xref: /openbmc/linux/drivers/net/dsa/lantiq_gswip.c (revision 59b4412f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/etherdevice.h>
30 #include <linux/firmware.h>
31 #include <linux/if_bridge.h>
32 #include <linux/if_vlan.h>
33 #include <linux/iopoll.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/module.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 #include <linux/phy.h>
40 #include <linux/phylink.h>
41 #include <linux/platform_device.h>
42 #include <linux/regmap.h>
43 #include <linux/reset.h>
44 #include <net/dsa.h>
45 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
46 
47 #include "lantiq_pce.h"
48 
49 /* GSWIP MDIO Registers */
50 #define GSWIP_MDIO_GLOB			0x00
51 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
52 #define GSWIP_MDIO_CTRL			0x08
53 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
54 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
55 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
56 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
57 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
58 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
59 #define GSWIP_MDIO_READ			0x09
60 #define GSWIP_MDIO_WRITE		0x0A
61 #define GSWIP_MDIO_MDC_CFG0		0x0B
62 #define GSWIP_MDIO_MDC_CFG1		0x0C
63 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
64 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
65 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
66 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
67 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
68 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
69 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
71 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
72 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
73 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
74 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
75 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
76 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
77 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
78 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
79 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
80 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
81 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
82 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
83 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
84 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
85 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
86 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
87 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
88 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
89 					 GSWIP_MDIO_PHY_LINK_MASK | \
90 					 GSWIP_MDIO_PHY_SPEED_MASK | \
91 					 GSWIP_MDIO_PHY_FDUP_MASK)
92 
93 /* GSWIP MII Registers */
94 #define GSWIP_MII_CFG0			0x00
95 #define GSWIP_MII_CFG1			0x02
96 #define GSWIP_MII_CFG5			0x04
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
99 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
100 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
101 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
102 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
103 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
104 #define  GSWIP_MII_CFG_MODE_MASK	0xf
105 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
106 #define  GSWIP_MII_CFG_RATE_M25	0x10
107 #define  GSWIP_MII_CFG_RATE_M125	0x20
108 #define  GSWIP_MII_CFG_RATE_M50	0x30
109 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
110 #define  GSWIP_MII_CFG_RATE_MASK	0x70
111 #define GSWIP_MII_PCDU0			0x01
112 #define GSWIP_MII_PCDU1			0x03
113 #define GSWIP_MII_PCDU5			0x05
114 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
115 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
116 
117 /* GSWIP Core Registers */
118 #define GSWIP_SWRES			0x000
119 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
120 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
121 #define GSWIP_VERSION			0x013
122 #define  GSWIP_VERSION_REV_SHIFT	0
123 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
124 #define  GSWIP_VERSION_MOD_SHIFT	8
125 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
126 #define   GSWIP_VERSION_2_0		0x100
127 #define   GSWIP_VERSION_2_1		0x021
128 #define   GSWIP_VERSION_2_2		0x122
129 #define   GSWIP_VERSION_2_2_ETC		0x022
130 
131 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
132 #define GSWIP_BM_RAM_ADDR		0x044
133 #define GSWIP_BM_RAM_CTRL		0x045
134 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
135 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
136 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
137 #define GSWIP_BM_QUEUE_GCTRL		0x04A
138 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
139 /* buffer management Port Configuration Register */
140 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
141 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
142 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
143 /* buffer management Port Control Register */
144 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
145 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
146 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
147 
148 /* PCE */
149 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
150 #define GSWIP_PCE_TBL_MASK		0x448
151 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
152 #define GSWIP_PCE_TBL_ADDR		0x44E
153 #define GSWIP_PCE_TBL_CTRL		0x44F
154 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
155 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
156 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
157 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
158 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
164 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
165 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
166 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
167 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
168 #define GSWIP_PCE_GCTRL_0		0x456
169 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
170 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
171 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
172 #define GSWIP_PCE_GCTRL_1		0x457
173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
174 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
175 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
176 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
177 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
178 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
179 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
180 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
181 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
185 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
186 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
187 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
188 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
189 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
190 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
191 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
192 
193 #define GSWIP_MAC_FLEN			0x8C5
194 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
195 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
196 
197 /* Ethernet Switch Fetch DMA Port Control Register */
198 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
199 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
200 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
201 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
202 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
203 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
207 
208 /* Ethernet Switch Store DMA Port Control Register */
209 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
210 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
211 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
212 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(1)	/* Pause Frame Forwarding */
213 
214 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
215 #define GSWIP_TABLE_VLAN_MAPPING	0x02
216 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
217 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
218 
219 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
220 
221 struct gswip_hw_info {
222 	int max_ports;
223 	int cpu_port;
224 };
225 
226 struct xway_gphy_match_data {
227 	char *fe_firmware_name;
228 	char *ge_firmware_name;
229 };
230 
231 struct gswip_gphy_fw {
232 	struct clk *clk_gate;
233 	struct reset_control *reset;
234 	u32 fw_addr_offset;
235 	char *fw_name;
236 };
237 
238 struct gswip_vlan {
239 	struct net_device *bridge;
240 	u16 vid;
241 	u8 fid;
242 };
243 
244 struct gswip_priv {
245 	__iomem void *gswip;
246 	__iomem void *mdio;
247 	__iomem void *mii;
248 	const struct gswip_hw_info *hw_info;
249 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
250 	struct dsa_switch *ds;
251 	struct device *dev;
252 	struct regmap *rcu_regmap;
253 	struct gswip_vlan vlans[64];
254 	int num_gphy_fw;
255 	struct gswip_gphy_fw *gphy_fw;
256 	u32 port_vlan_filter;
257 };
258 
259 struct gswip_pce_table_entry {
260 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
261 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
262 	u16 key[8];
263 	u16 val[5];
264 	u16 mask;
265 	u8 gmap;
266 	bool type;
267 	bool valid;
268 	bool key_mode;
269 };
270 
271 struct gswip_rmon_cnt_desc {
272 	unsigned int size;
273 	unsigned int offset;
274 	const char *name;
275 };
276 
277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
278 
279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
280 	/** Receive Packet Count (only packets that are accepted and not discarded). */
281 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
282 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
283 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
