xref: /openbmc/linux/drivers/net/dsa/lantiq_gswip.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
217 
218 /* Ethernet Switch Fetch DMA Port Control Register */
219 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
220 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
221 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
222 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 
229 /* Ethernet Switch Store DMA Port Control Register */
230 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
231 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
232 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
233 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
234 
235 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
236 #define GSWIP_TABLE_VLAN_MAPPING	0x02
237 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
238 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
239 
240 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
241 
242 struct gswip_hw_info {
243 	int max_ports;
244 	int cpu_port;
245 	const struct dsa_switch_ops *ops;
246 };
247 
248 struct xway_gphy_match_data {
249 	char *fe_firmware_name;
250 	char *ge_firmware_name;
251 };
252 
253 struct gswip_gphy_fw {
254 	struct clk *clk_gate;
255 	struct reset_control *reset;
256 	u32 fw_addr_offset;
257 	char *fw_name;
258 };
259 
260 struct gswip_vlan {
261 	struct net_device *bridge;
262 	u16 vid;
263 	u8 fid;
264 };
265 
266 struct gswip_priv {
267 	__iomem void *gswip;
268 	__iomem void *mdio;
269 	__iomem void *mii;
270 	const struct gswip_hw_info *hw_info;
271 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
272 	struct dsa_switch *ds;
273 	struct device *dev;
274 	struct regmap *rcu_regmap;
275 	struct gswip_vlan vlans[64];
276 	int num_gphy_fw;
277 	struct gswip_gphy_fw *gphy_fw;
278 	u32 port_vlan_filter;
279 	struct mutex pce_table_lock;
280 };
281 
282 struct gswip_pce_table_entry {
283 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
284 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
285 	u16 key[8];
286 	u16 val[5];
287 	u16 mask;
288 	u8 gmap;
289 	bool type;
290 	bool valid;
291 	bool key_mode;
292 };
293 
294 struct gswip_rmon_cnt_desc {
295 	unsigned int size;
296 	unsigned int offset;
297 	const char *name;
298 };
299 
300 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
301 
302 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
303 	/** Receive Packet Count (only packets that are accepted and not discarded). */
304 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
305 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
306 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
307 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
308 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
309 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
310 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
311 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
312 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
313 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
314 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
315 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
316 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
317 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
318 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
319 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
320 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
321 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
322 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
323 	MIB_DESC(2, 0x24, "RxGoodBytes"),
324 	MIB_DESC(2, 0x26, "RxBadBytes"),
325 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
326 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
327 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
328 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
329 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
330 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
331 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
332 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
333 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
334 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
335 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
336 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
337 	MIB_DESC(1, 0x09, "TxMultCollCount"),
338 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
339 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
340 	MIB_DESC(1, 0x0D, "TxPauseCount"),
341 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
342 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
343 };
344 
345 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
346 {
347 	return __raw_readl(priv->gswip + (offset * 4));
348 }
349 
350 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
351 {
352 	__raw_writel(val, priv->gswip + (offset * 4));
353 }
354 
355 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
356 			      u32 offset)
357 {
358 	u32 val = gswip_switch_r(priv, offset);
359 
360 	val &= ~(clear);
361 	val |= set;
362 	gswip_switch_w(priv, val, offset);
363 }
364 
365 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
366 				  u32 cleared)
367 {
368 	u32 val;
369 
370 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
371 				  (val & cleared) == 0, 20, 50000);
372 }
373 
374 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
375 {
376 	return __raw_readl(priv->mdio + (offset * 4));
377 }
378 
379 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
380 {
381 	__raw_writel(val, priv->mdio + (offset * 4));
382 }
383 
384 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
385 			    u32 offset)
386 {
387 	u32 val = gswip_mdio_r(priv, offset);
388 
389 	val &= ~(clear);
390 	val |= set;
391 	gswip_mdio_w(priv, val, offset);
392 }
393 
394 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
395 {
396 	return __raw_readl(priv->mii + (offset * 4));
397 }
398 
399 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
400 {
401 	__raw_writel(val, priv->mii + (offset * 4));
402 }
403 
404 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
405 			   u32 offset)
406 {
407 	u32 val = gswip_mii_r(priv, offset);
408 
409 	val &= ~(clear);
410 	val |= set;
411 	gswip_mii_w(priv, val, offset);
412 }
413 
414 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
415 			       int port)
416 {
417 	/* There's no MII_CFG register for the CPU port */
418 	if (!dsa_is_cpu_port(priv->ds, port))
419 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
420 }
421 
422 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
423 				int port)
424 {
425 	switch (port) {
426 	case 0:
427 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
428 		break;
429 	case 1:
430 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
431 		break;
432 	case 5:
433 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
434 		break;
435 	}
436 }
437 
438 static int gswip_mdio_poll(struct gswip_priv *priv)
439 {
440 	int cnt = 100;
441 
442 	while (likely(cnt--)) {
443 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
444 
445 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
446 			return 0;
447 		usleep_range(20, 40);
448 	}
449 
450 	return -ETIMEDOUT;
451 }
452 
453 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
454 {
455 	struct gswip_priv *priv = bus->priv;
456 	int err;
457 
458 	err = gswip_mdio_poll(priv);
459 	if (err) {
460 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
461 		return err;
462 	}
463 
464 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
465 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
466 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
467 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
468 		GSWIP_MDIO_CTRL);
469 
470 	return 0;
471 }
472 
473 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
474 {
475 	struct gswip_priv *priv = bus->priv;
476 	int err;
477 
478 	err = gswip_mdio_poll(priv);
479 	if (err) {
480 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
481 		return err;
482 	}
483 
484 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
485 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
486 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
487 		GSWIP_MDIO_CTRL);
488 
489 	err = gswip_mdio_poll(priv);
490 	if (err) {
491 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
492 		return err;
493 	}
494 
495 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
496 }
497 
498 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
499 {
500 	struct dsa_switch *ds = priv->ds;
501 
502 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
503 	if (!ds->slave_mii_bus)
504 		return -ENOMEM;
505 
506 	ds->slave_mii_bus->priv = priv;
507 	ds->slave_mii_bus->read = gswip_mdio_rd;
508 	ds->slave_mii_bus->write = gswip_mdio_wr;
509 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
510 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
511 		 dev_name(priv->dev));
512 	ds->slave_mii_bus->parent = priv->dev;
513 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
514 
515 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
516 }
517 
518 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
519 				      struct gswip_pce_table_entry *tbl)
520 {
521 	int i;
522 	int err;
523 	u16 crtl;
524 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
525 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
526 
527 	mutex_lock(&priv->pce_table_lock);
528 
529 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
530 				     GSWIP_PCE_TBL_CTRL_BAS);
531 	if (err) {
532 		mutex_unlock(&priv->pce_table_lock);
533 		return err;
534 	}
535 
536 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
537 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
538 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
539 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
540 			  GSWIP_PCE_TBL_CTRL);
541 
542 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
543 				     GSWIP_PCE_TBL_CTRL_BAS);
544 	if (err) {
545 		mutex_unlock(&priv->pce_table_lock);
546 		return err;
547 	}
548 
549 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
550 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
551 
552 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
553 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
554 
555 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
556 
557 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
558 
559 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
560 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
561 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
562 
563 	mutex_unlock(&priv->pce_table_lock);
564 
565 	return 0;
566 }
567 
568 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
569 				       struct gswip_pce_table_entry *tbl)
570 {
571 	int i;
572 	int err;
573 	u16 crtl;
574 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
575 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
576 
577 	mutex_lock(&priv->pce_table_lock);
578 
579 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
580 				     GSWIP_PCE_TBL_CTRL_BAS);
581 	if (err) {
582 		mutex_unlock(&priv->pce_table_lock);
583 		return err;
584 	}
585 
586 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
587 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
588 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
589 			  tbl->table | addr_mode,
590 			  GSWIP_PCE_TBL_CTRL);
591 
592 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
593 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
594 
595 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
596 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
597 
598 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
599 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
600 			  tbl->table | addr_mode,
601 			  GSWIP_PCE_TBL_CTRL);
602 
603 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
604 
605 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
606 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
607 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
608 	if (tbl->type)
609 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
610 	if (tbl->valid)
611 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
612 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
613 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
614 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
615 
616 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
617 				     GSWIP_PCE_TBL_CTRL_BAS);
618 
619 	mutex_unlock(&priv->pce_table_lock);
620 
621 	return err;
622 }
623 
624 /* Add the LAN port into a bridge with the CPU port by
625  * default. This prevents automatic forwarding of
626  * packages between the LAN ports when no explicit
627  * bridge is configured.
