xref: /openbmc/linux/drivers/net/dsa/lantiq_gswip.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_EN		BIT(14)
97 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
98 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
99 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
100 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
101 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
102 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
103 #define  GSWIP_MII_CFG_MODE_MASK	0xf
104 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
105 #define  GSWIP_MII_CFG_RATE_M25	0x10
106 #define  GSWIP_MII_CFG_RATE_M125	0x20
107 #define  GSWIP_MII_CFG_RATE_M50	0x30
108 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
109 #define  GSWIP_MII_CFG_RATE_MASK	0x70
110 #define GSWIP_MII_PCDU0			0x01
111 #define GSWIP_MII_PCDU1			0x03
112 #define GSWIP_MII_PCDU5			0x05
113 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
114 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
115 
116 /* GSWIP Core Registers */
117 #define GSWIP_SWRES			0x000
118 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
119 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
120 #define GSWIP_VERSION			0x013
121 #define  GSWIP_VERSION_REV_SHIFT	0
122 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
123 #define  GSWIP_VERSION_MOD_SHIFT	8
124 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
125 #define   GSWIP_VERSION_2_0		0x100
126 #define   GSWIP_VERSION_2_1		0x021
127 #define   GSWIP_VERSION_2_2		0x122
128 #define   GSWIP_VERSION_2_2_ETC		0x022
129 
130 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
131 #define GSWIP_BM_RAM_ADDR		0x044
132 #define GSWIP_BM_RAM_CTRL		0x045
133 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
134 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
135 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
136 #define GSWIP_BM_QUEUE_GCTRL		0x04A
137 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
138 /* buffer management Port Configuration Register */
139 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
140 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
141 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
142 /* buffer management Port Control Register */
143 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
144 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
145 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
146 
147 /* PCE */
148 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
149 #define GSWIP_PCE_TBL_MASK		0x448
150 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
151 #define GSWIP_PCE_TBL_ADDR		0x44E
152 #define GSWIP_PCE_TBL_CTRL		0x44F
153 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
154 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
155 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
156 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
157 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
158 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
163 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
164 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
165 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
166 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
167 #define GSWIP_PCE_GCTRL_0		0x456
168 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
169 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
170 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
171 #define GSWIP_PCE_GCTRL_1		0x457
172 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
174 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
175 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
176 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
177 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
178 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
179 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
180 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
181 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
184 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
185 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
186 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
187 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
188 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
189 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
190 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
191 
192 #define GSWIP_MAC_FLEN			0x8C5
193 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
194 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
195 
196 /* Ethernet Switch Fetch DMA Port Control Register */
197 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
198 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
199 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
200 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
201 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
202 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
203 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 
207 /* Ethernet Switch Store DMA Port Control Register */
208 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
209 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
210 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
211 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(1)	/* Pause Frame Forwarding */
212 
213 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
214 #define GSWIP_TABLE_VLAN_MAPPING	0x02
215 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
216 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
217 
218 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
219 
220 struct gswip_hw_info {
221 	int max_ports;
222 	int cpu_port;
223 };
224 
225 struct xway_gphy_match_data {
226 	char *fe_firmware_name;
227 	char *ge_firmware_name;
228 };
229 
230 struct gswip_gphy_fw {
231 	struct clk *clk_gate;
232 	struct reset_control *reset;
233 	u32 fw_addr_offset;
234 	char *fw_name;
235 };
236 
237 struct gswip_vlan {
238 	struct net_device *bridge;
239 	u16 vid;
240 	u8 fid;
241 };
242 
243 struct gswip_priv {
244 	__iomem void *gswip;
245 	__iomem void *mdio;
246 	__iomem void *mii;
247 	const struct gswip_hw_info *hw_info;
248 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
249 	struct dsa_switch *ds;
250 	struct device *dev;
251 	struct regmap *rcu_regmap;
252 	struct gswip_vlan vlans[64];
253 	int num_gphy_fw;
254 	struct gswip_gphy_fw *gphy_fw;
255 	u32 port_vlan_filter;
256 };
257 
258 struct gswip_pce_table_entry {
259 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
260 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
261 	u16 key[8];
262 	u16 val[5];
263 	u16 mask;
264 	u8 gmap;
265 	bool type;
266 	bool valid;
267 	bool key_mode;
268 };
269 
270 struct gswip_rmon_cnt_desc {
271 	unsigned int size;
272 	unsigned int offset;
273 	const char *name;
274 };
275 
276 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
277 
278 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
279 	/** Receive Packet Count (only packets that are accepted and not discarded). */
280 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
281 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
282 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
283 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
284 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
285 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
286 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
287 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
288 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
289 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
290 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
291 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
292 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
293 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
294 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
295 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
296 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
297 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
298 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
299 	MIB_DESC(2, 0x24, "RxGoodBytes"),
300 	MIB_DESC(2, 0x26, "RxBadBytes"),
301 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
302 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
303 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
304 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
305 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
306 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
307 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
308 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
309 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
310 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
311 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
312 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
313 	MIB_DESC(1, 0x09, "TxMultCollCount"),
314 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
315 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
316 	MIB_DESC(1, 0x0D, "TxPauseCount"),