284 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
285 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
286 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
287 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
288 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
289 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
290 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
291 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
292 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
293 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
294 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
295 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
296 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
297 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
298 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
299 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
300 	MIB_DESC(2, 0x24, "RxGoodBytes"),
301 	MIB_DESC(2, 0x26, "RxBadBytes"),
302 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
303 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
304 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
305 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
306 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
307 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
308 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
309 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
310 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
311 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
312 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
313 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
314 	MIB_DESC(1, 0x09, "TxMultCollCount"),
315 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
316 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
317 	MIB_DESC(1, 0x0D, "TxPauseCount"),
318 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
319 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
320 };
321 
322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
323 {
324 	return __raw_readl(priv->gswip + (offset * 4));
325 }
326 
327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
328 {
329 	__raw_writel(val, priv->gswip + (offset * 4));
330 }
331 
332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
333 			      u32 offset)
334 {
335 	u32 val = gswip_switch_r(priv, offset);
336 
337 	val &= ~(clear);
338 	val |= set;
339 	gswip_switch_w(priv, val, offset);
340 }
341 
342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
343 				  u32 cleared)
344 {
345 	u32 val;
346 
347 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
348 				  (val & cleared) == 0, 20, 50000);
349 }
350 
351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
352 {
353 	return __raw_readl(priv->mdio + (offset * 4));
354 }
355 
356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
357 {
358 	__raw_writel(val, priv->mdio + (offset * 4));
359 }
360 
361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
362 			    u32 offset)
363 {
364 	u32 val = gswip_mdio_r(priv, offset);
365 
366 	val &= ~(clear);
367 	val |= set;
368 	gswip_mdio_w(priv, val, offset);
369 }
370 
371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
372 {
373 	return __raw_readl(priv->mii + (offset * 4));
374 }
375 
376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
377 {
378 	__raw_writel(val, priv->mii + (offset * 4));
379 }
380 
381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
382 			   u32 offset)
383 {
384 	u32 val = gswip_mii_r(priv, offset);
385 
386 	val &= ~(clear);
387 	val |= set;
388 	gswip_mii_w(priv, val, offset);
389 }
390 
391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
392 			       int port)
393 {
394 	switch (port) {
395 	case 0:
396 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
397 		break;
398 	case 1:
399 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
400 		break;
401 	case 5:
402 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
403 		break;
404 	}
405 }
406 
407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
408 				int port)
409 {
410 	switch (port) {
411 	case 0:
412 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
413 		break;
414 	case 1:
415 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
416 		break;
417 	case 5:
418 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
419 		break;
420 	}
421 }
422 
423 static int gswip_mdio_poll(struct gswip_priv *priv)
424 {
425 	int cnt = 100;
426 
427 	while (likely(cnt--)) {
428 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
429 
430 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
431 			return 0;
432 		usleep_range(20, 40);
433 	}
434 
435 	return -ETIMEDOUT;
436 }
437 
438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
439 {
440 	struct gswip_priv *priv = bus->priv;
441 	int err;
442 
443 	err = gswip_mdio_poll(priv);
444 	if (err) {
445 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
446 		return err;
447 	}
448 
449 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
450 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
451 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
452 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
453 		GSWIP_MDIO_CTRL);
454 
455 	return 0;
456 }
457 
458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
459 {
460 	struct gswip_priv *priv = bus->priv;
461 	int err;
462 
463 	err = gswip_mdio_poll(priv);
464 	if (err) {
465 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
466 		return err;
467 	}
468 
469 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
470 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
471 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
472 		GSWIP_MDIO_CTRL);
473 
474 	err = gswip_mdio_poll(priv);
475 	if (err) {
476 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
477 		return err;
478 	}
479 
480 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
481 }
482 
483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
484 {
485 	struct dsa_switch *ds = priv->ds;
486 
487 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
488 	if (!ds->slave_mii_bus)
489 		return -ENOMEM;
490 
491 	ds->slave_mii_bus->priv = priv;
492 	ds->slave_mii_bus->read = gswip_mdio_rd;
493 	ds->slave_mii_bus->write = gswip_mdio_wr;
494 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
495 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
496 		 dev_name(priv->dev));
497 	ds->slave_mii_bus->parent = priv->dev;
498 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
499 
500 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
501 }
502 
503 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
504 				      struct gswip_pce_table_entry *tbl)
505 {
506 	int i;
507 	int err;
508 	u16 crtl;
509 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
510 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
511 
512 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
513 				     GSWIP_PCE_TBL_CTRL_BAS);
514 	if (err)
515 		return err;
516 
517 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
518 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
519 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
520 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
521 			  GSWIP_PCE_TBL_CTRL);
522 
523 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
524 				     GSWIP_PCE_TBL_CTRL_BAS);
525 	if (err)
526 		return err;
527 
528 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
529 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
530 
531 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
532 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
533 
534 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
535 
536 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
537 
538 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
539 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
540 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
541 
542 	return 0;
543 }
544 
545 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
546 				       struct gswip_pce_table_entry *tbl)
547 {
548 	int i;
549 	int err;
550 	u16 crtl;
551 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
552 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
553 
554 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
555 				     GSWIP_PCE_TBL_CTRL_BAS);
556 	if (err)
557 		return err;
558 
559 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
560 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
561 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
562 			  tbl->table | addr_mode,
563 			  GSWIP_PCE_TBL_CTRL);
564 
565 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
566 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
567 
568 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
569 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
570 
571 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
572 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
573 			  tbl->table | addr_mode,
574 			  GSWIP_PCE_TBL_CTRL);
575 
576 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
577 
578 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
579 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
580 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
581 	if (tbl->type)
582 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
583 	if (tbl->valid)
584 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
585 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
586 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
587 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
588 
589 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
590 				      GSWIP_PCE_TBL_CTRL_BAS);
591 }
592 
593 /* Add the LAN port into a bridge with the CPU port by
594  * default. This prevents automatic forwarding of
595  * packages between the LAN ports when no explicit
596  * bridge is configured.
