xref: /openbmc/linux/drivers/net/dsa/bcm_sf2_cfp.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Broadcom Starfighter 2 DSA switch CFP support
4  *
5  * Copyright (C) 2016, Broadcom
6  */
7 
8 #include <linux/list.h>
9 #include <linux/ethtool.h>
10 #include <linux/if_ether.h>
11 #include <linux/in.h>
12 #include <linux/netdevice.h>
13 #include <net/dsa.h>
14 #include <linux/bitmap.h>
15 #include <net/flow_offload.h>
16 
17 #include "bcm_sf2.h"
18 #include "bcm_sf2_regs.h"
19 
20 struct cfp_rule {
21 	int port;
22 	struct ethtool_rx_flow_spec fs;
23 	struct list_head next;
24 };
25 
26 struct cfp_udf_slice_layout {
27 	u8 slices[UDFS_PER_SLICE];
28 	u32 mask_value;
29 	u32 base_offset;
30 };
31 
32 struct cfp_udf_layout {
33 	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
34 };
35 
36 static const u8 zero_slice[UDFS_PER_SLICE] = { };
37 
38 /* UDF slices layout for a TCPv4/UDPv4 specification */
39 static const struct cfp_udf_layout udf_tcpip4_layout = {
40 	.udfs = {
41 		[1] = {
42 			.slices = {
43 				/* End of L2, byte offset 12, src IP[0:15] */
44 				CFG_UDF_EOL2 | 6,
45 				/* End of L2, byte offset 14, src IP[16:31] */
46 				CFG_UDF_EOL2 | 7,
47 				/* End of L2, byte offset 16, dst IP[0:15] */
48 				CFG_UDF_EOL2 | 8,
49 				/* End of L2, byte offset 18, dst IP[16:31] */
50 				CFG_UDF_EOL2 | 9,
51 				/* End of L3, byte offset 0, src port */
52 				CFG_UDF_EOL3 | 0,
53 				/* End of L3, byte offset 2, dst port */
54 				CFG_UDF_EOL3 | 1,
55 				0, 0, 0
56 			},
57 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
58 			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
59 		},
60 	},
61 };
62 
63 /* UDF slices layout for a TCPv6/UDPv6 specification */
64 static const struct cfp_udf_layout udf_tcpip6_layout = {
65 	.udfs = {
66 		[0] = {
67 			.slices = {
68 				/* End of L2, byte offset 8, src IP[0:15] */
69 				CFG_UDF_EOL2 | 4,
70 				/* End of L2, byte offset 10, src IP[16:31] */
71 				CFG_UDF_EOL2 | 5,
72 				/* End of L2, byte offset 12, src IP[32:47] */
73 				CFG_UDF_EOL2 | 6,
74 				/* End of L2, byte offset 14, src IP[48:63] */
75 				CFG_UDF_EOL2 | 7,
76 				/* End of L2, byte offset 16, src IP[64:79] */
77 				CFG_UDF_EOL2 | 8,
78 				/* End of L2, byte offset 18, src IP[80:95] */
79 				CFG_UDF_EOL2 | 9,
80 				/* End of L2, byte offset 20, src IP[96:111] */
81 				CFG_UDF_EOL2 | 10,
82 				/* End of L2, byte offset 22, src IP[112:127] */
83 				CFG_UDF_EOL2 | 11,
84 				/* End of L3, byte offset 0, src port */
85 				CFG_UDF_EOL3 | 0,
86 			},
87 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
88 			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
89 		},
90 		[3] = {
91 			.slices = {
92 				/* End of L2, byte offset 24, dst IP[0:15] */
93 				CFG_UDF_EOL2 | 12,
94 				/* End of L2, byte offset 26, dst IP[16:31] */
95 				CFG_UDF_EOL2 | 13,
96 				/* End of L2, byte offset 28, dst IP[32:47] */
97 				CFG_UDF_EOL2 | 14,
98 				/* End of L2, byte offset 30, dst IP[48:63] */
99 				CFG_UDF_EOL2 | 15,
100 				/* End of L2, byte offset 32, dst IP[64:79] */
101 				CFG_UDF_EOL2 | 16,
102 				/* End of L2, byte offset 34, dst IP[80:95] */
