xref: /openbmc/linux/drivers/net/dsa/bcm_sf2_cfp.c (revision bbecb07f)
1 /*
2  * Broadcom Starfighter 2 DSA switch CFP support
3  *
4  * Copyright (C) 2016, Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19 
20 #include "bcm_sf2.h"
21 #include "bcm_sf2_regs.h"
22 
23 struct cfp_udf_slice_layout {
24 	u8 slices[UDFS_PER_SLICE];
25 	u32 mask_value;
26 	u32 base_offset;
27 };
28 
29 struct cfp_udf_layout {
30 	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 };
32 
33 static const u8 zero_slice[UDFS_PER_SLICE] = { };
34 
35 /* UDF slices layout for a TCPv4/UDPv4 specification */
36 static const struct cfp_udf_layout udf_tcpip4_layout = {
37 	.udfs = {
38 		[1] = {
39 			.slices = {
40 				/* End of L2, byte offset 12, src IP[0:15] */
41 				CFG_UDF_EOL2 | 6,
42 				/* End of L2, byte offset 14, src IP[16:31] */
43 				CFG_UDF_EOL2 | 7,
44 				/* End of L2, byte offset 16, dst IP[0:15] */
45 				CFG_UDF_EOL2 | 8,
46 				/* End of L2, byte offset 18, dst IP[16:31] */
47 				CFG_UDF_EOL2 | 9,
48 				/* End of L3, byte offset 0, src port */
49 				CFG_UDF_EOL3 | 0,
50 				/* End of L3, byte offset 2, dst port */
51 				CFG_UDF_EOL3 | 1,
52 				0, 0, 0
53 			},
54 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55 			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56 		},
57 	},
58 };
59 
60 /* UDF slices layout for a TCPv6/UDPv6 specification */
61 static const struct cfp_udf_layout udf_tcpip6_layout = {
62 	.udfs = {
63 		[0] = {
64 			.slices = {
65 				/* End of L2, byte offset 8, src IP[0:15] */
66 				CFG_UDF_EOL2 | 4,
67 				/* End of L2, byte offset 10, src IP[16:31] */
68 				CFG_UDF_EOL2 | 5,
69 				/* End of L2, byte offset 12, src IP[32:47] */
70 				CFG_UDF_EOL2 | 6,
71 				/* End of L2, byte offset 14, src IP[48:63] */
72 				CFG_UDF_EOL2 | 7,
73 				/* End of L2, byte offset 16, src IP[64:79] */
74 				CFG_UDF_EOL2 | 8,
75 				/* End of L2, byte offset 18, src IP[80:95] */
76 				CFG_UDF_EOL2 | 9,
77 				/* End of L2, byte offset 20, src IP[96:111] */
78 				CFG_UDF_EOL2 | 10,
79 				/* End of L2, byte offset 22, src IP[112:127] */
80 				CFG_UDF_EOL2 | 11,
81 				/* End of L3, byte offset 0, src port */
82 				CFG_UDF_EOL3 | 0,
83 			},
84 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85 			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
86 		},
87 		[3] = {
88 			.slices = {
89 				/* End of L2, byte offset 24, dst IP[0:15] */
90 				CFG_UDF_EOL2 | 12,
91 				/* End of L2, byte offset 26, dst IP[16:31] */
92 				CFG_UDF_EOL2 | 13,
93 				/* End of L2, byte offset 28, dst IP[32:47] */
94 				CFG_UDF_EOL2 | 14,
95 				/* End of L2, byte offset 30, dst IP[48:63] */
96 				CFG_UDF_EOL2 | 15,
97 				/* End of L2, byte offset 32, dst IP[64:79] */
98 				CFG_UDF_EOL2 | 16,
99 				/* End of L2, byte offset 34, dst IP[80:95] */
100 				CFG_UDF_EOL2 | 17,
101 				/* End of L2, byte offset 36, dst IP[96:111] */
102 				CFG_UDF_EOL2 | 18,
103 				/* End of L2, byte offset 38, dst IP[112:127] */
104 				CFG_UDF_EOL2 | 19,
105 				/* End of L3, byte offset 2, dst port */
106 				CFG_UDF_EOL3 | 1,
107 			},
108 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109 			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
110 		},
111 	},
112 };
113 
114 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115 {
116 	unsigned int i, count = 0;
117 
118 	for (i = 0; i < UDFS_PER_SLICE; i++) {
119 		if (layout[i] != 0)
120 			count++;
121 	}
122 
123 	return count;
124 }
125 
126 static inline u32 udf_upper_bits(unsigned int num_udf)
127 {
128 	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129 }
130 
131 static inline u32 udf_lower_bits(unsigned int num_udf)
132 {
133 	return (u8)GENMASK(num_udf - 1, 0);
134 }
135 
136 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137 					     unsigned int start)
138 {
139 	const struct cfp_udf_slice_layout *slice_layout;
140 	unsigned int slice_idx;
141 
142 	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143 		slice_layout = &l->udfs[slice_idx];
144 		if (memcmp(slice_layout->slices, zero_slice,
145 			   sizeof(zero_slice)))
146 			break;
147 	}
148 
149 	return slice_idx;
150 }
151 
152 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 				const struct cfp_udf_layout *layout,