317 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
318 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
319 };
320 
321 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
322 {
323 	return __raw_readl(priv->gswip + (offset * 4));
324 }
325 
326 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
327 {
328 	__raw_writel(val, priv->gswip + (offset * 4));
329 }
330 
331 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
332 			      u32 offset)
333 {
334 	u32 val = gswip_switch_r(priv, offset);
335 
336 	val &= ~(clear);
337 	val |= set;
338 	gswip_switch_w(priv, val, offset);
339 }
340 
341 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
342 				  u32 cleared)
343 {
344 	u32 val;
345 
346 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
347 				  (val & cleared) == 0, 20, 50000);
348 }
349 
350 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
351 {
352 	return __raw_readl(priv->mdio + (offset * 4));
353 }
354 
355 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
356 {
357 	__raw_writel(val, priv->mdio + (offset * 4));
358 }
359 
360 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
361 			    u32 offset)
362 {
363 	u32 val = gswip_mdio_r(priv, offset);
364 
365 	val &= ~(clear);
366 	val |= set;
367 	gswip_mdio_w(priv, val, offset);
368 }
369 
370 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
371 {
372 	return __raw_readl(priv->mii + (offset * 4));
373 }
374 
375 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
376 {
377 	__raw_writel(val, priv->mii + (offset * 4));
378 }
379 
380 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
381 			   u32 offset)
382 {
383 	u32 val = gswip_mii_r(priv, offset);
384 
385 	val &= ~(clear);
386 	val |= set;
387 	gswip_mii_w(priv, val, offset);
388 }
389 
390 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
391 			       int port)
392 {
393 	/* There's no MII_CFG register for the CPU port */
394 	if (!dsa_is_cpu_port(priv->ds, port))
395 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
396 }
397 
398 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
399 				int port)
400 {
401 	switch (port) {
402 	case 0:
403 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
404 		break;
405 	case 1:
406 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
407 		break;
408 	case 5:
409 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
410 		break;
411 	}
412 }
413 
414 static int gswip_mdio_poll(struct gswip_priv *priv)
415 {
416 	int cnt = 100;
417 
418 	while (likely(cnt--)) {
419 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
420 
421 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
422 			return 0;
423 		usleep_range(20, 40);
424 	}
425 
426 	return -ETIMEDOUT;
427 }
428 
429 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
430 {
431 	struct gswip_priv *priv = bus->priv;
432 	int err;
433 
434 	err = gswip_mdio_poll(priv);
435 	if (err) {
436 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
437 		return err;
438 	}
439 
440 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
441 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
442 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
443 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
444 		GSWIP_MDIO_CTRL);
445 
446 	return 0;
447 }
448 
449 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
450 {
451 	struct gswip_priv *priv = bus->priv;
452 	int err;
453 
454 	err = gswip_mdio_poll(priv);
455 	if (err) {
456 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
457 		return err;
458 	}
459 
460 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
461 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
462 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
463 		GSWIP_MDIO_CTRL);
464 
465 	err = gswip_mdio_poll(priv);
466 	if (err) {
467 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
468 		return err;
469 	}
470 
471 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
472 }
473 
474 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
475 {
476 	struct dsa_switch *ds = priv->ds;
477 
478 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
479 	if (!ds->slave_mii_bus)
480 		return -ENOMEM;
481 
482 	ds->slave_mii_bus->priv = priv;
483 	ds->slave_mii_bus->read = gswip_mdio_rd;
484 	ds->slave_mii_bus->write = gswip_mdio_wr;
485 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
486 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
487 		 dev_name(priv->dev));
488 	ds->slave_mii_bus->parent = priv->dev;
489 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
490 
491 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
492 }
493 
494 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
495 				      struct gswip_pce_table_entry *tbl)
496 {
497 	int i;
498 	int err;
499 	u16 crtl;
500 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
501 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
502 
503 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
504 				     GSWIP_PCE_TBL_CTRL_BAS);
505 	if (err)
506 		return err;
507 
508 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
509 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
510 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
511 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
512 			  GSWIP_PCE_TBL_CTRL);
513 
514 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
515 				     GSWIP_PCE_TBL_CTRL_BAS);
516 	if (err)
517 		return err;
518 
519 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
520 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
521 
522 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
523 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
524 
525 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
526 
527 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
528 
529 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
530 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
531 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
532 
533 	return 0;
534 }
535 
536 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
537 				       struct gswip_pce_table_entry *tbl)
538 {
539 	int i;
540 	int err;
541 	u16 crtl;
542 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
543 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
544 
545 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
546 				     GSWIP_PCE_TBL_CTRL_BAS);
547 	if (err)
548 		return err;
549 
550 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
551 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
552 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
553 			  tbl->table | addr_mode,
554 			  GSWIP_PCE_TBL_CTRL);
555 
556 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
557 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
558 
559 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
560 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
561 
562 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
563 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
564 			  tbl->table | addr_mode,
565 			  GSWIP_PCE_TBL_CTRL);
566 
567 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
568 
569 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
570 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
571 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
572 	if (tbl->type)
573 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
574 	if (tbl->valid)
575 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
576 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
577 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
578 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
579 
580 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
581 				      GSWIP_PCE_TBL_CTRL_BAS);
582 }
583 
584 /* Add the LAN port into a bridge with the CPU port by
585  * default. This prevents automatic forwarding of
586  * packages between the LAN ports when no explicit
587  * bridge is configured.
588  */
589 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
590 {
591 	struct gswip_pce_table_entry vlan_active = {0,};
592 	struct gswip_pce_table_entry vlan_mapping = {0,};
593 	unsigned int cpu_port = priv->hw_info->cpu_port;
594 	unsigned int max_ports = priv->hw_info->max_ports;
595 	int err;
596 
597 	if (port >= max_ports) {
598 		dev_err(priv->dev, "single port for %i supported\n", port);
599 		return -EIO;
600 	}
601 
602 	vlan_active.index = port + 1;
603 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
604 	vlan_active.key[0] = 0; /* vid */
605 	vlan_active.val[0] = port + 1 /* fid */;
606 	vlan_active.valid = add;
607 	err = gswip_pce_table_entry_write(priv, &vlan_active);
608 	if (err) {
609 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
610 		return err;
611 	}
612 
613 	if (!add)
614 		return 0;
615 
616 	vlan_mapping.index = port + 1;
617 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
618 	vlan_mapping.val[0] = 0 /* vid */;
619 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
620 	vlan_mapping.val[2] = 0;
621 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
622 	if (err) {
623 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
624 		return err;
625 	}