597  */
598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
599 {
600 	struct gswip_pce_table_entry vlan_active = {0,};
601 	struct gswip_pce_table_entry vlan_mapping = {0,};
602 	unsigned int cpu_port = priv->hw_info->cpu_port;
603 	unsigned int max_ports = priv->hw_info->max_ports;
604 	int err;
605 
606 	if (port >= max_ports) {
607 		dev_err(priv->dev, "single port for %i supported\n", port);
608 		return -EIO;
609 	}
610 
611 	vlan_active.index = port + 1;
612 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
613 	vlan_active.key[0] = 0; /* vid */
614 	vlan_active.val[0] = port + 1 /* fid */;
615 	vlan_active.valid = add;
616 	err = gswip_pce_table_entry_write(priv, &vlan_active);
617 	if (err) {
618 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
619 		return err;
620 	}
621 
622 	if (!add)
623 		return 0;
624 
625 	vlan_mapping.index = port + 1;
626 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
627 	vlan_mapping.val[0] = 0 /* vid */;
628 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
629 	vlan_mapping.val[2] = 0;
630 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
631 	if (err) {
632 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
633 		return err;
634 	}
635 
636 	return 0;
637 }
638 
639 static int gswip_port_enable(struct dsa_switch *ds, int port,
640 			     struct phy_device *phydev)
641 {
642 	struct gswip_priv *priv = ds->priv;
643 	int err;
644 
645 	if (!dsa_is_user_port(ds, port))
646 		return 0;
647 
648 	if (!dsa_is_cpu_port(ds, port)) {
649 		err = gswip_add_single_port_br(priv, port, true);
650 		if (err)
651 			return err;
652 	}
653 
654 	/* RMON Counter Enable for port */
655 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
656 
657 	/* enable port fetch/store dma & VLAN Modification */
658 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
659 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
660 			 GSWIP_FDMA_PCTRLp(port));
661 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
662 			  GSWIP_SDMA_PCTRLp(port));
663 
664 	if (!dsa_is_cpu_port(ds, port)) {
665 		u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
666 			      GSWIP_MDIO_PHY_SPEED_AUTO |
667 			      GSWIP_MDIO_PHY_FDUP_AUTO |
668 			      GSWIP_MDIO_PHY_FCONTX_AUTO |
669 			      GSWIP_MDIO_PHY_FCONRX_AUTO |
670 			      (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
671 
672 		gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
673 		/* Activate MDIO auto polling */
674 		gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
675 	}
676 
677 	return 0;
678 }
679 
680 static void gswip_port_disable(struct dsa_switch *ds, int port)
681 {
682 	struct gswip_priv *priv = ds->priv;
683 
684 	if (!dsa_is_user_port(ds, port))
685 		return;
686 
687 	if (!dsa_is_cpu_port(ds, port)) {
688 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
689 				GSWIP_MDIO_PHY_LINK_MASK,
690 				GSWIP_MDIO_PHYp(port));
691 		/* Deactivate MDIO auto polling */
692 		gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
693 	}
694 
695 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
696 			  GSWIP_FDMA_PCTRLp(port));
697 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
698 			  GSWIP_SDMA_PCTRLp(port));
699 }
700 
701 static int gswip_pce_load_microcode(struct gswip_priv *priv)
702 {
703 	int i;
704 	int err;
705 
706 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
707 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
708 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
709 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
710 
711 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
712 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
713 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
714 			       GSWIP_PCE_TBL_VAL(0));
715 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
716 			       GSWIP_PCE_TBL_VAL(1));
717 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
718 			       GSWIP_PCE_TBL_VAL(2));
719 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
720 			       GSWIP_PCE_TBL_VAL(3));
721 
722 		/* start the table access: */
723 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
724 				  GSWIP_PCE_TBL_CTRL);
725 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
726 					     GSWIP_PCE_TBL_CTRL_BAS);
727 		if (err)
728 			return err;
729 	}
730 
731 	/* tell the switch that the microcode is loaded */
732 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
733 			  GSWIP_PCE_GCTRL_0);
734 
735 	return 0;
736 }
737 
738 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
739 				     bool vlan_filtering)
740 {
741 	struct gswip_priv *priv = ds->priv;
742 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
743 
744 	/* Do not allow changing the VLAN filtering options while in bridge */
745 	if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
746 		return -EIO;
747 
748 	if (vlan_filtering) {
749 		/* Use port based VLAN tag */
750 		gswip_switch_mask(priv,
751 				  GSWIP_PCE_VCTRL_VSR,
752 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
753 				  GSWIP_PCE_VCTRL_VEMR,
754 				  GSWIP_PCE_VCTRL(port));
755 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
756 				  GSWIP_PCE_PCTRL_0p(port));
757 	} else {
758 		/* Use port based VLAN tag */
759 		gswip_switch_mask(priv,
760 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
761 				  GSWIP_PCE_VCTRL_VEMR,
762 				  GSWIP_PCE_VCTRL_VSR,
763 				  GSWIP_PCE_VCTRL(port));
764 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
765 				  GSWIP_PCE_PCTRL_0p(port));
766 	}
767 
768 	return 0;
769 }
770 
771 static int gswip_setup(struct dsa_switch *ds)
772 {
773 	struct gswip_priv *priv = ds->priv;
774 	unsigned int cpu_port = priv->hw_info->cpu_port;
775 	int i;
776 	int err;
777 
778 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
779 	usleep_range(5000, 10000);
780 	gswip_switch_w(priv, 0, GSWIP_SWRES);
781 
782 	/* disable port fetch/store dma on all ports */
783 	for (i = 0; i < priv->hw_info->max_ports; i++) {
784 		gswip_port_disable(ds, i);
785 		gswip_port_vlan_filtering(ds, i, false);
786 	}
787 
788 	/* enable Switch */
789 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
790 
791 	err = gswip_pce_load_microcode(priv);
792 	if (err) {
793 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
794 		return err;
795 	}
796 
797 	/* Default unknown Broadcast/Multicast/Unicast port maps */
798 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
799 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
800 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
801 
802 	/* disable PHY auto polling */
803 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
804 	/* Configure the MDIO Clock 2.5 MHz */
805 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
806 
807 	/* Disable the xMII link */
808 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
809 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
810 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
811 
812 	/* enable special tag insertion on cpu port */
813 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
814 			  GSWIP_FDMA_PCTRLp(cpu_port));
815 
816 	/* accept special tag in ingress direction */
817 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
818 			  GSWIP_PCE_PCTRL_0p(cpu_port));
819 
820 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
821 			  GSWIP_MAC_CTRL_2p(cpu_port));
822 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
823 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
824 			  GSWIP_BM_QUEUE_GCTRL);
825 
826 	/* VLAN aware Switching */
827 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
828 
829 	/* Flush MAC Table */
830 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
831 
832 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
833 				     GSWIP_PCE_GCTRL_0_MTFL);
834 	if (err) {
835 		dev_err(priv->dev, "MAC flushing didn't finish\n");
836 		return err;
837 	}
838 
839 	gswip_port_enable(ds, cpu_port, NULL);
840 	return 0;
841 }
842 
843 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