154 				unsigned int slice_num)
155 {
156 	u32 offset = layout->udfs[slice_num].base_offset;
157 	unsigned int i;
158 
159 	for (i = 0; i < UDFS_PER_SLICE; i++)
160 		core_writel(priv, layout->udfs[slice_num].slices[i],
161 			    offset + i * 4);
162 }
163 
164 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165 {
166 	unsigned int timeout = 1000;
167 	u32 reg;
168 
169 	reg = core_readl(priv, CORE_CFP_ACC);
170 	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171 	reg |= OP_STR_DONE | op;
172 	core_writel(priv, reg, CORE_CFP_ACC);
173 
174 	do {
175 		reg = core_readl(priv, CORE_CFP_ACC);
176 		if (!(reg & OP_STR_DONE))
177 			break;
178 
179 		cpu_relax();
180 	} while (timeout--);
181 
182 	if (!timeout)
183 		return -ETIMEDOUT;
184 
185 	return 0;
186 }
187 
188 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189 					     unsigned int addr)
190 {
191 	u32 reg;
192 
193 	WARN_ON(addr >= priv->num_cfp_rules);
194 
195 	reg = core_readl(priv, CORE_CFP_ACC);
196 	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197 	reg |= addr << XCESS_ADDR_SHIFT;
198 	core_writel(priv, reg, CORE_CFP_ACC);
199 }
200 
201 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202 {
203 	/* Entry #0 is reserved */
204 	return priv->num_cfp_rules - 1;
205 }
206 
207 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208 				   unsigned int rule_index,
209 				   unsigned int port_num,
210 				   unsigned int queue_num,
211 				   bool fwd_map_change)
212 {
213 	int ret;
214 	u32 reg;
215 
216 	/* Replace ARL derived destination with DST_MAP derived, define
217 	 * which port and queue this should be forwarded to.
218 	 */
219 	if (fwd_map_change)
220 		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221 		      BIT(port_num + DST_MAP_IB_SHIFT) |
222 		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
223 	else
224 		reg = 0;
225 
226 	core_writel(priv, reg, CORE_ACT_POL_DATA0);
227 
228 	/* Set classification ID that needs to be put in Broadcom tag */
229 	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230 
231 	core_writel(priv, 0, CORE_ACT_POL_DATA2);
232 
233 	/* Configure policer RAM now */
234 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235 	if (ret) {
236 		pr_err("Policer entry at %d failed\n", rule_index);
237 		return ret;
238 	}
239 
240 	/* Disable the policer */
241 	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242 
243 	/* Now the rate meter */
244 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245 	if (ret) {
246 		pr_err("Meter entry at %d failed\n", rule_index);
247 		return ret;
248 	}
249 
250 	return 0;
251 }
252 
253 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254 				   struct ethtool_tcpip4_spec *v4_spec,
255 				   unsigned int slice_num,
256 				   bool mask)
257 {
258 	u32 reg, offset;
259 
260 	/* C-Tag		[31:24]
261 	 * UDF_n_A8		[23:8]
262 	 * UDF_n_A7		[7:0]
263 	 */
264 	reg = 0;
265 	if (mask)
266 		offset = CORE_CFP_MASK_PORT(4);
267 	else
268 		offset = CORE_CFP_DATA_PORT(4);
269 	core_writel(priv, reg, offset);
270 
271 	/* UDF_n_A7		[31:24]
272 	 * UDF_n_A6		[23:8]
273 	 * UDF_n_A5		[7:0]
274 	 */
275 	reg = be16_to_cpu(v4_spec->pdst) >> 8;
276 	if (mask)
277 		offset = CORE_CFP_MASK_PORT(3);
278 	else
279 		offset = CORE_CFP_DATA_PORT(3);
280 	core_writel(priv, reg, offset);
281 
282 	/* UDF_n_A5		[31:24]
283 	 * UDF_n_A4		[23:8]
284 	 * UDF_n_A3		[7:0]
285 	 */
286 	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287 	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288 	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289 	if (mask)
290 		offset = CORE_CFP_MASK_PORT(2);
291 	else
292 		offset = CORE_CFP_DATA_PORT(2);
293 	core_writel(priv, reg, offset);
294 
295 	/* UDF_n_A3		[31:24]
296 	 * UDF_n_A2		[23:8]
297 	 * UDF_n_A1		[7:0]
298 	 */
299 	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300 	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301 	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302 	if (mask)
303 		offset = CORE_CFP_MASK_PORT(1);
304 	else
305 		offset = CORE_CFP_DATA_PORT(1);
306 	core_writel(priv, reg, offset);
307 
308 	/* UDF_n_A1		[31:24]
