1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Lantiq / Intel GSWIP switch driver for VRX200 SoCs 4 * 5 * Copyright (C) 2010 Lantiq Deutschland 6 * Copyright (C) 2012 John Crispin <john@phrozen.org> 7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de> 8 * 9 * The VLAN and bridge model the GSWIP hardware uses does not directly 10 * matches the model DSA uses. 11 * 12 * The hardware has 64 possible table entries for bridges with one VLAN 13 * ID, one flow id and a list of ports for each bridge. All entries which 14 * match the same flow ID are combined in the mac learning table, they 15 * act as one global bridge. 16 * The hardware does not support VLAN filter on the port, but on the 17 * bridge, this driver converts the DSA model to the hardware. 18 * 19 * The CPU gets all the exception frames which do not match any forwarding 20 * rule and the CPU port is also added to all bridges. This makes it possible 21 * to handle all the special cases easily in software. 22 * At the initialization the driver allocates one bridge table entry for 23 * each switch port which is used when the port is used without an 24 * explicit bridge. This prevents the frames from being forwarded 25 * between all LAN ports by default. 26 */ 27 28 #include <linux/clk.h> 29 #include <linux/etherdevice.h> 30 #include <linux/firmware.h> 31 #include <linux/if_bridge.h> 32 #include <linux/if_vlan.h> 33 #include <linux/iopoll.h> 34 #include <linux/mfd/syscon.h> 35 #include <linux/module.h> 36 #include <linux/of_mdio.h> 37 #include <linux/of_net.h> 38 #include <linux/of_platform.h> 39 #include <linux/phy.h> 40 #include <linux/phylink.h> 41 #include <linux/platform_device.h> 42 #include <linux/regmap.h> 43 #include <linux/reset.h> 44 #include <net/dsa.h> 45 #include <dt-bindings/mips/lantiq_rcu_gphy.h> 46 47 #include "lantiq_pce.h" 48 49 /* GSWIP MDIO Registers */ 50 #define GSWIP_MDIO_GLOB 0x00 51 #define GSWIP_MDIO_GLOB_ENABLE BIT(15) 52 #define GSWIP_MDIO_CTRL 0x08 53 #define GSWIP_MDIO_CTRL_BUSY BIT(12) 54 #define GSWIP_MDIO_CTRL_RD BIT(11) 55 #define GSWIP_MDIO_CTRL_WR BIT(10) 56 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f 57 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5 58 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f 59 #define GSWIP_MDIO_READ 0x09 60 #define GSWIP_MDIO_WRITE 0x0A 61 #define GSWIP_MDIO_MDC_CFG0 0x0B 62 #define GSWIP_MDIO_MDC_CFG1 0x0C 63 #define GSWIP_MDIO_PHYp(p) (0x15 - (p)) 64 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000 65 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000 66 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000 67 #define GSWIP_MDIO_PHY_LINK_UP 0x2000 68 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800 69 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800 70 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000 71 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800 72 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000 73 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600 74 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000 75 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200 76 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600 77 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180 78 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000 79 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100 80 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180 81 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060 82 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000 83 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020 84 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060 85 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f 86 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \ 87 GSWIP_MDIO_PHY_FCONRX_MASK | \ 88 GSWIP_MDIO_PHY_FCONTX_MASK | \ 89 GSWIP_MDIO_PHY_LINK_MASK | \ 90 GSWIP_MDIO_PHY_SPEED_MASK | \ 91 GSWIP_MDIO_PHY_FDUP_MASK) 92 93 /* GSWIP MII Registers */ 94 #define GSWIP_MII_CFG0 0x00 95 #define GSWIP_MII_CFG1 0x02 96 #define GSWIP_MII_CFG5 0x04 97 #define GSWIP_MII_CFG_EN BIT(14) 98 #define GSWIP_MII_CFG_LDCLKDIS BIT(12) 99 #define GSWIP_MII_CFG_MODE_MIIP 0x0 100 #define GSWIP_MII_CFG_MODE_MIIM 0x1 101 #define GSWIP_MII_CFG_MODE_RMIIP 0x2 102 #define GSWIP_MII_CFG_MODE_RMIIM 0x3 103 #define GSWIP_MII_CFG_MODE_RGMII 0x4 104 #define GSWIP_MII_CFG_MODE_MASK 0xf 105 #define GSWIP_MII_CFG_RATE_M2P5 0x00 106 #define GSWIP_MII_CFG_RATE_M25 0x10 107 #define GSWIP_MII_CFG_RATE_M125 0x20 108 #define GSWIP_MII_CFG_RATE_M50 0x30 109 #define GSWIP_MII_CFG_RATE_AUTO 0x40 110 #define GSWIP_MII_CFG_RATE_MASK 0x70 111 #define GSWIP_MII_PCDU0 0x01 112 #define GSWIP_MII_PCDU1 0x03 113 #define GSWIP_MII_PCDU5 0x05 114 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0) 115 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7) 116 117 /* GSWIP Core Registers */ 118 #define GSWIP_SWRES 0x000 119 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */ 120 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */ 121 #define GSWIP_VERSION 0x013 122 #define GSWIP_VERSION_REV_SHIFT 0 123 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0) 124 #define GSWIP_VERSION_MOD_SHIFT 8 125 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8) 126 #define GSWIP_VERSION_2_0 0x100 127 #define GSWIP_VERSION_2_1 0x021 128 #define GSWIP_VERSION_2_2 0x122 129 #define GSWIP_VERSION_2_2_ETC 0x022 130 131 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x)) 132 #define GSWIP_BM_RAM_ADDR 0x044 133 #define GSWIP_BM_RAM_CTRL 0x045 134 #define GSWIP_BM_RAM_CTRL_BAS BIT(15) 135 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5) 136 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0) 137 #define GSWIP_BM_QUEUE_GCTRL 0x04A 138 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10) 139 /* buffer management Port Configuration Register */ 140 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2)) 141 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */ 142 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */ 143 /* buffer management Port Control Register */ 144 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2)) 145 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */ 146 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */ 147 148 /* PCE */ 149 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x)) 150 #define GSWIP_PCE_TBL_MASK 0x448 151 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x)) 152 #define GSWIP_PCE_TBL_ADDR 0x44E 153 #define GSWIP_PCE_TBL_CTRL 0x44F 154 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15) 155 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13) 156 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12) 157 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11) 158 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7) 159 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5) 160 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00 161 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20 162 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40 163 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60 164 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0) 165 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */ 166 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */ 167 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */ 168 #define GSWIP_PCE_GCTRL_0 0x456 169 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */ 170 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3) 171 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */ 172 #define GSWIP_PCE_GCTRL_1 0x457 173 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */ 174 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */ 175 