1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3  * DSA driver for:
4  * Hirschmann Hellcreek TSN switch.
5  *
6  * Copyright (C) 2019,2020 Hochschule Offenburg
7  * Copyright (C) 2019,2020 Linutronix GmbH
8  * Authors: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de>
9  *	    Kurt Kanzenbach <kurt@linutronix.de>
10  */
11 
12 #include <linux/of.h>
13 #include <linux/ptp_clock_kernel.h>
14 #include "hellcreek.h"
15 #include "hellcreek_ptp.h"
16 #include "hellcreek_hwtstamp.h"
17 
hellcreek_ptp_read(struct hellcreek * hellcreek,unsigned int offset)18 u16 hellcreek_ptp_read(struct hellcreek *hellcreek, unsigned int offset)
19 {
20 	return readw(hellcreek->ptp_base + offset);
21 }
22 
hellcreek_ptp_write(struct hellcreek * hellcreek,u16 data,unsigned int offset)23 void hellcreek_ptp_write(struct hellcreek *hellcreek, u16 data,
24 			 unsigned int offset)
25 {
26 	writew(data, hellcreek->ptp_base + offset);
27 }
28 
29 /* Get nanoseconds from PTP clock */
hellcreek_ptp_clock_read(struct hellcreek * hellcreek)30 static u64 hellcreek_ptp_clock_read(struct hellcreek *hellcreek)
31 {
32 	u16 nsl, nsh;
33 
34 	/* Take a snapshot */
35 	hellcreek_ptp_write(hellcreek, PR_COMMAND_C_SS, PR_COMMAND_C);
36 
37 	/* The time of the day is saved as 96 bits. However, due to hardware
38 	 * limitations the seconds are not or only partly kept in the PTP
39 	 * core. Currently only three bits for the seconds are available. That's
40 	 * why only the nanoseconds are used and the seconds are tracked in
41 	 * software. Anyway due to internal locking all five registers should be
42 	 * read.
43 	 */
44 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
45 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
46 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
47 	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
48 	nsl = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
49 
50 	return (u64)nsl | ((u64)nsh << 16);
51 }
52 
__hellcreek_ptp_gettime(struct hellcreek * hellcreek)53 static u64 __hellcreek_ptp_gettime(struct hellcreek *hellcreek)
54 {
55 	u64 ns;
56 
57 	ns = hellcreek_ptp_clock_read(hellcreek);
58 	if (ns < hellcreek->last_ts)
59 		hellcreek->seconds++;
60 	hellcreek->last_ts = ns;
61 	ns += hellcreek->seconds * NSEC_PER_SEC;
62 
63 	return ns;
64 }
65 
66 /* Retrieve the seconds parts in nanoseconds for a packet timestamped with @ns.
67  * There has to be a check whether an overflow occurred between the packet
68  * arrival and now. If so use the correct seconds (-1) for calculating the
69  * packet arrival time.
70  */
hellcreek_ptp_gettime_seconds(struct hellcreek * hellcreek,u64 ns)71 u64 hellcreek_ptp_gettime_seconds(struct hellcreek *hellcreek, u64 ns)
72 {
73 	u64 s;
74 
75 	__hellcreek_ptp_gettime(hellcreek);
76 	if (hellcreek->last_ts > ns)
77 		s = hellcreek->seconds * NSEC_PER_SEC;
78 	else
79 		s = (hellcreek->seconds - 1) * NSEC_PER_SEC;
80 
81 	return s;
82 }
83 
hellcreek_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)84 static int hellcreek_ptp_gettime(struct ptp_clock_info *ptp,
85 				 struct timespec64 *ts)
86 {
87 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
88 	u64 ns;
89 
90 	mutex_lock(&hellcreek->ptp_lock);
91 	ns = __hellcreek_ptp_gettime(hellcreek);
92 	mutex_unlock(&hellcreek->ptp_lock);
93 
94 	*ts = ns_to_timespec64(ns);
95 
96 	return 0;
97 }
98 
hellcreek_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)99 static int hellcreek_ptp_settime(struct ptp_clock_info *ptp,
100 				 const struct timespec64 *ts)
101 {
102 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
103 	u16 secl, nsh, nsl;
104 
105 	secl = ts->tv_sec & 0xffff;
106 	nsh  = ((u32)ts->tv_nsec & 0xffff0000) >> 16;
107 	nsl  = ts->tv_nsec & 0xffff;
108 
109 	mutex_lock(&hellcreek->ptp_lock);
110 
111 	/* Update overflow data structure */
112 	hellcreek->seconds = ts->tv_sec;
113 	hellcreek->last_ts = ts->tv_nsec;
114 
115 	/* Set time in clock */
116 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
117 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
118 	hellcreek_ptp_write(hellcreek, secl, PR_CLOCK_WRITE_C);
119 	hellcreek_ptp_write(hellcreek, nsh,  PR_CLOCK_WRITE_C);
120 	hellcreek_ptp_write(hellcreek, nsl,  PR_CLOCK_WRITE_C);
121 
122 	mutex_unlock(&hellcreek->ptp_lock);
123 
124 	return 0;
125 }
126 
hellcreek_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)127 static int hellcreek_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
128 {
129 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
130 	u16 negative = 0, addendh, addendl;
131 	u32 addend;
132 	u64 adj;
133 
134 	if (scaled_ppm < 0) {
135 		negative = 1;
136 		scaled_ppm = -scaled_ppm;
137 	}
138 
139 	/* IP-Core adjusts the nominal frequency by adding or subtracting 1 ns
140 	 * from the 8 ns (period of the oscillator) every time the accumulator
141 	 * register overflows. The value stored in the addend register is added
142 	 * to the accumulator register every 8 ns.