309 	 * UDF_n_A0		[23:8]
310 	 * Reserved		[7:4]
311 	 * Slice ID		[3:2]
312 	 * Slice valid		[1:0]
313 	 */
314 	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315 	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316 	      SLICE_NUM(slice_num) | SLICE_VALID;
317 	if (mask)
318 		offset = CORE_CFP_MASK_PORT(0);
319 	else
320 		offset = CORE_CFP_DATA_PORT(0);
321 	core_writel(priv, reg, offset);
322 }
323 
324 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325 				     unsigned int port_num,
326 				     unsigned int queue_num,
327 				     struct ethtool_rx_flow_spec *fs)
328 {
329 	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 	const struct cfp_udf_layout *layout;
331 	unsigned int slice_num, rule_index;
332 	u8 ip_proto, ip_frag;
333 	u8 num_udf;
334 	u32 reg;
335 	int ret;
336 
337 	switch (fs->flow_type & ~FLOW_EXT) {
338 	case TCP_V4_FLOW:
339 		ip_proto = IPPROTO_TCP;
340 		v4_spec = &fs->h_u.tcp_ip4_spec;
341 		v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 		break;
343 	case UDP_V4_FLOW:
344 		ip_proto = IPPROTO_UDP;
345 		v4_spec = &fs->h_u.udp_ip4_spec;
346 		v4_m_spec = &fs->m_u.udp_ip4_spec;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353 
354 	/* Locate the first rule available */
355 	if (fs->location == RX_CLS_LOC_ANY)
356 		rule_index = find_first_zero_bit(priv->cfp.used,
357 						 bcm_sf2_cfp_rule_size(priv));
358 	else
359 		rule_index = fs->location;
360 
361 	layout = &udf_tcpip4_layout;
362 	/* We only use one UDF slice for now */
363 	slice_num = bcm_sf2_get_slice_number(layout, 0);
364 	if (slice_num == UDF_NUM_SLICES)
365 		return -EINVAL;
366 
367 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
368 
369 	/* Apply the UDF layout for this filter */
370 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
371 
372 	/* Apply to all packets received through this port */
373 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
374 
375 	/* Source port map match */
376 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
377 
378 	/* S-Tag status		[31:30]
379 	 * C-Tag status		[29:28]
380 	 * L2 framing		[27:26]
381 	 * L3 framing		[25:24]
382 	 * IP ToS		[23:16]
383 	 * IP proto		[15:08]
384 	 * IP Fragm		[7]
385 	 * Non 1st frag		[6]
386 	 * IP Authen		[5]
387 	 * TTL range		[4:3]
388 	 * PPPoE session	[2]
389 	 * Reserved		[1]
390 	 * UDF_Valid[8]		[0]
391 	 */
392 	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
393 		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
394 		    udf_upper_bits(num_udf),
395 		    CORE_CFP_DATA_PORT(6));
396 
397 	/* Mask with the specific layout for IPv4 packets */
398 	core_writel(priv, layout->udfs[slice_num].mask_value |
399 		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
400 
401 	/* UDF_Valid[7:0]	[31:24]
402 	 * S-Tag		[23:8]
403 	 * C-Tag		[7:0]
404 	 */
405 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
406 
407 	/* Mask all but valid UDFs */
408 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
409 
410 	/* Program the match and the mask */
411 	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
412 	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
413 
414 	/* Insert into TCAM now */
415 	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
416 
417 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
418 	if (ret) {
419 		pr_err("TCAM entry at addr %d failed\n", rule_index);
420 		return ret;
421 	}
422 
423 	/* Insert into Action and policer RAMs now */
424 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
425 				      queue_num, true);
426 	if (ret)
427 		return ret;
428 
429 	/* Turn on CFP for this rule now */
430 	reg = core_readl(priv, CORE_CFP_CTL_REG);
431 	reg |= BIT(port);
432 	core_writel(priv, reg, CORE_CFP_CTL_REG);
433 
434 	/* Flag the rule as being used and return it */
435 	set_bit(rule_index, priv->cfp.used);
436 	set_bit(rule_index, priv->cfp.unique);
437 	fs->location = rule_index;
438 
439 	return 0;
440 }
441 
442 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
443 				   const __be32 *ip6_addr, const __be16 port,
444 				   unsigned int slice_num,
445 				   bool mask)
446 {
447 	u32 reg, tmp, val, offset;
448 
449 	/* C-Tag		[31:24]