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA)) 176 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */ 177 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */ 178 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */ 179 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0 180 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1 181 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2 182 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3 183 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7 184 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0) 185 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA)) 186 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */ 187 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */ 188 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */ 189 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */ 190 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */ 191 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA)) 192 193 #define GSWIP_MAC_FLEN 0x8C5 194 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC)) 195 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */ 196 197 /* Ethernet Switch Fetch DMA Port Control Register */ 198 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6)) 199 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */ 200 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */ 201 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */ 202 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */ 203 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 204 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 205 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 206 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT) 207 208 /* Ethernet Switch Store DMA Port Control Register */ 209 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6)) 210 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */ 211 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */ 212 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */ 213 214 #define GSWIP_TABLE_ACTIVE_VLAN 0x01 215 #define GSWIP_TABLE_VLAN_MAPPING 0x02 216 #define GSWIP_TABLE_MAC_BRIDGE 0x0b 217 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */ 218 219 #define XRX200_GPHY_FW_ALIGN (16 * 1024) 220 221 struct gswip_hw_info { 222 int max_ports; 223 int cpu_port; 224 }; 225 226 struct xway_gphy_match_data { 227 char *fe_firmware_name; 228 char *ge_firmware_name; 229 }; 230 231 struct gswip_gphy_fw { 232 struct clk *clk_gate; 233 struct reset_control *reset; 234 u32 fw_addr_offset; 235 char *fw_name; 236 }; 237 238 struct gswip_vlan { 239 struct net_device *bridge; 240 u16 vid; 241 u8 fid; 242 }; 243 244 struct gswip_priv { 245 __iomem void *gswip; 246 __iomem void *mdio; 247 __iomem void *mii; 248 const struct gswip_hw_info *hw_info; 249 const struct xway_gphy_match_data *gphy_fw_name_cfg; 250 struct dsa_switch *ds; 251 struct device *dev; 252 struct regmap *rcu_regmap; 253 struct gswip_vlan vlans[64]; 254 int num_gphy_fw; 255 struct gswip_gphy_fw *gphy_fw; 256 u32 port_vlan_filter; 257 }; 258 259 struct gswip_pce_table_entry { 260 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index 261 u16 table; // PCE_TBL_CTRL.ADDR = pData->table 262 u16 key[8]; 263 u16 val[5]; 264 u16 mask; 265 u8 gmap; 266 bool type; 267 bool valid; 268 bool key_mode; 269 }; 270 271 struct gswip_rmon_cnt_desc { 272 unsigned int size; 273 unsigned int offset; 274 const char *name; 275 }; 276 277 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name} 278 279 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = { 280 /** Receive Packet Count (only packets that are accepted and not discarded). */ 281 MIB_DESC(1, 0x1F, "RxGoodPkts"), 282 MIB_DESC(1, 0x23, "RxUnicastPkts"), 283 MIB_DESC(1, 0x22, "RxMulticastPkts"), 284 MIB_DESC(1, 0x21, "RxFCSErrorPkts"), 285 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"), 286 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"), 287 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"), 288 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"), 289 MIB_DESC(1, 0x20, "RxGoodPausePkts"), 290 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"), 291 MIB_DESC(1, 0x12, "Rx64BytePkts"), 292 MIB_DESC(1, 0x13, "Rx127BytePkts"), 293 MIB_DESC(1, 0x14, "Rx255BytePkts"), 294 MIB_DESC(1, 0x15, "Rx511BytePkts"), 295 MIB_DESC(1, 0x16, "Rx1023BytePkts"), 296 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */ 297 MIB_DESC(1, 0x17, "RxMaxBytePkts"), 298 MIB_DESC(1, 0x18, "RxDroppedPkts"), 299 MIB_DESC(1, 0x19, "RxFilteredPkts"), 300 MIB_DESC(2, 0x24, "RxGoodBytes"), 301 MIB_DESC(2, 0x26, "RxBadBytes"), 302 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"), 303 MIB_DESC(1, 0x0C, "TxGoodPkts"), 304 MIB_DESC(1, 0x06, "TxUnicastPkts"), 305 MIB_DESC(1, 0x07, "TxMulticastPkts"), 306 MIB_DESC(1, 0x00, "Tx64BytePkts"), 307 MIB_DESC(1, 0x01, "Tx127BytePkts"), 308 MIB_DESC(1, 0x02, "Tx255BytePkts"), 309 MIB_DESC(1, 0x03, "Tx511BytePkts"), 310 MIB_DESC(1, 0x04, "Tx1023BytePkts"), 311 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */ 312 MIB_DESC(1, 0x05, "TxMaxBytePkts"), 313 MIB_DESC(1, 0x08, "TxSingleCollCount"), 314 MIB_DESC(1, 0x09, "TxMultCollCount"), 315 MIB_DESC(1, 0x0A, "TxLateCollCount"), 316 MIB_DESC(1, 0x0B, "TxExcessCollCount"), 317 MIB_DESC(1, 0x0D, "TxPauseCount"), 318 MIB_DESC(1, 0x10, "TxDroppedPkts"), 319 MIB_DESC(2, 0x0E, "TxGoodBytes"), 320 }; 321 322 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset) 323 { 324 return __raw_readl(priv->gswip + (offset * 4)); 325 } 326 327 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset) 328 { 329 __raw_writel(val, priv->gswip + (offset * 4)); 330 } 331 332 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set, 333 u32 offset) 334 { 335 u32 val = gswip_switch_r(priv, offset); 336 337 val &= ~(clear); 338 val |= set; 339 gswip_switch_w(priv, val, offset); 340 } 341 342 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset, 343 u32 cleared) 344 { 345 u32 val; 346 347 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val, 348 (val & cleared) == 0, 20, 50000); 349 } 350 351 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset) 352 { 353 return __raw_readl(priv->mdio + (offset * 4)); 354 } 355 356 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset) 357 { 358 __raw_writel(val, priv->mdio + (offset * 4)); 359 } 360 361 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set, 362 u32 offset) 363 { 364 u32 val = gswip_mdio_r(priv, offset); 365 366 val &= ~(clear); 367 val |= set; 368 gswip_mdio_w(priv, val, offset); 369 } 370 371 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset) 372 { 373 return __raw_readl(priv->mii + (offset * 4)); 374 } 375 376 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset) 377 { 378 __raw_writel(val, priv->mii + (offset * 4)); 379 } 380 381 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set, 382 u32 offset) 383 { 384 u32 val = gswip_mii_r(priv, offset); 385 386 val &= ~(clear); 387 val |= set; 388 gswip_mii_w(priv, val, offset); 389 } 390 391 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set, 392 int port) 393 { 394 switch (port) { 395 case 0: 396 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0); 397 break; 398 case 1: 399 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1); 400 break; 401 case 5: 402 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5); 403 break; 404 } 405 } 406 407 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set, 408 int port) 409 { 410 switch (port) { 411 case 0: 412 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0); 413 break; 414 case 1: 415 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1); 416 break; 417 case 5: 418 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5); 419 