xref: /openbmc/linux/drivers/net/dsa/lantiq_gswip.c (revision 301a1613)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_EN		BIT(14)
97 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
98 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
99 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
100 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
101 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
102 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
103 #define  GSWIP_MII_CFG_MODE_MASK	0xf
104 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
105 #define  GSWIP_MII_CFG_RATE_M25	0x10
106 #define  GSWIP_MII_CFG_RATE_M125	0x20
107 #define  GSWIP_MII_CFG_RATE_M50	0x30
108 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
109 #define  GSWIP_MII_CFG_RATE_MASK	0x70
110 #define GSWIP_MII_PCDU0			0x01
111 #define GSWIP_MII_PCDU1			0x03
112 #define GSWIP_MII_PCDU5			0x05
113 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
114 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
115 
116 /* GSWIP Core Registers */
117 #define GSWIP_SWRES			0x000
118 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
119 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
120 #define GSWIP_VERSION			0x013
121 #define  GSWIP_VERSION_REV_SHIFT	0
122 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
123 #define  GSWIP_VERSION_MOD_SHIFT	8
124 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
125 #define   GSWIP_VERSION_2_0		0x100
126 #define   GSWIP_VERSION_2_1		0x021
127 #define   GSWIP_VERSION_2_2		0x122
128 #define   GSWIP_VERSION_2_2_ETC		0x022
129 
130 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
131 #define GSWIP_BM_RAM_ADDR		0x044
132 #define GSWIP_BM_RAM_CTRL		0x045
133 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
134 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
135 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
136 #define GSWIP_BM_QUEUE_GCTRL		0x04A
137 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
138 /* buffer management Port Configuration Register */
139 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
140 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
141 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
142 /* buffer management Port Control Register */
143 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
144 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
145 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
146 
147 /* PCE */
148 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
149 #define GSWIP_PCE_TBL_MASK		0x448
150 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
151 #define GSWIP_PCE_TBL_ADDR		0x44E
152 #define GSWIP_PCE_TBL_CTRL		0x44F
153 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
154 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
155 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
156 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
157 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
158 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
159 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
160 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
161 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
162 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
163 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
164 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
165 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
166 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
167 #define GSWIP_PCE_GCTRL_0		0x456
168 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
169 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
170 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
171 #define GSWIP_PCE_GCTRL_1		0x457
172 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
173 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
174 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
175 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
176 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
177 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
178 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
179 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
180 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
181 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
182 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
184 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
185 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
186 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
187 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
188 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
189 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
190 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
191 
192 #define GSWIP_MAC_FLEN			0x8C5
193 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
194 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
195 
196 /* Ethernet Switch Fetch DMA Port Control Register */
197 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
198 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
199 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
200 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
201 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
202 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
203 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
206 
207 /* Ethernet Switch Store DMA Port Control Register */
208 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
209 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
210 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
211 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(1)	/* Pause Frame Forwarding */
212 
213 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
214 #define GSWIP_TABLE_VLAN_MAPPING	0x02
215 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
216 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
217 
218 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
219 
220 struct gswip_hw_info {
221 	int max_ports;
222 	int cpu_port;
223 };
224 
225 struct xway_gphy_match_data {
226 	char *fe_firmware_name;
227 	char *ge_firmware_name;
228 };
229 
230 struct gswip_gphy_fw {
231 	struct clk *clk_gate;
232 	struct reset_control *reset;
233 	u32 fw_addr_offset;
234 	char *fw_name;
235 };
236 
237 struct gswip_vlan {
238 	struct net_device *bridge;
239 	u16 vid;
240 	u8 fid;
241 };
242 
243 struct gswip_priv {
244 	__iomem void *gswip;
245 	__iomem void *mdio;
246 	__iomem void *mii;
247 	const struct gswip_hw_info *hw_info;
248 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
249 	struct dsa_switch *ds;
250 	struct device *dev;
251 	struct regmap *rcu_regmap;
252 	struct gswip_vlan vlans[64];
253 	int num_gphy_fw;
254 	struct gswip_gphy_fw *gphy_fw;
255 	u32 port_vlan_filter;
256 };
257 
258 struct gswip_pce_table_entry {
259 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
260 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
261 	u16 key[8];
262 	u16 val[5];
263 	u16 mask;
264 	u8 gmap;
265 	bool type;
266 	bool valid;
267 	bool key_mode;
268 };
269 
270 struct gswip_rmon_cnt_desc {
271 	unsigned int size;
272 	unsigned int offset;
273 	const char *name;
274 };
275 
276 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
277 
278 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
279 	/** Receive Packet Count (only packets that are accepted and not discarded). */
280 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
281 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
282 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
283 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
284 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
285 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
286 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
287 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
288 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
289 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
290 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
291 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
292 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
293 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
294 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
295 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
296 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
297 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
298 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
299 	MIB_DESC(2, 0x24, "RxGoodBytes"),
300 	MIB_DESC(2, 0x26, "RxBadBytes"),
301 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
302 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
303 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
304 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
305 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
306 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
307 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
308 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
309 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
310 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
311 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
312 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
313 	MIB_DESC(1, 0x09, "TxMultCollCount"),
