xref: /openbmc/linux/drivers/net/dsa/lantiq_gswip.c (revision f59a3ee6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
217 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
218 
219 /* Ethernet Switch Fetch DMA Port Control Register */
220 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
221 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
222 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229 
230 /* Ethernet Switch Store DMA Port Control Register */
231 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
232 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
233 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
234 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
235 
236 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
237 #define GSWIP_TABLE_VLAN_MAPPING	0x02
238 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
239 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
240 
241 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
242 
243 /* Maximum packet size supported by the switch. In theory this should be 10240,
244  * but long packets currently cause lock-ups with an MTU of over 2526. Medium
245  * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
246  * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
247  * packet reception. This is probably caused by the PPA engine, which is on the
248  * RX part of the device. Packet transmission works properly up to 10240.
249  */
250 #define GSWIP_MAX_PACKET_LENGTH	2400
251 
252 struct gswip_hw_info {
253 	int max_ports;
254 	int cpu_port;
255 	const struct dsa_switch_ops *ops;
256 };
257 
258 struct xway_gphy_match_data {
259 	char *fe_firmware_name;
260 	char *ge_firmware_name;
261 };
262 
263 struct gswip_gphy_fw {
264 	struct clk *clk_gate;
265 	struct reset_control *reset;
266 	u32 fw_addr_offset;
267 	char *fw_name;
268 };
269 
270 struct gswip_vlan {
271 	struct net_device *bridge;
272 	u16 vid;
273 	u8 fid;
274 };
275 
276 struct gswip_priv {
277 	__iomem void *gswip;
278 	__iomem void *mdio;
279 	__iomem void *mii;
280 	const struct gswip_hw_info *hw_info;
281 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
282 	struct dsa_switch *ds;
283 	struct device *dev;
284 	struct regmap *rcu_regmap;
285 	struct gswip_vlan vlans[64];
286 	int num_gphy_fw;
287 	struct gswip_gphy_fw *gphy_fw;
288 	u32 port_vlan_filter;
289 	struct mutex pce_table_lock;
290 };
291 
292 struct gswip_pce_table_entry {
293 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
294 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
295 	u16 key[8];
296 	u16 val[5];
297 	u16 mask;
298 	u8 gmap;
299 	bool type;
300 	bool valid;
301 	bool key_mode;
302 };
303 
304 struct gswip_rmon_cnt_desc {
305 	unsigned int size;
306 	unsigned int offset;
307 	const char *name;
308 };
309 
310 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
311 
312 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
313 	/** Receive Packet Count (only packets that are accepted and not discarded). */
314 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
315 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
316 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
317 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
318 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
319 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
320 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
321 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
322 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
323 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
324 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
325 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
326 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
327 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
328 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
329 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
330 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
331 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
332 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
333 	MIB_DESC(2, 0x24, "RxGoodBytes"),
334 	MIB_DESC(2, 0x26, "RxBadBytes"),
335 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
336 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
337 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
338 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
339 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
340 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
341 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
342 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
343 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
344 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
345 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
346 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
347 	MIB_DESC(1, 0x09, "TxMultCollCount"),
348 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
349 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
350 	MIB_DESC(1, 0x0D, "TxPauseCount"),
351 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
352 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
353 };
354 
355 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
356 {
357 	return __raw_readl(priv->gswip + (offset * 4));
358 }
359 
360 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
361 {
362 	__raw_writel(val, priv->gswip + (offset * 4));
363 }
364 
365 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
366 			      u32 offset)
367 {
368 	u32 val = gswip_switch_r(priv, offset);
369 
370 	val &= ~(clear);
371 	val |= set;
372 	gswip_switch_w(priv, val, offset);
373 }
374 
375 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
376 				  u32 cleared)
377 {
378 	u32 val;
379 
380 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
381 				  (val & cleared) == 0, 20, 50000);
382 }
383 
384 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
385 {
386 	return __raw_readl(priv->mdio + (offset * 4));
387 }
388 
389 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
390 {
391 	__raw_writel(val, priv->mdio + (offset * 4));
392 }
393 
394 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
395 			    u32 offset)
396 {
397 	u32 val = gswip_mdio_r(priv, offset);
398 
399 	val &= ~(clear);
400 	val |= set;
401 	gswip_mdio_w(priv, val, offset);
402 }
403 
404 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
405 {
406 	return __raw_readl(priv->mii + (offset * 4));
407 }
408 
409 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
410 {
411 	__raw_writel(val, priv->mii + (offset * 4));
412 }
413 
414 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
415 			   u32 offset)
416 {
417 	u32 val = gswip_mii_r(priv, offset);
418 
419 	val &= ~(clear);
420 	val |= set;
421 	gswip_mii_w(priv, val, offset);
422 }
423 
424 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
425 			       int port)
426 {
427 	/* There's no MII_CFG register for the CPU port */
428 	if (!dsa_is_cpu_port(priv->ds, port))
429 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
430 }
431 
432 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
433 				int port)
434 {
435 	switch (port) {
436 	case 0:
437 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
438 		break;
439 	case 1:
440 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
441 		break;
442 	case 5:
443 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
444 		break;
445 	}
446 }
447 
448 static int gswip_mdio_poll(struct gswip_priv *priv)
449 {
450 	int cnt = 100;
451 
452 	while (likely(cnt--)) {
453 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
454 
455 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
456 			return 0;
457 		usleep_range(20, 40);
458 	}
459 
460 	return -ETIMEDOUT;
461 }
462 
463 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
464 {
465 	struct gswip_priv *priv = bus->priv;
466 	int err;
467 
468 	err = gswip_mdio_poll(priv);
469 	if (err) {
470 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
471 		return err;
472 	}
473 
474 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
475 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
476 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
477 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
478 		GSWIP_MDIO_CTRL);
479 
480 	return 0;
481 }
482 
483 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
484 {
485 	struct gswip_priv *priv = bus->priv;
486 	int err;
487 
488 	err = gswip_mdio_poll(priv);
489 	if (err) {
490 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491 		return err;
492 	}
493 
494 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
495 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
496 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
497 		GSWIP_MDIO_CTRL);
498 
499 	err = gswip_mdio_poll(priv);
500 	if (err) {
501 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
502 		return err;
503 	}
504 
505 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
506 }
507 
508 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
509 {
510 	struct dsa_switch *ds = priv->ds;
511 	int err;
512 
513 	ds->slave_mii_bus = mdiobus_alloc();
514 	if (!ds->slave_mii_bus)
515 		return -ENOMEM;
516 
517 	ds->slave_mii_bus->priv = priv;
518 	ds->slave_mii_bus->read = gswip_mdio_rd;
519 	ds->slave_mii_bus->write = gswip_mdio_wr;
520 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
521 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
522 		 dev_name(priv->dev));
523 	ds->slave_mii_bus->parent = priv->dev;
524 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
525 
526 	err = of_mdiobus_register(ds->slave_mii_bus, mdio_np);
527 	if (err)
528 		mdiobus_free(ds->slave_mii_bus);
529 
530 	return err;
531 }
532 
533 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
534 				      struct gswip_pce_table_entry *tbl)
535 {
536 	int i;
537 	int err;
538 	u16 crtl;
539 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
540 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
541 
542 	mutex_lock(&priv->pce_table_lock);
543 
