xref: /openbmc/linux/drivers/net/dsa/lantiq_gswip.c (revision 8b0adbe3e38dbe5aae9edf6f5159ffdca7cfbdf1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_EN		BIT(14)
97 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
98 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
99 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
100 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
101 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
102 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
103 #define  GSWIP_MII_CFG_MODE_GMII	0x9
104 #define  GSWIP_MII_CFG_MODE_MASK	0xf
105 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
106 #define  GSWIP_MII_CFG_RATE_M25	0x10
107 #define  GSWIP_MII_CFG_RATE_M125	0x20
108 #define  GSWIP_MII_CFG_RATE_M50	0x30
109 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
110 #define  GSWIP_MII_CFG_RATE_MASK	0x70
111 #define GSWIP_MII_PCDU0			0x01
112 #define GSWIP_MII_PCDU1			0x03
113 #define GSWIP_MII_PCDU5			0x05
114 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
115 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
116 
117 /* GSWIP Core Registers */
118 #define GSWIP_SWRES			0x000
119 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
120 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
121 #define GSWIP_VERSION			0x013
122 #define  GSWIP_VERSION_REV_SHIFT	0
123 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
124 #define  GSWIP_VERSION_MOD_SHIFT	8
125 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
126 #define   GSWIP_VERSION_2_0		0x100
127 #define   GSWIP_VERSION_2_1		0x021
128 #define   GSWIP_VERSION_2_2		0x122
129 #define   GSWIP_VERSION_2_2_ETC		0x022
130 
131 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
132 #define GSWIP_BM_RAM_ADDR		0x044
133 #define GSWIP_BM_RAM_CTRL		0x045
134 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
135 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
136 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
137 #define GSWIP_BM_QUEUE_GCTRL		0x04A
138 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
139 /* buffer management Port Configuration Register */
140 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
141 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
142 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
143 /* buffer management Port Control Register */
144 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
145 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
146 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
147 
148 /* PCE */
149 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
150 #define GSWIP_PCE_TBL_MASK		0x448
151 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
152 #define GSWIP_PCE_TBL_ADDR		0x44E
153 #define GSWIP_PCE_TBL_CTRL		0x44F
154 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
155 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
156 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
157 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
158 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
164 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
165 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
166 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
167 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
168 #define GSWIP_PCE_GCTRL_0		0x456
169 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
170 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
171 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
172 #define GSWIP_PCE_GCTRL_1		0x457
173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
174 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
175 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
176 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
177 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
178 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
179 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
180 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
181 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
185 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
186 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
187 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
188 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
189 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
190 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
191 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
192 
193 #define GSWIP_MAC_FLEN			0x8C5
194 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
195 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
196 
197 /* Ethernet Switch Fetch DMA Port Control Register */
198 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
199 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
200 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
201 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
202 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
203 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
207 
208 /* Ethernet Switch Store DMA Port Control Register */
209 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
210 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
211 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
212 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(1)	/* Pause Frame Forwarding */
213 
214 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
215 #define GSWIP_TABLE_VLAN_MAPPING	0x02
216 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
217 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
218 
219 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
220 
221 struct gswip_hw_info {
222 	int max_ports;
223 	int cpu_port;
224 	const struct dsa_switch_ops *ops;
225 };
226 
227 struct xway_gphy_match_data {
228 	char *fe_firmware_name;
229 	char *ge_firmware_name;
230 };
231 
232 struct gswip_gphy_fw {
233 	struct clk *clk_gate;
234 	struct reset_control *reset;
235 	u32 fw_addr_offset;
236 	char *fw_name;
237 };
238 
239 struct gswip_vlan {
240 	struct net_device *bridge;
241 	u16 vid;
242 	u8 fid;
243 };
244 
245 struct gswip_priv {
246 	__iomem void *gswip;
247 	__iomem void *mdio;
248 	__iomem void *mii;
249 	const struct gswip_hw_info *hw_info;
250 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
251 	struct dsa_switch *ds;
252 	struct device *dev;
253 	struct regmap *rcu_regmap;
254 	struct gswip_vlan vlans[64];
255 	int num_gphy_fw;
256 	struct gswip_gphy_fw *gphy_fw;
257 	u32 port_vlan_filter;
258 };
259 
260 struct gswip_pce_table_entry {
261 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
262 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
263 	u16 key[8];
264 	u16 val[5];
265 	u16 mask;
266 	u8 gmap;
267 	bool type;
268 	bool valid;
269 	bool key_mode;
270 };
271 
272 struct gswip_rmon_cnt_desc {
273 	unsigned int size;
274 	unsigned int offset;
275 	const char *name;
276 };
277 
278 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
279 
280 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
281 	/** Receive Packet Count (only packets that are accepted and not discarded). */
282 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
283 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
284 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
285 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
286 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
287 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
288 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
289 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
290 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
291 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
292 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
293 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
294 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
295 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
296 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
297 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
298 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
299 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
300 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
301 	MIB_DESC(2, 0x24, "RxGoodBytes"),
302 	MIB_DESC(2, 0x26, "RxBadBytes"),
303 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
304 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
305 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
306 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
307 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
308 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
309 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
310 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
311 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
312 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
313 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
314 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
315 	MIB_DESC(1, 0x09, "TxMultCollCount"),
316 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
317 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
318 	MIB_DESC(1, 0x0D, "TxPauseCount"),
319 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
