1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
32 }
33 
34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
53 	if (!ret)
54 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81 	u8 ctrl2 = 0;
82 
83 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87 
88 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91 
92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94 	u8 ctrl1 = 0, ctrl2 = 0;
95 	int ret;
96 
97 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 		ctrl1 |= SW_HUGE_PACKET;
101 
102 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103 	if (ret)
104 		return ret;
105 
106 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108 
109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111 	u16 frame_size;
112 
113 	if (!dsa_is_cpu_port(dev->ds, port))
114 		return 0;
115 
116 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117 
118 	switch (dev->chip_id) {
119 	case KSZ8795_CHIP_ID:
120 	case KSZ8794_CHIP_ID:
121 	case KSZ8765_CHIP_ID:
122 		return ksz8795_change_mtu(dev, frame_size);
123 	case KSZ8830_CHIP_ID:
124 		return ksz8863_change_mtu(dev, frame_size);
125 	}
126 
127 	return -EOPNOTSUPP;
128 }
129 
130 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131 {
132 	u8 hi, lo;
133 
134 	/* Number of queues can only be 1, 2, or 4. */
135 	switch (queue) {
136 	case 4:
137 	case 3:
138 		queue = PORT_QUEUE_SPLIT_4;
139 		break;
140 	case 2:
141 		queue = PORT_QUEUE_SPLIT_2;
142 		break;
143 	default:
144 		queue = PORT_QUEUE_SPLIT_1;
145 	}
146 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148 	lo &= ~PORT_QUEUE_SPLIT_L;
149 	if (queue & PORT_QUEUE_SPLIT_2)
150 		lo |= PORT_QUEUE_SPLIT_L;
151 	hi &= ~PORT_QUEUE_SPLIT_H;
152 	if (queue & PORT_QUEUE_SPLIT_4)
153 		hi |= PORT_QUEUE_SPLIT_H;
154 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156 
157 	/* Default is port based for egress rate limit. */
158 	if (queue != PORT_QUEUE_SPLIT_1)
159 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160 			true);
161 }
162 
163 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164 {
165 	const u32 *masks;
166 	const u16 *regs;
167 	u16 ctrl_addr;
168 	u32 data;
169 	u8 check;
170 	int loop;
171 
172 	masks = dev->info->masks;
173 	regs = dev->info->regs;
174 
175 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177 
178 	mutex_lock(&dev->alu_mutex);
179 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180 
181 	/* It is almost guaranteed to always read the valid bit because of
182 	 * slow SPI speed.
183 	 */
184 	for (loop = 2; loop > 0; loop--) {
185 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186 
187 		if (check & masks[MIB_COUNTER_VALID]) {
188 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189 			if (check & masks[MIB_COUNTER_OVERFLOW])
190 				*cnt += MIB_COUNTER_VALUE + 1;
191 			*cnt += data & MIB_COUNTER_VALUE;
192 			break;
193 		}
194 	}
195 	mutex_unlock(&dev->alu_mutex);
196 }
197 
198 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199 			      u64 *dropped, u64 *cnt)
200 {
201 	const u32 *masks;
202 	const u16 *regs;
203 	u16 ctrl_addr;
204 	u32 data;
205 	u8 check;
206 	int loop;
207 
208 	masks = dev->info->masks;
209 	regs = dev->info->regs;
210 
211 	addr -= dev->info->reg_mib_cnt;
212 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215 
216 	mutex_lock(&dev->alu_mutex);
217 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218 
219 	/* It is almost guaranteed to always read the valid bit because of
220 	 * slow SPI speed.