103 				CFG_UDF_EOL2 | 17,
104 				/* End of L2, byte offset 36, dst IP[96:111] */
105 				CFG_UDF_EOL2 | 18,
106 				/* End of L2, byte offset 38, dst IP[112:127] */
107 				CFG_UDF_EOL2 | 19,
108 				/* End of L3, byte offset 2, dst port */
109 				CFG_UDF_EOL3 | 1,
110 			},
111 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
112 			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
113 		},
114 	},
115 };
116 
117 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
118 {
119 	unsigned int i, count = 0;
120 
121 	for (i = 0; i < UDFS_PER_SLICE; i++) {
122 		if (layout[i] != 0)
123 			count++;
124 	}
125 
126 	return count;
127 }
128 
129 static inline u32 udf_upper_bits(unsigned int num_udf)
130 {
131 	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
132 }
133 
134 static inline u32 udf_lower_bits(unsigned int num_udf)
135 {
136 	return (u8)GENMASK(num_udf - 1, 0);
137 }
138 
139 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
140 					     unsigned int start)
141 {
142 	const struct cfp_udf_slice_layout *slice_layout;
143 	unsigned int slice_idx;
144 
145 	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
146 		slice_layout = &l->udfs[slice_idx];
147 		if (memcmp(slice_layout->slices, zero_slice,
148 			   sizeof(zero_slice)))
149 			break;
150 	}
151 
152 	return slice_idx;
153 }
154 
155 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
156 				const struct cfp_udf_layout *layout,
157 				unsigned int slice_num)
158 {
159 	u32 offset = layout->udfs[slice_num].base_offset;
160 	unsigned int i;
161 
162 	for (i = 0; i < UDFS_PER_SLICE; i++)
163 		core_writel(priv, layout->udfs[slice_num].slices[i],
164 			    offset + i * 4);
165 }
166 
167 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
168 {
169 	unsigned int timeout = 1000;
170 	u32 reg;
171 
172 	reg = core_readl(priv, CORE_CFP_ACC);
173 	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
174 	reg |= OP_STR_DONE | op;
175 	core_writel(priv, reg, CORE_CFP_ACC);
176 
177 	do {
178 		reg = core_readl(priv, CORE_CFP_ACC);
179 		if (!(reg & OP_STR_DONE))
180 			break;
181 
182 		cpu_relax();
183 	} while (timeout--);
184 
185 	if (!timeout)
186 		return -ETIMEDOUT;
187 
188 	return 0;
189 }
190 
191 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
192 					     unsigned int addr)
193 {
194 	u32 reg;
195 
196 	WARN_ON(addr >= priv->num_cfp_rules);
197 
198 	reg = core_readl(priv, CORE_CFP_ACC);
199 	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
200 	reg |= addr << XCESS_ADDR_SHIFT;
201 	core_writel(priv, reg, CORE_CFP_ACC);
202 }
203 
204 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
205 {
206 	/* Entry #0 is reserved */
207 	return priv->num_cfp_rules - 1;
208 }
209 
210 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
211 				   unsigned int rule_index,
212 				   int src_port,
213 				   unsigned int port_num,
214 				   unsigned int queue_num,
215 				   bool fwd_map_change)
216 {
217 	int ret;
218 	u32 reg;
219 
220 	/* Replace ARL derived destination with DST_MAP derived, define
221 	 * which port and queue this should be forwarded to.
