8_w_sta_mac_table(dev, index, &alu);
1047 
1048 exit:
1049 	return 0;
1050 }
1051 
1052 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1053 			     struct netlink_ext_ack *extack)
1054 {
1055 	if (ksz_is_ksz88x3(dev))
1056 		return -ENOTSUPP;
1057 
1058 	/* Discard packets with VID not enabled on the switch */
1059 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1060 
1061 	/* Discard packets with VID not enabled on the ingress port */
1062 	for (port = 0; port < dev->phy_port_cnt; ++port)
1063 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1064 			     flag);
1065 
1066 	return 0;
1067 }
1068 
1069 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1070 {
1071 	if (ksz_is_ksz88x3(dev)) {
1072 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1073 			0x03 << (4 - 2 * port), state);
1074 	} else {
1075 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1076 	}
1077 }
1078 
1079 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1080 		       const struct switchdev_obj_port_vlan *vlan,
1081 		       struct netlink_ext_ack *extack)
1082 {
1083 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1084 	struct ksz_port *p = &dev->ports[port];
1085 	u16 data, new_pvid = 0;
1086 	u8 fid, member, valid;
1087 
1088 	if (ksz_is_ksz88x3(dev))
1089 		return -ENOTSUPP;
1090 
1091 	/* If a VLAN is added with untagged flag different from the
1092 	 * port's Remove Tag flag, we need to change the latter.
1093 	 * Ignore VID 0, which is always untagged.
1094 	 * Ignore CPU port, which will always be tagged.
1095 	 */
1096 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1097 	    port != dev->cpu_port) {
1098 		unsigned int vid;
1099 
1100 		/* Reject attempts to add a VLAN that requires the
1101 		 * Remove Tag flag to be changed, unless there are no
1102 		 * other VLANs currently configured.
1103 		 */
1104 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1105 			/* Skip the VID we are going to add or reconfigure */
1106 			if (vid == vlan->vid)
1107 				continue;
1108 
1109 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1110 				       &fid, &member, &valid);
1111 			if (valid && (member & BIT(port)))
1112 				return -EINVAL;
1113 		}
1114 
1115 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1116 		p->remove_tag = untagged;
1117 	}
1118 
1119 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1120 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1121 
1122 	/* First time to setup the VLAN entry. */
1123 	if (!valid) {
1124 		/* Need to find a way to map VID to FID. */
1125 		fid = 1;
1126 		valid = 1;
1127 	}
1128 	member |= BIT(port);
1129 
1130 	ksz8_to_vlan(dev, fid, member, valid, &data);
1131 	ksz8_w_vlan_table(dev, vlan->vid, data);
1132 
1133 	/* change PVID */
1134 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1135 		new_pvid = vlan->vid;
1136 
1137 	if (new_pvid) {
1138 		u16 vid;
1139 
1140 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1141 		vid &= ~VLAN_VID_MASK;
1142 		vid |= new_pvid;
1143 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1144 
1145 		ksz8_port_enable_pvid(dev, port, true);
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1152 		       const struct switchdev_obj_port_vlan *vlan)
1153 {
1154 	u16 data, pvid;
1155 	u8 fid, member, valid;
1156 
1157 	if (ksz_is_ksz88x3(dev))
1158 		return -ENOTSUPP;
1159 
1160 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1161 	pvid = pvid & 0xFFF;
1162 
1163 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1164 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1165 
1166 	member &= ~BIT(port);
1167 
1168 	/* Invalidate the entry if no more member. */
1169 	if (!member) {
1170 		fid = 0;
1171 		valid = 0;
1172 	}
1173 
1174 	ksz8_to_vlan(dev, fid, member, valid, &data);
1175 	ksz8_w_vlan_table(dev, vlan->vid, data);
1176 
1177 	if (pvid == vlan->vid)
1178 		ksz8_port_enable_pvid(dev, port, false);
1179 
1180 	return 0;
1181 }
1182 
1183 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1184 			 struct dsa_mall_mirror_tc_entry *mirror,
1185 			 bool ingress, struct netlink_ext_ack *extack)
1186 {
1187 	if (ingress) {
1188 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1189 		dev->mirror_rx |= BIT(port);
1190 	} else {
1191 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1192 		dev->mirror_tx |= BIT(port);
1193 	}
1194 
1195 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1196 
1197 	/* configure mirror port */
1198 	if (dev->mirror_rx || dev->mirror_tx)
1199 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1200 			     PORT_MIRROR_SNIFFER, true);
1201 
1202 	return 0;
1203 }
1204 
1205 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1206 			  struct dsa_mall_mirror_tc_entry *mirror)
1207 {
1208 	u8 data;
1209 
1210 	if (mirror->ingress) {
1211 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1212 		dev->mirror_rx &= ~BIT(port);
1213 	} else {
1214 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1215 		dev->mirror_tx &= ~BIT(port);
1216 	}
1217 
1218 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1219 
1220 	if (!dev->mirror_rx && !dev->mirror_tx)
1221 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1222 			     PORT_MIRROR_SNIFFER, false);
1223 }
1224 
1225 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1226 {
1227 	struct ksz_port *p = &dev->ports[port];
1228 
1229 	if (!p->interface && dev->compat_interface) {
1230 		dev_warn(dev->dev,
1231 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1232 			 "Please update your device tree.\n",
1233 			 port);
1234 		p->interface = dev->compat_interface;
1235 	}
1236 }
1237 
1238 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1239 {
1240 	struct dsa_switch *ds = dev->ds;
1241 	const u32 *masks;
1242 	u8 member;
1243 
1244 	masks = dev->info->masks;
1245 