320 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
321 };
322 
323 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
324 {
325 	return __raw_readl(priv->gswip + (offset * 4));
326 }
327 
328 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
329 {
330 	__raw_writel(val, priv->gswip + (offset * 4));
331 }
332 
333 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
334 			      u32 offset)
335 {
336 	u32 val = gswip_switch_r(priv, offset);
337 
338 	val &= ~(clear);
339 	val |= set;
340 	gswip_switch_w(priv, val, offset);
341 }
342 
343 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
344 				  u32 cleared)
345 {
346 	u32 val;
347 
348 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
349 				  (val & cleared) == 0, 20, 50000);
350 }
351 
352 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
353 {
354 	return __raw_readl(priv->mdio + (offset * 4));
355 }
356 
357 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
358 {
359 	__raw_writel(val, priv->mdio + (offset * 4));
360 }
361 
362 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
363 			    u32 offset)
364 {
365 	u32 val = gswip_mdio_r(priv, offset);
366 
367 	val &= ~(clear);
368 	val |= set;
369 	gswip_mdio_w(priv, val, offset);
370 }
371 
372 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
373 {
374 	return __raw_readl(priv->mii + (offset * 4));
375 }
376 
377 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
378 {
379 	__raw_writel(val, priv->mii + (offset * 4));
380 }
381 
382 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
383 			   u32 offset)
384 {
385 	u32 val = gswip_mii_r(priv, offset);
386 
387 	val &= ~(clear);
388 	val |= set;
389 	gswip_mii_w(priv, val, offset);
390 }
391 
392 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
393 			       int port)
394 {
395 	/* There's no MII_CFG register for the CPU port */
396 	if (!dsa_is_cpu_port(priv->ds, port))
397 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
398 }
399 
400 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
401 				int port)
402 {
403 	switch (port) {
404 	case 0:
405 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
406 		break;
407 	case 1:
408 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
409 		break;
410 	case 5:
411 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
412 		break;
413 	}
414 }
415 
416 static int gswip_mdio_poll(struct gswip_priv *priv)
417 {
418 	int cnt = 100;
419 
420 	while (likely(cnt--)) {
421 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
422 
423 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
424 			return 0;
425 		usleep_range(20, 40);
426 	}
427 
428 	return -ETIMEDOUT;
429 }
430 
431 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
432 {
433 	struct gswip_priv *priv = bus->priv;
434 	int err;
435 
436 	err = gswip_mdio_poll(priv);
437 	if (err) {
438 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
439 		return err;
440 	}
441 
442 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
443 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
444 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
445 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
446 		GSWIP_MDIO_CTRL);
447 
448 	return 0;
449 }
450 
451 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
452 {
453 	struct gswip_priv *priv = bus->priv;
454 	int err;
455 
456 	err = gswip_mdio_poll(priv);
457 	if (err) {
458 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
459 		return err;
460 	}
461 
462 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
463 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
464 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
465 		GSWIP_MDIO_CTRL);
466 
467 	err = gswip_mdio_poll(priv);
468 	if (err) {
469 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
470 		return err;
471 	}
472 
473 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
474 }
475 
476 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
477 {
478 	struct dsa_switch *ds = priv->ds;
479 
480 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
481 	if (!ds->slave_mii_bus)
482 		return -ENOMEM;
483 
484 	ds->slave_mii_bus->priv = priv;
485 	ds->slave_mii_bus->read = gswip_mdio_rd;
486 	ds->slave_mii_bus->write = gswip_mdio_wr;
487 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
488 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
489 		 dev_name(priv->dev));
490 	ds->slave_mii_bus->parent = priv->dev;
491 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
492 
493 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
494 }
495 
496 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
497 				      struct gswip_pce_table_entry *tbl)
498 {
499 	int i;
500 	int err;
501 	u16 crtl;
502 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
503 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
504 
505 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
506 				     GSWIP_PCE_TBL_CTRL_BAS);
507 	if (err)
508 		return err;
509 
510 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
511 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
512 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
513 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
514 			  GSWIP_PCE_TBL_CTRL);
515 
516 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
517 				     GSWIP_PCE_TBL_CTRL_BAS);
518 	if (err)
519 		return err;
520 
521 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
522 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
523 
524 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
525 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
526 
527 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
528 
529 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
530 
531 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
532 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
533 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
534 
535 	return 0;
536 }
537 
538 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
539 				       struct gswip_pce_table_entry *tbl)
540 {
541 	int i;
542 	int err;
543 	u16 crtl;
544 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
545 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
546 
547 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
548 				     GSWIP_PCE_TBL_CTRL_BAS);
549 	if (err)
550 		return err;
551 
552 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
553 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
554 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
555 			  tbl->table | addr_mode,
556 			  GSWIP_PCE_TBL_CTRL);
557 
558 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
559 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
560 
561 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
562 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
563 
564 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
565 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
566 			  tbl->table | addr_mode,
567 			  GSWIP_PCE_TBL_CTRL);
568 
569 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
570 
571 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
572 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
573 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
574 	if (tbl->type)
575 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
576 	if (tbl->valid)
577 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
578 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
579 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
580 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
581 
582 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
583 				      GSWIP_PCE_TBL_CTRL_BAS);
584 }
585 
586 /* Add the LAN port into a bridge with the CPU port by
587  * default. This prevents automatic forwarding of
588  * packages between the LAN ports when no explicit
589  * bridge is configured.
590  */
591 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
592 {
593 	struct gswip_pce_table_entry vlan_active = {0,};
594 	struct gswip_pce_table_entry vlan_mapping = {0,};
595 	unsigned int cpu_port = priv->hw_info->cpu_port;
596 	unsigned int max_ports = priv->hw_info->max_ports;
597 	int err;
598 
599 	if (port >= max_ports) {
600 		dev_err(priv->dev, "single port for %i supported\n", port);
601 		return -EIO;
602 	}
603 
604 	vlan_active.index = port + 1;
605 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
606 	vlan_active.key[0] = 0; /* vid */
607 	vlan_active.val[0] = port + 1 /* fid */;
608 	vlan_active.valid = add;
609 	err = gswip_pce_table_entry_write(priv, &vlan_active);
610 	if (err) {
611 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
612 		return err;
613 	}
614 
615 	if (!add)
616 		return 0;
617 
618 	vlan_mapping.index = port + 1;
619 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
620 	vlan_mapping.val[0] = 0 /* vid */;
621 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
622 	vlan_mapping.val[2] = 0;
623 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
624 	if (err) {
625 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
626 		return err;
627 	}
628 
629 	return 0;
630 }
631 
632 static int gswip_port_enable(struct dsa_switch *ds, int port,