222 	 */
223 	if (fwd_map_change)
224 		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
225 		      BIT(port_num + DST_MAP_IB_SHIFT) |
226 		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
227 	else
228 		reg = 0;
229 
230 	/* Enable looping back to the original port */
231 	if (src_port == port_num)
232 		reg |= LOOP_BK_EN;
233 
234 	core_writel(priv, reg, CORE_ACT_POL_DATA0);
235 
236 	/* Set classification ID that needs to be put in Broadcom tag */
237 	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
238 
239 	core_writel(priv, 0, CORE_ACT_POL_DATA2);
240 
241 	/* Configure policer RAM now */
242 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
243 	if (ret) {
244 		pr_err("Policer entry at %d failed\n", rule_index);
245 		return ret;
246 	}
247 
248 	/* Disable the policer */
249 	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
250 
251 	/* Now the rate meter */
252 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
253 	if (ret) {
254 		pr_err("Meter entry at %d failed\n", rule_index);
255 		return ret;
256 	}
257 
258 	return 0;
259 }
260 
261 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
262 				   struct flow_dissector_key_ipv4_addrs *addrs,
263 				   struct flow_dissector_key_ports *ports,
264 				   unsigned int slice_num,
265 				   bool mask)
266 {
267 	u32 reg, offset;
268 
269 	/* C-Tag		[31:24]
270 	 * UDF_n_A8		[23:8]
271 	 * UDF_n_A7		[7:0]
272 	 */
273 	reg = 0;
274 	if (mask)
275 		offset = CORE_CFP_MASK_PORT(4);
276 	else
277 		offset = CORE_CFP_DATA_PORT(4);
278 	core_writel(priv, reg, offset);
279 
280 	/* UDF_n_A7		[31:24]
281 	 * UDF_n_A6		[23:8]
282 	 * UDF_n_A5		[7:0]
283 	 */
284 	reg = be16_to_cpu(ports->dst) >> 8;
285 	if (mask)
286 		offset = CORE_CFP_MASK_PORT(3);
287 	else
288 		offset = CORE_CFP_DATA_PORT(3);
289 	core_writel(priv, reg, offset);
290 
291 	/* UDF_n_A5		[31:24]
292 	 * UDF_n_A4		[23:8]
293 	 * UDF_n_A3		[7:0]
294 	 */
295 	reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
296 	      (u32)be16_to_cpu(ports->src) << 8 |
297 	      (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
298 	if (mask)
299 		offset = CORE_CFP_MASK_PORT(2);
300 	else
301 		offset = CORE_CFP_DATA_PORT(2);
302 	core_writel(priv, reg, offset);
303 
304 	/* UDF_n_A3		[31:24]
305 	 * UDF_n_A2		[23:8]
306 	 * UDF_n_A1		[7:0]
307 	 */
308 	reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
309 	      (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
310 	      (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
311 	if (mask)
312 		offset = CORE_CFP_MASK_PORT(1);
313 	else
314 		offset = CORE_CFP_DATA_PORT(1);
315 	core_writel(priv, reg, offset);
316 
317 	/* UDF_n_A1		[31:24]
318 	 * UDF_n_A0		[23:8]
319 	 * Reserved		[7:4]
320 	 * Slice ID		[3:2]
321 	 * Slice valid		[1:0]
322 	 */
323 	reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
324 	      (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
325 	      SLICE_NUM(slice_num) | SLICE_VALID;
326 	if (mask)
327 		offset = CORE_CFP_MASK_PORT(0);
328 	else
329 		offset = CORE_CFP_DATA_PORT(0);
330 	core_writel(priv, reg, offset);
331 }
332 
333 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
334 				     unsigned int port_num,
335 				     unsigned int queue_num,
336 				     struct ethtool_rx_flow_spec *fs)
337 {
338 	struct ethtool_rx_flow_spec_input input = {};
339 	const struct cfp_udf_layout *layout;
340 	unsigned int slice_num, rule_index;
341 	struct ethtool_rx_flow_rule *flow;
342 	struct flow_match_ipv4_addrs ipv4;
343 	struct flow_match_ports ports;
344 	struct flow_match_ip ip;
345 	u8 ip_proto, ip_frag;
346 	u8 num_udf;
347 	u32 reg;
348 	int ret;
349 
350 	switch (fs->flow_type & ~FLOW_EXT) {
351 	case TCP_V4_FLOW:
352 		ip_proto = IPPROTO_TCP;
353 		break;