break; 420 } 421 } 422 423 static int gswip_mdio_poll(struct gswip_priv *priv) 424 { 425 int cnt = 100; 426 427 while (likely(cnt--)) { 428 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL); 429 430 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0) 431 return 0; 432 usleep_range(20, 40); 433 } 434 435 return -ETIMEDOUT; 436 } 437 438 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val) 439 { 440 struct gswip_priv *priv = bus->priv; 441 int err; 442 443 err = gswip_mdio_poll(priv); 444 if (err) { 445 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); 446 return err; 447 } 448 449 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE); 450 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR | 451 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | 452 (reg & GSWIP_MDIO_CTRL_REGAD_MASK), 453 GSWIP_MDIO_CTRL); 454 455 return 0; 456 } 457 458 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg) 459 { 460 struct gswip_priv *priv = bus->priv; 461 int err; 462 463 err = gswip_mdio_poll(priv); 464 if (err) { 465 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); 466 return err; 467 } 468 469 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD | 470 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) | 471 (reg & GSWIP_MDIO_CTRL_REGAD_MASK), 472 GSWIP_MDIO_CTRL); 473 474 err = gswip_mdio_poll(priv); 475 if (err) { 476 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n"); 477 return err; 478 } 479 480 return gswip_mdio_r(priv, GSWIP_MDIO_READ); 481 } 482 483 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np) 484 { 485 struct dsa_switch *ds = priv->ds; 486 487 ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev); 488 if (!ds->slave_mii_bus) 489 return -ENOMEM; 490 491 ds->slave_mii_bus->priv = priv; 492 ds->slave_mii_bus->read = gswip_mdio_rd; 493 ds->slave_mii_bus->write = gswip_mdio_wr; 494 ds->slave_mii_bus->name = "lantiq,xrx200-mdio"; 495 snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii", 496 dev_name(priv->dev)); 497 ds->slave_mii_bus->parent = priv->dev; 498 ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask; 499 500 return of_mdiobus_register(ds->slave_mii_bus, mdio_np); 501 } 502 503 static int gswip_pce_table_entry_read(struct gswip_priv *priv, 504 struct gswip_pce_table_entry *tbl) 505 { 506 int i; 507 int err; 508 u16 crtl; 509 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD : 510 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD; 511 512 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 513 GSWIP_PCE_TBL_CTRL_BAS); 514 if (err) 515 return err; 516 517 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR); 518 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 519 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 520 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS, 521 GSWIP_PCE_TBL_CTRL); 522 523 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 524 GSWIP_PCE_TBL_CTRL_BAS); 525 if (err) 526 return err; 527 528 for (i = 0; i < ARRAY_SIZE(tbl->key); i++) 529 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i)); 530 531 for (i = 0; i < ARRAY_SIZE(tbl->val); i++) 532 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i)); 533 534 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK); 535 536 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL); 537 538 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE); 539 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD); 540 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7; 541 542 return 0; 543 } 544 545 static int gswip_pce_table_entry_write(struct gswip_priv *priv, 546 struct gswip_pce_table_entry *tbl) 547 { 548 int i; 549 int err; 550 u16 crtl; 551 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR : 552 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR; 553 554 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 555 GSWIP_PCE_TBL_CTRL_BAS); 556 if (err) 557 return err; 558 559 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR); 560 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 561 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 562 tbl->table | addr_mode, 563 GSWIP_PCE_TBL_CTRL); 564 565 for (i = 0; i < ARRAY_SIZE(tbl->key); i++) 566 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i)); 567 568 for (i = 0; i < ARRAY_SIZE(tbl->val); i++) 569 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i)); 570 571 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 572 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 573 tbl->table | addr_mode, 574 GSWIP_PCE_TBL_CTRL); 575 576 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK); 577 578 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL); 579 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD | 580 GSWIP_PCE_TBL_CTRL_GMAP_MASK); 581 if (tbl->type) 582 crtl |= GSWIP_PCE_TBL_CTRL_TYPE; 583 if (tbl->valid) 584 crtl |= GSWIP_PCE_TBL_CTRL_VLD; 585 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK; 586 crtl |= GSWIP_PCE_TBL_CTRL_BAS; 587 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL); 588 589 return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 590 GSWIP_PCE_TBL_CTRL_BAS); 591 } 592 593 /* Add the LAN port into a bridge with the CPU port by 594 * default. This prevents automatic forwarding of 595 * packages between the LAN ports when no explicit 596 * bridge is configured. 597 */ 598 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add) 599 { 600 struct gswip_pce_table_entry vlan_active = {0,}; 601 struct gswip_pce_table_entry vlan_mapping = {0,}; 602 unsigned int cpu_port = priv->hw_info->cpu_port; 603 unsigned int max_ports = priv->hw_info->max_ports; 604 int err; 605 606 if (port >= max_ports) { 607 dev_err(priv->dev, "single port for %i supported\n", port); 608 return -EIO; 609 } 610 611 vlan_active.index = port + 1; 612 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; 613 vlan_active.key[0] = 0; /* vid */ 614 vlan_active.val[0] = port + 1 /* fid */; 615 vlan_active.valid = add; 616 err = gswip_pce_table_entry_write(priv, &vlan_active); 617 if (err) { 618 dev_err(priv->dev, "failed to write active VLAN: %d\n", err); 619 return err; 620 } 621 622 if (!add) 623 return 0; 624 625 vlan_mapping.index = port + 1; 626 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 627 vlan_mapping.val[0] = 0 /* vid */; 628 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port); 629 vlan_mapping.val[2] = 0; 630 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 631 if (err) { 632 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 633 return err; 634 } 635 636 return 0; 637 } 638 639 static int gswip_port_enable(struct dsa_switch *ds, int port, 640 struct phy_device *phydev) 641 { 642 struct gswip_priv *priv = ds->priv; 643 int err; 644 645 if (!dsa_is_user_port(ds, port)) 646 return 0; 647 648 if (!dsa_is_cpu_port(ds, port)) { 649 err = gswip_add_single_port_br(priv, port, true); 650 if (err) 651 return err; 652 } 653 654 /* RMON Counter Enable for port */ 655 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port)); 656 657 /* enable port fetch/store dma & VLAN Modification */ 658 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN | 659 GSWIP_FDMA_PCTRL_VLANMOD_BOTH, 660 GSWIP_FDMA_PCTRLp(port)); 661 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, 662 GSWIP_SDMA_PCTRLp(port)); 663 664 if (!dsa_is_cpu_port(ds, port)) { 665 u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO | 666 GSWIP_MDIO_PHY_SPEED_AUTO | 667 GSWIP_MDIO_PHY_FDUP_AUTO | 668 GSWIP_MDIO_PHY_FCONTX_AUTO | 669 GSWIP_MDIO_PHY_FCONRX_AUTO | 670 (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK); 671 672 gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port)); 673 /* Activate MDIO auto polling */ 674 gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0); 675 } 676 