1246 	/* enable broadcast storm limit */
1247 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1248 
1249 	if (!ksz_is_ksz88x3(dev))
1250 		ksz8795_set_prio_queue(dev, port, 4);
1251 
1252 	/* disable DiffServ priority */
1253 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1254 
1255 	/* replace priority */
1256 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1257 		     masks[PORT_802_1P_REMAPPING], false);
1258 
1259 	/* enable 802.1p priority */
1260 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1261 
1262 	if (cpu_port) {
1263 		if (!ksz_is_ksz88x3(dev))
1264 			ksz8795_cpu_interface_select(dev, port);
1265 
1266 		member = dsa_user_ports(ds);
1267 	} else {
1268 		member = BIT(dsa_upstream_port(ds, port));
1269 	}
1270 
1271 	ksz8_cfg_port_member(dev, port, member);
1272 }
1273 
1274 void ksz8_config_cpu_port(struct dsa_switch *ds)
1275 {
1276 	struct ksz_device *dev = ds->priv;
1277 	struct ksz_port *p;
1278 	const u32 *masks;
1279 	const u16 *regs;
1280 	u8 remote;
1281 	int i;
1282 
1283 	masks = dev->info->masks;
1284 	regs = dev->info->regs;
1285 
1286 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1287 
1288 	p = &dev->ports[dev->cpu_port];
1289 	p->on = 1;
1290 
1291 	ksz8_port_setup(dev, dev->cpu_port, true);
1292 
1293 	for (i = 0; i < dev->phy_port_cnt; i++) {
1294 		p = &dev->ports[i];
1295 
1296 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1297 
1298 		/* Last port may be disabled. */
1299 		if (i == dev->phy_port_cnt)
1300 			break;
1301 		p->on = 1;
1302 	}
1303 	for (i = 0; i < dev->phy_port_cnt; i++) {
1304 		p = &dev->ports[i];
1305 		if (!p->on)
1306 			continue;
1307 		if (!ksz_is_ksz88x3(dev)) {
1308 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1309 			if (remote & KSZ8_PORT_FIBER_MODE)
1310 				p->fiber = 1;
1311 		}
1312 		if (p->fiber)
1313 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1314 				     PORT_FORCE_FLOW_CTRL, true);
1315 		else
1316 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1317 				     PORT_FORCE_FLOW_CTRL, false);
1318 	}
1319 }
1320 
1321 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1322 {
1323 	struct ksz_device *dev = ds->priv;
1324 	int ret = 0;
1325 
1326 	/* KSZ87xx Errata DS80000687C.
1327 	 * Module 2: Link drops with some EEE link partners.
1328 	 *   An issue with the EEE next page exchange between the
1329 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1330 	 *   the link dropping.
1331 	 */
1332 	if (dev->info->ksz87xx_eee_link_erratum)
1333 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1334 
1335 	return ret;
1336 }
1337 
1338 int ksz8_enable_stp_addr(struct ksz_device *dev)
1339 {
1340 	struct alu_struct alu;
1341 
1342 	/* Setup STP address for STP operation. */
1343 	memset(&alu, 0, sizeof(alu));
1344 	ether_addr_copy(alu.mac, eth_stp_addr);
1345 	alu.is_static = true;
1346 	alu.is_override = true;
1347 	alu.port_forward = dev->info->cpu_ports;
1348 
1349 	ksz8_w_sta_mac_table(dev, 0, &alu);
1350 
1351 	return 0;
1352 }
1353 
1354 int ksz8_setup(struct dsa_switch *ds)
1355 {
1356 	struct ksz_device *dev = ds->priv;
1357 	int i;
1358 
1359 	ds->mtu_enforcement_ingress = true;
1360 
1361 	/* We rely on software untagging on the CPU port, so that we
1362 	 * can support both tagged and untagged VLANs
1363 	 */
1364 	ds->untag_bridge_pvid = true;
1365 
1366 	/* VLAN filtering is partly controlled by the global VLAN
1367 	 * Enable flag
1368 	 */
1369 	ds->vlan_filtering_is_global = true;
1370 
1371 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1372 
1373 	/* Enable automatic fast aging when link changed detected. */
1374 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1375 
1376 	/* Enable aggressive back off algorithm in half duplex mode. */
1377 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1378 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1379 
1380 	/*
1381 	 * Make sure unicast VLAN boundary is set as default and
1382 	 * enable no excessive collision drop.
1383 	 */
1384 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1385 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1386 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1387 
1388 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1389 
1390 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1391 
1392 	if (!ksz_is_ksz88x3(dev))
1393 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1394 
1395 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1396 		ksz8_r_vlan_entries(dev, i);
1397 
1398 	return ksz8_handle_global_errata(ds);
1399 }
1400 
1401 void ksz8_get_caps(struct ksz_device *dev, int port,
1402 		   struct phylink_config *config)
1403 {
1404 	config->mac_capabilities = MAC_10 | MAC_100;
1405 
1406 	/* Silicon Errata Sheet (DS80000830A):
1407 	 * "Port 1 does not respond to received flow control PAUSE frames"
1408 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1409 	 * switches.
1410 	 */
1411 	if (!ksz_is_ksz88x3(dev) || port)
1412 		config->mac_capabilities |= MAC_SYM_PAUSE;
1413 
1414 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1415 	if (!ksz_is_ksz88x3(dev))
1416 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1417 }
1418 
1419 u32 ksz8_get_port_addr(int port, int offset)
1420 {
1421 	return PORT_CTRL_ADDR(port, offset);
1422 }
1423 
1424 int ksz8_switch_init(struct ksz_device *dev)
1425 {
1426 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1427 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1428 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1429 
1430 	return 0;
1431 }
1432 
1433 void ksz8_switch_exit(struct ksz_device *dev)
1434 {
1435 	ksz8_reset_switch(dev);
1436 }
1437 
1438 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1439 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1440 MODULE_LICENSE("GPL");
1441