221 	 */
222 	for (loop = 2; loop > 0; loop--) {
223 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224 
225 		if (check & masks[MIB_COUNTER_VALID]) {
226 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227 			if (addr < 2) {
228 				u64 total;
229 
230 				total = check & MIB_TOTAL_BYTES_H;
231 				total <<= 32;
232 				*cnt += total;
233 				*cnt += data;
234 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235 					total = MIB_TOTAL_BYTES_H + 1;
236 					total <<= 32;
237 					*cnt += total;
238 				}
239 			} else {
240 				if (check & masks[MIB_COUNTER_OVERFLOW])
241 					*cnt += MIB_PACKET_DROPPED + 1;
242 				*cnt += data & MIB_PACKET_DROPPED;
243 			}
244 			break;
245 		}
246 	}
247 	mutex_unlock(&dev->alu_mutex);
248 }
249 
250 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251 			      u64 *dropped, u64 *cnt)
252 {
253 	u32 *last = (u32 *)dropped;
254 	const u16 *regs;
255 	u16 ctrl_addr;
256 	u32 data;
257 	u32 cur;
258 
259 	regs = dev->info->regs;
260 
261 	addr -= dev->info->reg_mib_cnt;
262 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
264 	ctrl_addr += port;
265 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266 
267 	mutex_lock(&dev->alu_mutex);
268 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270 	mutex_unlock(&dev->alu_mutex);
271 
272 	data &= MIB_PACKET_DROPPED;
273 	cur = last[addr];
274 	if (data != cur) {
275 		last[addr] = data;
276 		if (data < cur)
277 			data += MIB_PACKET_DROPPED + 1;
278 		data -= cur;
279 		*cnt += data;
280 	}
281 }
282 
283 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284 		    u64 *dropped, u64 *cnt)
285 {
286 	if (ksz_is_ksz88x3(dev))
287 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288 	else
289 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290 }
291 
292 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293 {
294 	if (ksz_is_ksz88x3(dev))
295 		return;
296 
297 	/* enable the port for flush/freeze function */
298 	if (freeze)
299 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301 
302 	/* disable the port after freeze is done */
303 	if (!freeze)
304 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305 }
306 
307 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308 {
309 	struct ksz_port_mib *mib = &dev->ports[port].mib;
310 	u64 *dropped;
311 
312 	if (!ksz_is_ksz88x3(dev)) {
313 		/* flush all enabled port MIB counters */
314 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317 	}
318 
319 	mib->cnt_ptr = 0;
320 
321 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324 					&mib->counters[mib->cnt_ptr]);
325 		++mib->cnt_ptr;
326 	}
327 
328 	/* last one in storage */
329 	dropped = &mib->counters[dev->info->mib_cnt];
330 
331 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332 	while (mib->cnt_ptr < dev->info->mib_cnt) {
333 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334 					dropped, &mib->counters[mib->cnt_ptr]);
335 		++mib->cnt_ptr;
336 	}
337 }
338 
339 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340 {
341 	const u16 *regs;
342 	u16 ctrl_addr;
343 
344 	regs = dev->info->regs;
345 
346 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
347 
348 	mutex_lock(&dev->alu_mutex);
349 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
350 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
351 	mutex_unlock(&dev->alu_mutex);
352 }
353 
354 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
355 {
356 	const u16 *regs;
357 	u16 ctrl_addr;
358 
359 	regs = dev->info->regs;
360 
361 	ctrl_addr = IND_ACC_TABLE(table) | addr;
362 
363 	mutex_lock(&dev->alu_mutex);
364 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
365 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
366 	mutex_unlock(&dev->alu_mutex);
367 }
368 
369 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
370 {
371 	int timeout = 100;
372 	const u32 *masks;
373 	const u16 *regs;
374 
375 	masks = dev->info->masks;
376 	regs = dev->info->regs;
377 
378 	do {
379 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
380 		timeout--;
381 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
382 
383 	/* Entry is not ready for accessing. */
384 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
385 		return -EAGAIN;
386 	/* Entry is ready for accessing. */
387 	} else {
388 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
389 
390 		/* There is no valid entry in the table. */
391 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
392 			return -ENXIO;
393 	}
394 	return 0;
395 }
396 
397 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
398 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
399 {
400 	u32 data_hi, data_lo;
401 	const u8 *shifts;
402 	const u32 *masks;
403 	const u16 *regs;
404 	u16 ctrl_addr;
405 	u8 data;
406 	int rc;
407 
408 	shifts = dev->info->shifts;
409 	masks = dev->info->masks;