677 return 0; 678 } 679 680 static void gswip_port_disable(struct dsa_switch *ds, int port) 681 { 682 struct gswip_priv *priv = ds->priv; 683 684 if (!dsa_is_user_port(ds, port)) 685 return; 686 687 if (!dsa_is_cpu_port(ds, port)) { 688 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN, 689 GSWIP_MDIO_PHY_LINK_MASK, 690 GSWIP_MDIO_PHYp(port)); 691 /* Deactivate MDIO auto polling */ 692 gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0); 693 } 694 695 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0, 696 GSWIP_FDMA_PCTRLp(port)); 697 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, 698 GSWIP_SDMA_PCTRLp(port)); 699 } 700 701 static int gswip_pce_load_microcode(struct gswip_priv *priv) 702 { 703 int i; 704 int err; 705 706 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK | 707 GSWIP_PCE_TBL_CTRL_OPMOD_MASK, 708 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL); 709 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK); 710 711 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) { 712 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR); 713 gswip_switch_w(priv, gswip_pce_microcode[i].val_0, 714 GSWIP_PCE_TBL_VAL(0)); 715 gswip_switch_w(priv, gswip_pce_microcode[i].val_1, 716 GSWIP_PCE_TBL_VAL(1)); 717 gswip_switch_w(priv, gswip_pce_microcode[i].val_2, 718 GSWIP_PCE_TBL_VAL(2)); 719 gswip_switch_w(priv, gswip_pce_microcode[i].val_3, 720 GSWIP_PCE_TBL_VAL(3)); 721 722 /* start the table access: */ 723 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS, 724 GSWIP_PCE_TBL_CTRL); 725 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL, 726 GSWIP_PCE_TBL_CTRL_BAS); 727 if (err) 728 return err; 729 } 730 731 /* tell the switch that the microcode is loaded */ 732 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID, 733 GSWIP_PCE_GCTRL_0); 734 735 return 0; 736 } 737 738 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port, 739 bool vlan_filtering) 740 { 741 struct gswip_priv *priv = ds->priv; 742 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; 743 744 /* Do not allow changing the VLAN filtering options while in bridge */ 745 if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge) 746 return -EIO; 747 748 if (vlan_filtering) { 749 /* Use port based VLAN tag */ 750 gswip_switch_mask(priv, 751 GSWIP_PCE_VCTRL_VSR, 752 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR | 753 GSWIP_PCE_VCTRL_VEMR, 754 GSWIP_PCE_VCTRL(port)); 755 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0, 756 GSWIP_PCE_PCTRL_0p(port)); 757 } else { 758 /* Use port based VLAN tag */ 759 gswip_switch_mask(priv, 760 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR | 761 GSWIP_PCE_VCTRL_VEMR, 762 GSWIP_PCE_VCTRL_VSR, 763 GSWIP_PCE_VCTRL(port)); 764 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM, 765 GSWIP_PCE_PCTRL_0p(port)); 766 } 767 768 return 0; 769 } 770 771 static int gswip_setup(struct dsa_switch *ds) 772 { 773 struct gswip_priv *priv = ds->priv; 774 unsigned int cpu_port = priv->hw_info->cpu_port; 775 int i; 776 int err; 777 778 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES); 779 usleep_range(5000, 10000); 780 gswip_switch_w(priv, 0, GSWIP_SWRES); 781 782 /* disable port fetch/store dma on all ports */ 783 for (i = 0; i < priv->hw_info->max_ports; i++) { 784 gswip_port_disable(ds, i); 785 gswip_port_vlan_filtering(ds, i, false); 786 } 787 788 /* enable Switch */ 789 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB); 790 791 err = gswip_pce_load_microcode(priv); 792 if (err) { 793 dev_err(priv->dev, "writing PCE microcode failed, %i", err); 794 return err; 795 } 796 797 /* Default unknown Broadcast/Multicast/Unicast port maps */ 798 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1); 799 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2); 800 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3); 801 802 /* disable PHY auto polling */ 803 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0); 804 /* Configure the MDIO Clock 2.5 MHz */ 805 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1); 806 807 /* Disable the xMII link */ 808 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0); 809 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1); 810 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5); 811 812 /* enable special tag insertion on cpu port */ 813 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN, 814 GSWIP_FDMA_PCTRLp(cpu_port)); 815 816 /* accept special tag in ingress direction */ 817 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS, 818 GSWIP_PCE_PCTRL_0p(cpu_port)); 819 820 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN, 821 GSWIP_MAC_CTRL_2p(cpu_port)); 822 gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN); 823 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD, 824 GSWIP_BM_QUEUE_GCTRL); 825 826 /* VLAN aware Switching */ 827 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0); 828 829 /* Flush MAC Table */ 830 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0); 831 832 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0, 833 GSWIP_PCE_GCTRL_0_MTFL); 834 if (err) { 835 dev_err(priv->dev, "MAC flushing didn't finish\n"); 836 return err; 837 } 838 839 gswip_port_enable(ds, cpu_port, NULL); 840 return 0; 841 } 842 843 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds, 844 int port, 845 enum dsa_tag_protocol mp) 846 { 847 return DSA_TAG_PROTO_GSWIP; 848 } 849 850 static int gswip_vlan_active_create(struct gswip_priv *priv, 851 struct net_device *bridge, 852 int fid, u16 vid) 853 { 854 struct gswip_pce_table_entry vlan_active = {0,}; 855 unsigned int max_ports = priv->hw_info->max_ports; 856 int idx = -1; 857 int err; 858 int i; 859 860 /* Look for a free slot */ 861 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 862 if (!priv->vlans[i].bridge) { 863 idx = i; 864 break; 865 } 866 } 867 868 if (idx == -1) 869 return -ENOSPC; 870 871 if (fid == -1) 872 fid = idx; 873 874 vlan_active.index = idx; 875 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; 876 vlan_active.key[0] = vid; 877 vlan_active.val[0] = fid; 878 vlan_active.valid = true; 879 880 err = gswip_pce_table_entry_write(priv, &vlan_active); 881 if (err) { 882 dev_err(priv->dev, "failed to write active VLAN: %d\n", err); 883 return err; 884 } 885 886 priv->vlans[idx].bridge = bridge; 887 priv->vlans[idx].vid = vid; 888 priv->vlans[idx].fid = fid; 889 890 return idx; 891 } 892 893 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx) 894 { 895 struct gswip_pce_table_entry vlan_active = {0,}; 896 int err; 897 898 vlan_active.index = idx; 899 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN; 900 vlan_active.valid = false; 901 err = gswip_pce_table_entry_write(priv, &vlan_active); 902 if (err) 903 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err); 904 priv->vlans[idx].bridge = NULL; 905 906 return err; 907 } 908 909 static int gswip_vlan_add_unaware(struct gswip_priv *priv, 910 struct net_device *bridge, int port) 911 { 912 struct gswip_pce_table_entry vlan_mapping = {0,}; 913 unsigned int max_ports = priv->hw_info->max_ports; 914 unsigned int cpu_port = priv->hw_info->cpu_port; 915 bool active_vlan_created = false; 916 int idx = -1; 917 int i; 918 int err; 919 920 /* Check if there is already a page for this bridge */ 921 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 922 if (priv->vlans[i].bridge == bridge) { 923 idx = i; 924 break; 925 } 926 } 927 928 /* If this bridge is not programmed yet, add a Active VLAN table 929 * entry in a free slot and prepare the VLAN mapping table entry. 