544 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
545 				     GSWIP_PCE_TBL_CTRL_BAS);
546 	if (err) {
547 		mutex_unlock(&priv->pce_table_lock);
548 		return err;
549 	}
550 
551 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
552 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
553 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
554 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
555 			  GSWIP_PCE_TBL_CTRL);
556 
557 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
558 				     GSWIP_PCE_TBL_CTRL_BAS);
559 	if (err) {
560 		mutex_unlock(&priv->pce_table_lock);
561 		return err;
562 	}
563 
564 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
565 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
566 
567 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
568 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
569 
570 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
571 
572 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
573 
574 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
575 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
576 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
577 
578 	mutex_unlock(&priv->pce_table_lock);
579 
580 	return 0;
581 }
582 
583 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
584 				       struct gswip_pce_table_entry *tbl)
585 {
586 	int i;
587 	int err;
588 	u16 crtl;
589 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
590 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
591 
592 	mutex_lock(&priv->pce_table_lock);
593 
594 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
595 				     GSWIP_PCE_TBL_CTRL_BAS);
596 	if (err) {
597 		mutex_unlock(&priv->pce_table_lock);
598 		return err;
599 	}
600 
601 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
602 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
603 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
604 			  tbl->table | addr_mode,
605 			  GSWIP_PCE_TBL_CTRL);
606 
607 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
608 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
609 
610 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
611 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
612 
613 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
614 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
615 			  tbl->table | addr_mode,
616 			  GSWIP_PCE_TBL_CTRL);
617 
618 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
619 
620 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
621 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
622 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
623 	if (tbl->type)
624 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
625 	if (tbl->valid)
626 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
627 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
628 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
629 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
630 
631 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
632 				     GSWIP_PCE_TBL_CTRL_BAS);
633 
634 	mutex_unlock(&priv->pce_table_lock);
635 
636 	return err;
637 }
638 
639 /* Add the LAN port into a bridge with the CPU port by
640  * default. This prevents automatic forwarding of
641  * packages between the LAN ports when no explicit
642  * bridge is configured.
643  */
644 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
645 {
646 	struct gswip_pce_table_entry vlan_active = {0,};
647 	struct gswip_pce_table_entry vlan_mapping = {0,};
648 	unsigned int cpu_port = priv->hw_info->cpu_port;
649 	unsigned int max_ports = priv->hw_info->max_ports;
650 	int err;
651 
652 	if (port >= max_ports) {
653 		dev_err(priv->dev, "single port for %i supported\n", port);
654 		return -EIO;
655 	}
656 
657 	vlan_active.index = port + 1;
658 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
659 	vlan_active.key[0] = 0; /* vid */
660 	vlan_active.val[0] = port + 1 /* fid */;
661 	vlan_active.valid = add;
662 	err = gswip_pce_table_entry_write(priv, &vlan_active);
663 	if (err) {
664 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
665 		return err;
666 	}
667 
668 	if (!add)
669 		return 0;
670 
671 	vlan_mapping.index = port + 1;
672 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
673 	vlan_mapping.val[0] = 0 /* vid */;
674 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
675 	vlan_mapping.val[2] = 0;
676 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
677 	if (err) {
678 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
679 		return err;
680 	}
681 
682 	return 0;
683 }
684 
685 static int gswip_port_enable(struct dsa_switch *ds, int port,
686 			     struct phy_device *phydev)
687 {
688 	struct gswip_priv *priv = ds->priv;
689 	int err;
690 
691 	if (!dsa_is_user_port(ds, port))
692 		return 0;
693 
694 	if (!dsa_is_cpu_port(ds, port)) {
695 		err = gswip_add_single_port_br(priv, port, true);
696 		if (err)
697 			return err;
698 	}
699 
700 	/* RMON Counter Enable for port */
701 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
702 
703 	/* enable port fetch/store dma & VLAN Modification */
704 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
705 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
706 			 GSWIP_FDMA_PCTRLp(port));
707 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
708 			  GSWIP_SDMA_PCTRLp(port));
709 
710 	if (!dsa_is_cpu_port(ds, port)) {
711 		u32 mdio_phy = 0;
712 
713 		if (phydev)
714 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
715 
716 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
717 				GSWIP_MDIO_PHYp(port));
718 	}
719 
720 	return 0;
721 }
722 
723 static void gswip_port_disable(struct dsa_switch *ds, int port)
724 {
725 	struct gswip_priv *priv = ds->priv;
726 
727 	if (!dsa_is_user_port(ds, port))
728 		return;
729 
730 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
731 			  GSWIP_FDMA_PCTRLp(port));
732 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
733 			  GSWIP_SDMA_PCTRLp(port));
734 }
735 
736 static int gswip_pce_load_microcode(struct gswip_priv *priv)
737 {
738 	int i;
739 	int err;
740 
741 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
742 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
743 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
744 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
745 
746 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
747 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
748 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
749 			       GSWIP_PCE_TBL_VAL(0));
750 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
751 			       GSWIP_PCE_TBL_VAL(1));
752 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
753 			       GSWIP_PCE_TBL_VAL(2));
754 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
755 			       GSWIP_PCE_TBL_VAL(3));
756 
757 		/* start the table access: */
758 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
759 				  GSWIP_PCE_TBL_CTRL);
760 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
761 					     GSWIP_PCE_TBL_CTRL_BAS);
762 		if (err)
763 			return err;
764 	}
765 
766 	/* tell the switch that the microcode is loaded */
767 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
768 			  GSWIP_PCE_GCTRL_0);
769 
770 	return 0;
771 }
772 
773 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
774 				     bool vlan_filtering,
775 				     struct netlink_ext_ack *extack)
776 {
777 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
778 	struct gswip_priv *priv = ds->priv;
779 
780 	/* Do not allow changing the VLAN filtering options while in bridge */
781 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
782 		NL_SET_ERR_MSG_MOD(extack,
783 				   "Dynamic toggling of vlan_filtering not supported");
784 		return -EIO;
785 	}
786 
787 	if (vlan_filtering) {
788 		/* Use port based VLAN tag */
789 		gswip_switch_mask(priv,
790 				  GSWIP_PCE_VCTRL_VSR,
791 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
792 				  GSWIP_PCE_VCTRL_VEMR,
793 				  GSWIP_PCE_VCTRL(port));
794 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
795 				  GSWIP_PCE_PCTRL_0p(port));
796 	} else {
797 		/* Use port based VLAN tag */
798 		gswip_switch_mask(priv,
799 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
800 				  GSWIP_PCE_VCTRL_VEMR,
801 				  GSWIP_PCE_VCTRL_VSR,
802 				  GSWIP_PCE_VCTRL(port));
803 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
804 				  GSWIP_PCE_PCTRL_0p(port));
805 	}
806 
807 	return 0;
808 }
809 
810 static int gswip_setup(struct dsa_switch *ds)
811 {
812 	struct gswip_priv *priv = ds->priv;
813 	unsigned int cpu_port = priv->hw_info->cpu_port;
814 	int i;
815 	int err;
816 
817 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
818 	usleep_range(5000, 10000);
819 	gswip_switch_w(priv, 0, GSWIP_SWRES);
820 
821 	/* disable port fetch/store dma on all ports */
822 	for (i = 0; i < priv->hw_info->max_ports; i++) {
823 		gswip_port_disable(ds, i);
824 		gswip_port_vlan_filtering(ds, i, false, NULL);
825 	}
826 
827 	/* enable Switch */
828 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
829 
830 	err = gswip_pce_load_microcode(priv);
831 	if (err) {
832 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
833 		return err;
834 	}
835 
836 	/* Default unknown Broadcast/Multicast/Unicast port maps */
837 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
838 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
839 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
840 
841 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
842 	 * interoperability problem with this auto polling mechanism because
843 	 * their status registers think that the link is in a different state
844 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
845 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
846 	 * auto polling state machine consider the link being negotiated with
847 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
848 	 * to the switch port being completely dead (RX and TX are both not
849 	 * working).