410 	regs = dev->info->regs;
411 
412 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
413 
414 	mutex_lock(&dev->alu_mutex);
415 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
416 
417 	rc = ksz8_valid_dyn_entry(dev, &data);
418 	if (rc == -EAGAIN) {
419 		if (addr == 0)
420 			*entries = 0;
421 	} else if (rc == -ENXIO) {
422 		*entries = 0;
423 	/* At least one valid entry in the table. */
424 	} else {
425 		u64 buf = 0;
426 		int cnt;
427 
428 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
429 		data_hi = (u32)(buf >> 32);
430 		data_lo = (u32)buf;
431 
432 		/* Check out how many valid entry in the table. */
433 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
434 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
435 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
436 			shifts[DYNAMIC_MAC_ENTRIES];
437 		*entries = cnt + 1;
438 
439 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
440 			shifts[DYNAMIC_MAC_FID];
441 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
442 			shifts[DYNAMIC_MAC_SRC_PORT];
443 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
444 			shifts[DYNAMIC_MAC_TIMESTAMP];
445 
446 		mac_addr[5] = (u8)data_lo;
447 		mac_addr[4] = (u8)(data_lo >> 8);
448 		mac_addr[3] = (u8)(data_lo >> 16);
449 		mac_addr[2] = (u8)(data_lo >> 24);
450 
451 		mac_addr[1] = (u8)data_hi;
452 		mac_addr[0] = (u8)(data_hi >> 8);
453 		rc = 0;
454 	}
455 	mutex_unlock(&dev->alu_mutex);
456 
457 	return rc;
458 }
459 
460 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
461 			 struct alu_struct *alu)
462 {
463 	u32 data_hi, data_lo;
464 	const u8 *shifts;
465 	const u32 *masks;
466 	u64 data;
467 
468 	shifts = dev->info->shifts;
469 	masks = dev->info->masks;
470 
471 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
472 	data_hi = data >> 32;
473 	data_lo = (u32)data;
474 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
475 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
476 		alu->mac[5] = (u8)data_lo;
477 		alu->mac[4] = (u8)(data_lo >> 8);
478 		alu->mac[3] = (u8)(data_lo >> 16);
479 		alu->mac[2] = (u8)(data_lo >> 24);
480 		alu->mac[1] = (u8)data_hi;
481 		alu->mac[0] = (u8)(data_hi >> 8);
482 		alu->port_forward =
483 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
484 				shifts[STATIC_MAC_FWD_PORTS];
485 		alu->is_override =
486 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
487 		data_hi >>= 1;
488 		alu->is_static = true;
489 		alu->is_use_fid =
490 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
491 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
492 				shifts[STATIC_MAC_FID];
493 		return 0;
494 	}
495 	return -ENXIO;
496 }
497 
498 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
499 			  struct alu_struct *alu)
500 {
501 	u32 data_hi, data_lo;
502 	const u8 *shifts;
503 	const u32 *masks;
504 	u64 data;
505 
506 	shifts = dev->info->shifts;
507 	masks = dev->info->masks;
508 
509 	data_lo = ((u32)alu->mac[2] << 24) |
510 		((u32)alu->mac[3] << 16) |
511 		((u32)alu->mac[4] << 8) | alu->mac[5];
512 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
513 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
514 
515 	if (alu->is_override)
516 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
517 	if (alu->is_use_fid) {
518 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
519 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
520 	}
521 	if (alu->is_static)
522 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
523 	else
524 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
525 
526 	data = (u64)data_hi << 32 | data_lo;
527 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
528 }
529 
530 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
531 			   u8 *member, u8 *valid)
532 {
533 	const u8 *shifts;
534 	const u32 *masks;
535 
536 	shifts = dev->info->shifts;
537 	masks = dev->info->masks;
538 
539 	*fid = vlan & masks[VLAN_TABLE_FID];
540 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
541 			shifts[VLAN_TABLE_MEMBERSHIP_S];
542 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
543 }
544 
545 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
546 			 u16 *vlan)
547 {
548 	const u8 *shifts;
549 	const u32 *masks;
550 
551 	shifts = dev->info->shifts;
552 	masks = dev->info->masks;
553 
554 	*vlan = fid;
555 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
556 	if (valid)
557 		*vlan |= masks[VLAN_TABLE_VALID];
558 }
559 
560 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
561 {
562 	const u8 *shifts;
563 	u64 data;
564 	int i;
565 
566 	shifts = dev->info->shifts;
567 
568 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
569 	addr *= 4;
570 	for (i = 0; i < 4; i++) {
571 		dev->vlan_cache[addr + i].table[0] = (u16)data;
572 		data >>= shifts[VLAN_TABLE];
573 	}
574 }
575 