930 */ 931 if (idx == -1) { 932 idx = gswip_vlan_active_create(priv, bridge, -1, 0); 933 if (idx < 0) 934 return idx; 935 active_vlan_created = true; 936 937 vlan_mapping.index = idx; 938 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 939 /* VLAN ID byte, maps to the VLAN ID of vlan active table */ 940 vlan_mapping.val[0] = 0; 941 } else { 942 /* Read the existing VLAN mapping entry from the switch */ 943 vlan_mapping.index = idx; 944 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 945 err = gswip_pce_table_entry_read(priv, &vlan_mapping); 946 if (err) { 947 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", 948 err); 949 return err; 950 } 951 } 952 953 /* Update the VLAN mapping entry and write it to the switch */ 954 vlan_mapping.val[1] |= BIT(cpu_port); 955 vlan_mapping.val[1] |= BIT(port); 956 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 957 if (err) { 958 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 959 /* In case an Active VLAN was creaetd delete it again */ 960 if (active_vlan_created) 961 gswip_vlan_active_remove(priv, idx); 962 return err; 963 } 964 965 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port)); 966 return 0; 967 } 968 969 static int gswip_vlan_add_aware(struct gswip_priv *priv, 970 struct net_device *bridge, int port, 971 u16 vid, bool untagged, 972 bool pvid) 973 { 974 struct gswip_pce_table_entry vlan_mapping = {0,}; 975 unsigned int max_ports = priv->hw_info->max_ports; 976 unsigned int cpu_port = priv->hw_info->cpu_port; 977 bool active_vlan_created = false; 978 int idx = -1; 979 int fid = -1; 980 int i; 981 int err; 982 983 /* Check if there is already a page for this bridge */ 984 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 985 if (priv->vlans[i].bridge == bridge) { 986 if (fid != -1 && fid != priv->vlans[i].fid) 987 dev_err(priv->dev, "one bridge with multiple flow ids\n"); 988 fid = priv->vlans[i].fid; 989 if (priv->vlans[i].vid == vid) { 990 idx = i; 991 break; 992 } 993 } 994 } 995 996 /* If this bridge is not programmed yet, add a Active VLAN table 997 * entry in a free slot and prepare the VLAN mapping table entry. 998 */ 999 if (idx == -1) { 1000 idx = gswip_vlan_active_create(priv, bridge, fid, vid); 1001 if (idx < 0) 1002 return idx; 1003 active_vlan_created = true; 1004 1005 vlan_mapping.index = idx; 1006 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 1007 /* VLAN ID byte, maps to the VLAN ID of vlan active table */ 1008 vlan_mapping.val[0] = vid; 1009 } else { 1010 /* Read the existing VLAN mapping entry from the switch */ 1011 vlan_mapping.index = idx; 1012 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 1013 err = gswip_pce_table_entry_read(priv, &vlan_mapping); 1014 if (err) { 1015 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", 1016 err); 1017 return err; 1018 } 1019 } 1020 1021 vlan_mapping.val[0] = vid; 1022 /* Update the VLAN mapping entry and write it to the switch */ 1023 vlan_mapping.val[1] |= BIT(cpu_port); 1024 vlan_mapping.val[2] |= BIT(cpu_port); 1025 vlan_mapping.val[1] |= BIT(port); 1026 if (untagged) 1027 vlan_mapping.val[2] &= ~BIT(port); 1028 else 1029 vlan_mapping.val[2] |= BIT(port); 1030 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 1031 if (err) { 1032 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 1033 /* In case an Active VLAN was creaetd delete it again */ 1034 if (active_vlan_created) 1035 gswip_vlan_active_remove(priv, idx); 1036 return err; 1037 } 1038 1039 if (pvid) 1040 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port)); 1041 1042 return 0; 1043 } 1044 1045 static int gswip_vlan_remove(struct gswip_priv *priv, 1046 struct net_device *bridge, int port, 1047 u16 vid, bool pvid, bool vlan_aware) 1048 { 1049 struct gswip_pce_table_entry vlan_mapping = {0,}; 1050 unsigned int max_ports = priv->hw_info->max_ports; 1051 unsigned int cpu_port = priv->hw_info->cpu_port; 1052 int idx = -1; 1053 int i; 1054 int err; 1055 1056 /* Check if there is already a page for this bridge */ 1057 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 1058 if (priv->vlans[i].bridge == bridge && 1059 (!vlan_aware || priv->vlans[i].vid == vid)) { 1060 idx = i; 1061 break; 1062 } 1063 } 1064 1065 if (idx == -1) { 1066 dev_err(priv->dev, "bridge to leave does not exists\n"); 1067 return -ENOENT; 1068 } 1069 1070 vlan_mapping.index = idx; 1071 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING; 1072 err = gswip_pce_table_entry_read(priv, &vlan_mapping); 1073 if (err) { 1074 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err); 1075 return err; 1076 } 1077 1078 vlan_mapping.val[1] &= ~BIT(port); 1079 vlan_mapping.val[2] &= ~BIT(port); 1080 err = gswip_pce_table_entry_write(priv, &vlan_mapping); 1081 if (err) { 1082 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err); 1083 return err; 1084 } 1085 1086 /* In case all ports are removed from the bridge, remove the VLAN */ 1087 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) { 1088 err = gswip_vlan_active_remove(priv, idx); 1089 if (err) { 1090 dev_err(priv->dev, "failed to write active VLAN: %d\n", 1091 err); 1092 return err; 1093 } 1094 } 1095 1096 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */ 1097 if (pvid) 1098 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port)); 1099 1100 return 0; 1101 } 1102 1103 static int gswip_port_bridge_join(struct dsa_switch *ds, int port, 1104 struct net_device *bridge) 1105 { 1106 struct gswip_priv *priv = ds->priv; 1107 int err; 1108 1109 /* When the bridge uses VLAN filtering we have to configure VLAN 1110 * specific bridges. No bridge is configured here. 1111 */ 1112 if (!br_vlan_enabled(bridge)) { 1113 err = gswip_vlan_add_unaware(priv, bridge, port); 1114 if (err) 1115 return err; 1116 priv->port_vlan_filter &= ~BIT(port); 1117 } else { 1118 priv->port_vlan_filter |= BIT(port); 1119 } 1120 return gswip_add_single_port_br(priv, port, false); 1121 } 1122 1123 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port, 1124 struct net_device *bridge) 1125 { 1126 struct gswip_priv *priv = ds->priv; 1127 1128 gswip_add_single_port_br(priv, port, true); 1129 1130 /* When the bridge uses VLAN filtering we have to configure VLAN 1131 * specific bridges. No bridge is configured here. 1132 */ 1133 if (!br_vlan_enabled(bridge)) 1134 gswip_vlan_remove(priv, bridge, port, 0, true, false); 1135 } 1136 1137 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port, 1138 const struct switchdev_obj_port_vlan *vlan) 1139 { 1140 struct gswip_priv *priv = ds->priv; 1141 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; 1142 unsigned int max_ports = priv->hw_info->max_ports; 1143 u16 vid; 1144 int i; 1145 int pos = max_ports; 1146 1147 /* We only support VLAN filtering on bridges */ 1148 if (!dsa_is_cpu_port(ds, port) && !bridge) 1149 return -EOPNOTSUPP; 1150 1151 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1152 int idx = -1; 1153 1154 /* Check if there is already a page for this VLAN */ 1155 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) { 1156 if (priv->vlans[i].bridge == bridge && 1157 priv->vlans[i].vid == vid) { 1158 idx = i; 1159 break; 1160 } 1161 } 1162 1163 /* If this VLAN is not programmed yet, we have to reserve 1164 * one entry in the VLAN table. Make sure we start at the 1165 * next position round. 