628  */
629 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
630 {
631 	struct gswip_pce_table_entry vlan_active = {0,};
632 	struct gswip_pce_table_entry vlan_mapping = {0,};
633 	unsigned int cpu_port = priv->hw_info->cpu_port;
634 	unsigned int max_ports = priv->hw_info->max_ports;
635 	int err;
636 
637 	if (port >= max_ports) {
638 		dev_err(priv->dev, "single port for %i supported\n", port);
639 		return -EIO;
640 	}
641 
642 	vlan_active.index = port + 1;
643 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
644 	vlan_active.key[0] = 0; /* vid */
645 	vlan_active.val[0] = port + 1 /* fid */;
646 	vlan_active.valid = add;
647 	err = gswip_pce_table_entry_write(priv, &vlan_active);
648 	if (err) {
649 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
650 		return err;
651 	}
652 
653 	if (!add)
654 		return 0;
655 
656 	vlan_mapping.index = port + 1;
657 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
658 	vlan_mapping.val[0] = 0 /* vid */;
659 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
660 	vlan_mapping.val[2] = 0;
661 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
662 	if (err) {
663 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
664 		return err;
665 	}
666 
667 	return 0;
668 }
669 
670 static int gswip_port_enable(struct dsa_switch *ds, int port,
671 			     struct phy_device *phydev)
672 {
673 	struct gswip_priv *priv = ds->priv;
674 	int err;
675 
676 	if (!dsa_is_user_port(ds, port))
677 		return 0;
678 
679 	if (!dsa_is_cpu_port(ds, port)) {
680 		err = gswip_add_single_port_br(priv, port, true);
681 		if (err)
682 			return err;
683 	}
684 
685 	/* RMON Counter Enable for port */
686 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
687 
688 	/* enable port fetch/store dma & VLAN Modification */
689 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
690 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
691 			 GSWIP_FDMA_PCTRLp(port));
692 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
693 			  GSWIP_SDMA_PCTRLp(port));
694 
695 	if (!dsa_is_cpu_port(ds, port)) {
696 		u32 mdio_phy = 0;
697 
698 		if (phydev)
699 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
700 
701 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
702 				GSWIP_MDIO_PHYp(port));
703 	}
704 
705 	return 0;
706 }
707 
708 static void gswip_port_disable(struct dsa_switch *ds, int port)
709 {
710 	struct gswip_priv *priv = ds->priv;
711 
712 	if (!dsa_is_user_port(ds, port))
713 		return;
714 
715 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
716 			  GSWIP_FDMA_PCTRLp(port));
717 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
718 			  GSWIP_SDMA_PCTRLp(port));
719 }
720 
721 static int gswip_pce_load_microcode(struct gswip_priv *priv)
722 {
723 	int i;
724 	int err;
725 
726 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
727 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
728 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
729 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
730 
731 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
732 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
733 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
734 			       GSWIP_PCE_TBL_VAL(0));
735 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
736 			       GSWIP_PCE_TBL_VAL(1));
737 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
738 			       GSWIP_PCE_TBL_VAL(2));
739 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
740 			       GSWIP_PCE_TBL_VAL(3));
741 
742 		/* start the table access: */
743 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
744 				  GSWIP_PCE_TBL_CTRL);
745 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
746 					     GSWIP_PCE_TBL_CTRL_BAS);
747 		if (err)
748 			return err;
749 	}
750 
751 	/* tell the switch that the microcode is loaded */
752 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
753 			  GSWIP_PCE_GCTRL_0);
754 
755 	return 0;
756 }
757 
758 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
759 				     bool vlan_filtering,
760 				     struct netlink_ext_ack *extack)
761 {
762 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
763 	struct gswip_priv *priv = ds->priv;
764 
765 	/* Do not allow changing the VLAN filtering options while in bridge */
766 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
767 		NL_SET_ERR_MSG_MOD(extack,
768 				   "Dynamic toggling of vlan_filtering not supported");
769 		return -EIO;
770 	}
771 
772 	if (vlan_filtering) {
773 		/* Use port based VLAN tag */
774 		gswip_switch_mask(priv,
775 				  GSWIP_PCE_VCTRL_VSR,
776 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
777 				  GSWIP_PCE_VCTRL_VEMR,
778 				  GSWIP_PCE_VCTRL(port));
779 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
780 				  GSWIP_PCE_PCTRL_0p(port));
781 	} else {
782 		/* Use port based VLAN tag */
783 		gswip_switch_mask(priv,
784 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
785 				  GSWIP_PCE_VCTRL_VEMR,
786 				  GSWIP_PCE_VCTRL_VSR,
787 				  GSWIP_PCE_VCTRL(port));
788 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
789 				  GSWIP_PCE_PCTRL_0p(port));
790 	}
791 
792 	return 0;
793 }
794 
795 static int gswip_setup(struct dsa_switch *ds)
796 {
797 	struct gswip_priv *priv = ds->priv;
798 	unsigned int cpu_port = priv->hw_info->cpu_port;
799 	int i;
800 	int err;
801 
802 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
803 	usleep_range(5000, 10000);
804 	gswip_switch_w(priv, 0, GSWIP_SWRES);
805 
806 	/* disable port fetch/store dma on all ports */
807 	for (i = 0; i < priv->hw_info->max_ports; i++) {
808 		gswip_port_disable(ds, i);
809 		gswip_port_vlan_filtering(ds, i, false, NULL);
810 	}
811 
812 	/* enable Switch */
813 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
814 
815 	err = gswip_pce_load_microcode(priv);
816 	if (err) {
817 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
818 		return err;
819 	}
820 
821 	/* Default unknown Broadcast/Multicast/Unicast port maps */
822 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
823 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
824 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
825 
826 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
827 	 * interoperability problem with this auto polling mechanism because
828 	 * their status registers think that the link is in a different state
829 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
830 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
831 	 * auto polling state machine consider the link being negotiated with
832 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
833 	 * to the switch port being completely dead (RX and TX are both not
834 	 * working).