626 
627 	return 0;
628 }
629 
630 static int gswip_port_enable(struct dsa_switch *ds, int port,
631 			     struct phy_device *phydev)
632 {
633 	struct gswip_priv *priv = ds->priv;
634 	int err;
635 
636 	if (!dsa_is_user_port(ds, port))
637 		return 0;
638 
639 	if (!dsa_is_cpu_port(ds, port)) {
640 		err = gswip_add_single_port_br(priv, port, true);
641 		if (err)
642 			return err;
643 	}
644 
645 	/* RMON Counter Enable for port */
646 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
647 
648 	/* enable port fetch/store dma & VLAN Modification */
649 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
650 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
651 			 GSWIP_FDMA_PCTRLp(port));
652 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
653 			  GSWIP_SDMA_PCTRLp(port));
654 
655 	if (!dsa_is_cpu_port(ds, port)) {
656 		u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
657 			      GSWIP_MDIO_PHY_SPEED_AUTO |
658 			      GSWIP_MDIO_PHY_FDUP_AUTO |
659 			      GSWIP_MDIO_PHY_FCONTX_AUTO |
660 			      GSWIP_MDIO_PHY_FCONRX_AUTO |
661 			      (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
662 
663 		gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
664 		/* Activate MDIO auto polling */
665 		gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
666 	}
667 
668 	return 0;
669 }
670 
671 static void gswip_port_disable(struct dsa_switch *ds, int port)
672 {
673 	struct gswip_priv *priv = ds->priv;
674 
675 	if (!dsa_is_user_port(ds, port))
676 		return;
677 
678 	if (!dsa_is_cpu_port(ds, port)) {
679 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
680 				GSWIP_MDIO_PHY_LINK_MASK,
681 				GSWIP_MDIO_PHYp(port));
682 		/* Deactivate MDIO auto polling */
683 		gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
684 	}
685 
686 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
687 			  GSWIP_FDMA_PCTRLp(port));
688 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
689 			  GSWIP_SDMA_PCTRLp(port));
690 }
691 
692 static int gswip_pce_load_microcode(struct gswip_priv *priv)
693 {
694 	int i;
695 	int err;
696 
697 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
698 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
699 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
700 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
701 
702 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
703 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
704 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
705 			       GSWIP_PCE_TBL_VAL(0));
706 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
707 			       GSWIP_PCE_TBL_VAL(1));
708 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
709 			       GSWIP_PCE_TBL_VAL(2));
710 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
711 			       GSWIP_PCE_TBL_VAL(3));
712 
713 		/* start the table access: */
714 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
715 				  GSWIP_PCE_TBL_CTRL);
716 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
717 					     GSWIP_PCE_TBL_CTRL_BAS);
718 		if (err)
719 			return err;
720 	}
721 
722 	/* tell the switch that the microcode is loaded */
723 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
724 			  GSWIP_PCE_GCTRL_0);
725 
726 	return 0;
727 }
728 
729 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
730 				     bool vlan_filtering)
731 {
732 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
733 	struct gswip_priv *priv = ds->priv;
734 
735 	/* Do not allow changing the VLAN filtering options while in bridge */
736 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering)
737 		return -EIO;
738 
739 	if (vlan_filtering) {
740 		/* Use port based VLAN tag */
741 		gswip_switch_mask(priv,
742 				  GSWIP_PCE_VCTRL_VSR,
743 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
744 				  GSWIP_PCE_VCTRL_VEMR,
745 				  GSWIP_PCE_VCTRL(port));
746 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
747 				  GSWIP_PCE_PCTRL_0p(port));
748 	} else {
749 		/* Use port based VLAN tag */
750 		gswip_switch_mask(priv,
751 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
752 				  GSWIP_PCE_VCTRL_VEMR,
753 				  GSWIP_PCE_VCTRL_VSR,
754 				  GSWIP_PCE_VCTRL(port));
755 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
756 				  GSWIP_PCE_PCTRL_0p(port));
757 	}
758 
759 	return 0;
760 }
761 
762 static int gswip_setup(struct dsa_switch *ds)
763 {
764 	struct gswip_priv *priv = ds->priv;
765 	unsigned int cpu_port = priv->hw_info->cpu_port;
766 	int i;
767 	int err;
768 
769 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
770 	usleep_range(5000, 10000);
771 	gswip_switch_w(priv, 0, GSWIP_SWRES);
772 
773 	/* disable port fetch/store dma on all ports */
774 	for (i = 0; i < priv->hw_info->max_ports; i++) {
775 		gswip_port_disable(ds, i);
776 		gswip_port_vlan_filtering(ds, i, false);
777 	}
778 
779 	/* enable Switch */
780 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
781 
782 	err = gswip_pce_load_microcode(priv);
783 	if (err) {
784 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
785 		return err;
786 	}
787 
788 	/* Default unknown Broadcast/Multicast/Unicast port maps */
789 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
790 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
791 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
792 
793 	/* disable PHY auto polling */
794 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
795 	/* Configure the MDIO Clock 2.5 MHz */
796 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
797 
798 	/* Disable the xMII link */
799 	for (i = 0; i < priv->hw_info->max_ports; i++)
800 		gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, i);
801 
802 	/* enable special tag insertion on cpu port */
803 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
804 			  GSWIP_FDMA_PCTRLp(cpu_port));
805 
806 	/* accept special tag in ingress direction */
807 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
808 			  GSWIP_PCE_PCTRL_0p(cpu_port));
809 
810 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
811 			  GSWIP_MAC_CTRL_2p(cpu_port));
812 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
813 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
814 			  GSWIP_BM_QUEUE_GCTRL);
815 
816 	/* VLAN aware Switching */
817 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
818 
819 	/* Flush MAC Table */
820 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
821 
822 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
823 				     GSWIP_PCE_GCTRL_0_MTFL);
824 	if (err) {
825 		dev_err(priv->dev, "MAC flushing didn't finish\n");
826 		return err;
827 	}
828 
829 	gswip_port_enable(ds, cpu_port, NULL);
830 
831 	ds->configure_vlan_while_not_filtering = false;
832 
833 	return 0;
834 }
835 
836 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
837 						    int port,
838 						    enum dsa_tag_protocol mp)
839 {
840 	return DSA_TAG_PROTO_GSWIP;
841 }
842 
843 static int gswip_vlan_active_create(struct gswip_priv *priv,
844 				    struct net_device *bridge,
845 				    int fid, u16 vid)
846 {
847 	struct gswip_pce_table_entry vlan_active = {0,};
848 	unsigned int max_ports = priv->hw_info->max_ports;
849 	int idx = -1;
850 	int err;
851 	int i;
852 
853 	/* Look for a free slot */
854 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
855 		if (!priv->vlans[i].bridge) {
856 			idx = i;
857 			break;
858 		}
859 	}
860 
861 	if (idx == -1)
862 		return -ENOSPC;
863 
864 	if (fid == -1)
865 		fid = idx;
866 
867 	vlan_active.index = idx;
868 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
869 	vlan_active.key[0] = vid;
870 	vlan_active.val[0] = fid;
871 	vlan_active.valid = true;
872 
873 	err = gswip_pce_table_entry_write(priv, &vlan_active);
874 	if (err) {
875 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
876 		return err;
877 	}
878 
879 	priv->vlans[idx].bridge = bridge;
880 	priv->vlans[idx].vid = vid;
881 	priv->vlans[idx].fid = fid;
882 
883 	return idx;
884 }
885 
886 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
887 {
888 	struct gswip_pce_table_entry vlan_active = {0,};
889 	int err;
890 
891 	vlan_active.index = idx;
892 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
893 	vlan_active.valid = false;
894 	err = gswip_pce_table_entry_write(priv, &vlan_active);
895 	if (err)
896 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
897 	priv->vlans[idx].bridge = NULL;
898 
899 	return err;
900 }
901 
902 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
903 				  struct net_device *bridge, int port)
904 {
905 	struct gswip_pce_table_entry vlan_mapping = {0,};
906 	unsigned int max_ports = priv->hw_info->max_ports;
907 	unsigned int cpu_port = priv->hw_info->cpu_port;
908 	bool active_vlan_created = false;
909 	int idx = -1;
910 	int i;
911 	int err;
912 
913 	/* Check if there is already a page for this bridge */
914 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
915 		if (priv->vlans[i].bridge == bridge) {
916 			idx = i;
917 			break;
918 		}
919 	}
920 
921 	/* If this bridge is not programmed yet, add a Active VLAN table
922 	 * entry in a free slot and prepare the VLAN mapping table entry.