1166 */ 1167 if (idx == -1) { 1168 /* Look for a free slot */ 1169 for (; pos < ARRAY_SIZE(priv->vlans); pos++) { 1170 if (!priv->vlans[pos].bridge) { 1171 idx = pos; 1172 pos++; 1173 break; 1174 } 1175 } 1176 1177 if (idx == -1) 1178 return -ENOSPC; 1179 } 1180 } 1181 1182 return 0; 1183 } 1184 1185 static void gswip_port_vlan_add(struct dsa_switch *ds, int port, 1186 const struct switchdev_obj_port_vlan *vlan) 1187 { 1188 struct gswip_priv *priv = ds->priv; 1189 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; 1190 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1191 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1192 u16 vid; 1193 1194 /* We have to receive all packets on the CPU port and should not 1195 * do any VLAN filtering here. This is also called with bridge 1196 * NULL and then we do not know for which bridge to configure 1197 * this. 1198 */ 1199 if (dsa_is_cpu_port(ds, port)) 1200 return; 1201 1202 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) 1203 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid); 1204 } 1205 1206 static int gswip_port_vlan_del(struct dsa_switch *ds, int port, 1207 const struct switchdev_obj_port_vlan *vlan) 1208 { 1209 struct gswip_priv *priv = ds->priv; 1210 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; 1211 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1212 u16 vid; 1213 int err; 1214 1215 /* We have to receive all packets on the CPU port and should not 1216 * do any VLAN filtering here. This is also called with bridge 1217 * NULL and then we do not know for which bridge to configure 1218 * this. 1219 */ 1220 if (dsa_is_cpu_port(ds, port)) 1221 return 0; 1222 1223 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1224 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true); 1225 if (err) 1226 return err; 1227 } 1228 1229 return 0; 1230 } 1231 1232 static void gswip_port_fast_age(struct dsa_switch *ds, int port) 1233 { 1234 struct gswip_priv *priv = ds->priv; 1235 struct gswip_pce_table_entry mac_bridge = {0,}; 1236 int i; 1237 int err; 1238 1239 for (i = 0; i < 2048; i++) { 1240 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; 1241 mac_bridge.index = i; 1242 1243 err = gswip_pce_table_entry_read(priv, &mac_bridge); 1244 if (err) { 1245 dev_err(priv->dev, "failed to read mac bridge: %d\n", 1246 err); 1247 return; 1248 } 1249 1250 if (!mac_bridge.valid) 1251 continue; 1252 1253 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) 1254 continue; 1255 1256 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port) 1257 continue; 1258 1259 mac_bridge.valid = false; 1260 err = gswip_pce_table_entry_write(priv, &mac_bridge); 1261 if (err) { 1262 dev_err(priv->dev, "failed to write mac bridge: %d\n", 1263 err); 1264 return; 1265 } 1266 } 1267 } 1268 1269 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1270 { 1271 struct gswip_priv *priv = ds->priv; 1272 u32 stp_state; 1273 1274 switch (state) { 1275 case BR_STATE_DISABLED: 1276 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0, 1277 GSWIP_SDMA_PCTRLp(port)); 1278 return; 1279 case BR_STATE_BLOCKING: 1280 case BR_STATE_LISTENING: 1281 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN; 1282 break; 1283 case BR_STATE_LEARNING: 1284 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING; 1285 break; 1286 case BR_STATE_FORWARDING: 1287 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING; 1288 break; 1289 default: 1290 dev_err(priv->dev, "invalid STP state: %d\n", state); 1291 return; 1292 } 1293 1294 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN, 1295 GSWIP_SDMA_PCTRLp(port)); 1296 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state, 1297 GSWIP_PCE_PCTRL_0p(port)); 1298 } 1299 1300 static int gswip_port_fdb(struct dsa_switch *ds, int port, 1301 const unsigned char *addr, u16 vid, bool add) 1302 { 1303 struct gswip_priv *priv = ds->priv; 1304 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev; 1305 struct gswip_pce_table_entry mac_bridge = {0,}; 1306 unsigned int cpu_port = priv->hw_info->cpu_port; 1307 int fid = -1; 1308 int i; 1309 int err; 1310 1311 if (!bridge) 1312 return -EINVAL; 1313 1314 for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) { 1315 if (priv->vlans[i].bridge == bridge) { 1316 fid = priv->vlans[i].fid; 1317 break; 1318 } 1319 } 1320 1321 if (fid == -1) { 1322 dev_err(priv->dev, "Port not part of a bridge\n"); 1323 return -EINVAL; 1324 } 1325 1326 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; 1327 mac_bridge.key_mode = true; 1328 mac_bridge.key[0] = addr[5] | (addr[4] << 8); 1329 mac_bridge.key[1] = addr[3] | (addr[2] << 8); 1330 mac_bridge.key[2] = addr[1] | (addr[0] << 8); 1331 mac_bridge.key[3] = fid; 1332 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */ 1333 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC; 1334 mac_bridge.valid = add; 1335 1336 err = gswip_pce_table_entry_write(priv, &mac_bridge); 1337 if (err) 1338 dev_err(priv->dev, "failed to write mac bridge: %d\n", err); 1339 1340 return err; 1341 } 1342 1343 static int gswip_port_fdb_add(struct dsa_switch *ds, int port, 1344 const unsigned char *addr, u16 vid) 1345 { 1346 return gswip_port_fdb(ds, port, addr, vid, true); 1347 } 1348 1349 static int gswip_port_fdb_del(struct dsa_switch *ds, int port, 1350 const unsigned char *addr, u16 vid) 1351 { 1352 return gswip_port_fdb(ds, port, addr, vid, false); 1353 } 1354 1355 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port, 1356 dsa_fdb_dump_cb_t *cb, void *data) 1357 { 1358 struct gswip_priv *priv = ds->priv; 1359 struct gswip_pce_table_entry mac_bridge = {0,}; 1360 unsigned char addr[6]; 1361 int i; 1362 int err; 1363 1364 for (i = 0; i < 2048; i++) { 1365 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE; 1366 mac_bridge.index = i; 1367 1368 err = gswip_pce_table_entry_read(priv, &mac_bridge); 1369 if (err) { 1370 dev_err(priv->dev, "failed to write mac bridge: %d\n", 1371 err); 1372 return err; 1373 } 1374 1375 if (!mac_bridge.valid) 1376 continue; 1377 1378 addr[5] = mac_bridge.key[0] & 0xff; 1379 addr[4] = (mac_bridge.key[0] >> 8) & 0xff; 1380 addr[3] = mac_bridge.key[1] & 0xff; 1381 addr[2] = (mac_bridge.key[1] >> 8) & 0xff; 1382 addr[1] = mac_bridge.key[2] & 0xff; 1383 addr[0] = (mac_bridge.key[2] >> 8) & 0xff; 1384 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) { 1385 if (mac_bridge.val[0] & BIT(port)) 1386 cb(addr, 0, true, data); 1387 } else { 1388 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) 1389 cb(addr, 0, false, data); 1390 } 1391 } 1392 return 0; 1393 } 1394 1395 static void gswip_phylink_validate(struct dsa_switch *ds, int port, 1396 unsigned long *supported, 1397 struct phylink_link_state *state) 1398 { 1399 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1400 1401 switch (port) { 1402 case 0: 1403 case 1: 1404 if (!phy_interface_mode_is_rgmii(state->interface) && 1405 state->interface != PHY_INTERFACE_MODE_MII && 1406 state->interface != PHY_INTERFACE_MODE_REVMII && 1407 state->interface != PHY_INTERFACE_MODE_RMII) 1408 goto unsupported; 1409 break; 1410 case 2: 1411 case 3: 1412 case 4: 1413 if (state->interface != PHY_INTERFACE_MODE_INTERNAL) 1414 goto unsupported; 1415 break; 1416 case 5: 1417 if (!phy_interface_mode_is_rgmii(state->interface) && 1418 state->interface != PHY_INTERFACE_MODE_INTERNAL) 1419 goto unsupported; 1420 break; 1421 default: 1422 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 1423 dev_err(ds->dev, "Unsupported port: %i\n", port); 1424 return; 1425 } 1426 1427 /* Allow all the expected bits */ 1428 phylink_set(mask, Autoneg); 1429 phylink_set_port_modes(mask); 1430 phylink_set(mask, Pause); 1431 phylink_set(mask, Asym_Pause); 1432 1433 /* With the exclusion of MII and Reverse MII, we support Gigabit, 1434 * including Half duplex 1435 */ 1436 if (state->interface != PHY_INTERFACE_MODE_MII && 1437 state->interface != PHY_INTERFACE_MODE_REVMII) { 1438 phylink_set(mask, 1000baseT_Full); 1439 phylink_set(mask, 1000baseT_Half); 1440 } 1441 1442 phylink_set(mask, 10baseT_Half); 1443 phylink_set(mask, 10baseT_Full); 1444 phylink_set(mask, 100baseT_Half); 1445 phylink_set(mask, 100baseT_Full); 1446 1447 bitmap_and(supported, supported, mask, 1448 __ETHTOOL_LINK_MODE_MASK_NBITS); 1449 bitmap_and(state->advertising, state->advertising, mask, 1450 __ETHTOOL_LINK_MODE_MASK_NBITS); 1451 return; 1452 1453 unsupported: 1454 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 1455 dev_err(ds->dev, "Unsupported interface: %d\n", state->interface); 