835 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
836 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
837 	 * it would work fine for a few minutes to hours and then stop, on
838 	 * other device it would no traffic could be sent or received at all.
839 	 * Testing shows that when PHY auto polling is disabled these problems
840 	 * go away.
841 	 */
842 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
843 
844 	/* Configure the MDIO Clock 2.5 MHz */
845 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
846 
847 	/* Disable the xMII interface and clear it's isolation bit */
848 	for (i = 0; i < priv->hw_info->max_ports; i++)
849 		gswip_mii_mask_cfg(priv,
850 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
851 				   0, i);
852 
853 	/* enable special tag insertion on cpu port */
854 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
855 			  GSWIP_FDMA_PCTRLp(cpu_port));
856 
857 	/* accept special tag in ingress direction */
858 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
859 			  GSWIP_PCE_PCTRL_0p(cpu_port));
860 
861 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
862 			  GSWIP_MAC_CTRL_2p(cpu_port));
863 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
864 		       GSWIP_MAC_FLEN);
865 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
866 			  GSWIP_BM_QUEUE_GCTRL);
867 
868 	/* VLAN aware Switching */
869 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
870 
871 	/* Flush MAC Table */
872 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
873 
874 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
875 				     GSWIP_PCE_GCTRL_0_MTFL);
876 	if (err) {
877 		dev_err(priv->dev, "MAC flushing didn't finish\n");
878 		return err;
879 	}
880 
881 	gswip_port_enable(ds, cpu_port, NULL);
882 
883 	ds->configure_vlan_while_not_filtering = false;
884 
885 	return 0;
886 }
887 
888 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
889 						    int port,
890 						    enum dsa_tag_protocol mp)
891 {
892 	return DSA_TAG_PROTO_GSWIP;
893 }
894 
895 static int gswip_vlan_active_create(struct gswip_priv *priv,
896 				    struct net_device *bridge,
897 				    int fid, u16 vid)
898 {
899 	struct gswip_pce_table_entry vlan_active = {0,};
900 	unsigned int max_ports = priv->hw_info->max_ports;
901 	int idx = -1;
902 	int err;
903 	int i;
904 
905 	/* Look for a free slot */
906 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
907 		if (!priv->vlans[i].bridge) {
908 			idx = i;
909 			break;
910 		}
911 	}
912 
913 	if (idx == -1)
914 		return -ENOSPC;
915 
916 	if (fid == -1)
917 		fid = idx;
918 
919 	vlan_active.index = idx;
920 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
921 	vlan_active.key[0] = vid;
922 	vlan_active.val[0] = fid;
923 	vlan_active.valid = true;
924 
925 	err = gswip_pce_table_entry_write(priv, &vlan_active);
926 	if (err) {
927 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
928 		return err;
929 	}
930 
931 	priv->vlans[idx].bridge = bridge;
932 	priv->vlans[idx].vid = vid;
933 	priv->vlans[idx].fid = fid;
934 
935 	return idx;
936 }
937 
938 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
939 {
940 	struct gswip_pce_table_entry vlan_active = {0,};
941 	int err;
942 
943 	vlan_active.index = idx;
944 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
945 	vlan_active.valid = false;
946 	err = gswip_pce_table_entry_write(priv, &vlan_active);
947 	if (err)
948 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
949 	priv->vlans[idx].bridge = NULL;
950 
951 	return err;
952 }
953 
954 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
955 				  struct net_device *bridge, int port)
956 {
957 	struct gswip_pce_table_entry vlan_mapping = {0,};
958 	unsigned int max_ports = priv->hw_info->max_ports;
959 	unsigned int cpu_port = priv->hw_info->cpu_port;
960 	bool active_vlan_created = false;
961 	int idx = -1;
962 	int i;
963 	int err;
964 
965 	/* Check if there is already a page for this bridge */
966 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
967 		if (priv->vlans[i].bridge == bridge) {
968 			idx = i;
969 			break;
970 		}
971 	}
972 
973 	/* If this bridge is not programmed yet, add a Active VLAN table
974 	 * entry in a free slot and prepare the VLAN mapping table entry.
975 	 */
976 	if (idx == -1) {
977 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
978 		if (idx < 0)
979 			return idx;
980 		active_vlan_created = true;
981 
982 		vlan_mapping.index = idx;
983 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
984 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
985 		vlan_mapping.val[0] = 0;
986 	} else {
987 		/* Read the existing VLAN mapping entry from the switch */
988 		vlan_mapping.index = idx;
989 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
990 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
991 		if (err) {
992 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
993 				err);
994 			return err;
995 		}
996 	}
997 
998 	/* Update the VLAN mapping entry and write it to the switch */
999 	vlan_mapping.val[1] |= BIT(cpu_port);
1000 	vlan_mapping.val[1] |= BIT(port);
1001 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1002 	if (err) {
1003 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1004 		/* In case an Active VLAN was creaetd delete it again */
1005 		if (active_vlan_created)
1006 			gswip_vlan_active_remove(priv, idx);
1007 		return err;
1008 	}
1009 
1010 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1011 	return 0;
1012 }
1013 
1014 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1015 				struct net_device *bridge, int port,
1016 				u16 vid, bool untagged,
1017 				bool pvid)
1018 {
1019 	struct gswip_pce_table_entry vlan_mapping = {0,};
1020 	unsigned int max_ports = priv->hw_info->max_ports;
1021 	unsigned int cpu_port = priv->hw_info->cpu_port;
1022 	bool active_vlan_created = false;
1023 	int idx = -1;
1024 	int fid = -1;
1025 	int i;
1026 	int err;
1027 
1028 	/* Check if there is already a page for this bridge */
1029 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1030 		if (priv->vlans[i].bridge == bridge) {
1031 			if (fid != -1 && fid != priv->vlans[i].fid)
1032 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1033 			fid = priv->vlans[i].fid;
1034 			if (priv->vlans[i].vid == vid) {
1035 				idx = i;
1036 				break;
1037 			}
1038 		}
1039 	}
1040 
1041 	/* If this bridge is not programmed yet, add a Active VLAN table
1042 	 * entry in a free slot and prepare the VLAN mapping table entry.