850 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
851 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
852 	 * it would work fine for a few minutes to hours and then stop, on
853 	 * other device it would no traffic could be sent or received at all.
854 	 * Testing shows that when PHY auto polling is disabled these problems
855 	 * go away.
856 	 */
857 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
858 
859 	/* Configure the MDIO Clock 2.5 MHz */
860 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
861 
862 	/* Disable the xMII interface and clear it's isolation bit */
863 	for (i = 0; i < priv->hw_info->max_ports; i++)
864 		gswip_mii_mask_cfg(priv,
865 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
866 				   0, i);
867 
868 	/* enable special tag insertion on cpu port */
869 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
870 			  GSWIP_FDMA_PCTRLp(cpu_port));
871 
872 	/* accept special tag in ingress direction */
873 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
874 			  GSWIP_PCE_PCTRL_0p(cpu_port));
875 
876 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
877 			  GSWIP_BM_QUEUE_GCTRL);
878 
879 	/* VLAN aware Switching */
880 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
881 
882 	/* Flush MAC Table */
883 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
884 
885 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
886 				     GSWIP_PCE_GCTRL_0_MTFL);
887 	if (err) {
888 		dev_err(priv->dev, "MAC flushing didn't finish\n");
889 		return err;
890 	}
891 
892 	ds->mtu_enforcement_ingress = true;
893 
894 	gswip_port_enable(ds, cpu_port, NULL);
895 
896 	ds->configure_vlan_while_not_filtering = false;
897 
898 	return 0;
899 }
900 
901 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
902 						    int port,
903 						    enum dsa_tag_protocol mp)
904 {
905 	return DSA_TAG_PROTO_GSWIP;
906 }
907 
908 static int gswip_vlan_active_create(struct gswip_priv *priv,
909 				    struct net_device *bridge,
910 				    int fid, u16 vid)
911 {
912 	struct gswip_pce_table_entry vlan_active = {0,};
913 	unsigned int max_ports = priv->hw_info->max_ports;
914 	int idx = -1;
915 	int err;
916 	int i;
917 
918 	/* Look for a free slot */
919 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
920 		if (!priv->vlans[i].bridge) {
921 			idx = i;
922 			break;
923 		}
924 	}
925 
926 	if (idx == -1)
927 		return -ENOSPC;
928 
929 	if (fid == -1)
930 		fid = idx;
931 
932 	vlan_active.index = idx;
933 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
934 	vlan_active.key[0] = vid;
935 	vlan_active.val[0] = fid;
936 	vlan_active.valid = true;
937 
938 	err = gswip_pce_table_entry_write(priv, &vlan_active);
939 	if (err) {
940 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
941 		return err;
942 	}
943 
944 	priv->vlans[idx].bridge = bridge;
945 	priv->vlans[idx].vid = vid;
946 	priv->vlans[idx].fid = fid;
947 
948 	return idx;
949 }
950 
951 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
952 {
953 	struct gswip_pce_table_entry vlan_active = {0,};
954 	int err;
955 
956 	vlan_active.index = idx;
957 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
958 	vlan_active.valid = false;
959 	err = gswip_pce_table_entry_write(priv, &vlan_active);
960 	if (err)
961 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
962 	priv->vlans[idx].bridge = NULL;
963 
964 	return err;
965 }
966 
967 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
968 				  struct net_device *bridge, int port)
969 {
970 	struct gswip_pce_table_entry vlan_mapping = {0,};
971 	unsigned int max_ports = priv->hw_info->max_ports;
972 	unsigned int cpu_port = priv->hw_info->cpu_port;
973 	bool active_vlan_created = false;
974 	int idx = -1;
975 	int i;
976 	int err;
977 
978 	/* Check if there is already a page for this bridge */
979 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
980 		if (priv->vlans[i].bridge == bridge) {
981 			idx = i;
982 			break;
983 		}
984 	}
985 
986 	/* If this bridge is not programmed yet, add a Active VLAN table
987 	 * entry in a free slot and prepare the VLAN mapping table entry.
988 	 */
989 	if (idx == -1) {
990 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
991 		if (idx < 0)
992 			return idx;
993 		active_vlan_created = true;
994 
995 		vlan_mapping.index = idx;
996 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
997 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
998 		vlan_mapping.val[0] = 0;
999 	} else {
1000 		/* Read the existing VLAN mapping entry from the switch */
1001 		vlan_mapping.index = idx;
1002 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1003 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1004 		if (err) {
1005 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1006 				err);
1007 			return err;
1008 		}
1009 	}
1010 
1011 	/* Update the VLAN mapping entry and write it to the switch */
1012 	vlan_mapping.val[1] |= BIT(cpu_port);
1013 	vlan_mapping.val[1] |= BIT(port);
1014 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1015 	if (err) {
1016 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1017 		/* In case an Active VLAN was creaetd delete it again */
1018 		if (active_vlan_created)
1019 			gswip_vlan_active_remove(priv, idx);
1020 		return err;
1021 	}
1022 
1023 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1024 	return 0;
1025 }
1026 
1027 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1028 				struct net_device *bridge, int port,
1029 				u16 vid, bool untagged,
1030 				bool pvid)
1031 {
1032 	struct gswip_pce_table_entry vlan_mapping = {0,};
1033 	unsigned int max_ports = priv->hw_info->max_ports;
1034 	unsigned int cpu_port = priv->hw_info->cpu_port;
1035 	bool active_vlan_created = false;
1036 	int idx = -1;
1037 	int fid = -1;
1038 	int i;
1039 	int err;
1040 
1041 	/* Check if there is already a page for this bridge */
1042 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1043 		if (priv->vlans[i].bridge == bridge) {
1044 			if (fid != -1 && fid != priv->vlans[i].fid)
1045 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1046 			fid = priv->vlans[i].fid;
1047 			if (priv->vlans[i].vid == vid) {
1048 				idx = i;
1049 				break;
1050 			}
1051 		}
1052 	}
1053 
1054 	/* If this bridge is not programmed yet, add a Active VLAN table
1055 	 * entry in a free slot and prepare the VLAN mapping table entry.