844 						    int port,
845 						    enum dsa_tag_protocol mp)
846 {
847 	return DSA_TAG_PROTO_GSWIP;
848 }
849 
850 static int gswip_vlan_active_create(struct gswip_priv *priv,
851 				    struct net_device *bridge,
852 				    int fid, u16 vid)
853 {
854 	struct gswip_pce_table_entry vlan_active = {0,};
855 	unsigned int max_ports = priv->hw_info->max_ports;
856 	int idx = -1;
857 	int err;
858 	int i;
859 
860 	/* Look for a free slot */
861 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
862 		if (!priv->vlans[i].bridge) {
863 			idx = i;
864 			break;
865 		}
866 	}
867 
868 	if (idx == -1)
869 		return -ENOSPC;
870 
871 	if (fid == -1)
872 		fid = idx;
873 
874 	vlan_active.index = idx;
875 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
876 	vlan_active.key[0] = vid;
877 	vlan_active.val[0] = fid;
878 	vlan_active.valid = true;
879 
880 	err = gswip_pce_table_entry_write(priv, &vlan_active);
881 	if (err) {
882 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
883 		return err;
884 	}
885 
886 	priv->vlans[idx].bridge = bridge;
887 	priv->vlans[idx].vid = vid;
888 	priv->vlans[idx].fid = fid;
889 
890 	return idx;
891 }
892 
893 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
894 {
895 	struct gswip_pce_table_entry vlan_active = {0,};
896 	int err;
897 
898 	vlan_active.index = idx;
899 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
900 	vlan_active.valid = false;
901 	err = gswip_pce_table_entry_write(priv, &vlan_active);
902 	if (err)
903 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
904 	priv->vlans[idx].bridge = NULL;
905 
906 	return err;
907 }
908 
909 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
910 				  struct net_device *bridge, int port)
911 {
912 	struct gswip_pce_table_entry vlan_mapping = {0,};
913 	unsigned int max_ports = priv->hw_info->max_ports;
914 	unsigned int cpu_port = priv->hw_info->cpu_port;
915 	bool active_vlan_created = false;
916 	int idx = -1;
917 	int i;
918 	int err;
919 
920 	/* Check if there is already a page for this bridge */
921 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
922 		if (priv->vlans[i].bridge == bridge) {
923 			idx = i;
924 			break;
925 		}
926 	}
927 
928 	/* If this bridge is not programmed yet, add a Active VLAN table
929 	 * entry in a free slot and prepare the VLAN mapping table entry.
930 	 */
931 	if (idx == -1) {
932 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
933 		if (idx < 0)
934 			return idx;
935 		active_vlan_created = true;
936 
937 		vlan_mapping.index = idx;
938 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
939 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
940 		vlan_mapping.val[0] = 0;
941 	} else {
942 		/* Read the existing VLAN mapping entry from the switch */
943 		vlan_mapping.index = idx;
944 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
945 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
946 		if (err) {
947 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
948 				err);
949 			return err;
950 		}
951 	}
952 
953 	/* Update the VLAN mapping entry and write it to the switch */
954 	vlan_mapping.val[1] |= BIT(cpu_port);
955 	vlan_mapping.val[1] |= BIT(port);
956 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
957 	if (err) {
958 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
959 		/* In case an Active VLAN was creaetd delete it again */
960 		if (active_vlan_created)
961 			gswip_vlan_active_remove(priv, idx);
962 		return err;
963 	}
964 
965 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
966 	return 0;
967 }
968 
969 static int gswip_vlan_add_aware(struct gswip_priv *priv,
970 				struct net_device *bridge, int port,
971 				u16 vid, bool untagged,
972 				bool pvid)
973 {
974 	struct gswip_pce_table_entry vlan_mapping = {0,};
975 	unsigned int max_ports = priv->hw_info->max_ports;
976 	unsigned int cpu_port = priv->hw_info->cpu_port;
977 	bool active_vlan_created = false;
978 	int idx = -1;
979 	int fid = -1;
980 	int i;
981 	int err;
982 
983 	/* Check if there is already a page for this bridge */
984 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
985 		if (priv->vlans[i].bridge == bridge) {
986 			if (fid != -1 && fid != priv->vlans[i].fid)
987 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
988 			fid = priv->vlans[i].fid;
989 			if (priv->vlans[i].vid == vid) {
990 				idx = i;
991 				break;
992 			}
993 		}
994 	}
995 
996 	/* If this bridge is not programmed yet, add a Active VLAN table
997 	 * entry in a free slot and prepare the VLAN mapping table entry.
998 	 */
999 	if (idx == -1) {
1000 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1001 		if (idx < 0)
1002 			return idx;
1003 		active_vlan_created = true;
1004 
1005 		vlan_mapping.index = idx;
1006 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1007 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1008 		vlan_mapping.val[0] = vid;
1009 	} else {
1010 		/* Read the existing VLAN mapping entry from the switch */
1011 		vlan_mapping.index = idx;
1012 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1013 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1014 		if (err) {
1015 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1016 				err);
1017 			return err;
1018 		}
1019 	}
1020 
1021 	vlan_mapping.val[0] = vid;
1022 	/* Update the VLAN mapping entry and write it to the switch */
1023 	vlan_mapping.val[1] |= BIT(cpu_port);
1024 	vlan_mapping.val[2] |= BIT(cpu_port);
1025 	vlan_mapping.val[1] |= BIT(port);
1026 	if (untagged)
1027 		vlan_mapping.val[2] &= ~BIT(port);
1028 	else
1029 		vlan_mapping.val[2] |= BIT(port);
1030 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1031 	if (err) {
1032 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1033 		/* In case an Active VLAN was creaetd delete it again */
1034 		if (active_vlan_created)
1035 			gswip_vlan_active_remove(priv, idx);
1036 		return err;
1037 	}
1038 
1039 	if (pvid)
1040 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1041 
1042 	return 0;
1043 }
1044 
1045 static int gswip_vlan_remove(struct gswip_priv *priv,
1046 			     struct net_device *bridge, int port,
1047 			     u16 vid, bool pvid, bool vlan_aware)
1048 {
1049 	struct gswip_pce_table_entry vlan_mapping = {0,};
1050 	unsigned int max_ports = priv->hw_info->max_ports;
1051 	unsigned int cpu_port = priv->hw_info->cpu_port;
1052 	int idx = -1;
1053 	int i;
1054 	int err;
1055 
1056 	/* Check if there is already a page for this bridge */
1057 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1058 		if (priv->vlans[i].bridge == bridge &&
1059 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1060 			idx = i;
1061 			break;
1062 		}
1063 	}
1064 
1065 	if (idx == -1) {
1066 		dev_err(priv->dev, "bridge to leave does not exists\n");
1067 		return -ENOENT;
1068 	}
1069 
1070 	vlan_mapping.index = idx;
1071 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1073 	if (err) {
1074 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1075 		return err;
1076 	}
1077 
1078 	vlan_mapping.val[1] &= ~BIT(port);
1079 	vlan_mapping.val[2] &= ~BIT(port);
1080 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1081 	if (err) {
1082 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1083 		return err;
1084 	}
1085 
1086 	/* In case all ports are removed from the bridge, remove the VLAN */
1087 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1088 		err = gswip_vlan_active_remove(priv, idx);
1089 		if (err) {
1090 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1091 				err);
1092 			return err;
1093 		}
1094 	}
1095 
1096 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1097 	if (pvid)
1098 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1099 
1100 	return 0;
1101 }
1102 
1103 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1104 				  struct net_device *bridge)
1105 {
1106 	struct gswip_priv *priv = ds->priv;
1107 	int err;
1108 
1109 	/* When the bridge uses VLAN filtering we have to configure VLAN
1110 	 * specific bridges. No bridge is configured here.