633 			     struct phy_device *phydev)
634 {
635 	struct gswip_priv *priv = ds->priv;
636 	int err;
637 
638 	if (!dsa_is_user_port(ds, port))
639 		return 0;
640 
641 	if (!dsa_is_cpu_port(ds, port)) {
642 		err = gswip_add_single_port_br(priv, port, true);
643 		if (err)
644 			return err;
645 	}
646 
647 	/* RMON Counter Enable for port */
648 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
649 
650 	/* enable port fetch/store dma & VLAN Modification */
651 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
652 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
653 			 GSWIP_FDMA_PCTRLp(port));
654 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
655 			  GSWIP_SDMA_PCTRLp(port));
656 
657 	if (!dsa_is_cpu_port(ds, port)) {
658 		u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
659 			      GSWIP_MDIO_PHY_SPEED_AUTO |
660 			      GSWIP_MDIO_PHY_FDUP_AUTO |
661 			      GSWIP_MDIO_PHY_FCONTX_AUTO |
662 			      GSWIP_MDIO_PHY_FCONRX_AUTO |
663 			      (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
664 
665 		gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
666 		/* Activate MDIO auto polling */
667 		gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
668 	}
669 
670 	return 0;
671 }
672 
673 static void gswip_port_disable(struct dsa_switch *ds, int port)
674 {
675 	struct gswip_priv *priv = ds->priv;
676 
677 	if (!dsa_is_user_port(ds, port))
678 		return;
679 
680 	if (!dsa_is_cpu_port(ds, port)) {
681 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
682 				GSWIP_MDIO_PHY_LINK_MASK,
683 				GSWIP_MDIO_PHYp(port));
684 		/* Deactivate MDIO auto polling */
685 		gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
686 	}
687 
688 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
689 			  GSWIP_FDMA_PCTRLp(port));
690 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
691 			  GSWIP_SDMA_PCTRLp(port));
692 }
693 
694 static int gswip_pce_load_microcode(struct gswip_priv *priv)
695 {
696 	int i;
697 	int err;
698 
699 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
700 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
701 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
702 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
703 
704 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
705 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
706 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
707 			       GSWIP_PCE_TBL_VAL(0));
708 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
709 			       GSWIP_PCE_TBL_VAL(1));
710 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
711 			       GSWIP_PCE_TBL_VAL(2));
712 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
713 			       GSWIP_PCE_TBL_VAL(3));
714 
715 		/* start the table access: */
716 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
717 				  GSWIP_PCE_TBL_CTRL);
718 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
719 					     GSWIP_PCE_TBL_CTRL_BAS);
720 		if (err)
721 			return err;
722 	}
723 
724 	/* tell the switch that the microcode is loaded */
725 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
726 			  GSWIP_PCE_GCTRL_0);
727 
728 	return 0;
729 }
730 
731 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
732 				     bool vlan_filtering,
733 				     struct netlink_ext_ack *extack)
734 {
735 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
736 	struct gswip_priv *priv = ds->priv;
737 
738 	/* Do not allow changing the VLAN filtering options while in bridge */
739 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
740 		NL_SET_ERR_MSG_MOD(extack,
741 				   "Dynamic toggling of vlan_filtering not supported");
742 		return -EIO;
743 	}
744 
745 	if (vlan_filtering) {
746 		/* Use port based VLAN tag */
747 		gswip_switch_mask(priv,
748 				  GSWIP_PCE_VCTRL_VSR,
749 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
750 				  GSWIP_PCE_VCTRL_VEMR,
751 				  GSWIP_PCE_VCTRL(port));
752 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
753 				  GSWIP_PCE_PCTRL_0p(port));
754 	} else {
755 		/* Use port based VLAN tag */
756 		gswip_switch_mask(priv,
757 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
758 				  GSWIP_PCE_VCTRL_VEMR,
759 				  GSWIP_PCE_VCTRL_VSR,
760 				  GSWIP_PCE_VCTRL(port));
761 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
762 				  GSWIP_PCE_PCTRL_0p(port));
763 	}
764 
765 	return 0;
766 }
767 
768 static int gswip_setup(struct dsa_switch *ds)
769 {
770 	struct gswip_priv *priv = ds->priv;
771 	unsigned int cpu_port = priv->hw_info->cpu_port;
772 	int i;
773 	int err;
774 
775 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
776 	usleep_range(5000, 10000);
777 	gswip_switch_w(priv, 0, GSWIP_SWRES);
778 
779 	/* disable port fetch/store dma on all ports */
780 	for (i = 0; i < priv->hw_info->max_ports; i++) {
781 		gswip_port_disable(ds, i);
782 		gswip_port_vlan_filtering(ds, i, false, NULL);
783 	}
784 
785 	/* enable Switch */
786 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
787 
788 	err = gswip_pce_load_microcode(priv);
789 	if (err) {
790 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
791 		return err;
792 	}
793 
794 	/* Default unknown Broadcast/Multicast/Unicast port maps */
795 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
796 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
797 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
798 
799 	/* disable PHY auto polling */
800 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
801 	/* Configure the MDIO Clock 2.5 MHz */
802 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
803 
804 	/* Disable the xMII link */
805 	for (i = 0; i < priv->hw_info->max_ports; i++)
806 		gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, i);
807 
808 	/* enable special tag insertion on cpu port */
809 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
810 			  GSWIP_FDMA_PCTRLp(cpu_port));
811 
812 	/* accept special tag in ingress direction */
813 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
814 			  GSWIP_PCE_PCTRL_0p(cpu_port));
815 
816 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
817 			  GSWIP_MAC_CTRL_2p(cpu_port));
818 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
819 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
820 			  GSWIP_BM_QUEUE_GCTRL);
821 
822 	/* VLAN aware Switching */
823 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
824 
825 	/* Flush MAC Table */
826 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
827 
828 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
829 				     GSWIP_PCE_GCTRL_0_MTFL);
830 	if (err) {
831 		dev_err(priv->dev, "MAC flushing didn't finish\n");
832 		return err;
833 	}
834 
835 	gswip_port_enable(ds, cpu_port, NULL);
836 
837 	ds->configure_vlan_while_not_filtering = false;
838 
839 	return 0;
840 }
841 
842 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
843 						    int port,
844 						    enum dsa_tag_protocol mp)
845 {
846 	return DSA_TAG_PROTO_GSWIP;
847 }
848 
849 static int gswip_vlan_active_create(struct gswip_priv *priv,
850 				    struct net_device *bridge,
851 				    int fid, u16 vid)
852 {
853 	struct gswip_pce_table_entry vlan_active = {0,};
854 	unsigned int max_ports = priv->hw_info->max_ports;
855 	int idx = -1;
856 	int err;
857 	int i;
858 
859 	/* Look for a free slot */
860 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
861 		if (!priv->vlans[i].bridge) {
862 			idx = i;
863 			break;
864 		}
865 	}
866 
867 	if (idx == -1)
868 		return -ENOSPC;
869 
870 	if (fid == -1)
871 		fid = idx;
872 
873 	vlan_active.index = idx;
874 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
875 	vlan_active.key[0] = vid;
876 	vlan_active.val[0] = fid;
877 	vlan_active.valid = true;
878 
879 	err = gswip_pce_table_entry_write(priv, &vlan_active);
880 	if (err) {
881 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
882 		return err;
883 	}
884 
885 	priv->vlans[idx].bridge = bridge;
886 	priv->vlans[idx].vid = vid;
887 	priv->vlans[idx].fid = fid;
888 
889 	return idx;
890 }
891 
892 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
893 {
894 	struct gswip_pce_table_entry vlan_active = {0,};
895 	int err;
896 
897 	vlan_active.index = idx;
898 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
899 	vlan_active.valid = false;
900 	err = gswip_pce_table_entry_write(priv, &vlan_active);
901 	if (err)
902 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
903 	priv->vlans[idx].bridge = NULL;
904 
905 	return err;
906 }
907 
908 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
909 				  struct net_device *bridge, int port)
910 {
911 	struct gswip_pce_table_entry vlan_mapping = {0,};
912 	unsigned int max_ports = priv->hw_info->max_ports;
913 	unsigned int cpu_port = priv->hw_info->cpu_port;
914 	bool active_vlan_created = false;
915 	int idx = -1;
916 	int i;
917 	int err;
918 
919 	/* Check if there is already a page for this bridge */
920 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
921 		if (priv->vlans[i].bridge == bridge) {
922 			idx = i;
923 			break;
924 		}
925 	}
926 
927 	/* If this bridge is not programmed yet, add a Active VLAN table
928 	 * entry in a free slot and prepare the VLAN mapping table entry.