1043 	 */
1044 	if (idx == -1) {
1045 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1046 		if (idx < 0)
1047 			return idx;
1048 		active_vlan_created = true;
1049 
1050 		vlan_mapping.index = idx;
1051 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1052 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1053 		vlan_mapping.val[0] = vid;
1054 	} else {
1055 		/* Read the existing VLAN mapping entry from the switch */
1056 		vlan_mapping.index = idx;
1057 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1058 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1059 		if (err) {
1060 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1061 				err);
1062 			return err;
1063 		}
1064 	}
1065 
1066 	vlan_mapping.val[0] = vid;
1067 	/* Update the VLAN mapping entry and write it to the switch */
1068 	vlan_mapping.val[1] |= BIT(cpu_port);
1069 	vlan_mapping.val[2] |= BIT(cpu_port);
1070 	vlan_mapping.val[1] |= BIT(port);
1071 	if (untagged)
1072 		vlan_mapping.val[2] &= ~BIT(port);
1073 	else
1074 		vlan_mapping.val[2] |= BIT(port);
1075 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1076 	if (err) {
1077 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1078 		/* In case an Active VLAN was creaetd delete it again */
1079 		if (active_vlan_created)
1080 			gswip_vlan_active_remove(priv, idx);
1081 		return err;
1082 	}
1083 
1084 	if (pvid)
1085 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1086 
1087 	return 0;
1088 }
1089 
1090 static int gswip_vlan_remove(struct gswip_priv *priv,
1091 			     struct net_device *bridge, int port,
1092 			     u16 vid, bool pvid, bool vlan_aware)
1093 {
1094 	struct gswip_pce_table_entry vlan_mapping = {0,};
1095 	unsigned int max_ports = priv->hw_info->max_ports;
1096 	unsigned int cpu_port = priv->hw_info->cpu_port;
1097 	int idx = -1;
1098 	int i;
1099 	int err;
1100 
1101 	/* Check if there is already a page for this bridge */
1102 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1103 		if (priv->vlans[i].bridge == bridge &&
1104 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1105 			idx = i;
1106 			break;
1107 		}
1108 	}
1109 
1110 	if (idx == -1) {
1111 		dev_err(priv->dev, "bridge to leave does not exists\n");
1112 		return -ENOENT;
1113 	}
1114 
1115 	vlan_mapping.index = idx;
1116 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1117 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1118 	if (err) {
1119 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1120 		return err;
1121 	}
1122 
1123 	vlan_mapping.val[1] &= ~BIT(port);
1124 	vlan_mapping.val[2] &= ~BIT(port);
1125 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1126 	if (err) {
1127 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1128 		return err;
1129 	}
1130 
1131 	/* In case all ports are removed from the bridge, remove the VLAN */
1132 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1133 		err = gswip_vlan_active_remove(priv, idx);
1134 		if (err) {
1135 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1136 				err);
1137 			return err;
1138 		}
1139 	}
1140 
1141 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1142 	if (pvid)
1143 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1144 
1145 	return 0;
1146 }
1147 
1148 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1149 				  struct dsa_bridge bridge,
1150 				  bool *tx_fwd_offload)
1151 {
1152 	struct net_device *br = bridge.dev;
1153 	struct gswip_priv *priv = ds->priv;
1154 	int err;
1155 
1156 	/* When the bridge uses VLAN filtering we have to configure VLAN
1157 	 * specific bridges. No bridge is configured here.
1158 	 */
1159 	if (!br_vlan_enabled(br)) {
1160 		err = gswip_vlan_add_unaware(priv, br, port);
1161 		if (err)
1162 			return err;
1163 		priv->port_vlan_filter &= ~BIT(port);
1164 	} else {
1165 		priv->port_vlan_filter |= BIT(port);
1166 	}
1167 	return gswip_add_single_port_br(priv, port, false);
1168 }
1169 
1170 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1171 				    struct dsa_bridge bridge)
1172 {
1173 	struct net_device *br = bridge.dev;
1174 	struct gswip_priv *priv = ds->priv;
1175 
1176 	gswip_add_single_port_br(priv, port, true);
1177 
1178 	/* When the bridge uses VLAN filtering we have to configure VLAN
1179 	 * specific bridges. No bridge is configured here.
1180 	 */
1181 	if (!br_vlan_enabled(br))
1182 		gswip_vlan_remove(priv, br, port, 0, true, false);
1183 }
1184 
1185 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1186 				   const struct switchdev_obj_port_vlan *vlan,
1187 				   struct netlink_ext_ack *extack)
1188 {
1189 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1190 	struct gswip_priv *priv = ds->priv;
1191 	unsigned int max_ports = priv->hw_info->max_ports;
1192 	int pos = max_ports;
1193 	int i, idx = -1;
1194 
1195 	/* We only support VLAN filtering on bridges */
1196 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1197 		return -EOPNOTSUPP;
1198 
1199 	/* Check if there is already a page for this VLAN */
1200 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1201 		if (priv->vlans[i].bridge == bridge &&
1202 		    priv->vlans[i].vid == vlan->vid) {
1203 			idx = i;
1204 			break;
1205 		}
1206 	}
1207 
1208 	/* If this VLAN is not programmed yet, we have to reserve
1209 	 * one entry in the VLAN table. Make sure we start at the
1210 	 * next position round.
1211 	 */
1212 	if (idx == -1) {
1213 		/* Look for a free slot */
1214 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1215 			if (!priv->vlans[pos].bridge) {
1216 				idx = pos;
1217 				pos++;
1218 				break;
1219 			}
1220 		}
1221 
1222 		if (idx == -1) {
1223 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1224 			return -ENOSPC;
1225 		}
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1232 			       const struct switchdev_obj_port_vlan *vlan,
1233 			       struct netlink_ext_ack *extack)
1234 {
1235 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1236 	struct gswip_priv *priv = ds->priv;
1237 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1238 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1239 	int err;
1240 
1241 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1242 	if (err)
1243 		return err;
1244 
1245 	/* We have to receive all packets on the CPU port and should not
1246 	 * do any VLAN filtering here. This is also called with bridge
1247 	 * NULL and then we do not know for which bridge to configure
1248 	 * this.