1111 	 */
1112 	if (!br_vlan_enabled(bridge)) {
1113 		err = gswip_vlan_add_unaware(priv, bridge, port);
1114 		if (err)
1115 			return err;
1116 		priv->port_vlan_filter &= ~BIT(port);
1117 	} else {
1118 		priv->port_vlan_filter |= BIT(port);
1119 	}
1120 	return gswip_add_single_port_br(priv, port, false);
1121 }
1122 
1123 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1124 				    struct net_device *bridge)
1125 {
1126 	struct gswip_priv *priv = ds->priv;
1127 
1128 	gswip_add_single_port_br(priv, port, true);
1129 
1130 	/* When the bridge uses VLAN filtering we have to configure VLAN
1131 	 * specific bridges. No bridge is configured here.
1132 	 */
1133 	if (!br_vlan_enabled(bridge))
1134 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1135 }
1136 
1137 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1138 				   const struct switchdev_obj_port_vlan *vlan)
1139 {
1140 	struct gswip_priv *priv = ds->priv;
1141 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1142 	unsigned int max_ports = priv->hw_info->max_ports;
1143 	u16 vid;
1144 	int i;
1145 	int pos = max_ports;
1146 
1147 	/* We only support VLAN filtering on bridges */
1148 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1149 		return -EOPNOTSUPP;
1150 
1151 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1152 		int idx = -1;
1153 
1154 		/* Check if there is already a page for this VLAN */
1155 		for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1156 			if (priv->vlans[i].bridge == bridge &&
1157 			    priv->vlans[i].vid == vid) {
1158 				idx = i;
1159 				break;
1160 			}
1161 		}
1162 
1163 		/* If this VLAN is not programmed yet, we have to reserve
1164 		 * one entry in the VLAN table. Make sure we start at the
1165 		 * next position round.
1166 		 */
1167 		if (idx == -1) {
1168 			/* Look for a free slot */
1169 			for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1170 				if (!priv->vlans[pos].bridge) {
1171 					idx = pos;
1172 					pos++;
1173 					break;
1174 				}
1175 			}
1176 
1177 			if (idx == -1)
1178 				return -ENOSPC;
1179 		}
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1186 				const struct switchdev_obj_port_vlan *vlan)
1187 {
1188 	struct gswip_priv *priv = ds->priv;
1189 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1190 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1191 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1192 	u16 vid;
1193 
1194 	/* We have to receive all packets on the CPU port and should not
1195 	 * do any VLAN filtering here. This is also called with bridge
1196 	 * NULL and then we do not know for which bridge to configure
1197 	 * this.
1198 	 */
1199 	if (dsa_is_cpu_port(ds, port))
1200 		return;
1201 
1202 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1203 		gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1204 }
1205 
1206 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1207 			       const struct switchdev_obj_port_vlan *vlan)
1208 {
1209 	struct gswip_priv *priv = ds->priv;
1210 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1211 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1212 	u16 vid;
1213 	int err;
1214 
1215 	/* We have to receive all packets on the CPU port and should not
1216 	 * do any VLAN filtering here. This is also called with bridge
1217 	 * NULL and then we do not know for which bridge to configure
1218 	 * this.