929 	 */
930 	if (idx == -1) {
931 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
932 		if (idx < 0)
933 			return idx;
934 		active_vlan_created = true;
935 
936 		vlan_mapping.index = idx;
937 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
938 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
939 		vlan_mapping.val[0] = 0;
940 	} else {
941 		/* Read the existing VLAN mapping entry from the switch */
942 		vlan_mapping.index = idx;
943 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
944 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
945 		if (err) {
946 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
947 				err);
948 			return err;
949 		}
950 	}
951 
952 	/* Update the VLAN mapping entry and write it to the switch */
953 	vlan_mapping.val[1] |= BIT(cpu_port);
954 	vlan_mapping.val[1] |= BIT(port);
955 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
956 	if (err) {
957 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
958 		/* In case an Active VLAN was creaetd delete it again */
959 		if (active_vlan_created)
960 			gswip_vlan_active_remove(priv, idx);
961 		return err;
962 	}
963 
964 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
965 	return 0;
966 }
967 
968 static int gswip_vlan_add_aware(struct gswip_priv *priv,
969 				struct net_device *bridge, int port,
970 				u16 vid, bool untagged,
971 				bool pvid)
972 {
973 	struct gswip_pce_table_entry vlan_mapping = {0,};
974 	unsigned int max_ports = priv->hw_info->max_ports;
975 	unsigned int cpu_port = priv->hw_info->cpu_port;
976 	bool active_vlan_created = false;
977 	int idx = -1;
978 	int fid = -1;
979 	int i;
980 	int err;
981 
982 	/* Check if there is already a page for this bridge */
983 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
984 		if (priv->vlans[i].bridge == bridge) {
985 			if (fid != -1 && fid != priv->vlans[i].fid)
986 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
987 			fid = priv->vlans[i].fid;
988 			if (priv->vlans[i].vid == vid) {
989 				idx = i;
990 				break;
991 			}
992 		}
993 	}
994 
995 	/* If this bridge is not programmed yet, add a Active VLAN table
996 	 * entry in a free slot and prepare the VLAN mapping table entry.
997 	 */
998 	if (idx == -1) {
999 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1000 		if (idx < 0)
1001 			return idx;
1002 		active_vlan_created = true;
1003 
1004 		vlan_mapping.index = idx;
1005 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1006 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1007 		vlan_mapping.val[0] = vid;
1008 	} else {
1009 		/* Read the existing VLAN mapping entry from the switch */
1010 		vlan_mapping.index = idx;
1011 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1012 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1013 		if (err) {
1014 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1015 				err);
1016 			return err;
1017 		}
1018 	}
1019 
1020 	vlan_mapping.val[0] = vid;
1021 	/* Update the VLAN mapping entry and write it to the switch */
1022 	vlan_mapping.val[1] |= BIT(cpu_port);
1023 	vlan_mapping.val[2] |= BIT(cpu_port);
1024 	vlan_mapping.val[1] |= BIT(port);
1025 	if (untagged)
1026 		vlan_mapping.val[2] &= ~BIT(port);
1027 	else
1028 		vlan_mapping.val[2] |= BIT(port);
1029 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1030 	if (err) {
1031 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1032 		/* In case an Active VLAN was creaetd delete it again */
1033 		if (active_vlan_created)
1034 			gswip_vlan_active_remove(priv, idx);
1035 		return err;
1036 	}
1037 
1038 	if (pvid)
1039 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1040 
1041 	return 0;
1042 }
1043 
1044 static int gswip_vlan_remove(struct gswip_priv *priv,
1045 			     struct net_device *bridge, int port,
1046 			     u16 vid, bool pvid, bool vlan_aware)
1047 {
1048 	struct gswip_pce_table_entry vlan_mapping = {0,};
1049 	unsigned int max_ports = priv->hw_info->max_ports;
1050 	unsigned int cpu_port = priv->hw_info->cpu_port;
1051 	int idx = -1;
1052 	int i;
1053 	int err;
1054 
1055 	/* Check if there is already a page for this bridge */
1056 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1057 		if (priv->vlans[i].bridge == bridge &&
1058 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1059 			idx = i;
1060 			break;
1061 		}
1062 	}
1063 
1064 	if (idx == -1) {
1065 		dev_err(priv->dev, "bridge to leave does not exists\n");
1066 		return -ENOENT;
1067 	}
1068 
1069 	vlan_mapping.index = idx;
1070 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072 	if (err) {
1073 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1074 		return err;
1075 	}
1076 
1077 	vlan_mapping.val[1] &= ~BIT(port);
1078 	vlan_mapping.val[2] &= ~BIT(port);
1079 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1080 	if (err) {
1081 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1082 		return err;
1083 	}
1084 
1085 	/* In case all ports are removed from the bridge, remove the VLAN */
1086 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1087 		err = gswip_vlan_active_remove(priv, idx);
1088 		if (err) {
1089 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1090 				err);
1091 			return err;
1092 		}
1093 	}
1094 
1095 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1096 	if (pvid)
1097 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1098 
1099 	return 0;
1100 }
1101 
1102 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1103 				  struct net_device *bridge)
1104 {
1105 	struct gswip_priv *priv = ds->priv;
1106 	int err;
1107 
1108 	/* When the bridge uses VLAN filtering we have to configure VLAN
1109 	 * specific bridges. No bridge is configured here.
1110 	 */
1111 	if (!br_vlan_enabled(bridge)) {
1112 		err = gswip_vlan_add_unaware(priv, bridge, port);
1113 		if (err)
1114 			return err;
1115 		priv->port_vlan_filter &= ~BIT(port);
1116 	} else {
1117 		priv->port_vlan_filter |= BIT(port);
1118 	}
1119 	return gswip_add_single_port_br(priv, port, false);
1120 }
1121 
1122 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1123 				    struct net_device *bridge)
1124 {
1125 	struct gswip_priv *priv = ds->priv;
1126 
1127 	gswip_add_single_port_br(priv, port, true);
1128 
1129 	/* When the bridge uses VLAN filtering we have to configure VLAN
1130 	 * specific bridges. No bridge is configured here.