314 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
315 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
316 	MIB_DESC(1, 0x0D, "TxPauseCount"),
317 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
318 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
319 };
320 
321 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
322 {
323 	return __raw_readl(priv->gswip + (offset * 4));
324 }
325 
326 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
327 {
328 	__raw_writel(val, priv->gswip + (offset * 4));
329 }
330 
331 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
332 			      u32 offset)
333 {
334 	u32 val = gswip_switch_r(priv, offset);
335 
336 	val &= ~(clear);
337 	val |= set;
338 	gswip_switch_w(priv, val, offset);
339 }
340 
341 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
342 				  u32 cleared)
343 {
344 	u32 val;
345 
346 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
347 				  (val & cleared) == 0, 20, 50000);
348 }
349 
350 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
351 {
352 	return __raw_readl(priv->mdio + (offset * 4));
353 }
354 
355 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
356 {
357 	__raw_writel(val, priv->mdio + (offset * 4));
358 }
359 
360 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
361 			    u32 offset)
362 {
363 	u32 val = gswip_mdio_r(priv, offset);
364 
365 	val &= ~(clear);
366 	val |= set;
367 	gswip_mdio_w(priv, val, offset);
368 }
369 
370 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
371 {
372 	return __raw_readl(priv->mii + (offset * 4));
373 }
374 
375 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
376 {
377 	__raw_writel(val, priv->mii + (offset * 4));
378 }
379 
380 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
381 			   u32 offset)
382 {
383 	u32 val = gswip_mii_r(priv, offset);
384 
385 	val &= ~(clear);
386 	val |= set;
387 	gswip_mii_w(priv, val, offset);
388 }
389 
390 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
391 			       int port)
392 {
393 	/* There's no MII_CFG register for the CPU port */
394 	if (!dsa_is_cpu_port(priv->ds, port))
395 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
396 }
397 
398 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
399 				int port)
400 {
401 	switch (port) {
402 	case 0:
403 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
404 		break;
405 	case 1:
406 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
407 		break;
408 	case 5:
409 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
410 		break;
411 	}
412 }
413 
414 static int gswip_mdio_poll(struct gswip_priv *priv)
415 {
416 	int cnt = 100;
417 
418 	while (likely(cnt--)) {
419 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
420 
421 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
422 			return 0;
423 		usleep_range(20, 40);
424 	}
425 
426 	return -ETIMEDOUT;
427 }
428 
429 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
430 {
431 	struct gswip_priv *priv = bus->priv;
432 	int err;
433 
434 	err = gswip_mdio_poll(priv);
435 	if (err) {
436 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
437 		return err;
438 	}
439 
440 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
441 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
442 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
443 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
444 		GSWIP_MDIO_CTRL);
445 
446 	return 0;
447 }
448 
449 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
450 {
451 	struct gswip_priv *priv = bus->priv;
452 	int err;
453 
454 	err = gswip_mdio_poll(priv);
455 	if (err) {
456 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
457 		return err;
458 	}
459 
460 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
461 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
462 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
463 		GSWIP_MDIO_CTRL);
464 
465 	err = gswip_mdio_poll(priv);
466 	if (err) {
467 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
468 		return err;
469 	}
470 
471 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
472 }
473 
474 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
475 {
476 	struct dsa_switch *ds = priv->ds;
477 
478 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
479 	if (!ds->slave_mii_bus)
480 		return -ENOMEM;
481 
482 	ds->slave_mii_bus->priv = priv;
483 	ds->slave_mii_bus->read = gswip_mdio_rd;
484 	ds->slave_mii_bus->write = gswip_mdio_wr;
485 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
486 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
487 		 dev_name(priv->dev));
488 	ds->slave_mii_bus->parent = priv->dev;
489 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
490 
491 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
492 }
493 
494 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
495 				      struct gswip_pce_table_entry *tbl)
496 {
497 	int i;
498 	int err;
499 	u16 crtl;
500 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
501 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
502 
503 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
504 				     GSWIP_PCE_TBL_CTRL_BAS);
505 	if (err)
506 		return err;
507 
508 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
509 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
510 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
511 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
512 			  GSWIP_PCE_TBL_CTRL);
513 
514 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
515 				     GSWIP_PCE_TBL_CTRL_BAS);
516 	if (err)
517 		return err;
518 
519 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
520 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
521 
522 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
523 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
524 
525 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
526 
527 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
528 
529 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
530 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
531 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
532 
533 	return 0;
534 }
535 
536 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
537 				       struct gswip_pce_table_entry *tbl)
538 {
539 	int i;
540 	int err;
541 	u16 crtl;
542 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
543 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
544 
545 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
546 				     GSWIP_PCE_TBL_CTRL_BAS);
547 	if (err)
548 		return err;
549 
550 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
551 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
552 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
553 			  tbl->table | addr_mode,
554 			  GSWIP_PCE_TBL_CTRL);
555 
556 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
557 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
558 
559 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
560 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
561 
562 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
563 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
564 			  tbl->table | addr_mode,
565 			  GSWIP_PCE_TBL_CTRL);
566 
567 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
568 
569 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
570 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
571 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
572 	if (tbl->type)
573 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
574 	if (tbl->valid)
575 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
576 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
577 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
578 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
579 
580 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
581 				      GSWIP_PCE_TBL_CTRL_BAS);
582 }
583 
584 /* Add the LAN port into a bridge with the CPU port by
585  * default. This prevents automatic forwarding of
586  * packages between the LAN ports when no explicit
587  * bridge is configured.
588  */
589 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
590 {
591 	struct gswip_pce_table_entry vlan_active = {0,};
592 	struct gswip_pce_table_entry vlan_mapping = {0,};
593 	unsigned int cpu_port = priv->hw_info->cpu_port;
594 	unsigned int max_ports = priv->hw_info->max_ports;
595 	int err;
596 
597 	if (port >= max_ports) {
598 		dev_err(priv->dev, "single port for %i supported\n", port);
599 		return -EIO;
600 	}
601 
602 	vlan_active.index = port + 1;
603 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
604 	vlan_active.key[0] = 0; /* vid */
605 	vlan_active.val[0] = port + 1 /* fid */;
606 	vlan_active.valid = add;
607 	err = gswip_pce_table_entry_write(priv, &vlan_active);
608 	if (err) {
609 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
610 		return err;
611 	}
612 
613 	if (!add)
614 		return 0;
615 
616 	vlan_mapping.index = port + 1;
617 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
618 	vlan_mapping.val[0] = 0 /* vid */;
619 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
620 	vlan_mapping.val[2] = 0;
621 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
622 	if (err) {
623 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
624 		return err;
625 	}
626 
627 	return 0;
628 }
629 
630 static int gswip_port_enable(struct dsa_switch *ds, int port,