576 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
577 {
578 	int index;
579 	u16 *data;
580 	u16 addr;
581 	u64 buf;
582 
583 	data = (u16 *)&buf;
584 	addr = vid / 4;
585 	index = vid & 3;
586 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
587 	*vlan = data[index];
588 }
589 
590 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
591 {
592 	int index;
593 	u16 *data;
594 	u16 addr;
595 	u64 buf;
596 
597 	data = (u16 *)&buf;
598 	addr = vid / 4;
599 	index = vid & 3;
600 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
601 	data[index] = vlan;
602 	dev->vlan_cache[vid].table[0] = vlan;
603 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
604 }
605 
606 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
607 {
608 	u8 restart, speed, ctrl, link;
609 	int processed = true;
610 	const u16 *regs;
611 	u8 val1, val2;
612 	u16 data = 0;
613 	u8 p = phy;
614 	int ret;
615 
616 	regs = dev->info->regs;
617 
618 	switch (reg) {
619 	case MII_BMCR:
620 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
621 		if (ret)
622 			return ret;
623 
624 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
625 		if (ret)
626 			return ret;
627 
628 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
629 		if (ret)
630 			return ret;
631 
632 		if (restart & PORT_PHY_LOOPBACK)
633 			data |= BMCR_LOOPBACK;
634 		if (ctrl & PORT_FORCE_100_MBIT)
635 			data |= BMCR_SPEED100;
636 		if (ksz_is_ksz88x3(dev)) {
637 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
638 				data |= BMCR_ANENABLE;
639 		} else {
640 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
641 				data |= BMCR_ANENABLE;
642 		}
643 		if (restart & PORT_POWER_DOWN)
644 			data |= BMCR_PDOWN;
645 		if (restart & PORT_AUTO_NEG_RESTART)
646 			data |= BMCR_ANRESTART;
647 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
648 			data |= BMCR_FULLDPLX;
649 		if (speed & PORT_HP_MDIX)
650 			data |= KSZ886X_BMCR_HP_MDIX;
651 		if (restart & PORT_FORCE_MDIX)
652 			data |= KSZ886X_BMCR_FORCE_MDI;
653 		if (restart & PORT_AUTO_MDIX_DISABLE)
654 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
655 		if (restart & PORT_TX_DISABLE)
656 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
657 		if (restart & PORT_LED_OFF)
658 			data |= KSZ886X_BMCR_DISABLE_LED;
659 		break;
660 	case MII_BMSR:
661 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
662 		if (ret)
663 			return ret;
664 
665 		data = BMSR_100FULL |
666 		       BMSR_100HALF |
667 		       BMSR_10FULL |
668 		       BMSR_10HALF |
669 		       BMSR_ANEGCAPABLE;
670 		if (link & PORT_AUTO_NEG_COMPLETE)
671 			data |= BMSR_ANEGCOMPLETE;
672 		if (link & PORT_STAT_LINK_GOOD)
673 			data |= BMSR_LSTATUS;
674 		break;
675 	case MII_PHYSID1:
676 		data = KSZ8795_ID_HI;
677 		break;
678 	case MII_PHYSID2:
679 		if (ksz_is_ksz88x3(dev))
680 			data = KSZ8863_ID_LO;
681 		else
682 			data = KSZ8795_ID_LO;
683 		break;
684 	case MII_ADVERTISE:
685 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
686 		if (ret)
687 			return ret;
688 
689 		data = ADVERTISE_CSMA;
690 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
691 			data |= ADVERTISE_PAUSE_CAP;
692 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
693 			data |= ADVERTISE_100FULL;
694 		if (ctrl & PORT_AUTO_NEG_100BTX)
695 			data |= ADVERTISE_100HALF;
696 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
697 			data |= ADVERTISE_10FULL;
698 		if (ctrl & PORT_AUTO_NEG_10BT)
699 			data |= ADVERTISE_10HALF;
700 		break;
701 	case MII_LPA:
702 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
703 		if (ret)
704 			return ret;
705 
706 		data = LPA_SLCT;
707 		if (link & PORT_REMOTE_SYM_PAUSE)
708 			data |= LPA_PAUSE_CAP;
709 		if (link & PORT_REMOTE_100BTX_FD)
710 			data |= LPA_100FULL;
711 		if (link & PORT_REMOTE_100BTX)
712 			data |= LPA_100HALF;
713 		if (link & PORT_REMOTE_10BT_FD)
714 			data |= LPA_10FULL;
715 		if (link & PORT_REMOTE_10BT)
716 			data |= LPA_10HALF;
717 		if (data & ~LPA_SLCT)
718 			data |= LPA_LPACK;
719 		break;
720 	case PHY_REG_LINK_MD:
721 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
722 		if (ret)
723 			return ret;
724 
725 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
726 		if (ret)
727 			return ret;
728 
729 		if (val1 & PORT_START_CABLE_DIAG)
730 			data |= PHY_START_CABLE_DIAG;
731 
732 		if (val1 & PORT_CABLE_10M_SHORT)
733 			data |= PHY_CABLE_10M_SHORT;
734 
735 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
736 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
737 
738 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
739 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
740 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
741 		break;
742 	case PHY_REG_PHY_CTRL:
743 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
744 		if (ret)
745 			return ret;
746 
747 		if (link & PORT_MDIX_STATUS)