1131 	 */
1132 	if (!br_vlan_enabled(bridge))
1133 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1134 }
1135 
1136 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1137 				   const struct switchdev_obj_port_vlan *vlan,
1138 				   struct netlink_ext_ack *extack)
1139 {
1140 	struct gswip_priv *priv = ds->priv;
1141 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1142 	unsigned int max_ports = priv->hw_info->max_ports;
1143 	int pos = max_ports;
1144 	int i, idx = -1;
1145 
1146 	/* We only support VLAN filtering on bridges */
1147 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1148 		return -EOPNOTSUPP;
1149 
1150 	/* Check if there is already a page for this VLAN */
1151 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1152 		if (priv->vlans[i].bridge == bridge &&
1153 		    priv->vlans[i].vid == vlan->vid) {
1154 			idx = i;
1155 			break;
1156 		}
1157 	}
1158 
1159 	/* If this VLAN is not programmed yet, we have to reserve
1160 	 * one entry in the VLAN table. Make sure we start at the
1161 	 * next position round.
1162 	 */
1163 	if (idx == -1) {
1164 		/* Look for a free slot */
1165 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1166 			if (!priv->vlans[pos].bridge) {
1167 				idx = pos;
1168 				pos++;
1169 				break;
1170 			}
1171 		}
1172 
1173 		if (idx == -1) {
1174 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1175 			return -ENOSPC;
1176 		}
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1183 			       const struct switchdev_obj_port_vlan *vlan,
1184 			       struct netlink_ext_ack *extack)
1185 {
1186 	struct gswip_priv *priv = ds->priv;
1187 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1188 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1189 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1190 	int err;
1191 
1192 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1193 	if (err)
1194 		return err;
1195 
1196 	/* We have to receive all packets on the CPU port and should not
1197 	 * do any VLAN filtering here. This is also called with bridge
1198 	 * NULL and then we do not know for which bridge to configure
1199 	 * this.
1200 	 */
1201 	if (dsa_is_cpu_port(ds, port))
1202 		return 0;
1203 
1204 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1205 				    untagged, pvid);
1206 }
1207 
1208 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1209 			       const struct switchdev_obj_port_vlan *vlan)
1210 {
1211 	struct gswip_priv *priv = ds->priv;
1212 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1213 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1214 
1215 	/* We have to receive all packets on the CPU port and should not
1216 	 * do any VLAN filtering here. This is also called with bridge
1217 	 * NULL and then we do not know for which bridge to configure
1218 	 * this.
1219 	 */
1220 	if (dsa_is_cpu_port(ds, port))
1221 		return 0;
1222 
1223 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1224 }
1225 
1226 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1227 {
1228 	struct gswip_priv *priv = ds->priv;
1229 	struct gswip_pce_table_entry mac_bridge = {0,};
1230 	int i;
1231 	int err;
1232 
1233 	for (i = 0; i < 2048; i++) {
1234 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1235 		mac_bridge.index = i;
1236 
1237 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1238 		if (err) {
1239 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1240 				err);
1241 			return;
1242 		}
1243 
1244 		if (!mac_bridge.valid)
1245 			continue;
1246 
1247 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1248 			continue;
1249 
1250 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1251 			continue;
1252 
1253 		mac_bridge.valid = false;
1254 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1255 		if (err) {
1256 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1257 				err);
1258 			return;
1259 		}
1260 	}
1261 }
1262 
1263 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1264 {
1265 	struct gswip_priv *priv = ds->priv;
1266 	u32 stp_state;
1267 
1268 	switch (state) {
1269 	case BR_STATE_DISABLED:
1270 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1271 				  GSWIP_SDMA_PCTRLp(port));
1272 		return;
1273 	case BR_STATE_BLOCKING:
1274 	case BR_STATE_LISTENING:
1275 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1276 		break;
1277 	case BR_STATE_LEARNING:
1278 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1279 		break;
1280 	case BR_STATE_FORWARDING:
1281 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1282 		break;
1283 	default:
1284 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1285 		return;
1286 	}
1287 
1288 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1289 			  GSWIP_SDMA_PCTRLp(port));
1290 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1291 			  GSWIP_PCE_PCTRL_0p(port));
1292 }
1293 
1294 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1295 			  const unsigned char *addr, u16 vid, bool add)
1296 {
1297 	struct gswip_priv *priv = ds->priv;
1298 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1299 	struct gswip_pce_table_entry mac_bridge = {0,};
1300 	unsigned int cpu_port = priv->hw_info->cpu_port;
1301 	int fid = -1;
1302 	int i;
1303 	int err;
1304 
1305 	if (!bridge)
1306 		return -EINVAL;
1307 
1308 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1309 		if (priv->vlans[i].bridge == bridge) {
1310 			fid = priv->vlans[i].fid;
1311 			break;
1312 		}
1313 	}
1314 
1315 	if (fid == -1) {
1316 		dev_err(priv->dev, "Port not part of a bridge\n");
1317 		return -EINVAL;
1318 	}
1319 
1320 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1321 	mac_bridge.key_mode = true;
1322 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1323 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1324 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1325 	mac_bridge.key[3] = fid;
1326 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1327 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1328 	mac_bridge.valid = add;
1329 
1330 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1331 	if (err)
1332 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1333 
1334 	return err;
1335 }
1336 
1337 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1338 			      const unsigned char *addr, u16 vid)
1339 {
1340 	return gswip_port_fdb(ds, port, addr, vid, true);
1341 }
1342 
1343 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1344 			      const unsigned char *addr, u16 vid)
1345 {
1346 	return gswip_port_fdb(ds, port, addr, vid, false);
1347 }
1348 
1349 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1350 			       dsa_fdb_dump_cb_t *cb, void *data)
1351 {
1352 	struct gswip_priv *priv = ds->priv;
1353 	struct gswip_pce_table_entry mac_bridge = {0,};
1354 	unsigned char addr[6];
1355 	int i;
1356 	int err;
1357 
1358 	for (i = 0; i < 2048; i++) {
1359 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1360 		mac_bridge.index = i;
1361 
1362 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1363 		if (err) {
1364 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1365 				err);
1366 			return err;
1367 		}
1368 
1369 		if (!mac_bridge.valid)
1370 			continue;
1371 
1372 		addr[5] = mac_bridge.key[0] & 0xff;
1373 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1374 		addr[3] = mac_bridge.key[1] & 0xff;
1375 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1376 		addr[1] = mac_bridge.key[2] & 0xff;