1056 	 */
1057 	if (idx == -1) {
1058 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1059 		if (idx < 0)
1060 			return idx;
1061 		active_vlan_created = true;
1062 
1063 		vlan_mapping.index = idx;
1064 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1065 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1066 		vlan_mapping.val[0] = vid;
1067 	} else {
1068 		/* Read the existing VLAN mapping entry from the switch */
1069 		vlan_mapping.index = idx;
1070 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072 		if (err) {
1073 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1074 				err);
1075 			return err;
1076 		}
1077 	}
1078 
1079 	vlan_mapping.val[0] = vid;
1080 	/* Update the VLAN mapping entry and write it to the switch */
1081 	vlan_mapping.val[1] |= BIT(cpu_port);
1082 	vlan_mapping.val[2] |= BIT(cpu_port);
1083 	vlan_mapping.val[1] |= BIT(port);
1084 	if (untagged)
1085 		vlan_mapping.val[2] &= ~BIT(port);
1086 	else
1087 		vlan_mapping.val[2] |= BIT(port);
1088 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1089 	if (err) {
1090 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1091 		/* In case an Active VLAN was creaetd delete it again */
1092 		if (active_vlan_created)
1093 			gswip_vlan_active_remove(priv, idx);
1094 		return err;
1095 	}
1096 
1097 	if (pvid)
1098 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1099 
1100 	return 0;
1101 }
1102 
1103 static int gswip_vlan_remove(struct gswip_priv *priv,
1104 			     struct net_device *bridge, int port,
1105 			     u16 vid, bool pvid, bool vlan_aware)
1106 {
1107 	struct gswip_pce_table_entry vlan_mapping = {0,};
1108 	unsigned int max_ports = priv->hw_info->max_ports;
1109 	unsigned int cpu_port = priv->hw_info->cpu_port;
1110 	int idx = -1;
1111 	int i;
1112 	int err;
1113 
1114 	/* Check if there is already a page for this bridge */
1115 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1116 		if (priv->vlans[i].bridge == bridge &&
1117 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1118 			idx = i;
1119 			break;
1120 		}
1121 	}
1122 
1123 	if (idx == -1) {
1124 		dev_err(priv->dev, "bridge to leave does not exists\n");
1125 		return -ENOENT;
1126 	}
1127 
1128 	vlan_mapping.index = idx;
1129 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1130 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1131 	if (err) {
1132 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1133 		return err;
1134 	}
1135 
1136 	vlan_mapping.val[1] &= ~BIT(port);
1137 	vlan_mapping.val[2] &= ~BIT(port);
1138 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1139 	if (err) {
1140 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1141 		return err;
1142 	}
1143 
1144 	/* In case all ports are removed from the bridge, remove the VLAN */
1145 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1146 		err = gswip_vlan_active_remove(priv, idx);
1147 		if (err) {
1148 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1149 				err);
1150 			return err;
1151 		}
1152 	}
1153 
1154 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1155 	if (pvid)
1156 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1157 
1158 	return 0;
1159 }
1160 
1161 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1162 				  struct dsa_bridge bridge,
1163 				  bool *tx_fwd_offload,
1164 				  struct netlink_ext_ack *extack)
1165 {
1166 	struct net_device *br = bridge.dev;
1167 	struct gswip_priv *priv = ds->priv;
1168 	int err;
1169 
1170 	/* When the bridge uses VLAN filtering we have to configure VLAN
1171 	 * specific bridges. No bridge is configured here.
1172 	 */
1173 	if (!br_vlan_enabled(br)) {
1174 		err = gswip_vlan_add_unaware(priv, br, port);
1175 		if (err)
1176 			return err;
1177 		priv->port_vlan_filter &= ~BIT(port);
1178 	} else {
1179 		priv->port_vlan_filter |= BIT(port);
1180 	}
1181 	return gswip_add_single_port_br(priv, port, false);
1182 }
1183 
1184 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1185 				    struct dsa_bridge bridge)
1186 {
1187 	struct net_device *br = bridge.dev;
1188 	struct gswip_priv *priv = ds->priv;
1189 
1190 	gswip_add_single_port_br(priv, port, true);
1191 
1192 	/* When the bridge uses VLAN filtering we have to configure VLAN
1193 	 * specific bridges. No bridge is configured here.
1194 	 */
1195 	if (!br_vlan_enabled(br))
1196 		gswip_vlan_remove(priv, br, port, 0, true, false);
1197 }
1198 
1199 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1200 				   const struct switchdev_obj_port_vlan *vlan,
1201 				   struct netlink_ext_ack *extack)
1202 {
1203 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1204 	struct gswip_priv *priv = ds->priv;
1205 	unsigned int max_ports = priv->hw_info->max_ports;
1206 	int pos = max_ports;
1207 	int i, idx = -1;
1208 
1209 	/* We only support VLAN filtering on bridges */
1210 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1211 		return -EOPNOTSUPP;
1212 
1213 	/* Check if there is already a page for this VLAN */
1214 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1215 		if (priv->vlans[i].bridge == bridge &&
1216 		    priv->vlans[i].vid == vlan->vid) {
1217 			idx = i;
1218 			break;
1219 		}
1220 	}
1221 
1222 	/* If this VLAN is not programmed yet, we have to reserve
1223 	 * one entry in the VLAN table. Make sure we start at the
1224 	 * next position round.
1225 	 */
1226 	if (idx == -1) {
1227 		/* Look for a free slot */
1228 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1229 			if (!priv->vlans[pos].bridge) {
1230 				idx = pos;
1231 				pos++;
1232 				break;
1233 			}
1234 		}
1235 
1236 		if (idx == -1) {
1237 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1238 			return -ENOSPC;
1239 		}
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1246 			       const struct switchdev_obj_port_vlan *vlan,
1247 			       struct netlink_ext_ack *extack)
1248 {
1249 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1250 	struct gswip_priv *priv = ds->priv;
1251 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1252 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1253 	int err;
1254 
1255 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1256 	if (err)
1257 		return err;
1258 
1259 	/* We have to receive all packets on the CPU port and should not
1260 	 * do any VLAN filtering here. This is also called with bridge
1261 	 * NULL and then we do not know for which bridge to configure
1262 	 * this.
1263 	 */
1264 	if (dsa_is_cpu_port(ds, port))
1265 		return 0;
1266 
1267 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1268 				    untagged, pvid);
1269 }
1270 
1271 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1272 			       const struct switchdev_obj_port_vlan *vlan)
1273 {
1274 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1275 	struct gswip_priv *priv = ds->priv;
1276 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1277 
1278 	/* We have to receive all packets on the CPU port and should not
1279 	 * do any VLAN filtering here. This is also called with bridge
1280 	 * NULL and then we do not know for which bridge to configure
1281 	 * this.