450 	 * UDF_n_B8		[23:8]	(port)
451 	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
452 	 */
453 	reg = be32_to_cpu(ip6_addr[3]);
454 	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
455 	if (mask)
456 		offset = CORE_CFP_MASK_PORT(4);
457 	else
458 		offset = CORE_CFP_DATA_PORT(4);
459 	core_writel(priv, val, offset);
460 
461 	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
462 	 * UDF_n_B6		[23:8] (addr[31:16])
463 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
464 	 */
465 	tmp = be32_to_cpu(ip6_addr[2]);
466 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
467 	      ((tmp >> 8) & 0xff);
468 	if (mask)
469 		offset = CORE_CFP_MASK_PORT(3);
470 	else
471 		offset = CORE_CFP_DATA_PORT(3);
472 	core_writel(priv, val, offset);
473 
474 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
475 	 * UDF_n_B4		[23:8] (addr[63:48])
476 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
477 	 */
478 	reg = be32_to_cpu(ip6_addr[1]);
479 	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
480 	      ((reg >> 8) & 0xff);
481 	if (mask)
482 		offset = CORE_CFP_MASK_PORT(2);
483 	else
484 		offset = CORE_CFP_DATA_PORT(2);
485 	core_writel(priv, val, offset);
486 
487 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
488 	 * UDF_n_B2		[23:8] (addr[95:80])
489 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
490 	 */
491 	tmp = be32_to_cpu(ip6_addr[0]);
492 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
493 	      ((tmp >> 8) & 0xff);
494 	if (mask)
495 		offset = CORE_CFP_MASK_PORT(1);
496 	else
497 		offset = CORE_CFP_DATA_PORT(1);
498 	core_writel(priv, val, offset);
499 
500 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
501 	 * UDF_n_B0		[23:8] (addr[127:112])
502 	 * Reserved		[7:4]
503 	 * Slice ID		[3:2]
504 	 * Slice valid		[1:0]
505 	 */
506 	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507 	       SLICE_NUM(slice_num) | SLICE_VALID;
508 	if (mask)
509 		offset = CORE_CFP_MASK_PORT(0);
510 	else
511 		offset = CORE_CFP_DATA_PORT(0);
512 	core_writel(priv, reg, offset);
513 }
514 
515 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
516 				     unsigned int port_num,
517 				     unsigned int queue_num,
518 				     struct ethtool_rx_flow_spec *fs)
519 {
520 	struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
521 	unsigned int slice_num, rule_index[2];
522 	const struct cfp_udf_layout *layout;
523 	u8 ip_proto, ip_frag;
524 	int ret = 0;
525 	u8 num_udf;
526 	u32 reg;
527 
528 	switch (fs->flow_type & ~FLOW_EXT) {
529 	case TCP_V6_FLOW:
530 		ip_proto = IPPROTO_TCP;
531 		v6_spec = &fs->h_u.tcp_ip6_spec;
532 		v6_m_spec = &fs->m_u.tcp_ip6_spec;
533 		break;
534 	case UDP_V6_FLOW:
535 		ip_proto = IPPROTO_UDP;
536 		v6_spec = &fs->h_u.udp_ip6_spec;
537 		v6_m_spec = &fs->m_u.udp_ip6_spec;
538 		break;
539 	default:
540 		return -EINVAL;
541 	}
542 
543 	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
544 
545 	layout = &udf_tcpip6_layout;
546 	slice_num = bcm_sf2_get_slice_number(layout, 0);
547 	if (slice_num == UDF_NUM_SLICES)
548 		return -EINVAL;
549 
550 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
551 
552 	/* Negotiate two indexes, one for the second half which we are chained
553 	 * from, which is what we will return to user-space, and a second one
554 	 * which is used to store its first half. That first half does not
555 	 * allow any choice of placement, so it just needs to find the next
556 	 * available bit. We return the second half as fs->location because
557 	 * that helps with the rule lookup later on since the second half is
558 	 * chained from its first half, we can easily identify IPv6 CFP rules
559 	 * by looking whether they carry a CHAIN_ID.
560 	 *
561 	 * We also want the second half to have a lower rule_index than its
562 	 * first half because the HW search is by incrementing addresses.
563 	 */
564 	if (fs->location == RX_CLS_LOC_ANY)
565 		rule_index[0] = find_first_zero_bit(priv->cfp.used,
566 						    bcm_sf2_cfp_rule_size(priv));
567 	else
568 		rule_index[0] = fs->location;
569 
570 	/* Flag it as used (cleared on error path) such that we can immediately
571 	 * obtain a second one to chain from.