923 	 */
924 	if (idx == -1) {
925 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
926 		if (idx < 0)
927 			return idx;
928 		active_vlan_created = true;
929 
930 		vlan_mapping.index = idx;
931 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
932 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
933 		vlan_mapping.val[0] = 0;
934 	} else {
935 		/* Read the existing VLAN mapping entry from the switch */
936 		vlan_mapping.index = idx;
937 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
938 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
939 		if (err) {
940 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
941 				err);
942 			return err;
943 		}
944 	}
945 
946 	/* Update the VLAN mapping entry and write it to the switch */
947 	vlan_mapping.val[1] |= BIT(cpu_port);
948 	vlan_mapping.val[1] |= BIT(port);
949 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
950 	if (err) {
951 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
952 		/* In case an Active VLAN was creaetd delete it again */
953 		if (active_vlan_created)
954 			gswip_vlan_active_remove(priv, idx);
955 		return err;
956 	}
957 
958 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
959 	return 0;
960 }
961 
962 static int gswip_vlan_add_aware(struct gswip_priv *priv,
963 				struct net_device *bridge, int port,
964 				u16 vid, bool untagged,
965 				bool pvid)
966 {
967 	struct gswip_pce_table_entry vlan_mapping = {0,};
968 	unsigned int max_ports = priv->hw_info->max_ports;
969 	unsigned int cpu_port = priv->hw_info->cpu_port;
970 	bool active_vlan_created = false;
971 	int idx = -1;
972 	int fid = -1;
973 	int i;
974 	int err;
975 
976 	/* Check if there is already a page for this bridge */
977 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
978 		if (priv->vlans[i].bridge == bridge) {
979 			if (fid != -1 && fid != priv->vlans[i].fid)
980 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
981 			fid = priv->vlans[i].fid;
982 			if (priv->vlans[i].vid == vid) {
983 				idx = i;
984 				break;
985 			}
986 		}
987 	}
988 
989 	/* If this bridge is not programmed yet, add a Active VLAN table
990 	 * entry in a free slot and prepare the VLAN mapping table entry.
991 	 */
992 	if (idx == -1) {
993 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
994 		if (idx < 0)
995 			return idx;
996 		active_vlan_created = true;
997 
998 		vlan_mapping.index = idx;
999 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1000 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1001 		vlan_mapping.val[0] = vid;
1002 	} else {
1003 		/* Read the existing VLAN mapping entry from the switch */
1004 		vlan_mapping.index = idx;
1005 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1006 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1007 		if (err) {
1008 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1009 				err);
1010 			return err;
1011 		}
1012 	}
1013 
1014 	vlan_mapping.val[0] = vid;
1015 	/* Update the VLAN mapping entry and write it to the switch */
1016 	vlan_mapping.val[1] |= BIT(cpu_port);
1017 	vlan_mapping.val[2] |= BIT(cpu_port);
1018 	vlan_mapping.val[1] |= BIT(port);
1019 	if (untagged)
1020 		vlan_mapping.val[2] &= ~BIT(port);
1021 	else
1022 		vlan_mapping.val[2] |= BIT(port);
1023 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1024 	if (err) {
1025 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1026 		/* In case an Active VLAN was creaetd delete it again */
1027 		if (active_vlan_created)
1028 			gswip_vlan_active_remove(priv, idx);
1029 		return err;
1030 	}
1031 
1032 	if (pvid)
1033 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1034 
1035 	return 0;
1036 }
1037 
1038 static int gswip_vlan_remove(struct gswip_priv *priv,
1039 			     struct net_device *bridge, int port,
1040 			     u16 vid, bool pvid, bool vlan_aware)
1041 {
1042 	struct gswip_pce_table_entry vlan_mapping = {0,};
1043 	unsigned int max_ports = priv->hw_info->max_ports;
1044 	unsigned int cpu_port = priv->hw_info->cpu_port;
1045 	int idx = -1;
1046 	int i;
1047 	int err;
1048 
1049 	/* Check if there is already a page for this bridge */
1050 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1051 		if (priv->vlans[i].bridge == bridge &&
1052 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1053 			idx = i;
1054 			break;
1055 		}
1056 	}
1057 
1058 	if (idx == -1) {
1059 		dev_err(priv->dev, "bridge to leave does not exists\n");
1060 		return -ENOENT;
1061 	}
1062 
1063 	vlan_mapping.index = idx;
1064 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1065 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1066 	if (err) {
1067 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1068 		return err;
1069 	}
1070 
1071 	vlan_mapping.val[1] &= ~BIT(port);
1072 	vlan_mapping.val[2] &= ~BIT(port);
1073 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1074 	if (err) {
1075 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1076 		return err;
1077 	}
1078 
1079 	/* In case all ports are removed from the bridge, remove the VLAN */
1080 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1081 		err = gswip_vlan_active_remove(priv, idx);
1082 		if (err) {
1083 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1084 				err);
1085 			return err;
1086 		}
1087 	}
1088 
1089 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1090 	if (pvid)
1091 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1092 
1093 	return 0;
1094 }
1095 
1096 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1097 				  struct net_device *bridge)
1098 {
1099 	struct gswip_priv *priv = ds->priv;
1100 	int err;
1101 
1102 	/* When the bridge uses VLAN filtering we have to configure VLAN
1103 	 * specific bridges. No bridge is configured here.