1282 	 */
1283 	if (dsa_is_cpu_port(ds, port))
1284 		return 0;
1285 
1286 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1287 }
1288 
1289 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1290 {
1291 	struct gswip_priv *priv = ds->priv;
1292 	struct gswip_pce_table_entry mac_bridge = {0,};
1293 	int i;
1294 	int err;
1295 
1296 	for (i = 0; i < 2048; i++) {
1297 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1298 		mac_bridge.index = i;
1299 
1300 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1301 		if (err) {
1302 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1303 				err);
1304 			return;
1305 		}
1306 
1307 		if (!mac_bridge.valid)
1308 			continue;
1309 
1310 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1311 			continue;
1312 
1313 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1314 			continue;
1315 
1316 		mac_bridge.valid = false;
1317 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1318 		if (err) {
1319 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1320 				err);
1321 			return;
1322 		}
1323 	}
1324 }
1325 
1326 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1327 {
1328 	struct gswip_priv *priv = ds->priv;
1329 	u32 stp_state;
1330 
1331 	switch (state) {
1332 	case BR_STATE_DISABLED:
1333 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1334 				  GSWIP_SDMA_PCTRLp(port));
1335 		return;
1336 	case BR_STATE_BLOCKING:
1337 	case BR_STATE_LISTENING:
1338 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1339 		break;
1340 	case BR_STATE_LEARNING:
1341 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1342 		break;
1343 	case BR_STATE_FORWARDING:
1344 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1345 		break;
1346 	default:
1347 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1348 		return;
1349 	}
1350 
1351 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1352 			  GSWIP_SDMA_PCTRLp(port));
1353 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1354 			  GSWIP_PCE_PCTRL_0p(port));
1355 }
1356 
1357 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1358 			  const unsigned char *addr, u16 vid, bool add)
1359 {
1360 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1361 	struct gswip_priv *priv = ds->priv;
1362 	struct gswip_pce_table_entry mac_bridge = {0,};
1363 	unsigned int max_ports = priv->hw_info->max_ports;
1364 	int fid = -1;
1365 	int i;
1366 	int err;
1367 
1368 	if (!bridge)
1369 		return -EINVAL;
1370 
1371 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1372 		if (priv->vlans[i].bridge == bridge) {
1373 			fid = priv->vlans[i].fid;
1374 			break;
1375 		}
1376 	}
1377 
1378 	if (fid == -1) {
1379 		dev_err(priv->dev, "Port not part of a bridge\n");
1380 		return -EINVAL;
1381 	}
1382 
1383 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1384 	mac_bridge.key_mode = true;
1385 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1386 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1387 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1388 	mac_bridge.key[3] = fid;
1389 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1390 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1391 	mac_bridge.valid = add;
1392 
1393 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1394 	if (err)
1395 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1396 
1397 	return err;
1398 }
1399 
1400 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1401 			      const unsigned char *addr, u16 vid,
1402 			      struct dsa_db db)
1403 {
1404 	return gswip_port_fdb(ds, port, addr, vid, true);
1405 }
1406 
1407 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1408 			      const unsigned char *addr, u16 vid,
1409 			      struct dsa_db db)
1410 {
1411 	return gswip_port_fdb(ds, port, addr, vid, false);
1412 }
1413 
1414 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1415 			       dsa_fdb_dump_cb_t *cb, void *data)
1416 {
1417 	struct gswip_priv *priv = ds->priv;
1418 	struct gswip_pce_table_entry mac_bridge = {0,};
1419 	unsigned char addr[6];
1420 	int i;
1421 	int err;
1422 
1423 	for (i = 0; i < 2048; i++) {
1424 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1425 		mac_bridge.index = i;
1426 
1427 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1428 		if (err) {
1429 			dev_err(priv->dev,
1430 				"failed to read mac bridge entry %d: %d\n",
1431 				i, err);
1432 			return err;
1433 		}
1434 
1435 		if (!mac_bridge.valid)
1436 			continue;
1437 
1438 		addr[5] = mac_bridge.key[0] & 0xff;
1439 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1440 		addr[3] = mac_bridge.key[1] & 0xff;
1441 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1442 		addr[1] = mac_bridge.key[2] & 0xff;
1443 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1444 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1445 			if (mac_bridge.val[0] & BIT(port)) {
1446 				err = cb(addr, 0, true, data);
1447 				if (err)
1448 					return err;
1449 			}
1450 		} else {
1451 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1452 				err = cb(addr, 0, false, data);
1453 				if (err)
1454 					return err;
1455 			}
1456 		}
1457 	}
1458 	return 0;
1459 }
1460 
1461 static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1462 {
1463 	/* Includes 8 bytes for special header. */
1464 	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1465 }
1466 
1467 static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1468 {
1469 	struct gswip_priv *priv = ds->priv;
1470 	int cpu_port = priv->hw_info->cpu_port;
1471 
1472 	/* CPU port always has maximum mtu of user ports, so use it to set
1473 	 * switch frame size, including 8 byte special header.
1474 	 */
1475 	if (port == cpu_port) {
1476 		new_mtu += 8;
1477 		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1478 			       GSWIP_MAC_FLEN);
1479 	}
1480 
1481 	/* Enable MLEN for ports with non-standard MTUs, including the special
1482 	 * header on the CPU port added above.