572 	 */
573 	set_bit(rule_index[0], priv->cfp.used);
574 
575 	rule_index[1] = find_first_zero_bit(priv->cfp.used,
576 					    bcm_sf2_cfp_rule_size(priv));
577 	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
578 		ret = -ENOSPC;
579 		goto out_err;
580 	}
581 
582 	/* Apply the UDF layout for this filter */
583 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
584 
585 	/* Apply to all packets received through this port */
586 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
587 
588 	/* Source port map match */
589 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
590 
591 	/* S-Tag status		[31:30]
592 	 * C-Tag status		[29:28]
593 	 * L2 framing		[27:26]
594 	 * L3 framing		[25:24]
595 	 * IP ToS		[23:16]
596 	 * IP proto		[15:08]
597 	 * IP Fragm		[7]
598 	 * Non 1st frag		[6]
599 	 * IP Authen		[5]
600 	 * TTL range		[4:3]
601 	 * PPPoE session	[2]
602 	 * Reserved		[1]
603 	 * UDF_Valid[8]		[0]
604 	 */
605 	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
606 		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
607 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
608 
609 	/* Mask with the specific layout for IPv6 packets including
610 	 * UDF_Valid[8]
611 	 */
612 	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
613 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
614 
615 	/* UDF_Valid[7:0]	[31:24]
616 	 * S-Tag		[23:8]
617 	 * C-Tag		[7:0]
618 	 */
619 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
620 
621 	/* Mask all but valid UDFs */
622 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
623 
624 	/* Slice the IPv6 source address and port */
625 	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
626 				slice_num, false);
627 	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
628 				SLICE_NUM_MASK, true);
629 
630 	/* Insert into TCAM now because we need to insert a second rule */
631 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
632 
633 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
634 	if (ret) {
635 		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
636 		goto out_err;
637 	}
638 
639 	/* Insert into Action and policer RAMs now */
640 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
641 				      queue_num, false);
642 	if (ret)
643 		goto out_err;
644 
645 	/* Now deal with the second slice to chain this rule */
646 	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
647 	if (slice_num == UDF_NUM_SLICES) {
648 		ret = -EINVAL;
649 		goto out_err;
650 	}
651 
652 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
653 
654 	/* Apply the UDF layout for this filter */
655 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
656 
657 	/* Chained rule, source port match is coming from the rule we are
658 	 * chained from.
659 	 */
660 	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
661 	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
662 
663 	/*
664 	 * CHAIN ID		[31:24] chain to previous slice
665 	 * Reserved		[23:20]
666 	 * UDF_Valid[11:8]	[19:16]
667 	 * UDF_Valid[7:0]	[15:8]
668 	 * UDF_n_D11		[7:0]
669 	 */
670 	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
671 		udf_lower_bits(num_udf) << 8;
672 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
673 
674 	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
675 	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
676 		udf_lower_bits(num_udf) << 8;
677 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
678 
679 	/* Don't care */
680 	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
681 
682 	/* Mask all */
683 	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
684 
685 	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
686 			       false);
687 	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
688 			       SLICE_NUM_MASK, true);
689 
690 	/* Insert into TCAM now */
691 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
692 
693 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
694 	if (ret) {
695 		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
696 		goto out_err;
697 	}
698 
699 	/* Insert into Action and policer RAMs now, set chain ID to
700 	 * the one we are chained to
701 	 */
702 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
703 				      queue_num, true);
704 	if (ret)
705 		goto out_err;
706 
707 	/* Turn on CFP for this rule now */
708 	reg = core_readl(priv, CORE_CFP_CTL_REG);
709 	reg |= BIT(port);
710 	core_writel(priv, reg, CORE_CFP_CTL_REG);
711 
712 	/* Flag the second half rule as being used now, return it as the
713 	 * location, and flag it as unique while dumping rules
714 	 */
715 	set_bit(rule_index[1], priv->cfp.used);
716 	set_bit(rule_index[1], priv->cfp.unique);
717 	fs->location = rule_index[1];
718 
719 	return ret;
720 
721 out_err:
722 	clear_bit(rule_index[0], priv->cfp.used);
723 	return ret;
724 }
725 
726 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
727 				struct ethtool_rx_flow_spec *fs)
728 {
729 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
730 	unsigned int queue_num, port_num;
731 	int ret = -EINVAL;
732 
733 	/* Check for unsupported extensions */
734 	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
735 	     fs->m_ext.data[1]))
736 		return -EINVAL;
737 
738 	if (fs->location != RX_CLS_LOC_ANY &&
739 	    test_bit(fs->location, priv->cfp.used))
740 		return -EBUSY;
741 
742 	if (fs->location != RX_CLS_LOC_ANY &&
743 	    fs->location > bcm_sf2_cfp_rule_size(priv))
744 		return -EINVAL;
745 
746 	/* We do not support discarding packets, check that the
747 	 * destination port is enabled and that we are within the
748 	 * number of ports supported by the switch
749 	 */
750 	port_num = fs->ring_cookie / SF2_NUM_EGRESS_QUEUES;
751 
752 	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
753 	    !dsa_is_user_port(ds, port_num) ||
754 	    port_num >= priv->hw_params.num_ports)
755 		return -EINVAL;
756 	/*
757 	 * We have a small oddity where Port 6 just does not have a
758 	 * valid bit here (so we substract by one).