1249 	 */
1250 	if (dsa_is_cpu_port(ds, port))
1251 		return 0;
1252 
1253 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1254 				    untagged, pvid);
1255 }
1256 
1257 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1258 			       const struct switchdev_obj_port_vlan *vlan)
1259 {
1260 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1261 	struct gswip_priv *priv = ds->priv;
1262 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1263 
1264 	/* We have to receive all packets on the CPU port and should not
1265 	 * do any VLAN filtering here. This is also called with bridge
1266 	 * NULL and then we do not know for which bridge to configure
1267 	 * this.
1268 	 */
1269 	if (dsa_is_cpu_port(ds, port))
1270 		return 0;
1271 
1272 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1273 }
1274 
1275 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1276 {
1277 	struct gswip_priv *priv = ds->priv;
1278 	struct gswip_pce_table_entry mac_bridge = {0,};
1279 	int i;
1280 	int err;
1281 
1282 	for (i = 0; i < 2048; i++) {
1283 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1284 		mac_bridge.index = i;
1285 
1286 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1287 		if (err) {
1288 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1289 				err);
1290 			return;
1291 		}
1292 
1293 		if (!mac_bridge.valid)
1294 			continue;
1295 
1296 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1297 			continue;
1298 
1299 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1300 			continue;
1301 
1302 		mac_bridge.valid = false;
1303 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1304 		if (err) {
1305 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1306 				err);
1307 			return;
1308 		}
1309 	}
1310 }
1311 
1312 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1313 {
1314 	struct gswip_priv *priv = ds->priv;
1315 	u32 stp_state;
1316 
1317 	switch (state) {
1318 	case BR_STATE_DISABLED:
1319 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1320 				  GSWIP_SDMA_PCTRLp(port));
1321 		return;
1322 	case BR_STATE_BLOCKING:
1323 	case BR_STATE_LISTENING:
1324 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1325 		break;
1326 	case BR_STATE_LEARNING:
1327 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1328 		break;
1329 	case BR_STATE_FORWARDING:
1330 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1331 		break;
1332 	default:
1333 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1334 		return;
1335 	}
1336 
1337 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1338 			  GSWIP_SDMA_PCTRLp(port));
1339 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1340 			  GSWIP_PCE_PCTRL_0p(port));
1341 }
1342 
1343 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1344 			  const unsigned char *addr, u16 vid, bool add)
1345 {
1346 	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1347 	struct gswip_priv *priv = ds->priv;
1348 	struct gswip_pce_table_entry mac_bridge = {0,};
1349 	unsigned int cpu_port = priv->hw_info->cpu_port;
1350 	int fid = -1;
1351 	int i;
1352 	int err;
1353 
1354 	if (!bridge)
1355 		return -EINVAL;
1356 
1357 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1358 		if (priv->vlans[i].bridge == bridge) {
1359 			fid = priv->vlans[i].fid;
1360 			break;
1361 		}
1362 	}
1363 
1364 	if (fid == -1) {
1365 		dev_err(priv->dev, "Port not part of a bridge\n");
1366 		return -EINVAL;
1367 	}
1368 
1369 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1370 	mac_bridge.key_mode = true;
1371 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1372 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1373 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1374 	mac_bridge.key[3] = fid;
1375 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1376 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1377 	mac_bridge.valid = add;
1378 
1379 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1380 	if (err)
1381 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1382 
1383 	return err;
1384 }
1385 
1386 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1387 			      const unsigned char *addr, u16 vid)
1388 {
1389 	return gswip_port_fdb(ds, port, addr, vid, true);
1390 }
1391 
1392 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1393 			      const unsigned char *addr, u16 vid)
1394 {
1395 	return gswip_port_fdb(ds, port, addr, vid, false);
1396 }
1397 
1398 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1399 			       dsa_fdb_dump_cb_t *cb, void *data)
1400 {
1401 	struct gswip_priv *priv = ds->priv;
1402 	struct gswip_pce_table_entry mac_bridge = {0,};
1403 	unsigned char addr[6];
1404 	int i;
1405 	int err;
1406 
1407 	for (i = 0; i < 2048; i++) {
1408 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1409 		mac_bridge.index = i;
1410 
1411 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1412 		if (err) {
1413 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1414 				err);
1415 			return err;
1416 		}
1417 
1418 		if (!mac_bridge.valid)
1419 			continue;
1420 
1421 		addr[5] = mac_bridge.key[0] & 0xff;
1422 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1423 		addr[3] = mac_bridge.key[1] & 0xff;
1424 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1425 		addr[1] = mac_bridge.key[2] & 0xff;
1426 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1427 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1428 			if (mac_bridge.val[0] & BIT(port)) {
1429 				err = cb(addr, 0, true, data);
1430 				if (err)
1431 					return err;
1432 			}
1433 		} else {
1434 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1435 				err = cb(addr, 0, false, data);
1436 				if (err)
1437 					return err;
1438 			}
1439 		}
1440 	}
1441 	return 0;
1442 }
1443 
1444 static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1445 					  struct phylink_config *config)
1446 {
1447 	switch (port) {
1448 	case 0:
1449 	case 1:
1450 		phy_interface_set_rgmii(config->supported_interfaces);
1451 		__set_bit(PHY_INTERFACE_MODE_MII,
1452 			  config->supported_interfaces);
1453 		__set_bit(PHY_INTERFACE_MODE_REVMII,
1454 			  config->supported_interfaces);
1455 		__set_bit(PHY_INTERFACE_MODE_RMII,
1456 			  config->supported_interfaces);
1457 		break;
1458 
1459 	case 2:
1460 	case 3:
1461 	case 4:
1462 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1463 			  config->supported_interfaces);
1464 		break;
1465 
1466 	case 5:
1467 		phy_interface_set_rgmii(config->supported_interfaces);
1468 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1469 			  config->supported_interfaces);
1470 		break;
1471 	}
1472 
1473 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1474 		MAC_10 | MAC_100 | MAC_1000;
1475 }
1476 
1477 static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1478 					  struct phylink_config *config)
1479 {
1480 	switch (port) {
1481 	case 0:
1482 		phy_interface_set_rgmii(config->supported_interfaces);
1483 		__set_bit(PHY_INTERFACE_MODE_GMII,
1484 			  config->supported_interfaces);
1485 		__set_bit(PHY_INTERFACE_MODE_RMII,
1486 			  config->supported_interfaces);
1487 		break;
1488 
1489 	case 1:
1490 	case 2:
1491 	case 3:
1492 	case 4:
1493 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1494 			  config->supported_interfaces);
1495 		break;
1496 
1497 	case 5:
1498 		phy_interface_set_rgmii(config->supported_interfaces);
1499 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1500 			  config->supported_interfaces);
1501 		__set_bit(PHY_INTERFACE_MODE_RMII,
1502 			  config->supported_interfaces);
1503 		break;
1504 	}
1505 
1506 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1507 		MAC_10 | MAC_100 | MAC_1000;