1483 	 */
1484 	if (new_mtu != ETH_DATA_LEN)
1485 		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1486 				  GSWIP_MAC_CTRL_2p(port));
1487 	else
1488 		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1489 				  GSWIP_MAC_CTRL_2p(port));
1490 
1491 	return 0;
1492 }
1493 
1494 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1495 					  struct phylink_config *config)
1496 {
1497 	switch (port) {
1498 	case 0:
1499 	case 1:
1500 		phy_interface_set_rgmii(config->supported_interfaces);
1501 		__set_bit(PHY_INTERFACE_MODE_MII,
1502 			  config->supported_interfaces);
1503 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1504 			  config->supported_interfaces);
1505 		__set_bit(PHY_INTERFACE_MODE_RMII,
1506 			  config->supported_interfaces);
1507 		break;
1508 
1509 	case 2:
1510 	case 3:
1511 	case 4:
1512 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1513 			  config->supported_interfaces);
1514 		break;
1515 
1516 	case 5:
1517 		phy_interface_set_rgmii(config->supported_interfaces);
1518 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1519 			  config->supported_interfaces);
1520 		break;
1521 	}
1522 
1523 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1524 		MAC_10 | MAC_100 | MAC_1000;
1525 }
1526 
1527 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1528 					  struct phylink_config *config)
1529 {
1530 	switch (port) {
1531 	case 0:
1532 		phy_interface_set_rgmii(config->supported_interfaces);
1533 		__set_bit(PHY_INTERFACE_MODE_GMII,
1534 			  config->supported_interfaces);
1535 		__set_bit(PHY_INTERFACE_MODE_RMII,
1536 			  config->supported_interfaces);
1537 		break;
1538 
1539 	case 1:
1540 	case 2:
1541 	case 3:
1542 	case 4:
1543 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1544 			  config->supported_interfaces);
1545 		break;
1546 
1547 	case 5:
1548 		phy_interface_set_rgmii(config->supported_interfaces);
1549 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1550 			  config->supported_interfaces);
1551 		__set_bit(PHY_INTERFACE_MODE_RMII,
1552 			  config->supported_interfaces);
1553 		break;
1554 	}
1555 
1556 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1557 		MAC_10 | MAC_100 | MAC_1000;
1558 }
1559 
1560 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1561 {
1562 	u32 mdio_phy;
1563 
1564 	if (link)
1565 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1566 	else
1567 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1568 
1569 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1570 			GSWIP_MDIO_PHYp(port));
1571 }
1572 
1573 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1574 				 phy_interface_t interface)
1575 {
1576 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1577 
1578 	switch (speed) {
1579 	case SPEED_10:
1580 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1581 
1582 		if (interface == PHY_INTERFACE_MODE_RMII)
1583 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1584 		else
1585 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1586 
1587 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1588 		break;
1589 
1590 	case SPEED_100:
1591 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1592 
1593 		if (interface == PHY_INTERFACE_MODE_RMII)
1594 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1595 		else
1596 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1597 
1598 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1599 		break;
1600 
1601 	case SPEED_1000:
1602 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1603 
1604 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1605 
1606 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1607 		break;
1608 	}
1609 
1610 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1611 			GSWIP_MDIO_PHYp(port));
1612 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1613 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1614 			  GSWIP_MAC_CTRL_0p(port));
1615 }
1616 
1617 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1618 {
1619 	u32 mac_ctrl_0, mdio_phy;
1620 
1621 	if (duplex == DUPLEX_FULL) {
1622 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1623 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1624 	} else {
1625 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1626 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1627 	}
1628 
1629 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1630 			  GSWIP_MAC_CTRL_0p(port));
1631 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1632 			GSWIP_MDIO_PHYp(port));
1633 }
1634 
1635 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1636 				 bool tx_pause, bool rx_pause)
1637 {
1638 	u32 mac_ctrl_0, mdio_phy;
1639 
1640 	if (tx_pause && rx_pause) {
1641 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1642 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1643 			   GSWIP_MDIO_PHY_FCONRX_EN;
1644 	} else if (tx_pause) {
1645 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1646 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1647 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1648 	} else if (rx_pause) {
1649 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1650 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1651 			   GSWIP_MDIO_PHY_FCONRX_EN;
1652 	} else {
1653 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1654 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1655 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1656 	}
1657 
1658 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1659 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1660 	gswip_mdio_mask(priv,
1661 			GSWIP_MDIO_PHY_FCONTX_MASK |
1662 			GSWIP_MDIO_PHY_FCONRX_MASK,
1663 			mdio_phy, GSWIP_MDIO_PHYp(port));
1664 }
1665 
1666 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1667 				     unsigned int mode,
1668 				     const struct phylink_link_state *state)
1669 {
1670 	struct gswip_priv *priv = ds->priv;
1671 	u32 miicfg = 0;
1672 
1673 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1674 
1675 	switch (state->interface) {
1676 	case PHY_INTERFACE_MODE_MII:
1677 	case PHY_INTERFACE_MODE_INTERNAL:
1678 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1679 		break;
1680 	case PHY_INTERFACE_MODE_REVMII:
1681 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1682 		break;
1683 	case PHY_INTERFACE_MODE_RMII:
1684 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1685 		break;
1686 	case PHY_INTERFACE_MODE_RGMII:
1687 	case PHY_INTERFACE_MODE_RGMII_ID:
1688 	case PHY_INTERFACE_MODE_RGMII_RXID:
1689 	case PHY_INTERFACE_MODE_RGMII_TXID:
1690 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1691 		break;
1692 	case PHY_INTERFACE_MODE_GMII:
1693 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1694 		break;
1695 	default:
1696 		dev_err(ds->dev,
1697 			"Unsupported interface: %d\n", state->interface);
1698 		return;
1699 	}
1700 
1701 	gswip_mii_mask_cfg(priv,
1702 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1703 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1704 			   miicfg, port);
1705 
1706 	switch (state->interface) {
1707 	case PHY_INTERFACE_MODE_RGMII_ID:
1708 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1709 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1710 		break;
1711 	case PHY_INTERFACE_MODE_RGMII_RXID:
1712 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1713 		break;
1714 	case PHY_INTERFACE_MODE_RGMII_TXID:
1715 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1716 		break;
1717 	default:
1718 		break;
1719 	}
1720 }
1721 
1722 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1723 					unsigned int mode,
1724 					phy_interface_t interface)
1725 {
1726 	struct gswip_priv *priv = ds->priv;
1727 
1728 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1729 
1730 	if (!dsa_is_cpu_port(ds, port))
1731 		gswip_port_set_link(priv, port, false);
1732 }
1733 
1734 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1735 				      unsigned int mode,
1736 				      phy_interface_t interface,
1737 				      struct phy_device *phydev,
1738 				      int speed, int duplex,
1739 				      bool tx_pause, bool rx_pause)
1740 {
1741 	struct gswip_priv *priv = ds->priv;
1742 
1743 	if (!dsa_is_cpu_port(ds, port)) {
1744 		gswip_port_set_link(priv, port, true);
1745 		gswip_port_set_speed(priv, port, speed, interface);
1746 		gswip_port_set_duplex(priv, port, duplex);
1747 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1748 	}
1749 
1750 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1751 }
1752 
1753 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1754 			      uint8_t *data)
1755 {
1756 	int i;
1757 
1758 	if (stringset != ETH_SS_STATS)
1759 		return;
1760 
1761 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1762 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1763 			ETH_GSTRING_LEN);