1456 return; 1457 } 1458 1459 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port, 1460 unsigned int mode, 1461 const struct phylink_link_state *state) 1462 { 1463 struct gswip_priv *priv = ds->priv; 1464 u32 miicfg = 0; 1465 1466 miicfg |= GSWIP_MII_CFG_LDCLKDIS; 1467 1468 switch (state->interface) { 1469 case PHY_INTERFACE_MODE_MII: 1470 case PHY_INTERFACE_MODE_INTERNAL: 1471 miicfg |= GSWIP_MII_CFG_MODE_MIIM; 1472 break; 1473 case PHY_INTERFACE_MODE_REVMII: 1474 miicfg |= GSWIP_MII_CFG_MODE_MIIP; 1475 break; 1476 case PHY_INTERFACE_MODE_RMII: 1477 miicfg |= GSWIP_MII_CFG_MODE_RMIIM; 1478 break; 1479 case PHY_INTERFACE_MODE_RGMII: 1480 case PHY_INTERFACE_MODE_RGMII_ID: 1481 case PHY_INTERFACE_MODE_RGMII_RXID: 1482 case PHY_INTERFACE_MODE_RGMII_TXID: 1483 miicfg |= GSWIP_MII_CFG_MODE_RGMII; 1484 break; 1485 default: 1486 dev_err(ds->dev, 1487 "Unsupported interface: %d\n", state->interface); 1488 return; 1489 } 1490 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port); 1491 1492 switch (state->interface) { 1493 case PHY_INTERFACE_MODE_RGMII_ID: 1494 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK | 1495 GSWIP_MII_PCDU_RXDLY_MASK, 0, port); 1496 break; 1497 case PHY_INTERFACE_MODE_RGMII_RXID: 1498 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port); 1499 break; 1500 case PHY_INTERFACE_MODE_RGMII_TXID: 1501 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port); 1502 break; 1503 default: 1504 break; 1505 } 1506 } 1507 1508 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port, 1509 unsigned int mode, 1510 phy_interface_t interface) 1511 { 1512 struct gswip_priv *priv = ds->priv; 1513 1514 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port); 1515 } 1516 1517 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port, 1518 unsigned int mode, 1519 phy_interface_t interface, 1520 struct phy_device *phydev) 1521 { 1522 struct gswip_priv *priv = ds->priv; 1523 1524 /* Enable the xMII interface only for the external PHY */ 1525 if (interface != PHY_INTERFACE_MODE_INTERNAL) 1526 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port); 1527 } 1528 1529 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset, 1530 uint8_t *data) 1531 { 1532 int i; 1533 1534 if (stringset != ETH_SS_STATS) 1535 return; 1536 1537 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) 1538 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name, 1539 ETH_GSTRING_LEN); 1540 } 1541 1542 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table, 1543 u32 index) 1544 { 1545 u32 result; 1546 int err; 1547 1548 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR); 1549 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK | 1550 GSWIP_BM_RAM_CTRL_OPMOD, 1551 table | GSWIP_BM_RAM_CTRL_BAS, 1552 GSWIP_BM_RAM_CTRL); 1553 1554 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL, 1555 GSWIP_BM_RAM_CTRL_BAS); 1556 if (err) { 1557 dev_err(priv->dev, "timeout while reading table: %u, index: %u", 1558 table, index); 1559 return 0; 1560 } 1561 1562 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0)); 1563 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16; 1564 1565 return result; 1566 } 1567 1568 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port, 1569 uint64_t *data) 1570 { 1571 struct gswip_priv *priv = ds->priv; 1572 const struct gswip_rmon_cnt_desc *rmon_cnt; 1573 int i; 1574 u64 high; 1575 1576 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) { 1577 rmon_cnt = &gswip_rmon_cnt[i]; 1578 1579 data[i] = gswip_bcm_ram_entry_read(priv, port, 1580 rmon_cnt->offset); 1581 if (rmon_cnt->size == 2) { 1582 high = gswip_bcm_ram_entry_read(priv, port, 1583 rmon_cnt->offset + 1); 1584 data[i] |= high << 32; 1585 } 1586 } 1587 } 1588 1589 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset) 1590 { 1591 if (sset != ETH_SS_STATS) 1592 return 0; 1593 1594 return ARRAY_SIZE(gswip_rmon_cnt); 1595 } 1596 1597 static const struct dsa_switch_ops gswip_switch_ops = { 1598 .get_tag_protocol = gswip_get_tag_protocol, 1599 .setup = gswip_setup, 1600 .port_enable = gswip_port_enable, 1601 .port_disable = gswip_port_disable, 1602 .port_bridge_join = gswip_port_bridge_join, 1603 .port_bridge_leave = gswip_port_bridge_leave, 1604 .port_fast_age = gswip_port_fast_age, 1605 .port_vlan_filtering = gswip_port_vlan_filtering, 1606 .port_vlan_prepare = gswip_port_vlan_prepare, 1607 .port_vlan_add = gswip_port_vlan_add, 1608 .port_vlan_del = gswip_port_vlan_del, 1609 .port_stp_state_set = gswip_port_stp_state_set, 1610 .port_fdb_add = gswip_port_fdb_add, 1611 .port_fdb_del = gswip_port_fdb_del, 1612 .port_fdb_dump = gswip_port_fdb_dump, 1613 .phylink_validate = gswip_phylink_validate, 1614 .phylink_mac_config = gswip_phylink_mac_config, 1615 .phylink_mac_link_down = gswip_phylink_mac_link_down, 1616 .phylink_mac_link_up = gswip_phylink_mac_link_up, 1617 .get_strings = gswip_get_strings, 1618 .get_ethtool_stats = gswip_get_ethtool_stats, 1619 .get_sset_count = gswip_get_sset_count, 1620 }; 1621 1622 static const struct xway_gphy_match_data xrx200a1x_gphy_data = { 1623 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin", 1624 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin", 1625 }; 1626 1627 static const struct xway_gphy_match_data xrx200a2x_gphy_data = { 1628 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin", 1629 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin", 1630 }; 1631 1632 static const struct xway_gphy_match_data xrx300_gphy_data = { 1633 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin", 1634 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin", 1635 }; 1636 1637 static const struct of_device_id xway_gphy_match[] = { 1638 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL }, 1639 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data }, 1640 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data }, 1641 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data }, 1642 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data }, 1643 {}, 1644 }; 1645 1646 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw) 1647 { 1648 struct device *dev = priv->dev; 1649 const struct firmware *fw; 1650 void *fw_addr; 1651 dma_addr_t dma_addr; 1652 dma_addr_t dev_addr; 1653 size_t size; 1654 int ret; 1655 1656 ret = clk_prepare_enable(gphy_fw->clk_gate); 1657 if (ret) 1658 return ret; 1659 1660 reset_control_assert(gphy_fw->reset); 1661 1662 ret = request_firmware(&fw, gphy_fw->fw_name, dev); 1663 if (ret) { 1664 dev_err(dev, "failed to load firmware: %s, error: %i\n", 1665 gphy_fw->fw_name, ret); 1666 return ret; 1667 } 1668 1669 /* GPHY cores need the firmware code in a persistent and contiguous 1670 * memory area with a 16 kB boundary aligned start address. 