631 			     struct phy_device *phydev)
632 {
633 	struct gswip_priv *priv = ds->priv;
634 	int err;
635 
636 	if (!dsa_is_user_port(ds, port))
637 		return 0;
638 
639 	if (!dsa_is_cpu_port(ds, port)) {
640 		err = gswip_add_single_port_br(priv, port, true);
641 		if (err)
642 			return err;
643 	}
644 
645 	/* RMON Counter Enable for port */
646 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
647 
648 	/* enable port fetch/store dma & VLAN Modification */
649 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
650 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
651 			 GSWIP_FDMA_PCTRLp(port));
652 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
653 			  GSWIP_SDMA_PCTRLp(port));
654 
655 	if (!dsa_is_cpu_port(ds, port)) {
656 		u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
657 			      GSWIP_MDIO_PHY_SPEED_AUTO |
658 			      GSWIP_MDIO_PHY_FDUP_AUTO |
659 			      GSWIP_MDIO_PHY_FCONTX_AUTO |
660 			      GSWIP_MDIO_PHY_FCONRX_AUTO |
661 			      (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
662 
663 		gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
664 		/* Activate MDIO auto polling */
665 		gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
666 	}
667 
668 	return 0;
669 }
670 
671 static void gswip_port_disable(struct dsa_switch *ds, int port)
672 {
673 	struct gswip_priv *priv = ds->priv;
674 
675 	if (!dsa_is_user_port(ds, port))
676 		return;
677 
678 	if (!dsa_is_cpu_port(ds, port)) {
679 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
680 				GSWIP_MDIO_PHY_LINK_MASK,
681 				GSWIP_MDIO_PHYp(port));
682 		/* Deactivate MDIO auto polling */
683 		gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
684 	}
685 
686 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
687 			  GSWIP_FDMA_PCTRLp(port));
688 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
689 			  GSWIP_SDMA_PCTRLp(port));
690 }
691 
692 static int gswip_pce_load_microcode(struct gswip_priv *priv)
693 {
694 	int i;
695 	int err;
696 
697 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
698 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
699 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
700 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
701 
702 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
703 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
704 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
705 			       GSWIP_PCE_TBL_VAL(0));
706 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
707 			       GSWIP_PCE_TBL_VAL(1));
708 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
709 			       GSWIP_PCE_TBL_VAL(2));
710 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
711 			       GSWIP_PCE_TBL_VAL(3));
712 
713 		/* start the table access: */
714 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
715 				  GSWIP_PCE_TBL_CTRL);
716 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
717 					     GSWIP_PCE_TBL_CTRL_BAS);
718 		if (err)
719 			return err;
720 	}
721 
722 	/* tell the switch that the microcode is loaded */
723 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
724 			  GSWIP_PCE_GCTRL_0);
725 
726 	return 0;
727 }
728 
729 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
730 				     bool vlan_filtering,
731 				     struct switchdev_trans *trans)
732 {
733 	struct gswip_priv *priv = ds->priv;
734 
735 	/* Do not allow changing the VLAN filtering options while in bridge */
736 	if (switchdev_trans_ph_prepare(trans)) {
737 		struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
738 
739 		if (!bridge)
740 			return 0;
741 
742 		if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering)
743 			return -EIO;
744 
745 		return 0;
746 	}
747 
748 	if (vlan_filtering) {
749 		/* Use port based VLAN tag */
750 		gswip_switch_mask(priv,
751 				  GSWIP_PCE_VCTRL_VSR,
752 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
753 				  GSWIP_PCE_VCTRL_VEMR,
754 				  GSWIP_PCE_VCTRL(port));
755 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
756 				  GSWIP_PCE_PCTRL_0p(port));
757 	} else {
758 		/* Use port based VLAN tag */
759 		gswip_switch_mask(priv,
760 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
761 				  GSWIP_PCE_VCTRL_VEMR,
762 				  GSWIP_PCE_VCTRL_VSR,
763 				  GSWIP_PCE_VCTRL(port));
764 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
765 				  GSWIP_PCE_PCTRL_0p(port));
766 	}
767 
768 	return 0;
769 }
770 
771 static int gswip_setup(struct dsa_switch *ds)
772 {
773 	struct gswip_priv *priv = ds->priv;
774 	unsigned int cpu_port = priv->hw_info->cpu_port;
775 	int i;
776 	int err;
777 
778 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
779 	usleep_range(5000, 10000);
780 	gswip_switch_w(priv, 0, GSWIP_SWRES);
781 
782 	/* disable port fetch/store dma on all ports */
783 	for (i = 0; i < priv->hw_info->max_ports; i++) {
784 		struct switchdev_trans trans;
785 
786 		/* Skip the prepare phase, this shouldn't return an error
787 		 * during setup.
788 		 */
789 		trans.ph_prepare = false;
790 
791 		gswip_port_disable(ds, i);
792 		gswip_port_vlan_filtering(ds, i, false, &trans);
793 	}
794 
795 	/* enable Switch */
796 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
797 
798 	err = gswip_pce_load_microcode(priv);
799 	if (err) {
800 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
801 		return err;
802 	}
803 
804 	/* Default unknown Broadcast/Multicast/Unicast port maps */
805 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
806 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
807 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
808 
809 	/* disable PHY auto polling */
810 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
811 	/* Configure the MDIO Clock 2.5 MHz */
812 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
813 
814 	/* Disable the xMII link */
815 	for (i = 0; i < priv->hw_info->max_ports; i++)
816 		gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, i);
817 
818 	/* enable special tag insertion on cpu port */
819 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
820 			  GSWIP_FDMA_PCTRLp(cpu_port));
821 
822 	/* accept special tag in ingress direction */
823 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
824 			  GSWIP_PCE_PCTRL_0p(cpu_port));
825 
826 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
827 			  GSWIP_MAC_CTRL_2p(cpu_port));
828 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
829 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
830 			  GSWIP_BM_QUEUE_GCTRL);
831 
832 	/* VLAN aware Switching */
833 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
834 
835 	/* Flush MAC Table */
836 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
837 
838 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
839 				     GSWIP_PCE_GCTRL_0_MTFL);
840 	if (err) {
841 		dev_err(priv->dev, "MAC flushing didn't finish\n");
842 		return err;
843 	}
844 
845 	gswip_port_enable(ds, cpu_port, NULL);
846 	return 0;
847 }
848 
849 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
850 						    int port,
851 						    enum dsa_tag_protocol mp)
852 {
853 	return DSA_TAG_PROTO_GSWIP;
854 }
855 
856 static int gswip_vlan_active_create(struct gswip_priv *priv,
857 				    struct net_device *bridge,
858 				    int fid, u16 vid)
859 {
860 	struct gswip_pce_table_entry vlan_active = {0,};
861 	unsigned int max_ports = priv->hw_info->max_ports;
862 	int idx = -1;
863 	int err;
864 	int i;
865 
866 	/* Look for a free slot */
867 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
868 		if (!priv->vlans[i].bridge) {
869 			idx = i;
870 			break;
871 		}
872 	}
873 
874 	if (idx == -1)
875 		return -ENOSPC;
876 
877 	if (fid == -1)
878 		fid = idx;
879 
880 	vlan_active.index = idx;
881 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
882 	vlan_active.key[0] = vid;
883 	vlan_active.val[0] = fid;
884 	vlan_active.valid = true;
885 
886 	err = gswip_pce_table_entry_write(priv, &vlan_active);
887 	if (err) {
888 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
889 		return err;
890 	}
891 
892 	priv->vlans[idx].bridge = bridge;
893 	priv->vlans[idx].vid = vid;
894 	priv->vlans[idx].fid = fid;
895 
896 	return idx;
897 }
898 
899 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
900 {
901 	struct gswip_pce_table_entry vlan_active = {0,};
902 	int err;
903 
904 	vlan_active.index = idx;
905 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
906 	vlan_active.valid = false;
907 	err = gswip_pce_table_entry_write(priv, &vlan_active);
908 	if (err)
909 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
910 	priv->vlans[idx].bridge = NULL;
911 
912 	return err;
913 }
914 
915 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
916 				  struct net_device *bridge, int port)
917 {
918 	struct gswip_pce_table_entry vlan_mapping = {0,};
919 	unsigned int max_ports = priv->hw_info->max_ports;
920 	unsigned int cpu_port = priv->hw_info->cpu_port;
921 	bool active_vlan_created = false;
922 	int idx = -1;
923 	int i;
924 	int err;
925 
926 	/* Check if there is already a page for this bridge */
927 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
928 		if (priv->vlans[i].bridge == bridge) {
929 			idx = i;
930 			break;
931 		}
932 	}
933 
934 	/* If this bridge is not programmed yet, add a Active VLAN table
935 	 * entry in a free slot and prepare the VLAN mapping table entry.