1764 }
1765 
1766 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1767 				    u32 index)
1768 {
1769 	u32 result;
1770 	int err;
1771 
1772 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1773 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1774 				GSWIP_BM_RAM_CTRL_OPMOD,
1775 			      table | GSWIP_BM_RAM_CTRL_BAS,
1776 			      GSWIP_BM_RAM_CTRL);
1777 
1778 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1779 				     GSWIP_BM_RAM_CTRL_BAS);
1780 	if (err) {
1781 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1782 			table, index);
1783 		return 0;
1784 	}
1785 
1786 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1787 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1788 
1789 	return result;
1790 }
1791 
1792 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1793 				    uint64_t *data)
1794 {
1795 	struct gswip_priv *priv = ds->priv;
1796 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1797 	int i;
1798 	u64 high;
1799 
1800 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1801 		rmon_cnt = &gswip_rmon_cnt[i];
1802 
1803 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1804 						   rmon_cnt->offset);
1805 		if (rmon_cnt->size == 2) {
1806 			high = gswip_bcm_ram_entry_read(priv, port,
1807 							rmon_cnt->offset + 1);
1808 			data[i] |= high << 32;
1809 		}
1810 	}
1811 }
1812 
1813 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1814 {
1815 	if (sset != ETH_SS_STATS)
1816 		return 0;
1817 
1818 	return ARRAY_SIZE(gswip_rmon_cnt);
1819 }
1820 
1821 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1822 	.get_tag_protocol	= gswip_get_tag_protocol,
1823 	.setup			= gswip_setup,
1824 	.port_enable		= gswip_port_enable,
1825 	.port_disable		= gswip_port_disable,
1826 	.port_bridge_join	= gswip_port_bridge_join,
1827 	.port_bridge_leave	= gswip_port_bridge_leave,
1828 	.port_fast_age		= gswip_port_fast_age,
1829 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1830 	.port_vlan_add		= gswip_port_vlan_add,
1831 	.port_vlan_del		= gswip_port_vlan_del,
1832 	.port_stp_state_set	= gswip_port_stp_state_set,
1833 	.port_fdb_add		= gswip_port_fdb_add,
1834 	.port_fdb_del		= gswip_port_fdb_del,
1835 	.port_fdb_dump		= gswip_port_fdb_dump,
1836 	.port_change_mtu	= gswip_port_change_mtu,
1837 	.port_max_mtu		= gswip_port_max_mtu,
1838 	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1839 	.phylink_mac_config	= gswip_phylink_mac_config,
1840 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1841 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1842 	.get_strings		= gswip_get_strings,
1843 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1844 	.get_sset_count		= gswip_get_sset_count,
1845 };
1846 
1847 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1848 	.get_tag_protocol	= gswip_get_tag_protocol,
1849 	.setup			= gswip_setup,
1850 	.port_enable		= gswip_port_enable,
1851 	.port_disable		= gswip_port_disable,
1852 	.port_bridge_join	= gswip_port_bridge_join,
1853 	.port_bridge_leave	= gswip_port_bridge_leave,
1854 	.port_fast_age		= gswip_port_fast_age,
1855 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1856 	.port_vlan_add		= gswip_port_vlan_add,
1857 	.port_vlan_del		= gswip_port_vlan_del,
1858 	.port_stp_state_set	= gswip_port_stp_state_set,
1859 	.port_fdb_add		= gswip_port_fdb_add,
1860 	.port_fdb_del		= gswip_port_fdb_del,
1861 	.port_fdb_dump		= gswip_port_fdb_dump,
1862 	.port_change_mtu	= gswip_port_change_mtu,
1863 	.port_max_mtu		= gswip_port_max_mtu,
1864 	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1865 	.phylink_mac_config	= gswip_phylink_mac_config,
1866 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1867 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1868 	.get_strings		= gswip_get_strings,
1869 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1870 	.get_sset_count		= gswip_get_sset_count,
1871 };
1872 
1873 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1874 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1875 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1876 };
1877 
1878 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1879 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1880 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1881 };
1882 
1883 static const struct xway_gphy_match_data xrx300_gphy_data = {
1884 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1885 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1886 };
1887 
1888 static const struct of_device_id xway_gphy_match[] = {
1889 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1890 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1891 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1892 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1893 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1894 	{},
1895 };
1896 
1897 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1898 {
1899 	struct device *dev = priv->dev;
1900 	const struct firmware *fw;
1901 	void *fw_addr;
1902 	dma_addr_t dma_addr;
1903 	dma_addr_t dev_addr;
1904 	size_t size;
1905 	int ret;
1906 
1907 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1908 	if (ret)
1909 		return ret;
1910 
1911 	reset_control_assert(gphy_fw->reset);
1912 
1913 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1914 	 * Without this some users are observing that the PHY is not coming up
1915 	 * on the MDIO bus.
1916 	 */
1917 	msleep(200);
1918 
1919 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1920 	if (ret) {
1921 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1922 			gphy_fw->fw_name, ret);
1923 		return ret;
1924 	}
1925 
1926 	/* GPHY cores need the firmware code in a persistent and contiguous
1927 	 * memory area with a 16 kB boundary aligned start address.
1928 	 */
1929 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1930 
1931 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1932 	if (fw_addr) {
1933 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1934 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1935 		memcpy(fw_addr, fw->data, fw->size);
1936 	} else {
1937 		dev_err(dev, "failed to alloc firmware memory\n");
1938 		release_firmware(fw);
1939 		return -ENOMEM;
1940 	}
1941 
1942 	release_firmware(fw);
1943 
1944 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1945 	if (ret)
1946 		return ret;
1947 
1948 	reset_control_deassert(gphy_fw->reset);
1949 
1950 	return ret;
1951 }
1952 
1953 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1954 			       struct gswip_gphy_fw *gphy_fw,
1955 			       struct device_node *gphy_fw_np, int i)
1956 {
1957 	struct device *dev = priv->dev;
1958 	u32 gphy_mode;
1959 	int ret;
1960 	char gphyname[10];
1961 
1962 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1963 
1964 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1965 	if (IS_ERR(gphy_fw->clk_gate)) {
1966 		dev_err(dev, "Failed to lookup gate clock\n");
1967 		return PTR_ERR(gphy_fw->clk_gate);
1968 	}
1969 
1970 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1971 	if (ret)
1972 		return ret;
1973 
1974 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1975 	/* Default to GE mode */
1976 	if (ret)
1977 		gphy_mode = GPHY_MODE_GE;
1978 
1979 	switch (gphy_mode) {
1980 	case GPHY_MODE_FE:
1981 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1982 		break;
1983 	case GPHY_MODE_GE:
1984 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1985 		break;
1986 	default:
1987 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1988 		return -EINVAL;
1989 	}
1990 
1991 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1992 	if (IS_ERR(gphy_fw->reset))
1993 		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
1994 				     "Failed to lookup gphy reset\n");
1995 
1996 	return gswip_gphy_fw_load(priv, gphy_fw);
1997 }
1998 
1999 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2000 				 struct gswip_gphy_fw *gphy_fw)
2001 {
2002 	int ret;
2003 
2004 	/* check if the device was fully probed */
2005 	if (!gphy_fw->fw_name)
2006 		return;
2007 
2008 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2009 	if (ret)
2010 		dev_err(priv->dev, "can not reset GPHY FW pointer");
2011 
2012 	clk_disable_unprepare(gphy_fw->clk_gate);
2013 
2014 	reset_control_put(gphy_fw->reset);
2015 }
2016 
2017 static int gswip_gphy_fw_list(struct gswip_priv *priv,
2018 			      struct device_node *gphy_fw_list_np, u32 version)
2019 {
2020 	struct device *dev = priv->dev;
2021 	struct device_node *gphy_fw_np;
2022 	const struct of_device_id *match;
2023 	int err;
2024 	int i = 0;
2025 
2026 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2027 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2028 	 * needs a different GPHY firmware.