1219 	 */
1220 	if (dsa_is_cpu_port(ds, port))
1221 		return 0;
1222 
1223 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1224 		err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1225 		if (err)
1226 			return err;
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1233 {
1234 	struct gswip_priv *priv = ds->priv;
1235 	struct gswip_pce_table_entry mac_bridge = {0,};
1236 	int i;
1237 	int err;
1238 
1239 	for (i = 0; i < 2048; i++) {
1240 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1241 		mac_bridge.index = i;
1242 
1243 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1244 		if (err) {
1245 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1246 				err);
1247 			return;
1248 		}
1249 
1250 		if (!mac_bridge.valid)
1251 			continue;
1252 
1253 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1254 			continue;
1255 
1256 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1257 			continue;
1258 
1259 		mac_bridge.valid = false;
1260 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1261 		if (err) {
1262 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1263 				err);
1264 			return;
1265 		}
1266 	}
1267 }
1268 
1269 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1270 {
1271 	struct gswip_priv *priv = ds->priv;
1272 	u32 stp_state;
1273 
1274 	switch (state) {
1275 	case BR_STATE_DISABLED:
1276 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1277 				  GSWIP_SDMA_PCTRLp(port));
1278 		return;
1279 	case BR_STATE_BLOCKING:
1280 	case BR_STATE_LISTENING:
1281 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1282 		break;
1283 	case BR_STATE_LEARNING:
1284 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1285 		break;
1286 	case BR_STATE_FORWARDING:
1287 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1288 		break;
1289 	default:
1290 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1291 		return;
1292 	}
1293 
1294 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1295 			  GSWIP_SDMA_PCTRLp(port));
1296 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1297 			  GSWIP_PCE_PCTRL_0p(port));
1298 }
1299 
1300 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1301 			  const unsigned char *addr, u16 vid, bool add)
1302 {
1303 	struct gswip_priv *priv = ds->priv;
1304 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1305 	struct gswip_pce_table_entry mac_bridge = {0,};
1306 	unsigned int cpu_port = priv->hw_info->cpu_port;
1307 	int fid = -1;
1308 	int i;
1309 	int err;
1310 
1311 	if (!bridge)
1312 		return -EINVAL;
1313 
1314 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1315 		if (priv->vlans[i].bridge == bridge) {
1316 			fid = priv->vlans[i].fid;
1317 			break;
1318 		}
1319 	}
1320 
1321 	if (fid == -1) {
1322 		dev_err(priv->dev, "Port not part of a bridge\n");
1323 		return -EINVAL;
1324 	}
1325 
1326 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1327 	mac_bridge.key_mode = true;
1328 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1329 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1330 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1331 	mac_bridge.key[3] = fid;
1332 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1333 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1334 	mac_bridge.valid = add;
1335 
1336 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1337 	if (err)
1338 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1339 
1340 	return err;
1341 }
1342 
1343 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1344 			      const unsigned char *addr, u16 vid)
1345 {
1346 	return gswip_port_fdb(ds, port, addr, vid, true);
1347 }
1348 
1349 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1350 			      const unsigned char *addr, u16 vid)
1351 {
1352 	return gswip_port_fdb(ds, port, addr, vid, false);
1353 }
1354 
1355 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1356 			       dsa_fdb_dump_cb_t *cb, void *data)
1357 {
1358 	struct gswip_priv *priv = ds->priv;
1359 	struct gswip_pce_table_entry mac_bridge = {0,};
1360 	unsigned char addr[6];
1361 	int i;
1362 	int err;
1363 
1364 	for (i = 0; i < 2048; i++) {
1365 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1366 		mac_bridge.index = i;
1367 
1368 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1369 		if (err) {
1370 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1371 				err);
1372 			return err;
1373 		}
1374 
1375 		if (!mac_bridge.valid)
1376 			continue;
1377 
1378 		addr[5] = mac_bridge.key[0] & 0xff;
1379 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1380 		addr[3] = mac_bridge.key[1] & 0xff;
1381 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1382 		addr[1] = mac_bridge.key[2] & 0xff;
1383 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1384 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1385 			if (mac_bridge.val[0] & BIT(port))
1386 				cb(addr, 0, true, data);
1387 		} else {
1388 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1389 				cb(addr, 0, false, data);
1390 		}
1391 	}
1392 	return 0;
1393 }
1394 
1395 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1396 				   unsigned long *supported,
1397 				   struct phylink_link_state *state)
1398 {
1399 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1400 
1401 	switch (port) {
1402 	case 0:
1403 	case 1:
1404 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1405 		    state->interface != PHY_INTERFACE_MODE_MII &&
1406 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1407 		    state->interface != PHY_INTERFACE_MODE_RMII)
1408 			goto unsupported;
1409 		break;
1410 	case 2:
1411 	case 3:
1412 	case 4:
1413 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1414 			goto unsupported;
1415 		break;
1416 	case 5:
1417 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1418 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1419 			goto unsupported;
1420 		break;
1421 	default:
1422 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1423 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1424 		return;
1425 	}
1426 
1427 	/* Allow all the expected bits */
1428 	phylink_set(mask, Autoneg);
1429 	phylink_set_port_modes(mask);
1430 	phylink_set(mask, Pause);
1431 	phylink_set(mask, Asym_Pause);
1432 
1433 	/* With the exclusion of MII and Reverse MII, we support Gigabit,
1434 	 * including Half duplex
1435 	 */
1436 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1437 	    state->interface != PHY_INTERFACE_MODE_REVMII) {
1438 		phylink_set(mask, 1000baseT_Full);
1439 		phylink_set(mask, 1000baseT_Half);
1440 	}
1441 
1442 	phylink_set(mask, 10baseT_Half);
1443 	phylink_set(mask, 10baseT_Full);
1444 	phylink_set(mask, 100baseT_Half);
1445 	phylink_set(mask, 100baseT_Full);
1446 
1447 	bitmap_and(supported, supported, mask,
1448 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1449 	bitmap_and(state->advertising, state->advertising, mask,
1450 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1451 	return;
1452 
1453 unsupported:
1454 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1455 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1456 		phy_modes(state->interface), port);
1457 	return;
1458 }
1459 
1460 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1461 				     unsigned int mode,
1462 				     const struct phylink_link_state *state)
1463 {
1464 	struct gswip_priv *priv = ds->priv;
1465 	u32 miicfg = 0;
1466 
1467 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1468 
1469 	switch (state->interface) {
1470 	case PHY_INTERFACE_MODE_MII:
1471 	case PHY_INTERFACE_MODE_INTERNAL:
1472 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1473 		break;
1474 	case PHY_INTERFACE_MODE_REVMII:
1475 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1476 		break;
1477 	case PHY_INTERFACE_MODE_RMII:
1478 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1479 		break;
1480 	case PHY_INTERFACE_MODE_RGMII:
1481 	case PHY_INTERFACE_MODE_RGMII_ID:
1482 	case PHY_INTERFACE_MODE_RGMII_RXID:
1483 	case PHY_INTERFACE_MODE_RGMII_TXID:
1484 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1485 		break;
1486 	default:
1487 		dev_err(ds->dev,
1488 			"Unsupported interface: %d\n", state->interface);
1489 		return;
1490 	}
1491 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1492 
1493 	switch (state->interface) {
1494 	case PHY_INTERFACE_MODE_RGMII_ID:
1495 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1496 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1497 		break;
1498 	case PHY_INTERFACE_MODE_RGMII_RXID:
1499 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1500 		break;