748 			data |= KSZ886X_CTRL_MDIX_STAT;
749 		break;
750 	default:
751 		processed = false;
752 		break;
753 	}
754 	if (processed)
755 		*val = data;
756 
757 	return 0;
758 }
759 
760 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
761 {
762 	u8 restart, speed, ctrl, data;
763 	const u16 *regs;
764 	u8 p = phy;
765 	int ret;
766 
767 	regs = dev->info->regs;
768 
769 	switch (reg) {
770 	case MII_BMCR:
771 
772 		/* Do not support PHY reset function. */
773 		if (val & BMCR_RESET)
774 			break;
775 		ret = ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
776 		if (ret)
777 			return ret;
778 
779 		data = speed;
780 		if (val & KSZ886X_BMCR_HP_MDIX)
781 			data |= PORT_HP_MDIX;
782 		else
783 			data &= ~PORT_HP_MDIX;
784 
785 		if (data != speed) {
786 			ret = ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
787 			if (ret)
788 				return ret;
789 		}
790 
791 		ret = ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
792 		if (ret)
793 			return ret;
794 
795 		data = ctrl;
796 		if (ksz_is_ksz88x3(dev)) {
797 			if ((val & BMCR_ANENABLE))
798 				data |= PORT_AUTO_NEG_ENABLE;
799 			else
800 				data &= ~PORT_AUTO_NEG_ENABLE;
801 		} else {
802 			if (!(val & BMCR_ANENABLE))
803 				data |= PORT_AUTO_NEG_DISABLE;
804 			else
805 				data &= ~PORT_AUTO_NEG_DISABLE;
806 
807 			/* Fiber port does not support auto-negotiation. */
808 			if (dev->ports[p].fiber)
809 				data |= PORT_AUTO_NEG_DISABLE;
810 		}
811 
812 		if (val & BMCR_SPEED100)
813 			data |= PORT_FORCE_100_MBIT;
814 		else
815 			data &= ~PORT_FORCE_100_MBIT;
816 		if (val & BMCR_FULLDPLX)
817 			data |= PORT_FORCE_FULL_DUPLEX;
818 		else
819 			data &= ~PORT_FORCE_FULL_DUPLEX;
820 
821 		if (data != ctrl) {
822 			ret = ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
823 			if (ret)
824 				return ret;
825 		}
826 
827 		ret = ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
828 		if (ret)
829 			return ret;
830 
831 		data = restart;
832 		if (val & KSZ886X_BMCR_DISABLE_LED)
833 			data |= PORT_LED_OFF;
834 		else
835 			data &= ~PORT_LED_OFF;
836 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
837 			data |= PORT_TX_DISABLE;
838 		else
839 			data &= ~PORT_TX_DISABLE;
840 		if (val & BMCR_ANRESTART)
841 			data |= PORT_AUTO_NEG_RESTART;
842 		else
843 			data &= ~(PORT_AUTO_NEG_RESTART);
844 		if (val & BMCR_PDOWN)
845 			data |= PORT_POWER_DOWN;
846 		else
847 			data &= ~PORT_POWER_DOWN;
848 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
849 			data |= PORT_AUTO_MDIX_DISABLE;
850 		else
851 			data &= ~PORT_AUTO_MDIX_DISABLE;
852 		if (val & KSZ886X_BMCR_FORCE_MDI)
853 			data |= PORT_FORCE_MDIX;
854 		else
855 			data &= ~PORT_FORCE_MDIX;
856 		if (val & BMCR_LOOPBACK)
857 			data |= PORT_PHY_LOOPBACK;
858 		else
859 			data &= ~PORT_PHY_LOOPBACK;
860 
861 		if (data != restart) {
862 			ret = ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL],
863 					  data);
864 			if (ret)
865 				return ret;
866 		}
867 		break;
868 	case MII_ADVERTISE:
869 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
870 		if (ret)
871 			return ret;
872 
873 		data = ctrl;
874 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
875 			  PORT_AUTO_NEG_100BTX_FD |
876 			  PORT_AUTO_NEG_100BTX |
877 			  PORT_AUTO_NEG_10BT_FD |
878 			  PORT_AUTO_NEG_10BT);
879 		if (val & ADVERTISE_PAUSE_CAP)
880 			data |= PORT_AUTO_NEG_SYM_PAUSE;
881 		if (val & ADVERTISE_100FULL)
882 			data |= PORT_AUTO_NEG_100BTX_FD;
883 		if (val & ADVERTISE_100HALF)
884 			data |= PORT_AUTO_NEG_100BTX;
885 		if (val & ADVERTISE_10FULL)
886 			data |= PORT_AUTO_NEG_10BT_FD;
887 		if (val & ADVERTISE_10HALF)
888 			data |= PORT_AUTO_NEG_10BT;
889 
890 		if (data != ctrl) {
891 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
892 			if (ret)
893 				return ret;
894 		}
895 		break;
896 	case PHY_REG_LINK_MD:
897 		if (val & PHY_START_CABLE_DIAG)
898 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
899 		break;
900 	default:
901 		break;
902 	}
903 
904 	return 0;
905 }
906 
907 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
908 {
909 	u8 data;
910 
911 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
912 	data &= ~PORT_VLAN_MEMBERSHIP;
913 	data |= (member & dev->port_mask);
914 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
915 }
916 
917 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
918 {
919 	u8 learn[DSA_MAX_PORTS];
920 	int first, index, cnt;
921 	struct ksz_port *p;
922 	const u16 *regs;
923 
924 	regs = dev->info->regs;
925 
926 	if ((uint)port < dev->info->port_cnt) {
927 		first = port;
928 		cnt = port + 1;
929 	} else {
930 		/* Flush all ports. */
931 		first = 0;
932 		cnt = dev->info->port_cnt;
933 	}
934 	for (index = first; index < cnt; index++) {
935 		p = &dev->ports[index];
936 		if (!p->on)
937 			continue;