1671 */ 1672 size = fw->size + XRX200_GPHY_FW_ALIGN; 1673 1674 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL); 1675 if (fw_addr) { 1676 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN); 1677 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN); 1678 memcpy(fw_addr, fw->data, fw->size); 1679 } else { 1680 dev_err(dev, "failed to alloc firmware memory\n"); 1681 release_firmware(fw); 1682 return -ENOMEM; 1683 } 1684 1685 release_firmware(fw); 1686 1687 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr); 1688 if (ret) 1689 return ret; 1690 1691 reset_control_deassert(gphy_fw->reset); 1692 1693 return ret; 1694 } 1695 1696 static int gswip_gphy_fw_probe(struct gswip_priv *priv, 1697 struct gswip_gphy_fw *gphy_fw, 1698 struct device_node *gphy_fw_np, int i) 1699 { 1700 struct device *dev = priv->dev; 1701 u32 gphy_mode; 1702 int ret; 1703 char gphyname[10]; 1704 1705 snprintf(gphyname, sizeof(gphyname), "gphy%d", i); 1706 1707 gphy_fw->clk_gate = devm_clk_get(dev, gphyname); 1708 if (IS_ERR(gphy_fw->clk_gate)) { 1709 dev_err(dev, "Failed to lookup gate clock\n"); 1710 return PTR_ERR(gphy_fw->clk_gate); 1711 } 1712 1713 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset); 1714 if (ret) 1715 return ret; 1716 1717 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode); 1718 /* Default to GE mode */ 1719 if (ret) 1720 gphy_mode = GPHY_MODE_GE; 1721 1722 switch (gphy_mode) { 1723 case GPHY_MODE_FE: 1724 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name; 1725 break; 1726 case GPHY_MODE_GE: 1727 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name; 1728 break; 1729 default: 1730 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode); 1731 return -EINVAL; 1732 } 1733 1734 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np); 1735 if (IS_ERR(gphy_fw->reset)) { 1736 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER) 1737 dev_err(dev, "Failed to lookup gphy reset\n"); 1738 return PTR_ERR(gphy_fw->reset); 1739 } 1740 1741 return gswip_gphy_fw_load(priv, gphy_fw); 1742 } 1743 1744 static void gswip_gphy_fw_remove(struct gswip_priv *priv, 1745 struct gswip_gphy_fw *gphy_fw) 1746 { 1747 int ret; 1748 1749 /* check if the device was fully probed */ 1750 if (!gphy_fw->fw_name) 1751 return; 1752 1753 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0); 1754 if (ret) 1755 dev_err(priv->dev, "can not reset GPHY FW pointer"); 1756 1757 clk_disable_unprepare(gphy_fw->clk_gate); 1758 1759 reset_control_put(gphy_fw->reset); 1760 } 1761 1762 static int gswip_gphy_fw_list(struct gswip_priv *priv, 1763 struct device_node *gphy_fw_list_np, u32 version) 1764 { 1765 struct device *dev = priv->dev; 1766 struct device_node *gphy_fw_np; 1767 const struct of_device_id *match; 1768 int err; 1769 int i = 0; 1770 1771 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older 1772 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also 1773 * needs a different GPHY firmware. 1774 */ 1775 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) { 1776 switch (version) { 1777 case GSWIP_VERSION_2_0: 1778 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data; 1779 break; 1780 case GSWIP_VERSION_2_1: 1781 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data; 1782 break; 1783 default: 1784 dev_err(dev, "unknown GSWIP version: 0x%x", version); 1785 return -ENOENT; 1786 } 1787 } 1788 1789 match = of_match_node(xway_gphy_match, gphy_fw_list_np); 1790 if (match && match->data) 1791 priv->gphy_fw_name_cfg = match->data; 1792 1793 if (!priv->gphy_fw_name_cfg) { 1794 dev_err(dev, "GPHY compatible type not supported"); 1795 return -ENOENT; 1796 } 1797 1798 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np); 1799 if (!priv->num_gphy_fw) 1800 return -ENOENT; 1801 1802 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np, 1803 "lantiq,rcu"); 1804 if (IS_ERR(priv->rcu_regmap)) 1805 return PTR_ERR(priv->rcu_regmap); 1806 1807 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw, 1808 sizeof(*priv->gphy_fw), 1809 GFP_KERNEL | __GFP_ZERO); 1810 if (!priv->gphy_fw) 1811 return -ENOMEM; 1812 1813 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) { 1814 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i], 1815 gphy_fw_np, i); 1816 if (err) 1817 goto remove_gphy; 1818 i++; 1819 } 1820 1821 return 0; 1822 1823 remove_gphy: 1824 for (i = 0; i < priv->num_gphy_fw; i++) 1825 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); 1826 return err; 1827 } 1828 1829 static int gswip_probe(struct platform_device *pdev) 1830 { 1831 struct gswip_priv *priv; 1832 struct device_node *mdio_np, *gphy_fw_np; 1833 struct device *dev = &pdev->dev; 1834 int err; 1835 int i; 1836 u32 version; 1837 1838 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1839 if (!priv) 1840 return -ENOMEM; 1841 1842 priv->gswip = devm_platform_ioremap_resource(pdev, 0); 1843 if (IS_ERR(priv->gswip)) 1844 return PTR_ERR(priv->gswip); 1845 1846 priv->mdio = devm_platform_ioremap_resource(pdev, 1); 1847 if (IS_ERR(priv->mdio)) 1848 return PTR_ERR(priv->mdio); 1849 1850 priv->mii = devm_platform_ioremap_resource(pdev, 2); 1851 if (IS_ERR(priv->mii)) 1852 return PTR_ERR(priv->mii); 1853 1854 priv->hw_info = of_device_get_match_data(dev); 1855 if (!priv->hw_info) 1856 return -EINVAL; 1857 1858 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); 1859 if (!priv->ds) 1860 return -ENOMEM; 1861 1862 priv->ds->dev = dev; 1863 priv->ds->num_ports = priv->hw_info->max_ports; 1864 priv->ds->priv = priv; 1865 priv->ds->ops = &gswip_switch_ops; 1866 priv->dev = dev; 1867 version = gswip_switch_r(priv, GSWIP_VERSION); 1868 1869 /* bring up the mdio bus */ 1870 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw"); 1871 if (gphy_fw_np) { 1872 err = gswip_gphy_fw_list(priv, gphy_fw_np, version); 1873 of_node_put(gphy_fw_np); 1874 if (err) { 1875 dev_err(dev, "gphy fw probe failed\n"); 1876 return err; 1877 } 1878 } 1879 1880 /* bring up the mdio bus */ 1881 mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio"); 1882 if (mdio_np) { 1883 err = gswip_mdio(priv, mdio_np); 1884 if (err) { 1885 dev_err(dev, "mdio probe failed\n"); 1886 goto put_mdio_node; 1887 } 1888 } 1889 1890 err = dsa_register_switch(priv->ds); 1891 if (err) { 1892 dev_err(dev, "dsa switch register failed: %i\n", err); 1893 goto mdio_bus; 1894 } 1895 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) { 1896 dev_err(dev, "wrong CPU port defined, HW only supports port: %i", 1897 priv->hw_info->cpu_port); 1898 err = -EINVAL; 1899 goto disable_switch; 1900 } 1901 1902 platform_set_drvdata(pdev, priv); 1903 1904 dev_info(dev, "probed GSWIP version %lx mod %lx\n", 1905 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT, 1906 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT); 1907 return 0; 1908 1909 disable_switch: 1910 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); 1911 dsa_unregister_switch(priv->ds); 1912 mdio_bus: 1913 if (mdio_np) 1914 mdiobus_unregister(priv->ds->slave_mii_bus); 1915 put_mdio_node: 1916 of_node_put(mdio_np); 1917 for (i = 0; i < priv->num_gphy_fw; i++) 1918 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); 1919 return err; 1920 } 1921 1922 static int gswip_remove(struct platform_device *pdev) 1923 { 1924 struct gswip_priv *priv = platform_get_drvdata(pdev); 1925 int i; 1926 1927 /* disable the switch */ 1928 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB); 1929 1930 dsa_unregister_switch(priv->ds); 1931 1932 if (priv->ds->slave_mii_bus) { 1933 mdiobus_unregister(priv->ds->slave_mii_bus); 1934 of_node_put(priv->ds->slave_mii_bus->dev.of_node); 1935 } 1936 1937 for (i = 0; i < priv->num_gphy_fw; i++) 1938 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]); 1939 1940 return 0; 1941 } 1942 1943 static const struct gswip_hw_info gswip_xrx200 = { 1944 .max_ports = 7, 1945 .cpu_port = 6, 1946 }; 1947 1948 static const struct of_device_id gswip_of_match[] = { 1949 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 }, 1950 {}, 1951 }; 1952 MODULE_DEVICE_TABLE(of, gswip_of_match); 1953 1954 static struct platform_driver gswip_driver = { 1955 .probe = gswip_probe, 1956 .remove = gswip_remove, 1957 .driver = { 1958 .name = "gswip", 1959 .of_match_table = gswip_of_match, 1960 }, 1961 }; 1962 1963 module_platform_driver(gswip_driver); 1964 1965 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin"); 1966 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin"); 1967 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin"); 1968 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin"); 1969 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin"); 1970 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin"); 1971 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>"); 1972 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver"); 1973 MODULE_LICENSE("GPL v2"); 1974