1508 }
1509 
1510 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1511 {
1512 	u32 mdio_phy;
1513 
1514 	if (link)
1515 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1516 	else
1517 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1518 
1519 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1520 			GSWIP_MDIO_PHYp(port));
1521 }
1522 
1523 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1524 				 phy_interface_t interface)
1525 {
1526 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1527 
1528 	switch (speed) {
1529 	case SPEED_10:
1530 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1531 
1532 		if (interface == PHY_INTERFACE_MODE_RMII)
1533 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1534 		else
1535 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1536 
1537 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1538 		break;
1539 
1540 	case SPEED_100:
1541 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1542 
1543 		if (interface == PHY_INTERFACE_MODE_RMII)
1544 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1545 		else
1546 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1547 
1548 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1549 		break;
1550 
1551 	case SPEED_1000:
1552 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1553 
1554 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1555 
1556 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1557 		break;
1558 	}
1559 
1560 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1561 			GSWIP_MDIO_PHYp(port));
1562 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1563 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1564 			  GSWIP_MAC_CTRL_0p(port));
1565 }
1566 
1567 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1568 {
1569 	u32 mac_ctrl_0, mdio_phy;
1570 
1571 	if (duplex == DUPLEX_FULL) {
1572 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1573 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1574 	} else {
1575 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1576 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1577 	}
1578 
1579 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1580 			  GSWIP_MAC_CTRL_0p(port));
1581 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1582 			GSWIP_MDIO_PHYp(port));
1583 }
1584 
1585 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1586 				 bool tx_pause, bool rx_pause)
1587 {
1588 	u32 mac_ctrl_0, mdio_phy;
1589 
1590 	if (tx_pause && rx_pause) {
1591 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1592 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1593 			   GSWIP_MDIO_PHY_FCONRX_EN;
1594 	} else if (tx_pause) {
1595 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1596 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1597 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1598 	} else if (rx_pause) {
1599 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1600 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1601 			   GSWIP_MDIO_PHY_FCONRX_EN;
1602 	} else {
1603 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1604 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1605 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1606 	}
1607 
1608 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1609 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1610 	gswip_mdio_mask(priv,
1611 			GSWIP_MDIO_PHY_FCONTX_MASK |
1612 			GSWIP_MDIO_PHY_FCONRX_MASK,
1613 			mdio_phy, GSWIP_MDIO_PHYp(port));
1614 }
1615 
1616 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1617 				     unsigned int mode,
1618 				     const struct phylink_link_state *state)
1619 {
1620 	struct gswip_priv *priv = ds->priv;
1621 	u32 miicfg = 0;
1622 
1623 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1624 
1625 	switch (state->interface) {
1626 	case PHY_INTERFACE_MODE_MII:
1627 	case PHY_INTERFACE_MODE_INTERNAL:
1628 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1629 		break;
1630 	case PHY_INTERFACE_MODE_REVMII:
1631 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1632 		break;
1633 	case PHY_INTERFACE_MODE_RMII:
1634 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1635 
1636 		/* Configure the RMII clock as output: */
1637 		miicfg |= GSWIP_MII_CFG_RMII_CLK;
1638 		break;
1639 	case PHY_INTERFACE_MODE_RGMII:
1640 	case PHY_INTERFACE_MODE_RGMII_ID:
1641 	case PHY_INTERFACE_MODE_RGMII_RXID:
1642 	case PHY_INTERFACE_MODE_RGMII_TXID:
1643 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1644 		break;
1645 	case PHY_INTERFACE_MODE_GMII:
1646 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1647 		break;
1648 	default:
1649 		dev_err(ds->dev,
1650 			"Unsupported interface: %d\n", state->interface);
1651 		return;
1652 	}
1653 
1654 	gswip_mii_mask_cfg(priv,
1655 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1656 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1657 			   miicfg, port);
1658 
1659 	switch (state->interface) {
1660 	case PHY_INTERFACE_MODE_RGMII_ID:
1661 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1662 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1663 		break;
1664 	case PHY_INTERFACE_MODE_RGMII_RXID:
1665 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1666 		break;
1667 	case PHY_INTERFACE_MODE_RGMII_TXID:
1668 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1669 		break;
1670 	default:
1671 		break;
1672 	}
1673 }
1674 
1675 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1676 					unsigned int mode,
1677 					phy_interface_t interface)
1678 {
1679 	struct gswip_priv *priv = ds->priv;
1680 
1681 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1682 
1683 	if (!dsa_is_cpu_port(ds, port))
1684 		gswip_port_set_link(priv, port, false);
1685 }
1686 
1687 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1688 				      unsigned int mode,
1689 				      phy_interface_t interface,
1690 				      struct phy_device *phydev,
1691 				      int speed, int duplex,
1692 				      bool tx_pause, bool rx_pause)
1693 {
1694 	struct gswip_priv *priv = ds->priv;
1695 
1696 	if (!dsa_is_cpu_port(ds, port)) {
1697 		gswip_port_set_link(priv, port, true);
1698 		gswip_port_set_speed(priv, port, speed, interface);
1699 		gswip_port_set_duplex(priv, port, duplex);
1700 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1701 	}
1702 
1703 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1704 }
1705 
1706 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1707 			      uint8_t *data)
1708 {
1709 	int i;
1710 
1711 	if (stringset != ETH_SS_STATS)
1712 		return;
1713 
1714 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1715 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1716 			ETH_GSTRING_LEN);
1717 }
1718 
1719 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1720 				    u32 index)
1721 {
1722 	u32 result;
1723 	int err;
1724 
1725 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1726 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1727 				GSWIP_BM_RAM_CTRL_OPMOD,
1728 			      table | GSWIP_BM_RAM_CTRL_BAS,
1729 			      GSWIP_BM_RAM_CTRL);
1730 
1731 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1732 				     GSWIP_BM_RAM_CTRL_BAS);
1733 	if (err) {
1734 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1735 			table, index);
1736 		return 0;
1737 	}
1738 
1739 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1740 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1741 
1742 	return result;
1743 }
1744 
1745 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1746 				    uint64_t *data)
1747 {
1748 	struct gswip_priv *priv = ds->priv;
1749 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1750 	int i;