938 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
939 		if (!(learn[index] & PORT_LEARN_DISABLE))
940 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
941 				    learn[index] | PORT_LEARN_DISABLE);
942 	}
943 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
944 	for (index = first; index < cnt; index++) {
945 		p = &dev->ports[index];
946 		if (!p->on)
947 			continue;
948 		if (!(learn[index] & PORT_LEARN_DISABLE))
949 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
950 	}
951 }
952 
953 int ksz8_fdb_dump(struct ksz_device *dev, int port,
954 		  dsa_fdb_dump_cb_t *cb, void *data)
955 {
956 	int ret = 0;
957 	u16 i = 0;
958 	u16 entries = 0;
959 	u8 timestamp = 0;
960 	u8 fid;
961 	u8 member;
962 	struct alu_struct alu;
963 
964 	do {
965 		alu.is_static = false;
966 		ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
967 					   &timestamp, &entries);
968 		if (!ret && (member & BIT(port))) {
969 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
970 			if (ret)
971 				break;
972 		}
973 		i++;
974 	} while (i < entries);
975 	if (i >= entries)
976 		ret = 0;
977 
978 	return ret;
979 }
980 
981 int ksz8_mdb_add(struct ksz_device *dev, int port,
982 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
983 {
984 	struct alu_struct alu;
985 	int index;
986 	int empty = 0;
987 
988 	alu.port_forward = 0;
989 	for (index = 0; index < dev->info->num_statics; index++) {
990 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
991 			/* Found one already in static MAC table. */
992 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
993 			    alu.fid == mdb->vid)
994 				break;
995 		/* Remember the first empty entry. */
996 		} else if (!empty) {
997 			empty = index + 1;
998 		}
999 	}
1000 
1001 	/* no available entry */
1002 	if (index == dev->info->num_statics && !empty)
1003 		return -ENOSPC;
1004 
1005 	/* add entry */
1006 	if (index == dev->info->num_statics) {
1007 		index = empty - 1;
1008 		memset(&alu, 0, sizeof(alu));
1009 		memcpy(alu.mac, mdb->addr, ETH_ALEN);
1010 		alu.is_static = true;
1011 	}
1012 	alu.port_forward |= BIT(port);
1013 	if (mdb->vid) {
1014 		alu.is_use_fid = true;
1015 
1016 		/* Need a way to map VID to FID. */
1017 		alu.fid = mdb->vid;
1018 	}
1019 	ksz8_w_sta_mac_table(dev, index, &alu);
1020 
1021 	return 0;
1022 }
1023 
1024 int ksz8_mdb_del(struct ksz_device *dev, int port,
1025 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1026 {
1027 	struct alu_struct alu;
1028 	int index;
1029 
1030 	for (index = 0; index < dev->info->num_statics; index++) {
1031 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
1032 			/* Found one already in static MAC table. */
1033 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
1034 			    alu.fid == mdb->vid)
1035 				break;
1036 		}
1037 	}
1038 
1039 	/* no available entry */
1040 	if (index == dev->info->num_statics)
1041 		goto exit;
1042 
1043 	/* clear port */
1044 	alu.port_forward &= ~BIT(port);
1045 	if (!alu.port_forward)
1046 		alu.is_static = false;
1047 	ksz8_w_sta_mac_table(dev, index, &alu);
1048 
1049 exit:
1050 	return 0;
1051 }
1052 
1053 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1054 			     struct netlink_ext_ack *extack)
1055 {
1056 	if (ksz_is_ksz88x3(dev))
1057 		return -ENOTSUPP;
1058 
1059 	/* Discard packets with VID not enabled on the switch */
1060 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1061 
1062 	/* Discard packets with VID not enabled on the ingress port */
1063 	for (port = 0; port < dev->phy_port_cnt; ++port)
1064 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1065 			     flag);
1066 
1067 	return 0;
1068 }
1069 
1070 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1071 {
1072 	if (ksz_is_ksz88x3(dev)) {
1073 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1074 			0x03 << (4 - 2 * port), state);
1075 	} else {
1076 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1077 	}
1078 }
1079 
1080 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1081 		       const struct switchdev_obj_port_vlan *vlan,
1082 		       struct netlink_ext_ack *extack)
1083 {
1084 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1085 	struct ksz_port *p = &dev->ports[port];
1086 	u16 data, new_pvid = 0;
1087 	u8 fid, member, valid;
1088 
1089 	if (ksz_is_ksz88x3(dev))
1090 		return -ENOTSUPP;
1091 
1092 	/* If a VLAN is added with untagged flag different from the
1093 	 * port's Remove Tag flag, we need to change the latter.
1094 	 * Ignore VID 0, which is always untagged.
1095 	 * Ignore CPU port, which will always be tagged.
1096 	 */
1097 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1098 	    port != dev->cpu_port) {
1099 		unsigned int vid;
1100 
1101 		/* Reject attempts to add a VLAN that requires the
1102 		 * Remove Tag flag to be changed, unless there are no
1103 		 * other VLANs currently configured.