1501 	case PHY_INTERFACE_MODE_RGMII_TXID:
1502 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1503 		break;
1504 	default:
1505 		break;
1506 	}
1507 }
1508 
1509 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1510 					unsigned int mode,
1511 					phy_interface_t interface)
1512 {
1513 	struct gswip_priv *priv = ds->priv;
1514 
1515 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1516 }
1517 
1518 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1519 				      unsigned int mode,
1520 				      phy_interface_t interface,
1521 				      struct phy_device *phydev,
1522 				      int speed, int duplex,
1523 				      bool tx_pause, bool rx_pause)
1524 {
1525 	struct gswip_priv *priv = ds->priv;
1526 
1527 	/* Enable the xMII interface only for the external PHY */
1528 	if (interface != PHY_INTERFACE_MODE_INTERNAL)
1529 		gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1530 }
1531 
1532 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1533 			      uint8_t *data)
1534 {
1535 	int i;
1536 
1537 	if (stringset != ETH_SS_STATS)
1538 		return;
1539 
1540 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1541 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1542 			ETH_GSTRING_LEN);
1543 }
1544 
1545 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1546 				    u32 index)
1547 {
1548 	u32 result;
1549 	int err;
1550 
1551 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1552 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1553 				GSWIP_BM_RAM_CTRL_OPMOD,
1554 			      table | GSWIP_BM_RAM_CTRL_BAS,
1555 			      GSWIP_BM_RAM_CTRL);
1556 
1557 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1558 				     GSWIP_BM_RAM_CTRL_BAS);
1559 	if (err) {
1560 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1561 			table, index);
1562 		return 0;
1563 	}
1564 
1565 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1566 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1567 
1568 	return result;
1569 }
1570 
1571 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1572 				    uint64_t *data)
1573 {
1574 	struct gswip_priv *priv = ds->priv;
1575 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1576 	int i;
1577 	u64 high;
1578 
1579 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1580 		rmon_cnt = &gswip_rmon_cnt[i];
1581 
1582 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1583 						   rmon_cnt->offset);
1584 		if (rmon_cnt->size == 2) {
1585 			high = gswip_bcm_ram_entry_read(priv, port,
1586 							rmon_cnt->offset + 1);
1587 			data[i] |= high << 32;
1588 		}
1589 	}
1590 }
1591 
1592 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1593 {
1594 	if (sset != ETH_SS_STATS)
1595 		return 0;
1596 
1597 	return ARRAY_SIZE(gswip_rmon_cnt);
1598 }
1599 
1600 static const struct dsa_switch_ops gswip_switch_ops = {
1601 	.get_tag_protocol	= gswip_get_tag_protocol,
1602 	.setup			= gswip_setup,
1603 	.port_enable		= gswip_port_enable,
1604 	.port_disable		= gswip_port_disable,
1605 	.port_bridge_join	= gswip_port_bridge_join,
1606 	.port_bridge_leave	= gswip_port_bridge_leave,
1607 	.port_fast_age		= gswip_port_fast_age,
1608 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1609 	.port_vlan_prepare	= gswip_port_vlan_prepare,
1610 	.port_vlan_add		= gswip_port_vlan_add,
1611 	.port_vlan_del		= gswip_port_vlan_del,
1612 	.port_stp_state_set	= gswip_port_stp_state_set,
1613 	.port_fdb_add		= gswip_port_fdb_add,
1614 	.port_fdb_del		= gswip_port_fdb_del,
1615 	.port_fdb_dump		= gswip_port_fdb_dump,
1616 	.phylink_validate	= gswip_phylink_validate,
1617 	.phylink_mac_config	= gswip_phylink_mac_config,
1618 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1619 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1620 	.get_strings		= gswip_get_strings,
1621 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1622 	.get_sset_count		= gswip_get_sset_count,
1623 };
1624 
1625 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1626 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1627 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1628 };
1629 
1630 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1631 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1632 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1633 };
1634 
1635 static const struct xway_gphy_match_data xrx300_gphy_data = {
1636 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1637 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1638 };
1639 
1640 static const struct of_device_id xway_gphy_match[] = {
1641 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1642 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1643 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1644 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1645 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1646 	{},
1647 };
1648 
1649 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1650 {
1651 	struct device *dev = priv->dev;
1652 	const struct firmware *fw;
1653 	void *fw_addr;
1654 	dma_addr_t dma_addr;
1655 	dma_addr_t dev_addr;
1656 	size_t size;
1657 	int ret;
1658 
1659 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1660 	if (ret)
1661 		return ret;
1662 
1663 	reset_control_assert(gphy_fw->reset);
1664 
1665 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1666 	if (ret) {
1667 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1668 			gphy_fw->fw_name, ret);
1669 		return ret;
1670 	}
1671 
1672 	/* GPHY cores need the firmware code in a persistent and contiguous
1673 	 * memory area with a 16 kB boundary aligned start address.
1674 	 */
1675 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1676 
1677 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1678 	if (fw_addr) {
1679 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1680 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1681 		memcpy(fw_addr, fw->data, fw->size);
1682 	} else {
1683 		dev_err(dev, "failed to alloc firmware memory\n");
1684 		release_firmware(fw);
1685 		return -ENOMEM;
1686 	}
1687 
1688 	release_firmware(fw);
1689 
1690 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1691 	if (ret)
1692 		return ret;
1693 
1694 	reset_control_deassert(gphy_fw->reset);
1695 
1696 	return ret;
1697 }
1698 
1699 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1700 			       struct gswip_gphy_fw *gphy_fw,
1701 			       struct device_node *gphy_fw_np, int i)
1702 {
1703 	struct device *dev = priv->dev;
1704 	u32 gphy_mode;
1705 	int ret;
1706 	char gphyname[10];
1707 
1708 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1709 
1710 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1711 	if (IS_ERR(gphy_fw->clk_gate)) {
1712 		dev_err(dev, "Failed to lookup gate clock\n");
1713 		return PTR_ERR(gphy_fw->clk_gate);
1714 	}
1715 
1716 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1717 	if (ret)
1718 		return ret;
1719 
1720 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1721 	/* Default to GE mode */
1722 	if (ret)
1723 		gphy_mode = GPHY_MODE_GE;
1724 
1725 	switch (gphy_mode) {
1726 	case GPHY_MODE_FE:
1727 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1728 		break;
1729 	case GPHY_MODE_GE:
1730 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1731 		break;
1732 	default:
1733 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1734 		return -EINVAL;
1735 	}
1736 
1737 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1738 	if (IS_ERR(gphy_fw->reset)) {
1739 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1740 			dev_err(dev, "Failed to lookup gphy reset\n");
1741 		return PTR_ERR(gphy_fw->reset);
1742 	}
1743 
1744 	return gswip_gphy_fw_load(priv, gphy_fw);
1745 }
1746 
1747 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1748 				 struct gswip_gphy_fw *gphy_fw)
1749 {
1750 	int ret;
1751 
1752 	/* check if the device was fully probed */
1753 	if (!gphy_fw->fw_name)
1754 		return;
1755 
1756 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1757 	if (ret)
1758 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1759 
1760 	clk_disable_unprepare(gphy_fw->clk_gate);
1761 
1762 	reset_control_put(gphy_fw->reset);
1763 }
1764 
1765 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1766 			      struct device_node *gphy_fw_list_np, u32 version)
1767 {
1768 	struct device *dev = priv->dev;
1769 	struct device_node *gphy_fw_np;
1770 	const struct of_device_id *match;
1771 	int err;
1772 	int i = 0;
1773 
1774 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1775 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1776 	 * needs a different GPHY firmware.