1751 	u64 high;
1752 
1753 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1754 		rmon_cnt = &gswip_rmon_cnt[i];
1755 
1756 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1757 						   rmon_cnt->offset);
1758 		if (rmon_cnt->size == 2) {
1759 			high = gswip_bcm_ram_entry_read(priv, port,
1760 							rmon_cnt->offset + 1);
1761 			data[i] |= high << 32;
1762 		}
1763 	}
1764 }
1765 
1766 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1767 {
1768 	if (sset != ETH_SS_STATS)
1769 		return 0;
1770 
1771 	return ARRAY_SIZE(gswip_rmon_cnt);
1772 }
1773 
1774 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1775 	.get_tag_protocol	= gswip_get_tag_protocol,
1776 	.setup			= gswip_setup,
1777 	.port_enable		= gswip_port_enable,
1778 	.port_disable		= gswip_port_disable,
1779 	.port_bridge_join	= gswip_port_bridge_join,
1780 	.port_bridge_leave	= gswip_port_bridge_leave,
1781 	.port_fast_age		= gswip_port_fast_age,
1782 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1783 	.port_vlan_add		= gswip_port_vlan_add,
1784 	.port_vlan_del		= gswip_port_vlan_del,
1785 	.port_stp_state_set	= gswip_port_stp_state_set,
1786 	.port_fdb_add		= gswip_port_fdb_add,
1787 	.port_fdb_del		= gswip_port_fdb_del,
1788 	.port_fdb_dump		= gswip_port_fdb_dump,
1789 	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1790 	.phylink_mac_config	= gswip_phylink_mac_config,
1791 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1792 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1793 	.get_strings		= gswip_get_strings,
1794 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1795 	.get_sset_count		= gswip_get_sset_count,
1796 };
1797 
1798 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1799 	.get_tag_protocol	= gswip_get_tag_protocol,
1800 	.setup			= gswip_setup,
1801 	.port_enable		= gswip_port_enable,
1802 	.port_disable		= gswip_port_disable,
1803 	.port_bridge_join	= gswip_port_bridge_join,
1804 	.port_bridge_leave	= gswip_port_bridge_leave,
1805 	.port_fast_age		= gswip_port_fast_age,
1806 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1807 	.port_vlan_add		= gswip_port_vlan_add,
1808 	.port_vlan_del		= gswip_port_vlan_del,
1809 	.port_stp_state_set	= gswip_port_stp_state_set,
1810 	.port_fdb_add		= gswip_port_fdb_add,
1811 	.port_fdb_del		= gswip_port_fdb_del,
1812 	.port_fdb_dump		= gswip_port_fdb_dump,
1813 	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1814 	.phylink_mac_config	= gswip_phylink_mac_config,
1815 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1816 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1817 	.get_strings		= gswip_get_strings,
1818 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1819 	.get_sset_count		= gswip_get_sset_count,
1820 };
1821 
1822 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1823 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1824 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1825 };
1826 
1827 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1828 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1829 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1830 };
1831 
1832 static const struct xway_gphy_match_data xrx300_gphy_data = {
1833 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1834 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1835 };
1836 
1837 static const struct of_device_id xway_gphy_match[] = {
1838 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1839 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1840 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1841 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1842 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1843 	{},
1844 };
1845 
1846 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1847 {
1848 	struct device *dev = priv->dev;
1849 	const struct firmware *fw;
1850 	void *fw_addr;
1851 	dma_addr_t dma_addr;
1852 	dma_addr_t dev_addr;
1853 	size_t size;
1854 	int ret;
1855 
1856 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1857 	if (ret)
1858 		return ret;
1859 
1860 	reset_control_assert(gphy_fw->reset);
1861 
1862 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1863 	 * Without this some users are observing that the PHY is not coming up
1864 	 * on the MDIO bus.
1865 	 */
1866 	msleep(200);
1867 
1868 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1869 	if (ret) {
1870 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1871 			gphy_fw->fw_name, ret);
1872 		return ret;
1873 	}
1874 
1875 	/* GPHY cores need the firmware code in a persistent and contiguous
1876 	 * memory area with a 16 kB boundary aligned start address.
1877 	 */
1878 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1879 
1880 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1881 	if (fw_addr) {
1882 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1883 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1884 		memcpy(fw_addr, fw->data, fw->size);
1885 	} else {
1886 		dev_err(dev, "failed to alloc firmware memory\n");
1887 		release_firmware(fw);
1888 		return -ENOMEM;
1889 	}
1890 
1891 	release_firmware(fw);
1892 
1893 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1894 	if (ret)
1895 		return ret;
1896 
1897 	reset_control_deassert(gphy_fw->reset);
1898 
1899 	return ret;
1900 }
1901 
1902 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1903 			       struct gswip_gphy_fw *gphy_fw,
1904 			       struct device_node *gphy_fw_np, int i)
1905 {
1906 	struct device *dev = priv->dev;
1907 	u32 gphy_mode;
1908 	int ret;
1909 	char gphyname[10];
1910 
1911 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1912 
1913 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1914 	if (IS_ERR(gphy_fw->clk_gate)) {
1915 		dev_err(dev, "Failed to lookup gate clock\n");
1916 		return PTR_ERR(gphy_fw->clk_gate);
1917 	}
1918 
1919 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1920 	if (ret)
1921 		return ret;
1922 
1923 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1924 	/* Default to GE mode */
1925 	if (ret)
1926 		gphy_mode = GPHY_MODE_GE;
1927 
1928 	switch (gphy_mode) {
1929 	case GPHY_MODE_FE:
1930 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1931 		break;
1932 	case GPHY_MODE_GE:
1933 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1934 		break;
1935 	default:
1936 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1937 		return -EINVAL;
1938 	}
1939 
1940 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1941 	if (IS_ERR(gphy_fw->reset)) {
1942 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1943 			dev_err(dev, "Failed to lookup gphy reset\n");
1944 		return PTR_ERR(gphy_fw->reset);
1945 	}
1946 
1947 	return gswip_gphy_fw_load(priv, gphy_fw);
1948 }
1949 
1950 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1951 				 struct gswip_gphy_fw *gphy_fw)
1952 {
1953 	int ret;
1954 
1955 	/* check if the device was fully probed */
1956 	if (!gphy_fw->fw_name)
1957 		return;
1958 
1959 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1960 	if (ret)
1961 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1962 
1963 	clk_disable_unprepare(gphy_fw->clk_gate);
1964 
1965 	reset_control_put(gphy_fw->reset);
1966 }
1967 
1968 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1969 			      struct device_node *gphy_fw_list_np, u32 version)
1970 {
1971 	struct device *dev = priv->dev;
1972 	struct device_node *gphy_fw_np;
1973 	const struct of_device_id *match;
1974 	int err;
1975 	int i = 0;
1976 
1977 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1978 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1979 	 * needs a different GPHY firmware.