1104 		 */
1105 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1106 			/* Skip the VID we are going to add or reconfigure */
1107 			if (vid == vlan->vid)
1108 				continue;
1109 
1110 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1111 				       &fid, &member, &valid);
1112 			if (valid && (member & BIT(port)))
1113 				return -EINVAL;
1114 		}
1115 
1116 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1117 		p->remove_tag = untagged;
1118 	}
1119 
1120 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1121 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1122 
1123 	/* First time to setup the VLAN entry. */
1124 	if (!valid) {
1125 		/* Need to find a way to map VID to FID. */
1126 		fid = 1;
1127 		valid = 1;
1128 	}
1129 	member |= BIT(port);
1130 
1131 	ksz8_to_vlan(dev, fid, member, valid, &data);
1132 	ksz8_w_vlan_table(dev, vlan->vid, data);
1133 
1134 	/* change PVID */
1135 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1136 		new_pvid = vlan->vid;
1137 
1138 	if (new_pvid) {
1139 		u16 vid;
1140 
1141 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1142 		vid &= ~VLAN_VID_MASK;
1143 		vid |= new_pvid;
1144 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1145 
1146 		ksz8_port_enable_pvid(dev, port, true);
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1153 		       const struct switchdev_obj_port_vlan *vlan)
1154 {
1155 	u16 data, pvid;
1156 	u8 fid, member, valid;
1157 
1158 	if (ksz_is_ksz88x3(dev))
1159 		return -ENOTSUPP;
1160 
1161 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1162 	pvid = pvid & 0xFFF;
1163 
1164 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1165 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1166 
1167 	member &= ~BIT(port);
1168 
1169 	/* Invalidate the entry if no more member. */
1170 	if (!member) {
1171 		fid = 0;
1172 		valid = 0;
1173 	}
1174 
1175 	ksz8_to_vlan(dev, fid, member, valid, &data);
1176 	ksz8_w_vlan_table(dev, vlan->vid, data);
1177 
1178 	if (pvid == vlan->vid)
1179 		ksz8_port_enable_pvid(dev, port, false);
1180 
1181 	return 0;
1182 }
1183 
1184 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1185 			 struct dsa_mall_mirror_tc_entry *mirror,
1186 			 bool ingress, struct netlink_ext_ack *extack)
1187 {
1188 	if (ingress) {
1189 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1190 		dev->mirror_rx |= BIT(port);
1191 	} else {
1192 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1193 		dev->mirror_tx |= BIT(port);
1194 	}
1195 
1196 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1197 
1198 	/* configure mirror port */
1199 	if (dev->mirror_rx || dev->mirror_tx)
1200 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1201 			     PORT_MIRROR_SNIFFER, true);
1202 
1203 	return 0;
1204 }
1205 
1206 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1207 			  struct dsa_mall_mirror_tc_entry *mirror)
1208 {
1209 	u8 data;
1210 
1211 	if (mirror->ingress) {
1212 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1213 		dev->mirror_rx &= ~BIT(port);
1214 	} else {
1215 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1216 		dev->mirror_tx &= ~BIT(port);
1217 	}
1218 
1219 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1220 
1221 	if (!dev->mirror_rx && !dev->mirror_tx)
1222 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1223 			     PORT_MIRROR_SNIFFER, false);
1224 }
1225 
1226 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1227 {
1228 	struct ksz_port *p = &dev->ports[port];
1229 
1230 	if (!p->interface && dev->compat_interface) {
1231 		dev_warn(dev->dev,
1232 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1233 			 "Please update your device tree.\n",
1234 			 port);
1235 		p->interface = dev->compat_interface;
1236 	}
1237 }
1238 
1239 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1240 {
1241 	struct dsa_switch *ds = dev->ds;
1242 	const u32 *masks;
1243 	u8 member;
1244 
1245 	masks = dev->info->masks;
1246 
1247 	/* enable broadcast storm limit */
1248 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1249 
1250 	if (!ksz_is_ksz88x3(dev))
1251 		ksz8795_set_prio_queue(dev, port, 4);
1252 
1253 	/* disable DiffServ priority */
1254 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1255 
1256 	/* replace priority */
1257 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1258 		     masks[PORT_802_1P_REMAPPING], false);
1259 
1260 	/* enable 802.1p priority */
1261 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1262 
1263 	if (cpu_port) {
1264 		if (!ksz_is_ksz88x3(dev))
1265 			ksz8795_cpu_interface_select(dev, port);
1266 
1267 		member = dsa_user_ports(ds);
1268 	} else {
1269 		member = BIT(dsa_upstream_port(ds, port));
1270 	}
1271 
1272 	ksz8_cfg_port_member(dev, port, member);
1273 }
1274 
1275 void ksz8_config_cpu_port(struct dsa_switch *ds)
1276 {
1277 	struct ksz_device *dev = ds->priv;