2029 	 */
2030 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2031 		switch (version) {
2032 		case GSWIP_VERSION_2_0:
2033 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2034 			break;
2035 		case GSWIP_VERSION_2_1:
2036 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2037 			break;
2038 		default:
2039 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2040 			return -ENOENT;
2041 		}
2042 	}
2043 
2044 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2045 	if (match && match->data)
2046 		priv->gphy_fw_name_cfg = match->data;
2047 
2048 	if (!priv->gphy_fw_name_cfg) {
2049 		dev_err(dev, "GPHY compatible type not supported");
2050 		return -ENOENT;
2051 	}
2052 
2053 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2054 	if (!priv->num_gphy_fw)
2055 		return -ENOENT;
2056 
2057 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2058 							   "lantiq,rcu");
2059 	if (IS_ERR(priv->rcu_regmap))
2060 		return PTR_ERR(priv->rcu_regmap);
2061 
2062 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2063 					   sizeof(*priv->gphy_fw),
2064 					   GFP_KERNEL | __GFP_ZERO);
2065 	if (!priv->gphy_fw)
2066 		return -ENOMEM;
2067 
2068 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2069 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2070 					  gphy_fw_np, i);
2071 		if (err) {
2072 			of_node_put(gphy_fw_np);
2073 			goto remove_gphy;
2074 		}
2075 		i++;
2076 	}
2077 
2078 	/* The standalone PHY11G requires 300ms to be fully
2079 	 * initialized and ready for any MDIO communication after being
2080 	 * taken out of reset. For the SoC-internal GPHY variant there
2081 	 * is no (known) documentation for the minimum time after a
2082 	 * reset. Use the same value as for the standalone variant as
2083 	 * some users have reported internal PHYs not being detected
2084 	 * without any delay.
2085 	 */
2086 	msleep(300);
2087 
2088 	return 0;
2089 
2090 remove_gphy:
2091 	for (i = 0; i < priv->num_gphy_fw; i++)
2092 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2093 	return err;
2094 }
2095 
2096 static int gswip_probe(struct platform_device *pdev)
2097 {
2098 	struct gswip_priv *priv;
2099 	struct device_node *np, *mdio_np, *gphy_fw_np;
2100 	struct device *dev = &pdev->dev;
2101 	int err;
2102 	int i;
2103 	u32 version;
2104 
2105 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2106 	if (!priv)
2107 		return -ENOMEM;
2108 
2109 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2110 	if (IS_ERR(priv->gswip))
2111 		return PTR_ERR(priv->gswip);
2112 
2113 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2114 	if (IS_ERR(priv->mdio))
2115 		return PTR_ERR(priv->mdio);
2116 
2117 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2118 	if (IS_ERR(priv->mii))
2119 		return PTR_ERR(priv->mii);
2120 
2121 	priv->hw_info = of_device_get_match_data(dev);
2122 	if (!priv->hw_info)
2123 		return -EINVAL;
2124 
2125 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2126 	if (!priv->ds)
2127 		return -ENOMEM;
2128 
2129 	priv->ds->dev = dev;
2130 	priv->ds->num_ports = priv->hw_info->max_ports;
2131 	priv->ds->priv = priv;
2132 	priv->ds->ops = priv->hw_info->ops;
2133 	priv->dev = dev;
2134 	mutex_init(&priv->pce_table_lock);
2135 	version = gswip_switch_r(priv, GSWIP_VERSION);
2136 
2137 	np = dev->of_node;
2138 	switch (version) {
2139 	case GSWIP_VERSION_2_0:
2140 	case GSWIP_VERSION_2_1:
2141 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2142 			return -EINVAL;
2143 		break;
2144 	case GSWIP_VERSION_2_2:
2145 	case GSWIP_VERSION_2_2_ETC:
2146 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2147 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2148 			return -EINVAL;
2149 		break;
2150 	default:
2151 		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2152 		return -ENOENT;
2153 	}
2154 
2155 	/* bring up the mdio bus */
2156 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2157 	if (gphy_fw_np) {
2158 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2159 		of_node_put(gphy_fw_np);
2160 		if (err) {
2161 			dev_err(dev, "gphy fw probe failed\n");
2162 			return err;
2163 		}
2164 	}
2165 
2166 	/* bring up the mdio bus */
2167 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2168 	if (mdio_np) {
2169 		err = gswip_mdio(priv, mdio_np);
2170 		if (err) {
2171 			dev_err(dev, "mdio probe failed\n");
2172 			goto put_mdio_node;
2173 		}
2174 	}
2175 
2176 	err = dsa_register_switch(priv->ds);
2177 	if (err) {
2178 		dev_err(dev, "dsa switch register failed: %i\n", err);
2179 		goto mdio_bus;
2180 	}
2181 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2182 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2183 			priv->hw_info->cpu_port);
2184 		err = -EINVAL;
2185 		goto disable_switch;
2186 	}
2187 
2188 	platform_set_drvdata(pdev, priv);
2189 
2190 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2191 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2192 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2193 	return 0;
2194 
2195 disable_switch:
2196 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2197 	dsa_unregister_switch(priv->ds);
2198 mdio_bus:
2199 	if (mdio_np) {
2200 		mdiobus_unregister(priv->ds->slave_mii_bus);
2201 		mdiobus_free(priv->ds->slave_mii_bus);
2202 	}
2203 put_mdio_node:
2204 	of_node_put(mdio_np);
2205 	for (i = 0; i < priv->num_gphy_fw; i++)
2206 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2207 	return err;
2208 }
2209 
2210 static int gswip_remove(struct platform_device *pdev)
2211 {
2212 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2213 	int i;
2214 
2215 	if (!priv)
2216 		return 0;
2217 
2218 	/* disable the switch */
2219 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2220 
2221 	dsa_unregister_switch(priv->ds);
2222 
2223 	if (priv->ds->slave_mii_bus) {
2224 		mdiobus_unregister(priv->ds->slave_mii_bus);
2225 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2226 		mdiobus_free(priv->ds->slave_mii_bus);
2227 	}
2228 
2229 	for (i = 0; i < priv->num_gphy_fw; i++)
2230 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2231 
2232 	return 0;
2233 }
2234 
2235 static void gswip_shutdown(struct platform_device *pdev)
2236 {
2237 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2238 
2239 	if (!priv)
2240 		return;
2241 
2242 	dsa_switch_shutdown(priv->ds);
2243 
2244 	platform_set_drvdata(pdev, NULL);
2245 }
2246 
2247 static const struct gswip_hw_info gswip_xrx200 = {
2248 	.max_ports = 7,
2249 	.cpu_port = 6,
2250 	.ops = &gswip_xrx200_switch_ops,
2251 };
2252 
2253 static const struct gswip_hw_info gswip_xrx300 = {
2254 	.max_ports = 7,
2255 	.cpu_port = 6,
2256 	.ops = &gswip_xrx300_switch_ops,
2257 };
2258 
2259 static const struct of_device_id gswip_of_match[] = {
2260 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2261 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2262 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2263 	{},
2264 };
2265 MODULE_DEVICE_TABLE(of, gswip_of_match);
2266 
2267 static struct platform_driver gswip_driver = {
2268 	.probe = gswip_probe,
2269 	.remove = gswip_remove,
2270 	.shutdown = gswip_shutdown,
2271 	.driver = {
2272 		.name = "gswip",
2273 		.of_match_table = gswip_of_match,
2274 	},
2275 };
2276 
2277 module_platform_driver(gswip_driver);
2278 
2279 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2280 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2281 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2282 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2283 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2284 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2285 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2286 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2287 MODULE_LICENSE("GPL v2");
2288