936 	 */
937 	if (idx == -1) {
938 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
939 		if (idx < 0)
940 			return idx;
941 		active_vlan_created = true;
942 
943 		vlan_mapping.index = idx;
944 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
945 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
946 		vlan_mapping.val[0] = 0;
947 	} else {
948 		/* Read the existing VLAN mapping entry from the switch */
949 		vlan_mapping.index = idx;
950 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
951 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
952 		if (err) {
953 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
954 				err);
955 			return err;
956 		}
957 	}
958 
959 	/* Update the VLAN mapping entry and write it to the switch */
960 	vlan_mapping.val[1] |= BIT(cpu_port);
961 	vlan_mapping.val[1] |= BIT(port);
962 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
963 	if (err) {
964 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
965 		/* In case an Active VLAN was creaetd delete it again */
966 		if (active_vlan_created)
967 			gswip_vlan_active_remove(priv, idx);
968 		return err;
969 	}
970 
971 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
972 	return 0;
973 }
974 
975 static int gswip_vlan_add_aware(struct gswip_priv *priv,
976 				struct net_device *bridge, int port,
977 				u16 vid, bool untagged,
978 				bool pvid)
979 {
980 	struct gswip_pce_table_entry vlan_mapping = {0,};
981 	unsigned int max_ports = priv->hw_info->max_ports;
982 	unsigned int cpu_port = priv->hw_info->cpu_port;
983 	bool active_vlan_created = false;
984 	int idx = -1;
985 	int fid = -1;
986 	int i;
987 	int err;
988 
989 	/* Check if there is already a page for this bridge */
990 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
991 		if (priv->vlans[i].bridge == bridge) {
992 			if (fid != -1 && fid != priv->vlans[i].fid)
993 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
994 			fid = priv->vlans[i].fid;
995 			if (priv->vlans[i].vid == vid) {
996 				idx = i;
997 				break;
998 			}
999 		}
1000 	}
1001 
1002 	/* If this bridge is not programmed yet, add a Active VLAN table
1003 	 * entry in a free slot and prepare the VLAN mapping table entry.
1004 	 */
1005 	if (idx == -1) {
1006 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1007 		if (idx < 0)
1008 			return idx;
1009 		active_vlan_created = true;
1010 
1011 		vlan_mapping.index = idx;
1012 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1013 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1014 		vlan_mapping.val[0] = vid;
1015 	} else {
1016 		/* Read the existing VLAN mapping entry from the switch */
1017 		vlan_mapping.index = idx;
1018 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1019 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1020 		if (err) {
1021 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1022 				err);
1023 			return err;
1024 		}
1025 	}
1026 
1027 	vlan_mapping.val[0] = vid;
1028 	/* Update the VLAN mapping entry and write it to the switch */
1029 	vlan_mapping.val[1] |= BIT(cpu_port);
1030 	vlan_mapping.val[2] |= BIT(cpu_port);
1031 	vlan_mapping.val[1] |= BIT(port);
1032 	if (untagged)
1033 		vlan_mapping.val[2] &= ~BIT(port);
1034 	else
1035 		vlan_mapping.val[2] |= BIT(port);
1036 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1037 	if (err) {
1038 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1039 		/* In case an Active VLAN was creaetd delete it again */
1040 		if (active_vlan_created)
1041 			gswip_vlan_active_remove(priv, idx);
1042 		return err;
1043 	}
1044 
1045 	if (pvid)
1046 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1047 
1048 	return 0;
1049 }
1050 
1051 static int gswip_vlan_remove(struct gswip_priv *priv,
1052 			     struct net_device *bridge, int port,
1053 			     u16 vid, bool pvid, bool vlan_aware)
1054 {
1055 	struct gswip_pce_table_entry vlan_mapping = {0,};
1056 	unsigned int max_ports = priv->hw_info->max_ports;
1057 	unsigned int cpu_port = priv->hw_info->cpu_port;
1058 	int idx = -1;
1059 	int i;
1060 	int err;
1061 
1062 	/* Check if there is already a page for this bridge */
1063 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1064 		if (priv->vlans[i].bridge == bridge &&
1065 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1066 			idx = i;
1067 			break;
1068 		}
1069 	}
1070 
1071 	if (idx == -1) {
1072 		dev_err(priv->dev, "bridge to leave does not exists\n");
1073 		return -ENOENT;
1074 	}
1075 
1076 	vlan_mapping.index = idx;
1077 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1078 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1079 	if (err) {
1080 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1081 		return err;
1082 	}
1083 
1084 	vlan_mapping.val[1] &= ~BIT(port);
1085 	vlan_mapping.val[2] &= ~BIT(port);
1086 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1087 	if (err) {
1088 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1089 		return err;
1090 	}
1091 
1092 	/* In case all ports are removed from the bridge, remove the VLAN */
1093 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1094 		err = gswip_vlan_active_remove(priv, idx);
1095 		if (err) {
1096 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1097 				err);
1098 			return err;
1099 		}
1100 	}
1101 
1102 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1103 	if (pvid)
1104 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1105 
1106 	return 0;
1107 }
1108 
1109 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1110 				  struct net_device *bridge)
1111 {
1112 	struct gswip_priv *priv = ds->priv;
1113 	int err;
1114 
1115 	/* When the bridge uses VLAN filtering we have to configure VLAN
1116 	 * specific bridges. No bridge is configured here.