1104 	 */
1105 	if (!br_vlan_enabled(bridge)) {
1106 		err = gswip_vlan_add_unaware(priv, bridge, port);
1107 		if (err)
1108 			return err;
1109 		priv->port_vlan_filter &= ~BIT(port);
1110 	} else {
1111 		priv->port_vlan_filter |= BIT(port);
1112 	}
1113 	return gswip_add_single_port_br(priv, port, false);
1114 }
1115 
1116 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1117 				    struct net_device *bridge)
1118 {
1119 	struct gswip_priv *priv = ds->priv;
1120 
1121 	gswip_add_single_port_br(priv, port, true);
1122 
1123 	/* When the bridge uses VLAN filtering we have to configure VLAN
1124 	 * specific bridges. No bridge is configured here.
1125 	 */
1126 	if (!br_vlan_enabled(bridge))
1127 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1128 }
1129 
1130 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1131 				   const struct switchdev_obj_port_vlan *vlan)
1132 {
1133 	struct gswip_priv *priv = ds->priv;
1134 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1135 	unsigned int max_ports = priv->hw_info->max_ports;
1136 	int pos = max_ports;
1137 	int i, idx = -1;
1138 
1139 	/* We only support VLAN filtering on bridges */
1140 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1141 		return -EOPNOTSUPP;
1142 
1143 	/* Check if there is already a page for this VLAN */
1144 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1145 		if (priv->vlans[i].bridge == bridge &&
1146 		    priv->vlans[i].vid == vlan->vid) {
1147 			idx = i;
1148 			break;
1149 		}
1150 	}
1151 
1152 	/* If this VLAN is not programmed yet, we have to reserve
1153 	 * one entry in the VLAN table. Make sure we start at the
1154 	 * next position round.
1155 	 */
1156 	if (idx == -1) {
1157 		/* Look for a free slot */
1158 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1159 			if (!priv->vlans[pos].bridge) {
1160 				idx = pos;
1161 				pos++;
1162 				break;
1163 			}
1164 		}
1165 
1166 		if (idx == -1)
1167 			return -ENOSPC;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1174 			       const struct switchdev_obj_port_vlan *vlan)
1175 {
1176 	struct gswip_priv *priv = ds->priv;
1177 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1178 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1179 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1180 	int err;
1181 
1182 	err = gswip_port_vlan_prepare(ds, port, vlan);
1183 	if (err)
1184 		return err;
1185 
1186 	/* We have to receive all packets on the CPU port and should not
1187 	 * do any VLAN filtering here. This is also called with bridge
1188 	 * NULL and then we do not know for which bridge to configure
1189 	 * this.
1190 	 */
1191 	if (dsa_is_cpu_port(ds, port))
1192 		return 0;
1193 
1194 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1195 				    untagged, pvid);
1196 }
1197 
1198 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1199 			       const struct switchdev_obj_port_vlan *vlan)
1200 {
1201 	struct gswip_priv *priv = ds->priv;
1202 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1203 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1204 
1205 	/* We have to receive all packets on the CPU port and should not
1206 	 * do any VLAN filtering here. This is also called with bridge
1207 	 * NULL and then we do not know for which bridge to configure
1208 	 * this.
1209 	 */
1210 	if (dsa_is_cpu_port(ds, port))
1211 		return 0;
1212 
1213 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1214 }
1215 
1216 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1217 {
1218 	struct gswip_priv *priv = ds->priv;
1219 	struct gswip_pce_table_entry mac_bridge = {0,};
1220 	int i;
1221 	int err;
1222 
1223 	for (i = 0; i < 2048; i++) {
1224 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1225 		mac_bridge.index = i;
1226 
1227 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1228 		if (err) {
1229 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1230 				err);
1231 			return;
1232 		}
1233 
1234 		if (!mac_bridge.valid)
1235 			continue;
1236 
1237 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1238 			continue;
1239 
1240 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1241 			continue;
1242 
1243 		mac_bridge.valid = false;
1244 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1245 		if (err) {
1246 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1247 				err);
1248 			return;
1249 		}
1250 	}
1251 }
1252 
1253 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1254 {
1255 	struct gswip_priv *priv = ds->priv;
1256 	u32 stp_state;
1257 
1258 	switch (state) {
1259 	case BR_STATE_DISABLED:
1260 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1261 				  GSWIP_SDMA_PCTRLp(port));
1262 		return;
1263 	case BR_STATE_BLOCKING:
1264 	case BR_STATE_LISTENING:
1265 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1266 		break;
1267 	case BR_STATE_LEARNING:
1268 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1269 		break;
1270 	case BR_STATE_FORWARDING:
1271 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1272 		break;
1273 	default:
1274 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1275 		return;
1276 	}
1277 
1278 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1279 			  GSWIP_SDMA_PCTRLp(port));
1280 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1281 			  GSWIP_PCE_PCTRL_0p(port));
1282 }
1283 
1284 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1285 			  const unsigned char *addr, u16 vid, bool add)
1286 {
1287 	struct gswip_priv *priv = ds->priv;
1288 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1289 	struct gswip_pce_table_entry mac_bridge = {0,};
1290 	unsigned int cpu_port = priv->hw_info->cpu_port;
1291 	int fid = -1;
1292 	int i;
1293 	int err;
1294 
1295 	if (!bridge)
1296 		return -EINVAL;
1297 
1298 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1299 		if (priv->vlans[i].bridge == bridge) {
1300 			fid = priv->vlans[i].fid;
1301 			break;
1302 		}
1303 	}
1304 
1305 	if (fid == -1) {
1306 		dev_err(priv->dev, "Port not part of a bridge\n");
1307 		return -EINVAL;
1308 	}
1309 
1310 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1311 	mac_bridge.key_mode = true;
1312 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1313 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1314 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1315 	mac_bridge.key[3] = fid;
1316 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1317 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1318 	mac_bridge.valid = add;
1319 
1320 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1321 	if (err)
1322 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1323 
1324 	return err;
1325 }
1326 
1327 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1328 			      const unsigned char *addr, u16 vid)