1377 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1378 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1379 			if (mac_bridge.val[0] & BIT(port))
1380 				cb(addr, 0, true, data);
1381 		} else {
1382 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1383 				cb(addr, 0, false, data);
1384 		}
1385 	}
1386 	return 0;
1387 }
1388 
1389 static void gswip_phylink_set_capab(unsigned long *supported,
1390 				    struct phylink_link_state *state)
1391 {
1392 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1393 
1394 	/* Allow all the expected bits */
1395 	phylink_set(mask, Autoneg);
1396 	phylink_set_port_modes(mask);
1397 	phylink_set(mask, Pause);
1398 	phylink_set(mask, Asym_Pause);
1399 
1400 	/* With the exclusion of MII, Reverse MII and Reduced MII, we
1401 	 * support Gigabit, including Half duplex
1402 	 */
1403 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1404 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
1405 	    state->interface != PHY_INTERFACE_MODE_RMII) {
1406 		phylink_set(mask, 1000baseT_Full);
1407 		phylink_set(mask, 1000baseT_Half);
1408 	}
1409 
1410 	phylink_set(mask, 10baseT_Half);
1411 	phylink_set(mask, 10baseT_Full);
1412 	phylink_set(mask, 100baseT_Half);
1413 	phylink_set(mask, 100baseT_Full);
1414 
1415 	bitmap_and(supported, supported, mask,
1416 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1417 	bitmap_and(state->advertising, state->advertising, mask,
1418 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1419 }
1420 
1421 static void gswip_xrx200_phylink_validate(struct dsa_switch *ds, int port,
1422 					  unsigned long *supported,
1423 					  struct phylink_link_state *state)
1424 {
1425 	switch (port) {
1426 	case 0:
1427 	case 1:
1428 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1429 		    state->interface != PHY_INTERFACE_MODE_MII &&
1430 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1431 		    state->interface != PHY_INTERFACE_MODE_RMII)
1432 			goto unsupported;
1433 		break;
1434 	case 2:
1435 	case 3:
1436 	case 4:
1437 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1438 			goto unsupported;
1439 		break;
1440 	case 5:
1441 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1442 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1443 			goto unsupported;
1444 		break;
1445 	default:
1446 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1447 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1448 		return;
1449 	}
1450 
1451 	gswip_phylink_set_capab(supported, state);
1452 
1453 	return;
1454 
1455 unsupported:
1456 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1457 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1458 		phy_modes(state->interface), port);
1459 }
1460 
1461 static void gswip_xrx300_phylink_validate(struct dsa_switch *ds, int port,
1462 					  unsigned long *supported,
1463 					  struct phylink_link_state *state)
1464 {
1465 	switch (port) {
1466 	case 0:
1467 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1468 		    state->interface != PHY_INTERFACE_MODE_GMII &&
1469 		    state->interface != PHY_INTERFACE_MODE_RMII)
1470 			goto unsupported;
1471 		break;
1472 	case 1:
1473 	case 2:
1474 	case 3:
1475 	case 4:
1476 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1477 			goto unsupported;
1478 		break;
1479 	case 5:
1480 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1481 		    state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1482 		    state->interface != PHY_INTERFACE_MODE_RMII)
1483 			goto unsupported;
1484 		break;
1485 	default:
1486 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1487 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1488 		return;
1489 	}
1490 
1491 	gswip_phylink_set_capab(supported, state);
1492 
1493 	return;
1494 
1495 unsupported:
1496 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1497 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1498 		phy_modes(state->interface), port);
1499 }
1500 
1501 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1502 				     unsigned int mode,
1503 				     const struct phylink_link_state *state)
1504 {
1505 	struct gswip_priv *priv = ds->priv;
1506 	u32 miicfg = 0;
1507 
1508 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1509 
1510 	switch (state->interface) {
1511 	case PHY_INTERFACE_MODE_MII:
1512 	case PHY_INTERFACE_MODE_INTERNAL:
1513 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1514 		break;
1515 	case PHY_INTERFACE_MODE_REVMII:
1516 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1517 		break;
1518 	case PHY_INTERFACE_MODE_RMII:
1519 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1520 		break;
1521 	case PHY_INTERFACE_MODE_RGMII:
1522 	case PHY_INTERFACE_MODE_RGMII_ID:
1523 	case PHY_INTERFACE_MODE_RGMII_RXID:
1524 	case PHY_INTERFACE_MODE_RGMII_TXID:
1525 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1526 		break;
1527 	case PHY_INTERFACE_MODE_GMII:
1528 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1529 		break;
1530 	default:
1531 		dev_err(ds->dev,
1532 			"Unsupported interface: %d\n", state->interface);
1533 		return;
1534 	}
1535 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1536 
1537 	switch (state->interface) {
1538 	case PHY_INTERFACE_MODE_RGMII_ID:
1539 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1540 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1541 		break;
1542 	case PHY_INTERFACE_MODE_RGMII_RXID:
1543 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1544 		break;
1545 	case PHY_INTERFACE_MODE_RGMII_TXID:
1546 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1547 		break;
1548 	default:
1549 		break;
1550 	}
1551 }
1552 
1553 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1554 					unsigned int mode,
1555 					phy_interface_t interface)
1556 {
1557 	struct gswip_priv *priv = ds->priv;
1558 
1559 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1560 }
1561 
1562 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1563 				      unsigned int mode,
1564 				      phy_interface_t interface,
1565 				      struct phy_device *phydev,
1566 				      int speed, int duplex,
1567 				      bool tx_pause, bool rx_pause)
1568 {
1569 	struct gswip_priv *priv = ds->priv;
1570 
1571 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1572 }
1573 
1574 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1575 			      uint8_t *data)
1576 {
1577 	int i;
1578 
1579 	if (stringset != ETH_SS_STATS)
1580 		return;
1581 
1582 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1583 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1584 			ETH_GSTRING_LEN);
1585 }
1586 
1587 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1588 				    u32 index)
1589 {
1590 	u32 result;
1591 	int err;
1592 
1593 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1594 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1595 				GSWIP_BM_RAM_CTRL_OPMOD,
1596 			      table | GSWIP_BM_RAM_CTRL_BAS,
1597 			      GSWIP_BM_RAM_CTRL);
1598 
1599 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1600 				     GSWIP_BM_RAM_CTRL_BAS);
1601 	if (err) {
1602 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1603 			table, index);
1604 		return 0;
1605 	}
1606 
1607 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1608 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1609 
1610 	return result;
1611 }
1612 
1613 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1614 				    uint64_t *data)
1615 {
1616 	struct gswip_priv *priv = ds->priv;