759 	 */
760 	queue_num = fs->ring_cookie % SF2_NUM_EGRESS_QUEUES;
761 	if (port_num >= 7)
762 		port_num -= 1;
763 
764 	switch (fs->flow_type & ~FLOW_EXT) {
765 	case TCP_V4_FLOW:
766 	case UDP_V4_FLOW:
767 		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
768 						queue_num, fs);
769 		break;
770 	case TCP_V6_FLOW:
771 	case UDP_V6_FLOW:
772 		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
773 						queue_num, fs);
774 		break;
775 	default:
776 		break;
777 	}
778 
779 	return ret;
780 }
781 
782 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
783 				    u32 loc, u32 *next_loc)
784 {
785 	int ret;
786 	u32 reg;
787 
788 	/* Refuse deletion of unused rules, and the default reserved rule */
789 	if (!test_bit(loc, priv->cfp.used) || loc == 0)
790 		return -EINVAL;
791 
792 	/* Indicate which rule we want to read */
793 	bcm_sf2_cfp_rule_addr_set(priv, loc);
794 
795 	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
796 	if (ret)
797 		return ret;
798 
799 	/* Check if this is possibly an IPv6 rule that would
800 	 * indicate we need to delete its companion rule
801 	 * as well
802 	 */
803 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
804 	if (next_loc)
805 		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
806 
807 	/* Clear its valid bits */
808 	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
809 	reg &= ~SLICE_VALID;
810 	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
811 
812 	/* Write back this entry into the TCAM now */
813 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
814 	if (ret)
815 		return ret;
816 
817 	clear_bit(loc, priv->cfp.used);
818 	clear_bit(loc, priv->cfp.unique);
819 
820 	return 0;
821 }
822 
823 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
824 				u32 loc)
825 {
826 	u32 next_loc = 0;
827 	int ret;
828 
829 	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
830 	if (ret)
831 		return ret;
832 
833 	/* If this was an IPv6 rule, delete is companion rule too */
834 	if (next_loc)
835 		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
836 
837 	return ret;
838 }
839 
840 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
841 {
842 	unsigned int i;
843 
844 	for (i = 0; i < sizeof(flow->m_u); i++)
845 		flow->m_u.hdata[i] ^= 0xff;
846 
847 	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
848 	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
849 	flow->m_ext.data[0] ^= cpu_to_be32(~0);
850 	flow->m_ext.data[1] ^= cpu_to_be32(~0);
851 }
852 
853 static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
854 				    struct ethtool_tcpip4_spec *v4_spec,
855 				    bool mask)
856 {
857 	u32 reg, offset, ipv4;
858 	u16 src_dst_port;
859 
860 	if (mask)
861 		offset = CORE_CFP_MASK_PORT(3);
862 	else
863 		offset = CORE_CFP_DATA_PORT(3);
864 
865 	reg = core_readl(priv, offset);
866 	/* src port [15:8] */
867 	src_dst_port = reg << 8;
868 
869 	if (mask)
870 		offset = CORE_CFP_MASK_PORT(2);
871 	else
872 		offset = CORE_CFP_DATA_PORT(2);
873 
874 	reg = core_readl(priv, offset);
875 	/* src port [7:0] */
876 	src_dst_port |= (reg >> 24);
877 
878 	v4_spec->pdst = cpu_to_be16(src_dst_port);
879 	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
880 
881 	/* IPv4 dst [15:8] */
882 	ipv4 = (reg & 0xff) << 8;
883 
884 	if (mask)
885 		offset = CORE_CFP_MASK_PORT(1);
886 	else
887 		offset = CORE_CFP_DATA_PORT(1);
888 
889 	reg = core_readl(priv, offset);
890 	/* IPv4 dst [31:16] */
891 	ipv4 |= ((reg >> 8) & 0xffff) << 16;
892 	/* IPv4 dst [7:0] */
893 	ipv4 |= (reg >> 24) & 0xff;
894 	v4_spec->ip4dst = cpu_to_be32(ipv4);
895 
896 	/* IPv4 src [15:8] */
897 	ipv4 = (reg & 0xff) << 8;
898 
899 	if (mask)
900 		offset = CORE_CFP_MASK_PORT(0);
901 	else
902 		offset = CORE_CFP_DATA_PORT(0);
903 	reg = core_readl(priv, offset);
904 
905 	/* Once the TCAM is programmed, the mask reflects the slice number
906 	 * being matched, don't bother checking it when reading back the
907 	 * mask spec
908 	 */
909 	if (!mask && !(reg & SLICE_VALID))
910 		return -EINVAL;
911 
912 	/* IPv4 src [7:0] */
913 	ipv4 |= (reg >> 24) & 0xff;
914 	/* IPv4 src [31:16] */
915 	ipv4 |= ((reg >> 8) & 0xffff) << 16;
916 	v4_spec->ip4src = cpu_to_be32(ipv4);
917 
918 	return 0;
919 }
920 
921 static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
922 				     struct ethtool_rx_flow_spec *fs)
923 {