1329 {
1330 	return gswip_port_fdb(ds, port, addr, vid, true);
1331 }
1332 
1333 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1334 			      const unsigned char *addr, u16 vid)
1335 {
1336 	return gswip_port_fdb(ds, port, addr, vid, false);
1337 }
1338 
1339 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1340 			       dsa_fdb_dump_cb_t *cb, void *data)
1341 {
1342 	struct gswip_priv *priv = ds->priv;
1343 	struct gswip_pce_table_entry mac_bridge = {0,};
1344 	unsigned char addr[6];
1345 	int i;
1346 	int err;
1347 
1348 	for (i = 0; i < 2048; i++) {
1349 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1350 		mac_bridge.index = i;
1351 
1352 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1353 		if (err) {
1354 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1355 				err);
1356 			return err;
1357 		}
1358 
1359 		if (!mac_bridge.valid)
1360 			continue;
1361 
1362 		addr[5] = mac_bridge.key[0] & 0xff;
1363 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1364 		addr[3] = mac_bridge.key[1] & 0xff;
1365 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1366 		addr[1] = mac_bridge.key[2] & 0xff;
1367 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1368 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1369 			if (mac_bridge.val[0] & BIT(port))
1370 				cb(addr, 0, true, data);
1371 		} else {
1372 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1373 				cb(addr, 0, false, data);
1374 		}
1375 	}
1376 	return 0;
1377 }
1378 
1379 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1380 				   unsigned long *supported,
1381 				   struct phylink_link_state *state)
1382 {
1383 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1384 
1385 	switch (port) {
1386 	case 0:
1387 	case 1:
1388 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1389 		    state->interface != PHY_INTERFACE_MODE_MII &&
1390 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1391 		    state->interface != PHY_INTERFACE_MODE_RMII)
1392 			goto unsupported;
1393 		break;
1394 	case 2:
1395 	case 3:
1396 	case 4:
1397 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1398 			goto unsupported;
1399 		break;
1400 	case 5:
1401 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1402 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1403 			goto unsupported;
1404 		break;
1405 	default:
1406 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1407 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1408 		return;
1409 	}
1410 
1411 	/* Allow all the expected bits */
1412 	phylink_set(mask, Autoneg);
1413 	phylink_set_port_modes(mask);
1414 	phylink_set(mask, Pause);
1415 	phylink_set(mask, Asym_Pause);
1416 
1417 	/* With the exclusion of MII, Reverse MII and Reduced MII, we
1418 	 * support Gigabit, including Half duplex
1419 	 */
1420 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1421 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
1422 	    state->interface != PHY_INTERFACE_MODE_RMII) {
1423 		phylink_set(mask, 1000baseT_Full);
1424 		phylink_set(mask, 1000baseT_Half);
1425 	}
1426 
1427 	phylink_set(mask, 10baseT_Half);
1428 	phylink_set(mask, 10baseT_Full);
1429 	phylink_set(mask, 100baseT_Half);
1430 	phylink_set(mask, 100baseT_Full);
1431 
1432 	bitmap_and(supported, supported, mask,
1433 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1434 	bitmap_and(state->advertising, state->advertising, mask,
1435 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1436 	return;
1437 
1438 unsupported:
1439 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1440 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1441 		phy_modes(state->interface), port);
1442 	return;
1443 }
1444 
1445 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1446 				     unsigned int mode,
1447 				     const struct phylink_link_state *state)
1448 {
1449 	struct gswip_priv *priv = ds->priv;
1450 	u32 miicfg = 0;
1451 
1452 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1453 
1454 	switch (state->interface) {
1455 	case PHY_INTERFACE_MODE_MII:
1456 	case PHY_INTERFACE_MODE_INTERNAL:
1457 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1458 		break;
1459 	case PHY_INTERFACE_MODE_REVMII:
1460 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1461 		break;
1462 	case PHY_INTERFACE_MODE_RMII:
1463 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1464 		break;
1465 	case PHY_INTERFACE_MODE_RGMII:
1466 	case PHY_INTERFACE_MODE_RGMII_ID:
1467 	case PHY_INTERFACE_MODE_RGMII_RXID:
1468 	case PHY_INTERFACE_MODE_RGMII_TXID:
1469 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1470 		break;
1471 	default:
1472 		dev_err(ds->dev,
1473 			"Unsupported interface: %d\n", state->interface);
1474 		return;
1475 	}
1476 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1477 
1478 	switch (state->interface) {
1479 	case PHY_INTERFACE_MODE_RGMII_ID:
1480 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1481 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1482 		break;
1483 	case PHY_INTERFACE_MODE_RGMII_RXID:
1484 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1485 		break;
1486 	case PHY_INTERFACE_MODE_RGMII_TXID:
1487 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1488 		break;
1489 	default:
1490 		break;
1491 	}
1492 }
1493 
1494 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1495 					unsigned int mode,
1496 					phy_interface_t interface)
1497 {
1498 	struct gswip_priv *priv = ds->priv;
1499 
1500 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1501 }
1502 
1503 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1504 				      unsigned int mode,
1505 				      phy_interface_t interface,
1506 				      struct phy_device *phydev,
1507 				      int speed, int duplex,
1508 				      bool tx_pause, bool rx_pause)
1509 {
1510 	struct gswip_priv *priv = ds->priv;
1511 
1512 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1513 }
1514 
1515 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1516 			      uint8_t *data)
1517 {
1518 	int i;
1519 
1520 	if (stringset != ETH_SS_STATS)
1521 		return;
1522 
1523 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1524 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1525 			ETH_GSTRING_LEN);
1526 }
1527 
1528 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1529 				    u32 index)
1530 {
1531 	u32 result;
1532 	int err;
1533 
1534 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1535 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1536 				GSWIP_BM_RAM_CTRL_OPMOD,
1537 			      table | GSWIP_BM_RAM_CTRL_BAS,
1538 			      GSWIP_BM_RAM_CTRL);
1539 
1540 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1541 				     GSWIP_BM_RAM_CTRL_BAS);
1542 	if (err) {
1543 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1544 			table, index);