1617 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1618 	int i;
1619 	u64 high;
1620 
1621 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1622 		rmon_cnt = &gswip_rmon_cnt[i];
1623 
1624 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1625 						   rmon_cnt->offset);
1626 		if (rmon_cnt->size == 2) {
1627 			high = gswip_bcm_ram_entry_read(priv, port,
1628 							rmon_cnt->offset + 1);
1629 			data[i] |= high << 32;
1630 		}
1631 	}
1632 }
1633 
1634 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1635 {
1636 	if (sset != ETH_SS_STATS)
1637 		return 0;
1638 
1639 	return ARRAY_SIZE(gswip_rmon_cnt);
1640 }
1641 
1642 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1643 	.get_tag_protocol	= gswip_get_tag_protocol,
1644 	.setup			= gswip_setup,
1645 	.port_enable		= gswip_port_enable,
1646 	.port_disable		= gswip_port_disable,
1647 	.port_bridge_join	= gswip_port_bridge_join,
1648 	.port_bridge_leave	= gswip_port_bridge_leave,
1649 	.port_fast_age		= gswip_port_fast_age,
1650 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1651 	.port_vlan_add		= gswip_port_vlan_add,
1652 	.port_vlan_del		= gswip_port_vlan_del,
1653 	.port_stp_state_set	= gswip_port_stp_state_set,
1654 	.port_fdb_add		= gswip_port_fdb_add,
1655 	.port_fdb_del		= gswip_port_fdb_del,
1656 	.port_fdb_dump		= gswip_port_fdb_dump,
1657 	.phylink_validate	= gswip_xrx200_phylink_validate,
1658 	.phylink_mac_config	= gswip_phylink_mac_config,
1659 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1660 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1661 	.get_strings		= gswip_get_strings,
1662 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1663 	.get_sset_count		= gswip_get_sset_count,
1664 };
1665 
1666 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1667 	.get_tag_protocol	= gswip_get_tag_protocol,
1668 	.setup			= gswip_setup,
1669 	.port_enable		= gswip_port_enable,
1670 	.port_disable		= gswip_port_disable,
1671 	.port_bridge_join	= gswip_port_bridge_join,
1672 	.port_bridge_leave	= gswip_port_bridge_leave,
1673 	.port_fast_age		= gswip_port_fast_age,
1674 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1675 	.port_vlan_add		= gswip_port_vlan_add,
1676 	.port_vlan_del		= gswip_port_vlan_del,
1677 	.port_stp_state_set	= gswip_port_stp_state_set,
1678 	.port_fdb_add		= gswip_port_fdb_add,
1679 	.port_fdb_del		= gswip_port_fdb_del,
1680 	.port_fdb_dump		= gswip_port_fdb_dump,
1681 	.phylink_validate	= gswip_xrx300_phylink_validate,
1682 	.phylink_mac_config	= gswip_phylink_mac_config,
1683 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1684 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1685 	.get_strings		= gswip_get_strings,
1686 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1687 	.get_sset_count		= gswip_get_sset_count,
1688 };
1689 
1690 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1691 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1692 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1693 };
1694 
1695 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1696 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1697 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1698 };
1699 
1700 static const struct xway_gphy_match_data xrx300_gphy_data = {
1701 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1702 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1703 };
1704 
1705 static const struct of_device_id xway_gphy_match[] = {
1706 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1707 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1708 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1709 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1710 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1711 	{},
1712 };
1713 
1714 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1715 {
1716 	struct device *dev = priv->dev;
1717 	const struct firmware *fw;
1718 	void *fw_addr;
1719 	dma_addr_t dma_addr;
1720 	dma_addr_t dev_addr;
1721 	size_t size;
1722 	int ret;
1723 
1724 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1725 	if (ret)
1726 		return ret;
1727 
1728 	reset_control_assert(gphy_fw->reset);
1729 
1730 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1731 	if (ret) {
1732 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1733 			gphy_fw->fw_name, ret);
1734 		return ret;
1735 	}
1736 
1737 	/* GPHY cores need the firmware code in a persistent and contiguous
1738 	 * memory area with a 16 kB boundary aligned start address.
1739 	 */
1740 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1741 
1742 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1743 	if (fw_addr) {
1744 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1745 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1746 		memcpy(fw_addr, fw->data, fw->size);
1747 	} else {
1748 		dev_err(dev, "failed to alloc firmware memory\n");
1749 		release_firmware(fw);
1750 		return -ENOMEM;
1751 	}
1752 
1753 	release_firmware(fw);
1754 
1755 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1756 	if (ret)
1757 		return ret;
1758 
1759 	reset_control_deassert(gphy_fw->reset);
1760 
1761 	return ret;
1762 }
1763 
1764 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1765 			       struct gswip_gphy_fw *gphy_fw,
1766 			       struct device_node *gphy_fw_np, int i)
1767 {
1768 	struct device *dev = priv->dev;
1769 	u32 gphy_mode;
1770 	int ret;
1771 	char gphyname[10];
1772 
1773 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1774 
1775 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1776 	if (IS_ERR(gphy_fw->clk_gate)) {
1777 		dev_err(dev, "Failed to lookup gate clock\n");
1778 		return PTR_ERR(gphy_fw->clk_gate);
1779 	}
1780 
1781 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1782 	if (ret)
1783 		return ret;
1784 
1785 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1786 	/* Default to GE mode */
1787 	if (ret)
1788 		gphy_mode = GPHY_MODE_GE;
1789 
1790 	switch (gphy_mode) {
1791 	case GPHY_MODE_FE:
1792 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1793 		break;
1794 	case GPHY_MODE_GE:
1795 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1796 		break;
1797 	default:
1798 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1799 		return -EINVAL;
1800 	}
1801 
1802 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1803 	if (IS_ERR(gphy_fw->reset)) {
1804 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1805 			dev_err(dev, "Failed to lookup gphy reset\n");
1806 		return PTR_ERR(gphy_fw->reset);
1807 	}
1808 
1809 	return gswip_gphy_fw_load(priv, gphy_fw);
1810 }
1811 
1812 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1813 				 struct gswip_gphy_fw *gphy_fw)
1814 {
1815 	int ret;
1816 
1817 	/* check if the device was fully probed */
1818 	if (!gphy_fw->fw_name)
1819 		return;
1820 
1821 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1822 	if (ret)
1823 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1824 
1825 	clk_disable_unprepare(gphy_fw->clk_gate);
1826 
1827 	reset_control_put(gphy_fw->reset);
1828 }
1829 
1830 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1831 			      struct device_node *gphy_fw_list_np, u32 version)
1832 {
1833 	struct device *dev = priv->dev;
1834 	struct device_node *gphy_fw_np;
1835 	const struct of_device_id *match;
1836 	int err;
1837 	int i = 0;
1838 
1839 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1840 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1841 	 * needs a different GPHY firmware.