143 	 *
144 	 * addend value = (2^30 * accumulator_overflow_rate) /
145 	 *                oscillator_frequency
146 	 * where:
147 	 *
148 	 * oscillator_frequency = 125 MHz
149 	 * accumulator_overflow_rate = 125 MHz * scaled_ppm * 2^-16 * 10^-6 * 8
150 	 */
151 	adj = scaled_ppm;
152 	adj <<= 11;
153 	addend = (u32)div_u64(adj, 15625);
154 
155 	addendh = (addend & 0xffff0000) >> 16;
156 	addendl = addend & 0xffff;
157 
158 	negative = (negative << 15) & 0x8000;
159 
160 	mutex_lock(&hellcreek->ptp_lock);
161 
162 	/* Set drift register */
163 	hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_DRIFT_C);
164 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
165 	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
166 	hellcreek_ptp_write(hellcreek, addendh,  PR_CLOCK_DRIFT_C);
167 	hellcreek_ptp_write(hellcreek, addendl,  PR_CLOCK_DRIFT_C);
168 
169 	mutex_unlock(&hellcreek->ptp_lock);
170 
171 	return 0;
172 }
173 
hellcreek_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)174 static int hellcreek_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
175 {
176 	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
177 	u16 negative = 0, counth, countl;
178 	u32 count_val;
179 
180 	/* If the offset is larger than IP-Core slow offset resources. Don't
181 	 * consider slow adjustment. Rather, add the offset directly to the
182 	 * current time
183 	 */
184 	if (abs(delta) > MAX_SLOW_OFFSET_ADJ) {
185 		struct timespec64 now, then = ns_to_timespec64(delta);
186 
187 		hellcreek_ptp_gettime(ptp, &now);
188 		now = timespec64_add(now, then);
189 		hellcreek_ptp_settime(ptp, &now);
190 
191 		return 0;
192 	}
193 
194 	if (delta < 0) {
195 		negative = 1;
196 		delta = -delta;
197 	}
198 
199 	/* 'count_val' does not exceed the maximum register size (2^30) */
200 	count_val = div_s64(delta, MAX_NS_PER_STEP);
201 
202 	counth = (count_val & 0xffff0000) >> 16;
203 	countl = count_val & 0xffff;
204 
205 	negative = (negative << 15) & 0x8000;
206 
207 	mutex_lock(&hellcreek->ptp_lock);
208 
209 	/* Set offset write register */
210 	hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_OFFSET_C);
211 	hellcreek_ptp_write(hellcreek, MAX_NS_PER_STEP, PR_CLOCK_OFFSET_C);
212 	hellcreek_ptp_write(hellcreek, MIN_CLK_CYCLES_BETWEEN_STEPS,
213 			    PR_CLOCK_OFFSET_C);
214 	hellcreek_ptp_write(hellcreek, countl,  PR_CLOCK_OFFSET_C);
215 	hellcreek_ptp_write(hellcreek, counth,  PR_CLOCK_OFFSET_C);
216 
217 	mutex_unlock(&hellcreek->ptp_lock);
218 
219 	return 0;
220 }
221 
hellcreek_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)222 static int hellcreek_ptp_enable(struct ptp_clock_info *ptp,
223 				struct ptp_clock_request *rq, int on)
224 {
225 	return -EOPNOTSUPP;
226 }
227 
hellcreek_ptp_overflow_check(struct work_struct * work)228 static void hellcreek_ptp_overflow_check(struct work_struct *work)
229 {
230 	struct delayed_work *dw = to_delayed_work(work);
231 	struct hellcreek *hellcreek;
232 
233 	hellcreek = dw_overflow_to_hellcreek(dw);
234 
235 	mutex_lock(&hellcreek->ptp_lock);
236 	__hellcreek_ptp_gettime(hellcreek);
237 	mutex_unlock(&hellcreek->ptp_lock);
238 
239 	schedule_delayed_work(&hellcreek->overflow_work,
240 			      HELLCREEK_OVERFLOW_PERIOD);
241 }
242 
hellcreek_get_brightness(struct hellcreek * hellcreek,int led)243 static enum led_brightness hellcreek_get_brightness(struct hellcreek *hellcreek,
244 						    int led)
245 {
246 	return (hellcreek->status_out & led) ? 1 : 0;
247 }
248 
hellcreek_set_brightness(struct hellcreek * hellcreek,int led,enum led_brightness b)249 static void hellcreek_set_brightness(struct hellcreek *hellcreek, int led,