1777 	 */
1778 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1779 		switch (version) {
1780 		case GSWIP_VERSION_2_0:
1781 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1782 			break;
1783 		case GSWIP_VERSION_2_1:
1784 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1785 			break;
1786 		default:
1787 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1788 			return -ENOENT;
1789 		}
1790 	}
1791 
1792 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1793 	if (match && match->data)
1794 		priv->gphy_fw_name_cfg = match->data;
1795 
1796 	if (!priv->gphy_fw_name_cfg) {
1797 		dev_err(dev, "GPHY compatible type not supported");
1798 		return -ENOENT;
1799 	}
1800 
1801 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1802 	if (!priv->num_gphy_fw)
1803 		return -ENOENT;
1804 
1805 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1806 							   "lantiq,rcu");
1807 	if (IS_ERR(priv->rcu_regmap))
1808 		return PTR_ERR(priv->rcu_regmap);
1809 
1810 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1811 					   sizeof(*priv->gphy_fw),
1812 					   GFP_KERNEL | __GFP_ZERO);
1813 	if (!priv->gphy_fw)
1814 		return -ENOMEM;
1815 
1816 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1817 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1818 					  gphy_fw_np, i);
1819 		if (err)
1820 			goto remove_gphy;
1821 		i++;
1822 	}
1823 
1824 	return 0;
1825 
1826 remove_gphy:
1827 	for (i = 0; i < priv->num_gphy_fw; i++)
1828 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1829 	return err;
1830 }
1831 
1832 static int gswip_probe(struct platform_device *pdev)
1833 {
1834 	struct gswip_priv *priv;
1835 	struct device_node *mdio_np, *gphy_fw_np;
1836 	struct device *dev = &pdev->dev;
1837 	int err;
1838 	int i;
1839 	u32 version;
1840 
1841 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1842 	if (!priv)
1843 		return -ENOMEM;
1844 
1845 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1846 	if (IS_ERR(priv->gswip))
1847 		return PTR_ERR(priv->gswip);
1848 
1849 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1850 	if (IS_ERR(priv->mdio))
1851 		return PTR_ERR(priv->mdio);
1852 
1853 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1854 	if (IS_ERR(priv->mii))
1855 		return PTR_ERR(priv->mii);
1856 
1857 	priv->hw_info = of_device_get_match_data(dev);
1858 	if (!priv->hw_info)
1859 		return -EINVAL;
1860 
1861 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1862 	if (!priv->ds)
1863 		return -ENOMEM;
1864 
1865 	priv->ds->dev = dev;
1866 	priv->ds->num_ports = priv->hw_info->max_ports;
1867 	priv->ds->priv = priv;
1868 	priv->ds->ops = &gswip_switch_ops;
1869 	priv->dev = dev;
1870 	version = gswip_switch_r(priv, GSWIP_VERSION);
1871 
1872 	/* bring up the mdio bus */
1873 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1874 	if (gphy_fw_np) {
1875 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1876 		of_node_put(gphy_fw_np);
1877 		if (err) {
1878 			dev_err(dev, "gphy fw probe failed\n");
1879 			return err;
1880 		}
1881 	}
1882 
1883 	/* bring up the mdio bus */
1884 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1885 	if (mdio_np) {
1886 		err = gswip_mdio(priv, mdio_np);
1887 		if (err) {
1888 			dev_err(dev, "mdio probe failed\n");
1889 			goto put_mdio_node;
1890 		}
1891 	}
1892 
1893 	err = dsa_register_switch(priv->ds);
1894 	if (err) {
1895 		dev_err(dev, "dsa switch register failed: %i\n", err);
1896 		goto mdio_bus;
1897 	}
1898 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1899 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1900 			priv->hw_info->cpu_port);
1901 		err = -EINVAL;
1902 		goto disable_switch;
1903 	}
1904 
1905 	platform_set_drvdata(pdev, priv);
1906 
1907 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1908 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1909 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1910 	return 0;
1911 
1912 disable_switch:
1913 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1914 	dsa_unregister_switch(priv->ds);
1915 mdio_bus:
1916 	if (mdio_np)
1917 		mdiobus_unregister(priv->ds->slave_mii_bus);
1918 put_mdio_node:
1919 	of_node_put(mdio_np);
1920 	for (i = 0; i < priv->num_gphy_fw; i++)
1921 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1922 	return err;
1923 }
1924 
1925 static int gswip_remove(struct platform_device *pdev)
1926 {
1927 	struct gswip_priv *priv = platform_get_drvdata(pdev);
1928 	int i;
1929 
1930 	/* disable the switch */
1931 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1932 
1933 	dsa_unregister_switch(priv->ds);
1934 
1935 	if (priv->ds->slave_mii_bus) {
1936 		mdiobus_unregister(priv->ds->slave_mii_bus);
1937 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1938 	}
1939 
1940 	for (i = 0; i < priv->num_gphy_fw; i++)
1941 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct gswip_hw_info gswip_xrx200 = {
1947 	.max_ports = 7,
1948 	.cpu_port = 6,
1949 };
1950 
1951 static const struct of_device_id gswip_of_match[] = {
1952 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1953 	{},
1954 };
1955 MODULE_DEVICE_TABLE(of, gswip_of_match);
1956 
1957 static struct platform_driver gswip_driver = {
1958 	.probe = gswip_probe,
1959 	.remove = gswip_remove,
1960 	.driver = {
1961 		.name = "gswip",
1962 		.of_match_table = gswip_of_match,
1963 	},
1964 };
1965 
1966 module_platform_driver(gswip_driver);
1967 
1968 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1969 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1970 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1971 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1972 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1973 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1974 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1975 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1976 MODULE_LICENSE("GPL v2");
1977