1278 	struct ksz_port *p;
1279 	const u32 *masks;
1280 	const u16 *regs;
1281 	u8 remote;
1282 	int i;
1283 
1284 	masks = dev->info->masks;
1285 	regs = dev->info->regs;
1286 
1287 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1288 
1289 	p = &dev->ports[dev->cpu_port];
1290 	p->on = 1;
1291 
1292 	ksz8_port_setup(dev, dev->cpu_port, true);
1293 
1294 	for (i = 0; i < dev->phy_port_cnt; i++) {
1295 		p = &dev->ports[i];
1296 
1297 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1298 
1299 		/* Last port may be disabled. */
1300 		if (i == dev->phy_port_cnt)
1301 			break;
1302 		p->on = 1;
1303 	}
1304 	for (i = 0; i < dev->phy_port_cnt; i++) {
1305 		p = &dev->ports[i];
1306 		if (!p->on)
1307 			continue;
1308 		if (!ksz_is_ksz88x3(dev)) {
1309 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1310 			if (remote & KSZ8_PORT_FIBER_MODE)
1311 				p->fiber = 1;
1312 		}
1313 		if (p->fiber)
1314 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1315 				     PORT_FORCE_FLOW_CTRL, true);
1316 		else
1317 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1318 				     PORT_FORCE_FLOW_CTRL, false);
1319 	}
1320 }
1321 
1322 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1323 {
1324 	struct ksz_device *dev = ds->priv;
1325 	int ret = 0;
1326 
1327 	/* KSZ87xx Errata DS80000687C.
1328 	 * Module 2: Link drops with some EEE link partners.
1329 	 *   An issue with the EEE next page exchange between the
1330 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1331 	 *   the link dropping.
1332 	 */
1333 	if (dev->info->ksz87xx_eee_link_erratum)
1334 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1335 
1336 	return ret;
1337 }
1338 
1339 int ksz8_enable_stp_addr(struct ksz_device *dev)
1340 {
1341 	struct alu_struct alu;
1342 
1343 	/* Setup STP address for STP operation. */
1344 	memset(&alu, 0, sizeof(alu));
1345 	ether_addr_copy(alu.mac, eth_stp_addr);
1346 	alu.is_static = true;
1347 	alu.is_override = true;
1348 	alu.port_forward = dev->info->cpu_ports;
1349 
1350 	ksz8_w_sta_mac_table(dev, 0, &alu);
1351 
1352 	return 0;
1353 }
1354 
1355 int ksz8_setup(struct dsa_switch *ds)
1356 {
1357 	struct ksz_device *dev = ds->priv;
1358 	int i;
1359 
1360 	ds->mtu_enforcement_ingress = true;
1361 
1362 	/* We rely on software untagging on the CPU port, so that we
1363 	 * can support both tagged and untagged VLANs
1364 	 */
1365 	ds->untag_bridge_pvid = true;
1366 
1367 	/* VLAN filtering is partly controlled by the global VLAN
1368 	 * Enable flag
1369 	 */
1370 	ds->vlan_filtering_is_global = true;
1371 
1372 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1373 
1374 	/* Enable automatic fast aging when link changed detected. */
1375 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1376 
1377 	/* Enable aggressive back off algorithm in half duplex mode. */
1378 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1379 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1380 
1381 	/*
1382 	 * Make sure unicast VLAN boundary is set as default and
1383 	 * enable no excessive collision drop.
1384 	 */
1385 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1386 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1387 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1388 
1389 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1390 
1391 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1392 
1393 	if (!ksz_is_ksz88x3(dev))
1394 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1395 
1396 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1397 		ksz8_r_vlan_entries(dev, i);
1398 
1399 	return ksz8_handle_global_errata(ds);
1400 }
1401 
1402 void ksz8_get_caps(struct ksz_device *dev, int port,
1403 		   struct phylink_config *config)
1404 {
1405 	config->mac_capabilities = MAC_10 | MAC_100;
1406 
1407 	/* Silicon Errata Sheet (DS80000830A):
1408 	 * "Port 1 does not respond to received flow control PAUSE frames"
1409 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1410 	 * switches.
1411 	 */
1412 	if (!ksz_is_ksz88x3(dev) || port)
1413 		config->mac_capabilities |= MAC_SYM_PAUSE;
1414 
1415 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1416 	if (!ksz_is_ksz88x3(dev))
1417 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1418 }
1419 
1420 u32 ksz8_get_port_addr(int port, int offset)
1421 {
1422 	return PORT_CTRL_ADDR(port, offset);
1423 }
1424 
1425 int ksz8_switch_init(struct ksz_device *dev)
1426 {
1427 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1428 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1429 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1430 
1431 	return 0;
1432 }
1433 
1434 void ksz8_switch_exit(struct ksz_device *dev)
1435 {
1436 	ksz8_reset_switch(dev);
1437 }
1438 
1439 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1440 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1441 MODULE_LICENSE("GPL");
1442