924 	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
925 	u32 reg;
926 	int ret;
927 
928 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
929 
930 	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
931 	case IPPROTO_TCP:
932 		fs->flow_type = TCP_V4_FLOW;
933 		v4_spec = &fs->h_u.tcp_ip4_spec;
934 		v4_m_spec = &fs->m_u.tcp_ip4_spec;
935 		break;
936 	case IPPROTO_UDP:
937 		fs->flow_type = UDP_V4_FLOW;
938 		v4_spec = &fs->h_u.udp_ip4_spec;
939 		v4_m_spec = &fs->m_u.udp_ip4_spec;
940 		break;
941 	default:
942 		return -EINVAL;
943 	}
944 
945 	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
946 	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
947 
948 	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
949 	if (ret)
950 		return ret;
951 
952 	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
953 }
954 
955 static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
956 				     __be32 *ip6_addr, __be16 *port,
957 				     bool mask)
958 {
959 	u32 reg, tmp, offset;
960 
961 	/* C-Tag		[31:24]
962 	 * UDF_n_B8		[23:8] (port)
963 	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
964 	 */
965 	if (mask)
966 		offset = CORE_CFP_MASK_PORT(4);
967 	else
968 		offset = CORE_CFP_DATA_PORT(4);
969 	reg = core_readl(priv, offset);
970 	*port = cpu_to_be32(reg) >> 8;
971 	tmp = (u32)(reg & 0xff) << 8;
972 
973 	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
974 	 * UDF_n_B6		[23:8] (addr[31:16])
975 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
976 	 */
977 	if (mask)
978 		offset = CORE_CFP_MASK_PORT(3);
979 	else
980 		offset = CORE_CFP_DATA_PORT(3);
981 	reg = core_readl(priv, offset);
982 	tmp |= (reg >> 24) & 0xff;
983 	tmp |= (u32)((reg >> 8) << 16);
984 	ip6_addr[3] = cpu_to_be32(tmp);
985 	tmp = (u32)(reg & 0xff) << 8;
986 
987 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
988 	 * UDF_n_B4		[23:8] (addr[63:48])
989 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
990 	 */
991 	if (mask)
992 		offset = CORE_CFP_MASK_PORT(2);
993 	else
994 		offset = CORE_CFP_DATA_PORT(2);
995 	reg = core_readl(priv, offset);
996 	tmp |= (reg >> 24) & 0xff;
997 	tmp |= (u32)((reg >> 8) << 16);
998 	ip6_addr[2] = cpu_to_be32(tmp);
999 	tmp = (u32)(reg & 0xff) << 8;
1000 
1001 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
1002 	 * UDF_n_B2		[23:8] (addr[95:80])
1003 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
1004 	 */
1005 	if (mask)
1006 		offset = CORE_CFP_MASK_PORT(1);
1007 	else
1008 		offset = CORE_CFP_DATA_PORT(1);
1009 	reg = core_readl(priv, offset);
1010 	tmp |= (reg >> 24) & 0xff;
1011 	tmp |= (u32)((reg >> 8) << 16);
1012 	ip6_addr[1] = cpu_to_be32(tmp);
1013 	tmp = (u32)(reg & 0xff) << 8;
1014 
1015 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
1016 	 * UDF_n_B0		[23:8] (addr[127:112])
1017 	 * Reserved		[7:4]
1018 	 * Slice ID		[3:2]
1019 	 * Slice valid		[1:0]
1020 	 */
1021 	if (mask)
1022 		offset = CORE_CFP_MASK_PORT(0);
1023 	else
1024 		offset = CORE_CFP_DATA_PORT(0);
1025 	reg = core_readl(priv, offset);
1026 	tmp |= (reg >> 24) & 0xff;
1027 	tmp |= (u32)((reg >> 8) << 16);
1028 	ip6_addr[0] = cpu_to_be32(tmp);
1029 
1030 	if (!mask && !(reg & SLICE_VALID))
1031 		return -EINVAL;
1032 
1033 	return 0;
1034 }
1035 
1036 static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1037 				     struct ethtool_rx_flow_spec *fs,
1038 				     u32 next_loc)
1039 {
1040 	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1041 	u32 reg;
1042 	int ret;
1043 
1044 	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1045 	 * assuming tcp_ip6_spec here being an union.
1046 	 */
1047 	v6_spec = &fs->h_u.tcp_ip6_spec;
1048 	v6_m_spec = &fs->m_u.tcp_ip6_spec;
1049 
1050 	/* Read the second half first */
1051 	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1052 				       false);
1053 	if (ret)
1054 		return ret;
1055 
1056 	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1057 				       &v6_m_spec->pdst, true);
1058 	if (ret)
1059 		return ret;
1060 
1061 	/* Read last to avoid next entry clobbering the results during search
1062 	 * operations. We would not have the port enabled for this rule, so
1063 	 * don't bother checking it.
1064 	 */
1065 	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1066 
1067 	/* The slice number is valid, so read the rule we are chained from now
1068 	 * which is our first half.