1545 		return 0;
1546 	}
1547 
1548 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1549 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1550 
1551 	return result;
1552 }
1553 
1554 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1555 				    uint64_t *data)
1556 {
1557 	struct gswip_priv *priv = ds->priv;
1558 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1559 	int i;
1560 	u64 high;
1561 
1562 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1563 		rmon_cnt = &gswip_rmon_cnt[i];
1564 
1565 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1566 						   rmon_cnt->offset);
1567 		if (rmon_cnt->size == 2) {
1568 			high = gswip_bcm_ram_entry_read(priv, port,
1569 							rmon_cnt->offset + 1);
1570 			data[i] |= high << 32;
1571 		}
1572 	}
1573 }
1574 
1575 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1576 {
1577 	if (sset != ETH_SS_STATS)
1578 		return 0;
1579 
1580 	return ARRAY_SIZE(gswip_rmon_cnt);
1581 }
1582 
1583 static const struct dsa_switch_ops gswip_switch_ops = {
1584 	.get_tag_protocol	= gswip_get_tag_protocol,
1585 	.setup			= gswip_setup,
1586 	.port_enable		= gswip_port_enable,
1587 	.port_disable		= gswip_port_disable,
1588 	.port_bridge_join	= gswip_port_bridge_join,
1589 	.port_bridge_leave	= gswip_port_bridge_leave,
1590 	.port_fast_age		= gswip_port_fast_age,
1591 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1592 	.port_vlan_add		= gswip_port_vlan_add,
1593 	.port_vlan_del		= gswip_port_vlan_del,
1594 	.port_stp_state_set	= gswip_port_stp_state_set,
1595 	.port_fdb_add		= gswip_port_fdb_add,
1596 	.port_fdb_del		= gswip_port_fdb_del,
1597 	.port_fdb_dump		= gswip_port_fdb_dump,
1598 	.phylink_validate	= gswip_phylink_validate,
1599 	.phylink_mac_config	= gswip_phylink_mac_config,
1600 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1601 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1602 	.get_strings		= gswip_get_strings,
1603 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1604 	.get_sset_count		= gswip_get_sset_count,
1605 };
1606 
1607 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1608 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1609 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1610 };
1611 
1612 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1613 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1614 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1615 };
1616 
1617 static const struct xway_gphy_match_data xrx300_gphy_data = {
1618 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1619 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1620 };
1621 
1622 static const struct of_device_id xway_gphy_match[] = {
1623 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1624 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1625 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1626 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1627 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1628 	{},
1629 };
1630 
1631 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1632 {
1633 	struct device *dev = priv->dev;
1634 	const struct firmware *fw;
1635 	void *fw_addr;
1636 	dma_addr_t dma_addr;
1637 	dma_addr_t dev_addr;
1638 	size_t size;
1639 	int ret;
1640 
1641 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1642 	if (ret)
1643 		return ret;
1644 
1645 	reset_control_assert(gphy_fw->reset);
1646 
1647 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1648 	if (ret) {
1649 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1650 			gphy_fw->fw_name, ret);
1651 		return ret;
1652 	}
1653 
1654 	/* GPHY cores need the firmware code in a persistent and contiguous
1655 	 * memory area with a 16 kB boundary aligned start address.
1656 	 */
1657 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1658 
1659 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1660 	if (fw_addr) {
1661 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1662 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1663 		memcpy(fw_addr, fw->data, fw->size);
1664 	} else {
1665 		dev_err(dev, "failed to alloc firmware memory\n");
1666 		release_firmware(fw);
1667 		return -ENOMEM;
1668 	}
1669 
1670 	release_firmware(fw);
1671 
1672 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1673 	if (ret)
1674 		return ret;
1675 
1676 	reset_control_deassert(gphy_fw->reset);
1677 
1678 	return ret;
1679 }
1680 
1681 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1682 			       struct gswip_gphy_fw *gphy_fw,
1683 			       struct device_node *gphy_fw_np, int i)
1684 {
1685 	struct device *dev = priv->dev;
1686 	u32 gphy_mode;
1687 	int ret;
1688 	char gphyname[10];
1689 
1690 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1691 
1692 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1693 	if (IS_ERR(gphy_fw->clk_gate)) {
1694 		dev_err(dev, "Failed to lookup gate clock\n");
1695 		return PTR_ERR(gphy_fw->clk_gate);
1696 	}
1697 
1698 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1699 	if (ret)
1700 		return ret;
1701 
1702 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1703 	/* Default to GE mode */
1704 	if (ret)
1705 		gphy_mode = GPHY_MODE_GE;
1706 
1707 	switch (gphy_mode) {
1708 	case GPHY_MODE_FE:
1709 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1710 		break;
1711 	case GPHY_MODE_GE:
1712 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1713 		break;
1714 	default:
1715 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1716 		return -EINVAL;
1717 	}
1718 
1719 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1720 	if (IS_ERR(gphy_fw->reset)) {
1721 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1722 			dev_err(dev, "Failed to lookup gphy reset\n");
1723 		return PTR_ERR(gphy_fw->reset);
1724 	}
1725 
1726 	return gswip_gphy_fw_load(priv, gphy_fw);
1727 }
1728 
1729 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1730 				 struct gswip_gphy_fw *gphy_fw)
1731 {
1732 	int ret;
1733 
1734 	/* check if the device was fully probed */
1735 	if (!gphy_fw->fw_name)
1736 		return;
1737 
1738 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1739 	if (ret)
1740 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1741 
1742 	clk_disable_unprepare(gphy_fw->clk_gate);
1743 
1744 	reset_control_put(gphy_fw->reset);
1745 }
1746 
1747 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1748 			      struct device_node *gphy_fw_list_np, u32 version)
1749 {
1750 	struct device *dev = priv->dev;
1751 	struct device_node *gphy_fw_np;
1752 	const struct of_device_id *match;
1753 	int err;
1754 	int i = 0;
1755 
1756 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1757 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1758 	 * needs a different GPHY firmware.