1117 	 */
1118 	if (!br_vlan_enabled(bridge)) {
1119 		err = gswip_vlan_add_unaware(priv, bridge, port);
1120 		if (err)
1121 			return err;
1122 		priv->port_vlan_filter &= ~BIT(port);
1123 	} else {
1124 		priv->port_vlan_filter |= BIT(port);
1125 	}
1126 	return gswip_add_single_port_br(priv, port, false);
1127 }
1128 
1129 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1130 				    struct net_device *bridge)
1131 {
1132 	struct gswip_priv *priv = ds->priv;
1133 
1134 	gswip_add_single_port_br(priv, port, true);
1135 
1136 	/* When the bridge uses VLAN filtering we have to configure VLAN
1137 	 * specific bridges. No bridge is configured here.
1138 	 */
1139 	if (!br_vlan_enabled(bridge))
1140 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1141 }
1142 
1143 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1144 				   const struct switchdev_obj_port_vlan *vlan)
1145 {
1146 	struct gswip_priv *priv = ds->priv;
1147 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1148 	unsigned int max_ports = priv->hw_info->max_ports;
1149 	u16 vid;
1150 	int i;
1151 	int pos = max_ports;
1152 
1153 	/* We only support VLAN filtering on bridges */
1154 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1155 		return -EOPNOTSUPP;
1156 
1157 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1158 		int idx = -1;
1159 
1160 		/* Check if there is already a page for this VLAN */
1161 		for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1162 			if (priv->vlans[i].bridge == bridge &&
1163 			    priv->vlans[i].vid == vid) {
1164 				idx = i;
1165 				break;
1166 			}
1167 		}
1168 
1169 		/* If this VLAN is not programmed yet, we have to reserve
1170 		 * one entry in the VLAN table. Make sure we start at the
1171 		 * next position round.
1172 		 */
1173 		if (idx == -1) {
1174 			/* Look for a free slot */
1175 			for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1176 				if (!priv->vlans[pos].bridge) {
1177 					idx = pos;
1178 					pos++;
1179 					break;
1180 				}
1181 			}
1182 
1183 			if (idx == -1)
1184 				return -ENOSPC;
1185 		}
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1192 				const struct switchdev_obj_port_vlan *vlan)
1193 {
1194 	struct gswip_priv *priv = ds->priv;
1195 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1196 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1197 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1198 	u16 vid;
1199 
1200 	/* We have to receive all packets on the CPU port and should not
1201 	 * do any VLAN filtering here. This is also called with bridge
1202 	 * NULL and then we do not know for which bridge to configure
1203 	 * this.
1204 	 */
1205 	if (dsa_is_cpu_port(ds, port))
1206 		return;
1207 
1208 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1209 		gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1210 }
1211 
1212 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1213 			       const struct switchdev_obj_port_vlan *vlan)
1214 {
1215 	struct gswip_priv *priv = ds->priv;
1216 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1217 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1218 	u16 vid;
1219 	int err;
1220 
1221 	/* We have to receive all packets on the CPU port and should not
1222 	 * do any VLAN filtering here. This is also called with bridge
1223 	 * NULL and then we do not know for which bridge to configure
1224 	 * this.
1225 	 */
1226 	if (dsa_is_cpu_port(ds, port))
1227 		return 0;
1228 
1229 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1230 		err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1231 		if (err)
1232 			return err;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1239 {
1240 	struct gswip_priv *priv = ds->priv;
1241 	struct gswip_pce_table_entry mac_bridge = {0,};
1242 	int i;
1243 	int err;
1244 
1245 	for (i = 0; i < 2048; i++) {
1246 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1247 		mac_bridge.index = i;
1248 
1249 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1250 		if (err) {
1251 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1252 				err);
1253 			return;
1254 		}
1255 
1256 		if (!mac_bridge.valid)
1257 			continue;
1258 
1259 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1260 			continue;
1261 
1262 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1263 			continue;
1264 
1265 		mac_bridge.valid = false;
1266 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1267 		if (err) {
1268 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1269 				err);
1270 			return;
1271 		}
1272 	}
1273 }
1274 
1275 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1276 {
1277 	struct gswip_priv *priv = ds->priv;
1278 	u32 stp_state;
1279 
1280 	switch (state) {
1281 	case BR_STATE_DISABLED:
1282 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1283 				  GSWIP_SDMA_PCTRLp(port));
1284 		return;
1285 	case BR_STATE_BLOCKING:
1286 	case BR_STATE_LISTENING:
1287 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1288 		break;
1289 	case BR_STATE_LEARNING:
1290 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1291 		break;
1292 	case BR_STATE_FORWARDING:
1293 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1294 		break;
1295 	default:
1296 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1297 		return;
1298 	}
1299 
1300 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1301 			  GSWIP_SDMA_PCTRLp(port));
1302 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1303 			  GSWIP_PCE_PCTRL_0p(port));
1304 }
1305 
1306 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1307 			  const unsigned char *addr, u16 vid, bool add)
1308 {
1309 	struct gswip_priv *priv = ds->priv;
1310 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1311 	struct gswip_pce_table_entry mac_bridge = {0,};
1312 	unsigned int cpu_port = priv->hw_info->cpu_port;
1313 	int fid = -1;
1314 	int i;
1315 	int err;
1316 
1317 	if (!bridge)
1318 		return -EINVAL;
1319 
1320 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1321 		if (priv->vlans[i].bridge == bridge) {
1322 			fid = priv->vlans[i].fid;
1323 			break;
1324 		}
1325 	}
1326 
1327 	if (fid == -1) {
1328 		dev_err(priv->dev, "Port not part of a bridge\n");
1329 		return -EINVAL;
1330 	}
1331 
1332 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1333 	mac_bridge.key_mode = true;
1334 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1335 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1336 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1337 	mac_bridge.key[3] = fid;
1338 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1339 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1340 	mac_bridge.valid = add;
1341 
1342 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1343 	if (err)
1344 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1345 
1346 	return err;
1347 }