250 				     enum led_brightness b)
251 {
252 	mutex_lock(&hellcreek->ptp_lock);
253 
254 	if (b)
255 		hellcreek->status_out |= led;
256 	else
257 		hellcreek->status_out &= ~led;
258 
259 	hellcreek_ptp_write(hellcreek, hellcreek->status_out, STATUS_OUT);
260 
261 	mutex_unlock(&hellcreek->ptp_lock);
262 }
263 
hellcreek_led_sync_good_set(struct led_classdev * ldev,enum led_brightness b)264 static void hellcreek_led_sync_good_set(struct led_classdev *ldev,
265 					enum led_brightness b)
266 {
267 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
268 
269 	hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, b);
270 }
271 
hellcreek_led_sync_good_get(struct led_classdev * ldev)272 static enum led_brightness hellcreek_led_sync_good_get(struct led_classdev *ldev)
273 {
274 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
275 
276 	return hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
277 }
278 
hellcreek_led_is_gm_set(struct led_classdev * ldev,enum led_brightness b)279 static void hellcreek_led_is_gm_set(struct led_classdev *ldev,
280 				    enum led_brightness b)
281 {
282 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
283 
284 	hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, b);
285 }
286 
hellcreek_led_is_gm_get(struct led_classdev * ldev)287 static enum led_brightness hellcreek_led_is_gm_get(struct led_classdev *ldev)
288 {
289 	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
290 
291 	return hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
292 }
293 
294 /* There two available LEDs internally called sync_good and is_gm. However, the
295  * user might want to use a different label and specify the default state. Take
296  * those properties from device tree.
297  */
hellcreek_led_setup(struct hellcreek * hellcreek)298 static int hellcreek_led_setup(struct hellcreek *hellcreek)
299 {
300 	struct device_node *leds, *led = NULL;
301 	enum led_default_state state;
302 	const char *label;
303 	int ret = -EINVAL;
304 
305 	of_node_get(hellcreek->dev->of_node);
306 	leds = of_find_node_by_name(hellcreek->dev->of_node, "leds");
307 	if (!leds) {
308 		dev_err(hellcreek->dev, "No LEDs specified in device tree!\n");
309 		return ret;
310 	}
311 
312 	hellcreek->status_out = 0;
313 
314 	led = of_get_next_available_child(leds, led);
315 	if (!led) {
316 		dev_err(hellcreek->dev, "First LED not specified!\n");
317 		goto out;
318 	}
319 
320 	ret = of_property_read_string(led, "label", &label);
321 	hellcreek->led_sync_good.name = ret ? "sync_good" : label;
322 
323 	state = led_init_default_state_get(of_fwnode_handle(led));
324 	switch (state) {
325 	case LEDS_DEFSTATE_ON:
326 		hellcreek->led_sync_good.brightness = 1;
327 		break;
328 	case LEDS_DEFSTATE_KEEP:
329 		hellcreek->led_sync_good.brightness =
330 			hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
331 		break;
332 	default:
333 		hellcreek->led_sync_good.brightness = 0;
334 	}
335 
336 	hellcreek->led_sync_good.max_brightness = 1;
337 	hellcreek->led_sync_good.brightness_set = hellcreek_led_sync_good_set;
338 	hellcreek->led_sync_good.brightness_get = hellcreek_led_sync_good_get;
339 
340 	led = of_get_next_available_child(leds, led);
341 	if (!led) {
342 		dev_err(hellcreek->dev, "Second LED not specified!\n");
343 		ret = -EINVAL;
344 		goto out;
345 	}
346 
347 	ret = of_property_read_string(led, "label", &label);
348 	hellcreek->led_is_gm.name = ret ? "is_gm" : label;
349 
350 	state = led_init_default_state_get(of_fwnode_handle(led));
351 	switch (state) {
352 	case LEDS_DEFSTATE_ON:
353 		hellcreek->led_is_gm.brightness = 1;
354 		break;
355 	case LEDS_DEFSTATE_KEEP:
356 		hellcreek->led_is_gm.brightness =