1980 	 */
1981 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1982 		switch (version) {
1983 		case GSWIP_VERSION_2_0:
1984 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1985 			break;
1986 		case GSWIP_VERSION_2_1:
1987 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1988 			break;
1989 		default:
1990 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1991 			return -ENOENT;
1992 		}
1993 	}
1994 
1995 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1996 	if (match && match->data)
1997 		priv->gphy_fw_name_cfg = match->data;
1998 
1999 	if (!priv->gphy_fw_name_cfg) {
2000 		dev_err(dev, "GPHY compatible type not supported");
2001 		return -ENOENT;
2002 	}
2003 
2004 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2005 	if (!priv->num_gphy_fw)
2006 		return -ENOENT;
2007 
2008 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2009 							   "lantiq,rcu");
2010 	if (IS_ERR(priv->rcu_regmap))
2011 		return PTR_ERR(priv->rcu_regmap);
2012 
2013 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2014 					   sizeof(*priv->gphy_fw),
2015 					   GFP_KERNEL | __GFP_ZERO);
2016 	if (!priv->gphy_fw)
2017 		return -ENOMEM;
2018 
2019 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2020 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2021 					  gphy_fw_np, i);
2022 		if (err)
2023 			goto remove_gphy;
2024 		i++;
2025 	}
2026 
2027 	/* The standalone PHY11G requires 300ms to be fully
2028 	 * initialized and ready for any MDIO communication after being
2029 	 * taken out of reset. For the SoC-internal GPHY variant there
2030 	 * is no (known) documentation for the minimum time after a
2031 	 * reset. Use the same value as for the standalone variant as
2032 	 * some users have reported internal PHYs not being detected
2033 	 * without any delay.
2034 	 */
2035 	msleep(300);
2036 
2037 	return 0;
2038 
2039 remove_gphy:
2040 	for (i = 0; i < priv->num_gphy_fw; i++)
2041 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2042 	return err;
2043 }
2044 
2045 static int gswip_probe(struct platform_device *pdev)
2046 {
2047 	struct gswip_priv *priv;
2048 	struct device_node *np, *mdio_np, *gphy_fw_np;
2049 	struct device *dev = &pdev->dev;
2050 	int err;
2051 	int i;
2052 	u32 version;
2053 
2054 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2055 	if (!priv)
2056 		return -ENOMEM;
2057 
2058 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2059 	if (IS_ERR(priv->gswip))
2060 		return PTR_ERR(priv->gswip);
2061 
2062 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2063 	if (IS_ERR(priv->mdio))
2064 		return PTR_ERR(priv->mdio);
2065 
2066 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2067 	if (IS_ERR(priv->mii))
2068 		return PTR_ERR(priv->mii);
2069 
2070 	priv->hw_info = of_device_get_match_data(dev);
2071 	if (!priv->hw_info)
2072 		return -EINVAL;
2073 
2074 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2075 	if (!priv->ds)
2076 		return -ENOMEM;
2077 
2078 	priv->ds->dev = dev;
2079 	priv->ds->num_ports = priv->hw_info->max_ports;
2080 	priv->ds->priv = priv;
2081 	priv->ds->ops = priv->hw_info->ops;
2082 	priv->dev = dev;
2083 	mutex_init(&priv->pce_table_lock);
2084 	version = gswip_switch_r(priv, GSWIP_VERSION);
2085 
2086 	np = dev->of_node;
2087 	switch (version) {
2088 	case GSWIP_VERSION_2_0:
2089 	case GSWIP_VERSION_2_1:
2090 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2091 			return -EINVAL;
2092 		break;
2093 	case GSWIP_VERSION_2_2:
2094 	case GSWIP_VERSION_2_2_ETC:
2095 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2096 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2097 			return -EINVAL;
2098 		break;
2099 	default:
2100 		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2101 		return -ENOENT;
2102 	}
2103 
2104 	/* bring up the mdio bus */
2105 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2106 	if (gphy_fw_np) {
2107 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2108 		of_node_put(gphy_fw_np);
2109 		if (err) {
2110 			dev_err(dev, "gphy fw probe failed\n");
2111 			return err;
2112 		}
2113 	}
2114 
2115 	/* bring up the mdio bus */
2116 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2117 	if (mdio_np) {
2118 		err = gswip_mdio(priv, mdio_np);
2119 		if (err) {
2120 			dev_err(dev, "mdio probe failed\n");
2121 			goto put_mdio_node;
2122 		}
2123 	}
2124 
2125 	err = dsa_register_switch(priv->ds);
2126 	if (err) {
2127 		dev_err(dev, "dsa switch register failed: %i\n", err);
2128 		goto mdio_bus;
2129 	}
2130 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2131 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2132 			priv->hw_info->cpu_port);
2133 		err = -EINVAL;
2134 		goto disable_switch;
2135 	}
2136 
2137 	platform_set_drvdata(pdev, priv);
2138 
2139 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2140 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2141 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2142 	return 0;
2143 
2144 disable_switch:
2145 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2146 	dsa_unregister_switch(priv->ds);
2147 mdio_bus:
2148 	if (mdio_np)
2149 		mdiobus_unregister(priv->ds->slave_mii_bus);
2150 put_mdio_node:
2151 	of_node_put(mdio_np);
2152 	for (i = 0; i < priv->num_gphy_fw; i++)
2153 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2154 	return err;
2155 }
2156 
2157 static int gswip_remove(struct platform_device *pdev)
2158 {
2159 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2160 	int i;
2161 
2162 	if (!priv)
2163 		return 0;
2164 
2165 	/* disable the switch */
2166 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2167 
2168 	dsa_unregister_switch(priv->ds);
2169 
2170 	if (priv->ds->slave_mii_bus) {
2171 		mdiobus_unregister(priv->ds->slave_mii_bus);
2172 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2173 	}
2174 
2175 	for (i = 0; i < priv->num_gphy_fw; i++)
2176 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2177 
2178 	platform_set_drvdata(pdev, NULL);
2179 
2180 	return 0;
2181 }
2182 
2183 static void gswip_shutdown(struct platform_device *pdev)
2184 {
2185 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2186 
2187 	if (!priv)
2188 		return;
2189 
2190 	dsa_switch_shutdown(priv->ds);
2191 
2192 	platform_set_drvdata(pdev, NULL);
2193 }
2194 
2195 static const struct gswip_hw_info gswip_xrx200 = {
2196 	.max_ports = 7,
2197 	.cpu_port = 6,
2198 	.ops = &gswip_xrx200_switch_ops,
2199 };
2200 
2201 static const struct gswip_hw_info gswip_xrx300 = {
2202 	.max_ports = 7,
2203 	.cpu_port = 6,
2204 	.ops = &gswip_xrx300_switch_ops,
2205 };
2206 
2207 static const struct of_device_id gswip_of_match[] = {
2208 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2209 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2210 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2211 	{},
2212 };
2213 MODULE_DEVICE_TABLE(of, gswip_of_match);
2214 
2215 static struct platform_driver gswip_driver = {
2216 	.probe = gswip_probe,
2217 	.remove = gswip_remove,
2218 	.shutdown = gswip_shutdown,
2219 	.driver = {
2220 		.name = "gswip",
2221 		.of_match_table = gswip_of_match,
2222 	},
2223 };
2224 
2225 module_platform_driver(gswip_driver);
2226 
2227 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2228 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2229 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2230 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2231 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2232 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2233 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2234 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2235 MODULE_LICENSE("GPL v2");
2236