1069 	 */
1070 	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1071 	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1072 	if (ret)
1073 		return ret;
1074 
1075 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1076 
1077 	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1078 	case IPPROTO_TCP:
1079 		fs->flow_type = TCP_V6_FLOW;
1080 		break;
1081 	case IPPROTO_UDP:
1082 		fs->flow_type = UDP_V6_FLOW;
1083 		break;
1084 	default:
1085 		return -EINVAL;
1086 	}
1087 
1088 	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1089 				       false);
1090 	if (ret)
1091 		return ret;
1092 
1093 	return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1094 					&v6_m_spec->psrc, true);
1095 }
1096 
1097 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1098 				struct ethtool_rxnfc *nfc)
1099 {
1100 	u32 reg, ipv4_or_chain_id;
1101 	unsigned int queue_num;
1102 	int ret;
1103 
1104 	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1105 
1106 	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1107 	if (ret)
1108 		return ret;
1109 
1110 	reg = core_readl(priv, CORE_ACT_POL_DATA0);
1111 
1112 	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1113 	if (ret)
1114 		return ret;
1115 
1116 	/* Extract the destination port */
1117 	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1118 				  DST_MAP_IB_MASK) - 1;
1119 
1120 	/* There is no Port 6, so we compensate for that here */
1121 	if (nfc->fs.ring_cookie >= 6)
1122 		nfc->fs.ring_cookie++;
1123 	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1124 
1125 	/* Extract the destination queue */
1126 	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1127 	nfc->fs.ring_cookie += queue_num;
1128 
1129 	/* Extract the L3_FRAMING or CHAIN_ID */
1130 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1131 
1132 	/* With IPv6 rules this would contain a non-zero chain ID since
1133 	 * we reserve entry 0 and it cannot be used. So if we read 0 here
1134 	 * this means an IPv4 rule.
1135 	 */
1136 	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1137 	if (ipv4_or_chain_id == 0)
1138 		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1139 	else
1140 		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1141 						ipv4_or_chain_id);
1142 	if (ret)
1143 		return ret;
1144 
1145 	/* Read last to avoid next entry clobbering the results during search
1146 	 * operations
1147 	 */
1148 	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1149 	if (!(reg & 1 << port))
1150 		return -EINVAL;
1151 
1152 	bcm_sf2_invert_masks(&nfc->fs);
1153 
1154 	/* Put the TCAM size here */
1155 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1156 
1157 	return 0;
1158 }
1159 
1160 /* We implement the search doing a TCAM search operation */
1161 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1162 				    int port, struct ethtool_rxnfc *nfc,
1163 				    u32 *rule_locs)
1164 {
1165 	unsigned int index = 1, rules_cnt = 0;
1166 
1167 	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1168 		rule_locs[rules_cnt] = index;
1169 		rules_cnt++;
1170 	}
1171 
1172 	/* Put the TCAM size here */
1173 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1174 	nfc->rule_cnt = rules_cnt;
1175 
1176 	return 0;
1177 }
1178 
1179 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1180 		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1181 {
1182 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1183 	int ret = 0;
1184 
1185 	mutex_lock(&priv->cfp.lock);
1186 
1187 	switch (nfc->cmd) {
1188 	case ETHTOOL_GRXCLSRLCNT:
1189 		/* Subtract the default, unusable rule */
1190 		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1191 					      priv->num_cfp_rules) - 1;
1192 		/* We support specifying rule locations */
1193 		nfc->data |= RX_CLS_LOC_SPECIAL;
1194 		break;
1195 	case ETHTOOL_GRXCLSRULE:
1196 		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1197 		break;
1198 	case ETHTOOL_GRXCLSRLALL:
1199 		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1200 		break;
1201 	default:
1202 		ret = -EOPNOTSUPP;
1203 		break;
1204 	}
1205 
1206 	mutex_unlock(&priv->cfp.lock);
1207 
1208 	return ret;
1209 }
1210 
1211 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1212 		      struct ethtool_rxnfc *nfc)
1213 {
1214 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215 	int ret = 0;
1216 
1217 	mutex_lock(&priv->cfp.lock);
1218 
1219 	switch (nfc->cmd) {
1220 	case ETHTOOL_SRXCLSRLINS:
1221 		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1222 		break;
1223 
1224 	case ETHTOOL_SRXCLSRLDEL:
1225 		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1226 		break;
1227 	default:
1228 		ret = -EOPNOTSUPP;
1229 		break;
1230 	}
1231 
1232 	mutex_unlock(&priv->cfp.lock);
1233 
1234 	return ret;
1235 }
1236 
1237 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1238 {
1239 	unsigned int timeout = 1000;
1240 	u32 reg;
1241 
1242 	reg = core_readl(priv, CORE_CFP_ACC);
1243 	reg |= TCAM_RESET;
1244 	core_writel(priv, reg, CORE_CFP_ACC);
1245 
1246 	do {
1247 		reg = core_readl(priv, CORE_CFP_ACC);
1248 		if (!(reg & TCAM_RESET))
1249 			break;
1250 
1251 		cpu_relax();
1252 	} while (timeout--);
1253 
1254 	if (!timeout)
1255 		return -ETIMEDOUT;
1256 
1257 	return 0;
1258 }
1259