1842 	 */
1843 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1844 		switch (version) {
1845 		case GSWIP_VERSION_2_0:
1846 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1847 			break;
1848 		case GSWIP_VERSION_2_1:
1849 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1850 			break;
1851 		default:
1852 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1853 			return -ENOENT;
1854 		}
1855 	}
1856 
1857 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1858 	if (match && match->data)
1859 		priv->gphy_fw_name_cfg = match->data;
1860 
1861 	if (!priv->gphy_fw_name_cfg) {
1862 		dev_err(dev, "GPHY compatible type not supported");
1863 		return -ENOENT;
1864 	}
1865 
1866 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1867 	if (!priv->num_gphy_fw)
1868 		return -ENOENT;
1869 
1870 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1871 							   "lantiq,rcu");
1872 	if (IS_ERR(priv->rcu_regmap))
1873 		return PTR_ERR(priv->rcu_regmap);
1874 
1875 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1876 					   sizeof(*priv->gphy_fw),
1877 					   GFP_KERNEL | __GFP_ZERO);
1878 	if (!priv->gphy_fw)
1879 		return -ENOMEM;
1880 
1881 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1882 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1883 					  gphy_fw_np, i);
1884 		if (err)
1885 			goto remove_gphy;
1886 		i++;
1887 	}
1888 
1889 	/* The standalone PHY11G requires 300ms to be fully
1890 	 * initialized and ready for any MDIO communication after being
1891 	 * taken out of reset. For the SoC-internal GPHY variant there
1892 	 * is no (known) documentation for the minimum time after a
1893 	 * reset. Use the same value as for the standalone variant as
1894 	 * some users have reported internal PHYs not being detected
1895 	 * without any delay.
1896 	 */
1897 	msleep(300);
1898 
1899 	return 0;
1900 
1901 remove_gphy:
1902 	for (i = 0; i < priv->num_gphy_fw; i++)
1903 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1904 	return err;
1905 }
1906 
1907 static int gswip_probe(struct platform_device *pdev)
1908 {
1909 	struct gswip_priv *priv;
1910 	struct device_node *np, *mdio_np, *gphy_fw_np;
1911 	struct device *dev = &pdev->dev;
1912 	int err;
1913 	int i;
1914 	u32 version;
1915 
1916 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1917 	if (!priv)
1918 		return -ENOMEM;
1919 
1920 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1921 	if (IS_ERR(priv->gswip))
1922 		return PTR_ERR(priv->gswip);
1923 
1924 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1925 	if (IS_ERR(priv->mdio))
1926 		return PTR_ERR(priv->mdio);
1927 
1928 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1929 	if (IS_ERR(priv->mii))
1930 		return PTR_ERR(priv->mii);
1931 
1932 	priv->hw_info = of_device_get_match_data(dev);
1933 	if (!priv->hw_info)
1934 		return -EINVAL;
1935 
1936 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1937 	if (!priv->ds)
1938 		return -ENOMEM;
1939 
1940 	priv->ds->dev = dev;
1941 	priv->ds->num_ports = priv->hw_info->max_ports;
1942 	priv->ds->priv = priv;
1943 	priv->ds->ops = priv->hw_info->ops;
1944 	priv->dev = dev;
1945 	version = gswip_switch_r(priv, GSWIP_VERSION);
1946 
1947 	np = dev->of_node;
1948 	switch (version) {
1949 	case GSWIP_VERSION_2_0:
1950 	case GSWIP_VERSION_2_1:
1951 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
1952 			return -EINVAL;
1953 		break;
1954 	case GSWIP_VERSION_2_2:
1955 	case GSWIP_VERSION_2_2_ETC:
1956 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
1957 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
1958 			return -EINVAL;
1959 		break;
1960 	default:
1961 		dev_err(dev, "unknown GSWIP version: 0x%x", version);
1962 		return -ENOENT;
1963 	}
1964 
1965 	/* bring up the mdio bus */
1966 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1967 	if (gphy_fw_np) {
1968 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1969 		of_node_put(gphy_fw_np);
1970 		if (err) {
1971 			dev_err(dev, "gphy fw probe failed\n");
1972 			return err;
1973 		}
1974 	}
1975 
1976 	/* bring up the mdio bus */
1977 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1978 	if (mdio_np) {
1979 		err = gswip_mdio(priv, mdio_np);
1980 		if (err) {
1981 			dev_err(dev, "mdio probe failed\n");
1982 			goto put_mdio_node;
1983 		}
1984 	}
1985 
1986 	err = dsa_register_switch(priv->ds);
1987 	if (err) {
1988 		dev_err(dev, "dsa switch register failed: %i\n", err);
1989 		goto mdio_bus;
1990 	}
1991 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1992 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1993 			priv->hw_info->cpu_port);
1994 		err = -EINVAL;
1995 		goto disable_switch;
1996 	}
1997 
1998 	platform_set_drvdata(pdev, priv);
1999 
2000 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2001 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2002 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2003 	return 0;
2004 
2005 disable_switch:
2006 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2007 	dsa_unregister_switch(priv->ds);
2008 mdio_bus:
2009 	if (mdio_np)
2010 		mdiobus_unregister(priv->ds->slave_mii_bus);
2011 put_mdio_node:
2012 	of_node_put(mdio_np);
2013 	for (i = 0; i < priv->num_gphy_fw; i++)
2014 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2015 	return err;
2016 }
2017 
2018 static int gswip_remove(struct platform_device *pdev)
2019 {
2020 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2021 	int i;
2022 
2023 	/* disable the switch */
2024 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2025 
2026 	dsa_unregister_switch(priv->ds);
2027 
2028 	if (priv->ds->slave_mii_bus) {
2029 		mdiobus_unregister(priv->ds->slave_mii_bus);
2030 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2031 	}
2032 
2033 	for (i = 0; i < priv->num_gphy_fw; i++)
2034 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2035 
2036 	return 0;
2037 }
2038 
2039 static const struct gswip_hw_info gswip_xrx200 = {
2040 	.max_ports = 7,
2041 	.cpu_port = 6,
2042 	.ops = &gswip_xrx200_switch_ops,
2043 };
2044 
2045 static const struct gswip_hw_info gswip_xrx300 = {
2046 	.max_ports = 7,
2047 	.cpu_port = 6,
2048 	.ops = &gswip_xrx300_switch_ops,
2049 };
2050 
2051 static const struct of_device_id gswip_of_match[] = {
2052 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2053 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2054 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2055 	{},
2056 };
2057 MODULE_DEVICE_TABLE(of, gswip_of_match);
2058 
2059 static struct platform_driver gswip_driver = {
2060 	.probe = gswip_probe,
2061 	.remove = gswip_remove,
2062 	.driver = {
2063 		.name = "gswip",
2064 		.of_match_table = gswip_of_match,
2065 	},
2066 };
2067 
2068 module_platform_driver(gswip_driver);
2069 
2070 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2071 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2072 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2073 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2074 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2075 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2076 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2077 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2078 MODULE_LICENSE("GPL v2");
2079