1348 
1349 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1350 			      const unsigned char *addr, u16 vid)
1351 {
1352 	return gswip_port_fdb(ds, port, addr, vid, true);
1353 }
1354 
1355 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1356 			      const unsigned char *addr, u16 vid)
1357 {
1358 	return gswip_port_fdb(ds, port, addr, vid, false);
1359 }
1360 
1361 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1362 			       dsa_fdb_dump_cb_t *cb, void *data)
1363 {
1364 	struct gswip_priv *priv = ds->priv;
1365 	struct gswip_pce_table_entry mac_bridge = {0,};
1366 	unsigned char addr[6];
1367 	int i;
1368 	int err;
1369 
1370 	for (i = 0; i < 2048; i++) {
1371 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1372 		mac_bridge.index = i;
1373 
1374 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1375 		if (err) {
1376 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1377 				err);
1378 			return err;
1379 		}
1380 
1381 		if (!mac_bridge.valid)
1382 			continue;
1383 
1384 		addr[5] = mac_bridge.key[0] & 0xff;
1385 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1386 		addr[3] = mac_bridge.key[1] & 0xff;
1387 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1388 		addr[1] = mac_bridge.key[2] & 0xff;
1389 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1390 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1391 			if (mac_bridge.val[0] & BIT(port))
1392 				cb(addr, 0, true, data);
1393 		} else {
1394 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1395 				cb(addr, 0, false, data);
1396 		}
1397 	}
1398 	return 0;
1399 }
1400 
1401 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1402 				   unsigned long *supported,
1403 				   struct phylink_link_state *state)
1404 {
1405 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1406 
1407 	switch (port) {
1408 	case 0:
1409 	case 1:
1410 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1411 		    state->interface != PHY_INTERFACE_MODE_MII &&
1412 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1413 		    state->interface != PHY_INTERFACE_MODE_RMII)
1414 			goto unsupported;
1415 		break;
1416 	case 2:
1417 	case 3:
1418 	case 4:
1419 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1420 			goto unsupported;
1421 		break;
1422 	case 5:
1423 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1424 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1425 			goto unsupported;
1426 		break;
1427 	default:
1428 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1429 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1430 		return;
1431 	}
1432 
1433 	/* Allow all the expected bits */
1434 	phylink_set(mask, Autoneg);
1435 	phylink_set_port_modes(mask);
1436 	phylink_set(mask, Pause);
1437 	phylink_set(mask, Asym_Pause);
1438 
1439 	/* With the exclusion of MII, Reverse MII and Reduced MII, we
1440 	 * support Gigabit, including Half duplex
1441 	 */
1442 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1443 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
1444 	    state->interface != PHY_INTERFACE_MODE_RMII) {
1445 		phylink_set(mask, 1000baseT_Full);
1446 		phylink_set(mask, 1000baseT_Half);
1447 	}
1448 
1449 	phylink_set(mask, 10baseT_Half);
1450 	phylink_set(mask, 10baseT_Full);
1451 	phylink_set(mask, 100baseT_Half);
1452 	phylink_set(mask, 100baseT_Full);
1453 
1454 	bitmap_and(supported, supported, mask,
1455 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1456 	bitmap_and(state->advertising, state->advertising, mask,
1457 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1458 	return;
1459 
1460 unsupported:
1461 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1462 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1463 		phy_modes(state->interface), port);
1464 	return;
1465 }
1466 
1467 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1468 				     unsigned int mode,
1469 				     const struct phylink_link_state *state)
1470 {
1471 	struct gswip_priv *priv = ds->priv;
1472 	u32 miicfg = 0;
1473 
1474 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1475 
1476 	switch (state->interface) {
1477 	case PHY_INTERFACE_MODE_MII:
1478 	case PHY_INTERFACE_MODE_INTERNAL:
1479 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1480 		break;
1481 	case PHY_INTERFACE_MODE_REVMII:
1482 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1483 		break;
1484 	case PHY_INTERFACE_MODE_RMII:
1485 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1486 		break;
1487 	case PHY_INTERFACE_MODE_RGMII:
1488 	case PHY_INTERFACE_MODE_RGMII_ID:
1489 	case PHY_INTERFACE_MODE_RGMII_RXID:
1490 	case PHY_INTERFACE_MODE_RGMII_TXID:
1491 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1492 		break;
1493 	default:
1494 		dev_err(ds->dev,
1495 			"Unsupported interface: %d\n", state->interface);
1496 		return;
1497 	}
1498 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
1499 
1500 	switch (state->interface) {
1501 	case PHY_INTERFACE_MODE_RGMII_ID:
1502 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1503 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1504 		break;
1505 	case PHY_INTERFACE_MODE_RGMII_RXID:
1506 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1507 		break;
1508 	case PHY_INTERFACE_MODE_RGMII_TXID:
1509 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1510 		break;
1511 	default:
1512 		break;
1513 	}
1514 }
1515 
1516 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1517 					unsigned int mode,
1518 					phy_interface_t interface)
1519 {
1520 	struct gswip_priv *priv = ds->priv;
1521 
1522 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1523 }
1524 
1525 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1526 				      unsigned int mode,
1527 				      phy_interface_t interface,
1528 				      struct phy_device *phydev,
1529 				      int speed, int duplex,
1530 				      bool tx_pause, bool rx_pause)
1531 {
1532 	struct gswip_priv *priv = ds->priv;
1533 
1534 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1535 }
1536 
1537 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1538 			      uint8_t *data)
1539 {
1540 	int i;
1541 
1542 	if (stringset != ETH_SS_STATS)
1543 		return;
1544 
1545 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1546 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1547 			ETH_GSTRING_LEN);
1548 }
1549 
1550 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1551 				    u32 index)
1552 {
1553 	u32 result;
1554 	int err;
1555 
1556 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1557 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1558 				GSWIP_BM_RAM_CTRL_OPMOD,
1559 			      table | GSWIP_BM_RAM_CTRL_BAS,
1560 			      GSWIP_BM_RAM_CTRL);
1561 
1562 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1563 				     GSWIP_BM_RAM_CTRL_BAS);
1564 	if (err) {