357 			hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
358 		break;
359 	default:
360 		hellcreek->led_is_gm.brightness = 0;
361 	}
362 
363 	hellcreek->led_is_gm.max_brightness = 1;
364 	hellcreek->led_is_gm.brightness_set = hellcreek_led_is_gm_set;
365 	hellcreek->led_is_gm.brightness_get = hellcreek_led_is_gm_get;
366 
367 	/* Set initial state */
368 	if (hellcreek->led_sync_good.brightness == 1)
369 		hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, 1);
370 	if (hellcreek->led_is_gm.brightness == 1)
371 		hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, 1);
372 
373 	/* Register both leds */
374 	led_classdev_register(hellcreek->dev, &hellcreek->led_sync_good);
375 	led_classdev_register(hellcreek->dev, &hellcreek->led_is_gm);
376 
377 	ret = 0;
378 
379 out:
380 	of_node_put(leds);
381 
382 	return ret;
383 }
384 
hellcreek_ptp_setup(struct hellcreek * hellcreek)385 int hellcreek_ptp_setup(struct hellcreek *hellcreek)
386 {
387 	u16 status;
388 	int ret;
389 
390 	/* Set up the overflow work */
391 	INIT_DELAYED_WORK(&hellcreek->overflow_work,
392 			  hellcreek_ptp_overflow_check);
393 
394 	/* Setup PTP clock */
395 	hellcreek->ptp_clock_info.owner = THIS_MODULE;
396 	snprintf(hellcreek->ptp_clock_info.name,
397 		 sizeof(hellcreek->ptp_clock_info.name),
398 		 dev_name(hellcreek->dev));
399 
400 	/* IP-Core can add up to 0.5 ns per 8 ns cycle, which means
401 	 * accumulator_overflow_rate shall not exceed 62.5 MHz (which adjusts
402 	 * the nominal frequency by 6.25%)
403 	 */
404 	hellcreek->ptp_clock_info.max_adj     = 62500000;
405 	hellcreek->ptp_clock_info.n_alarm     = 0;
406 	hellcreek->ptp_clock_info.n_pins      = 0;
407 	hellcreek->ptp_clock_info.n_ext_ts    = 0;
408 	hellcreek->ptp_clock_info.n_per_out   = 0;
409 	hellcreek->ptp_clock_info.pps	      = 0;
410 	hellcreek->ptp_clock_info.adjfine     = hellcreek_ptp_adjfine;
411 	hellcreek->ptp_clock_info.adjtime     = hellcreek_ptp_adjtime;
412 	hellcreek->ptp_clock_info.gettime64   = hellcreek_ptp_gettime;
413 	hellcreek->ptp_clock_info.settime64   = hellcreek_ptp_settime;
414 	hellcreek->ptp_clock_info.enable      = hellcreek_ptp_enable;
415 	hellcreek->ptp_clock_info.do_aux_work = hellcreek_hwtstamp_work;
416 
417 	hellcreek->ptp_clock = ptp_clock_register(&hellcreek->ptp_clock_info,
418 						  hellcreek->dev);
419 	if (IS_ERR(hellcreek->ptp_clock))
420 		return PTR_ERR(hellcreek->ptp_clock);
421 
422 	/* Enable the offset correction process, if no offset correction is
423 	 * already taking place
424 	 */
425 	status = hellcreek_ptp_read(hellcreek, PR_CLOCK_STATUS_C);
426 	if (!(status & PR_CLOCK_STATUS_C_OFS_ACT))
427 		hellcreek_ptp_write(hellcreek,
428 				    status | PR_CLOCK_STATUS_C_ENA_OFS,
429 				    PR_CLOCK_STATUS_C);
430 
431 	/* Enable the drift correction process */
432 	hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_DRIFT,
433 			    PR_CLOCK_STATUS_C);
434 
435 	/* LED setup */
436 	ret = hellcreek_led_setup(hellcreek);
437 	if (ret) {
438 		if (hellcreek->ptp_clock)
439 			ptp_clock_unregister(hellcreek->ptp_clock);
440 		return ret;
441 	}
442 
443 	schedule_delayed_work(&hellcreek->overflow_work,
444 			      HELLCREEK_OVERFLOW_PERIOD);
445 
446 	return 0;
447 }
448 
hellcreek_ptp_free(struct hellcreek * hellcreek)449 void hellcreek_ptp_free(struct hellcreek *hellcreek)
450 {
451 	led_classdev_unregister(&hellcreek->led_is_gm);
452 	led_classdev_unregister(&hellcreek->led_sync_good);
453 	cancel_delayed_work_sync(&hellcreek->overflow_work);
454 	if (hellcreek->ptp_clock)
455 		ptp_clock_unregister(hellcreek->ptp_clock);
456 	hellcreek->ptp_clock = NULL;
457 }
458