1759 	 */
1760 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1761 		switch (version) {
1762 		case GSWIP_VERSION_2_0:
1763 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1764 			break;
1765 		case GSWIP_VERSION_2_1:
1766 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1767 			break;
1768 		default:
1769 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1770 			return -ENOENT;
1771 		}
1772 	}
1773 
1774 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1775 	if (match && match->data)
1776 		priv->gphy_fw_name_cfg = match->data;
1777 
1778 	if (!priv->gphy_fw_name_cfg) {
1779 		dev_err(dev, "GPHY compatible type not supported");
1780 		return -ENOENT;
1781 	}
1782 
1783 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1784 	if (!priv->num_gphy_fw)
1785 		return -ENOENT;
1786 
1787 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1788 							   "lantiq,rcu");
1789 	if (IS_ERR(priv->rcu_regmap))
1790 		return PTR_ERR(priv->rcu_regmap);
1791 
1792 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1793 					   sizeof(*priv->gphy_fw),
1794 					   GFP_KERNEL | __GFP_ZERO);
1795 	if (!priv->gphy_fw)
1796 		return -ENOMEM;
1797 
1798 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1799 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1800 					  gphy_fw_np, i);
1801 		if (err)
1802 			goto remove_gphy;
1803 		i++;
1804 	}
1805 
1806 	/* The standalone PHY11G requires 300ms to be fully
1807 	 * initialized and ready for any MDIO communication after being
1808 	 * taken out of reset. For the SoC-internal GPHY variant there
1809 	 * is no (known) documentation for the minimum time after a
1810 	 * reset. Use the same value as for the standalone variant as
1811 	 * some users have reported internal PHYs not being detected
1812 	 * without any delay.
1813 	 */
1814 	msleep(300);
1815 
1816 	return 0;
1817 
1818 remove_gphy:
1819 	for (i = 0; i < priv->num_gphy_fw; i++)
1820 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1821 	return err;
1822 }
1823 
1824 static int gswip_probe(struct platform_device *pdev)
1825 {
1826 	struct gswip_priv *priv;
1827 	struct device_node *mdio_np, *gphy_fw_np;
1828 	struct device *dev = &pdev->dev;
1829 	int err;
1830 	int i;
1831 	u32 version;
1832 
1833 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1834 	if (!priv)
1835 		return -ENOMEM;
1836 
1837 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1838 	if (IS_ERR(priv->gswip))
1839 		return PTR_ERR(priv->gswip);
1840 
1841 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1842 	if (IS_ERR(priv->mdio))
1843 		return PTR_ERR(priv->mdio);
1844 
1845 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1846 	if (IS_ERR(priv->mii))
1847 		return PTR_ERR(priv->mii);
1848 
1849 	priv->hw_info = of_device_get_match_data(dev);
1850 	if (!priv->hw_info)
1851 		return -EINVAL;
1852 
1853 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1854 	if (!priv->ds)
1855 		return -ENOMEM;
1856 
1857 	priv->ds->dev = dev;
1858 	priv->ds->num_ports = priv->hw_info->max_ports;
1859 	priv->ds->priv = priv;
1860 	priv->ds->ops = &gswip_switch_ops;
1861 	priv->dev = dev;
1862 	version = gswip_switch_r(priv, GSWIP_VERSION);
1863 
1864 	/* bring up the mdio bus */
1865 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1866 	if (gphy_fw_np) {
1867 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1868 		of_node_put(gphy_fw_np);
1869 		if (err) {
1870 			dev_err(dev, "gphy fw probe failed\n");
1871 			return err;
1872 		}
1873 	}
1874 
1875 	/* bring up the mdio bus */
1876 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1877 	if (mdio_np) {
1878 		err = gswip_mdio(priv, mdio_np);
1879 		if (err) {
1880 			dev_err(dev, "mdio probe failed\n");
1881 			goto put_mdio_node;
1882 		}
1883 	}
1884 
1885 	err = dsa_register_switch(priv->ds);
1886 	if (err) {
1887 		dev_err(dev, "dsa switch register failed: %i\n", err);
1888 		goto mdio_bus;
1889 	}
1890 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1891 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1892 			priv->hw_info->cpu_port);
1893 		err = -EINVAL;
1894 		goto disable_switch;
1895 	}
1896 
1897 	platform_set_drvdata(pdev, priv);
1898 
1899 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1900 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1901 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1902 	return 0;
1903 
1904 disable_switch:
1905 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1906 	dsa_unregister_switch(priv->ds);
1907 mdio_bus:
1908 	if (mdio_np)
1909 		mdiobus_unregister(priv->ds->slave_mii_bus);
1910 put_mdio_node:
1911 	of_node_put(mdio_np);
1912 	for (i = 0; i < priv->num_gphy_fw; i++)
1913 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1914 	return err;
1915 }
1916 
1917 static int gswip_remove(struct platform_device *pdev)
1918 {
1919 	struct gswip_priv *priv = platform_get_drvdata(pdev);
1920 	int i;
1921 
1922 	/* disable the switch */
1923 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1924 
1925 	dsa_unregister_switch(priv->ds);
1926 
1927 	if (priv->ds->slave_mii_bus) {
1928 		mdiobus_unregister(priv->ds->slave_mii_bus);
1929 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1930 	}
1931 
1932 	for (i = 0; i < priv->num_gphy_fw; i++)
1933 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1934 
1935 	return 0;
1936 }
1937 
1938 static const struct gswip_hw_info gswip_xrx200 = {
1939 	.max_ports = 7,
1940 	.cpu_port = 6,
1941 };
1942 
1943 static const struct of_device_id gswip_of_match[] = {
1944 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1945 	{},
1946 };
1947 MODULE_DEVICE_TABLE(of, gswip_of_match);
1948 
1949 static struct platform_driver gswip_driver = {
1950 	.probe = gswip_probe,
1951 	.remove = gswip_remove,
1952 	.driver = {
1953 		.name = "gswip",
1954 		.of_match_table = gswip_of_match,
1955 	},
1956 };
1957 
1958 module_platform_driver(gswip_driver);
1959 
1960 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1961 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1962 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1963 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1964 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1965 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1966 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1967 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1968 MODULE_LICENSE("GPL v2");
1969