1565 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1566 			table, index);
1567 		return 0;
1568 	}
1569 
1570 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1571 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1572 
1573 	return result;
1574 }
1575 
1576 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1577 				    uint64_t *data)
1578 {
1579 	struct gswip_priv *priv = ds->priv;
1580 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1581 	int i;
1582 	u64 high;
1583 
1584 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1585 		rmon_cnt = &gswip_rmon_cnt[i];
1586 
1587 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1588 						   rmon_cnt->offset);
1589 		if (rmon_cnt->size == 2) {
1590 			high = gswip_bcm_ram_entry_read(priv, port,
1591 							rmon_cnt->offset + 1);
1592 			data[i] |= high << 32;
1593 		}
1594 	}
1595 }
1596 
1597 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1598 {
1599 	if (sset != ETH_SS_STATS)
1600 		return 0;
1601 
1602 	return ARRAY_SIZE(gswip_rmon_cnt);
1603 }
1604 
1605 static const struct dsa_switch_ops gswip_switch_ops = {
1606 	.get_tag_protocol	= gswip_get_tag_protocol,
1607 	.setup			= gswip_setup,
1608 	.port_enable		= gswip_port_enable,
1609 	.port_disable		= gswip_port_disable,
1610 	.port_bridge_join	= gswip_port_bridge_join,
1611 	.port_bridge_leave	= gswip_port_bridge_leave,
1612 	.port_fast_age		= gswip_port_fast_age,
1613 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1614 	.port_vlan_prepare	= gswip_port_vlan_prepare,
1615 	.port_vlan_add		= gswip_port_vlan_add,
1616 	.port_vlan_del		= gswip_port_vlan_del,
1617 	.port_stp_state_set	= gswip_port_stp_state_set,
1618 	.port_fdb_add		= gswip_port_fdb_add,
1619 	.port_fdb_del		= gswip_port_fdb_del,
1620 	.port_fdb_dump		= gswip_port_fdb_dump,
1621 	.phylink_validate	= gswip_phylink_validate,
1622 	.phylink_mac_config	= gswip_phylink_mac_config,
1623 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1624 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1625 	.get_strings		= gswip_get_strings,
1626 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1627 	.get_sset_count		= gswip_get_sset_count,
1628 };
1629 
1630 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1631 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1632 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1633 };
1634 
1635 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1636 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1637 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1638 };
1639 
1640 static const struct xway_gphy_match_data xrx300_gphy_data = {
1641 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1642 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1643 };
1644 
1645 static const struct of_device_id xway_gphy_match[] = {
1646 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1647 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1648 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1649 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1650 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1651 	{},
1652 };
1653 
1654 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1655 {
1656 	struct device *dev = priv->dev;
1657 	const struct firmware *fw;
1658 	void *fw_addr;
1659 	dma_addr_t dma_addr;
1660 	dma_addr_t dev_addr;
1661 	size_t size;
1662 	int ret;
1663 
1664 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1665 	if (ret)
1666 		return ret;
1667 
1668 	reset_control_assert(gphy_fw->reset);
1669 
1670 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1671 	if (ret) {
1672 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1673 			gphy_fw->fw_name, ret);
1674 		return ret;
1675 	}
1676 
1677 	/* GPHY cores need the firmware code in a persistent and contiguous
1678 	 * memory area with a 16 kB boundary aligned start address.
1679 	 */
1680 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1681 
1682 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1683 	if (fw_addr) {
1684 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1685 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1686 		memcpy(fw_addr, fw->data, fw->size);
1687 	} else {
1688 		dev_err(dev, "failed to alloc firmware memory\n");
1689 		release_firmware(fw);
1690 		return -ENOMEM;
1691 	}
1692 
1693 	release_firmware(fw);
1694 
1695 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1696 	if (ret)
1697 		return ret;
1698 
1699 	reset_control_deassert(gphy_fw->reset);
1700 
1701 	return ret;
1702 }
1703 
1704 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1705 			       struct gswip_gphy_fw *gphy_fw,
1706 			       struct device_node *gphy_fw_np, int i)
1707 {
1708 	struct device *dev = priv->dev;
1709 	u32 gphy_mode;
1710 	int ret;
1711 	char gphyname[10];
1712 
1713 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1714 
1715 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1716 	if (IS_ERR(gphy_fw->clk_gate)) {
1717 		dev_err(dev, "Failed to lookup gate clock\n");
1718 		return PTR_ERR(gphy_fw->clk_gate);
1719 	}
1720 
1721 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1722 	if (ret)
1723 		return ret;
1724 
1725 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1726 	/* Default to GE mode */
1727 	if (ret)
1728 		gphy_mode = GPHY_MODE_GE;
1729 
1730 	switch (gphy_mode) {
1731 	case GPHY_MODE_FE:
1732 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1733 		break;
1734 	case GPHY_MODE_GE:
1735 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1736 		break;
1737 	default:
1738 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1739 		return -EINVAL;
1740 	}
1741 
1742 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1743 	if (IS_ERR(gphy_fw->reset)) {
1744 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1745 			dev_err(dev, "Failed to lookup gphy reset\n");
1746 		return PTR_ERR(gphy_fw->reset);
1747 	}
1748 
1749 	return gswip_gphy_fw_load(priv, gphy_fw);
1750 }
1751 
1752 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1753 				 struct gswip_gphy_fw *gphy_fw)
1754 {
1755 	int ret;
1756 
1757 	/* check if the device was fully probed */
1758 	if (!gphy_fw->fw_name)
1759 		return;
1760 
1761 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1762 	if (ret)
1763 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1764 
1765 	clk_disable_unprepare(gphy_fw->clk_gate);
1766 
1767 	reset_control_put(gphy_fw->reset);
1768 }
1769 
1770 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1771 			      struct device_node *gphy_fw_list_np, u32 version)
1772 {
1773 	struct device *dev = priv->dev;
1774 	struct device_node *gphy_fw_np;
1775 	const struct of_device_id *match;
1776 	int err;
1777 	int i = 0;
1778 
1779 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1780 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1781 	 * needs a different GPHY firmware.
1782 	 */
1783 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1784 		switch (version) {
1785 		case GSWIP_VERSION_2_0:
1786 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1787 			break;
1788 		case GSWIP_VERSION_2_1:
1789 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1790 			break;
1791 		default:
1792 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1793 			return -ENOENT;
1794 		}
1795 	}
1796 
1797 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1798 	if (match && match->data)
1799 		priv->gphy_fw_name_cfg = match->data;
1800 
1801 	if (!priv->gphy_fw_name_cfg) {
1802 		dev_err(dev, "GPHY compatible type not supported");
1803 		return -ENOENT;
1804 	}
1805 
1806 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1807 	if (!priv->num_gphy_fw)
1808 		return -ENOENT;
1809 
1810 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1811 							   "lantiq,rcu");
1812 	if (IS_ERR(priv->rcu_regmap))
1813 		return PTR_ERR(priv->rcu_regmap);
1814 
1815 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1816 					   sizeof(*priv->gphy_fw),
1817 					   GFP_KERNEL | __GFP_ZERO);
1818 	if (!priv->gphy_fw)
1819 		return -ENOMEM;
1820 
1821 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1822 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1823 					  gphy_fw_np, i);
1824 		if (err)
1825 			goto remove_gphy;
1826 		i++;
1827 	}
1828 
1829 	/* The standalone PHY11G requires 300ms to be fully
1830 	 * initialized and ready for any MDIO communication after being
1831 	 * taken out of reset. For the SoC-internal GPHY variant there
1832 	 * is no (known) documentation for the minimum time after a
1833 	 * reset. Use the same value as for the standalone variant as
1834 	 * some users have reported internal PHYs not being detected
1835 	 * without any delay.
1836 	 */
1837 	msleep(300);
1838 
1839 	return 0;
1840 
1841 remove_gphy:
1842 	for (i = 0; i < priv->num_gphy_fw; i++)
1843 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1844 	return err;
1845 }
1846 
1847 static int gswip_probe(struct platform_device *pdev)
1848 {
1849 	struct gswip_priv *priv;
1850 	struct device_node *mdio_np, *gphy_fw_np;
1851 	struct device *dev = &pdev->dev;
1852 	int err;
1853 	int i;
1854 	u32 version;
1855 
1856 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1857 	if (!priv)
1858 		return -ENOMEM;
1859 
1860 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1861 	if (IS_ERR(priv->gswip))
1862 		return PTR_ERR(priv->gswip);
1863 
1864 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1865 	if (IS_ERR(priv->mdio))
1866 		return PTR_ERR(priv->mdio);
1867 
1868 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1869 	if (IS_ERR(priv->mii))
1870 		return PTR_ERR(priv->mii);
1871 
1872 	priv->hw_info = of_device_get_match_data(dev);
1873 	if (!priv->hw_info)
1874 		return -EINVAL;
1875 
1876 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
1877 	if (!priv->ds)
1878 		return -ENOMEM;
1879 
1880 	priv->ds->dev = dev;
1881 	priv->ds->num_ports = priv->hw_info->max_ports;
1882 	priv->ds->priv = priv;
1883 	priv->ds->ops = &gswip_switch_ops;
1884 	priv->dev = dev;
1885 	version = gswip_switch_r(priv, GSWIP_VERSION);
1886 
1887 	/* bring up the mdio bus */
1888 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1889 	if (gphy_fw_np) {
1890 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1891 		of_node_put(gphy_fw_np);
1892 		if (err) {
1893 			dev_err(dev, "gphy fw probe failed\n");
1894 			return err;
1895 		}
1896 	}
1897 
1898 	/* bring up the mdio bus */
1899 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1900 	if (mdio_np) {
1901 		err = gswip_mdio(priv, mdio_np);
1902 		if (err) {
1903 			dev_err(dev, "mdio probe failed\n");
1904 			goto put_mdio_node;
1905 		}
1906 	}
1907 
1908 	err = dsa_register_switch(priv->ds);
1909 	if (err) {
1910 		dev_err(dev, "dsa switch register failed: %i\n", err);
1911 		goto mdio_bus;
1912 	}
1913 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1914 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1915 			priv->hw_info->cpu_port);
1916 		err = -EINVAL;
1917 		goto disable_switch;
1918 	}
1919 
1920 	platform_set_drvdata(pdev, priv);
1921 
1922 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1923 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1924 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1925 	return 0;
1926 
1927 disable_switch:
1928 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1929 	dsa_unregister_switch(priv->ds);
1930 mdio_bus:
1931 	if (mdio_np)
1932 		mdiobus_unregister(priv->ds->slave_mii_bus);
1933 put_mdio_node:
1934 	of_node_put(mdio_np);
1935 	for (i = 0; i < priv->num_gphy_fw; i++)
1936 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1937 	return err;
1938 }
1939 
1940 static int gswip_remove(struct platform_device *pdev)
1941 {
1942 	struct gswip_priv *priv = platform_get_drvdata(pdev);
1943 	int i;
1944 
1945 	/* disable the switch */
1946 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1947 
1948 	dsa_unregister_switch(priv->ds);
1949 
1950 	if (priv->ds->slave_mii_bus) {
1951 		mdiobus_unregister(priv->ds->slave_mii_bus);
1952 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
1953 	}
1954 
1955 	for (i = 0; i < priv->num_gphy_fw; i++)
1956 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1957 
1958 	return 0;
1959 }
1960 
1961 static const struct gswip_hw_info gswip_xrx200 = {
1962 	.max_ports = 7,
1963 	.cpu_port = 6,
1964 };
1965 
1966 static const struct of_device_id gswip_of_match[] = {
1967 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
1968 	{},
1969 };
1970 MODULE_DEVICE_TABLE(of, gswip_of_match);
1971 
1972 static struct platform_driver gswip_driver = {
1973 	.probe = gswip_probe,
1974 	.remove = gswip_remove,
1975 	.driver = {
1976 		.name = "gswip",
1977 		.of_match_table = gswip_of_match,
1978 	},
1979 };
1980 
1981 module_platform_driver(gswip_driver);
1982 
1983 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1984 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1985 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1986 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1987 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1988 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1989 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1990 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1991 MODULE_LICENSE("GPL v2");
1992