354 	case UDP_V4_FLOW:
355 		ip_proto = IPPROTO_UDP;
356 		break;
357 	default:
358 		return -EINVAL;
359 	}
360 
361 	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
362 
363 	/* Locate the first rule available */
364 	if (fs->location == RX_CLS_LOC_ANY)
365 		rule_index = find_first_zero_bit(priv->cfp.used,
366 						 priv->num_cfp_rules);
367 	else
368 		rule_index = fs->location;
369 
370 	if (rule_index > bcm_sf2_cfp_rule_size(priv))
371 		return -ENOSPC;
372 
373 	input.fs = fs;
374 	flow = ethtool_rx_flow_rule_create(&input);
375 	if (IS_ERR(flow))
376 		return PTR_ERR(flow);
377 
378 	flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
379 	flow_rule_match_ports(flow->rule, &ports);
380 	flow_rule_match_ip(flow->rule, &ip);
381 
382 	layout = &udf_tcpip4_layout;
383 	/* We only use one UDF slice for now */
384 	slice_num = bcm_sf2_get_slice_number(layout, 0);
385 	if (slice_num == UDF_NUM_SLICES) {
386 		ret = -EINVAL;
387 		goto out_err_flow_rule;
388 	}
389 
390 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
391 
392 	/* Apply the UDF layout for this filter */
393 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
394 
395 	/* Apply to all packets received through this port */
396 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
397 
398 	/* Source port map match */
399 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
400 
401 	/* S-Tag status		[31:30]
402 	 * C-Tag status		[29:28]
403 	 * L2 framing		[27:26]
404 	 * L3 framing		[25:24]
405 	 * IP ToS		[23:16]
406 	 * IP proto		[15:08]
407 	 * IP Fragm		[7]
408 	 * Non 1st frag		[6]
409 	 * IP Authen		[5]
410 	 * TTL range		[4:3]
411 	 * PPPoE session	[2]
412 	 * Reserved		[1]
413 	 * UDF_Valid[8]		[0]
414 	 */
415 	core_writel(priv, ip.key->tos << IPTOS_SHIFT |
416 		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
417 		    udf_upper_bits(num_udf),
418 		    CORE_CFP_DATA_PORT(6));
419 
420 	/* Mask with the specific layout for IPv4 packets */
421 	core_writel(priv, layout->udfs[slice_num].mask_value |
422 		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
423 
424 	/* UDF_Valid[7:0]	[31:24]
425 	 * S-Tag		[23:8]
426 	 * C-Tag		[7:0]
427 	 */
428 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
429 
430 	/* Mask all but valid UDFs */
431 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
432 
433 	/* Program the match and the mask */
434 	bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
435 	bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
436 
437 	/* Insert into TCAM now */
438 	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
439 
440 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
441 	if (ret) {
442 		pr_err("TCAM entry at addr %d failed\n", rule_index);
443 		goto out_err_flow_rule;
444 	}
445 
446 	/* Insert into Action and policer RAMs now */
447 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
448 				      queue_num, true);
449 	if (ret)
450 		goto out_err_flow_rule;
451 
452 	/* Turn on CFP for this rule now */
453 	reg = core_readl(priv, CORE_CFP_CTL_REG);
454 	reg |= BIT(port);
455 	core_writel(priv, reg, CORE_CFP_CTL_REG);
456 
457 	/* Flag the rule as being used and return it */
458 	set_bit(rule_index, priv->cfp.used);
459 	set_bit(rule_index, priv->cfp.unique);
460 	fs->location = rule_index;
461 
462 	return 0;
463 
464 out_err_flow_rule:
465 	ethtool_rx_flow_rule_destroy(flow);
466 	return ret;
467 }
468 
469 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
470 				   const __be32 *ip6_addr, const __be16 port,
471 				   unsigned int slice_num,
472 				   bool mask)
473 {
474 	u32 reg, tmp, val, offset;
475 
476 	/* C-Tag		[31:24]
477 	 * UDF_n_B8		[23:8]	(port)
478 	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
479 	 */
480 	reg = be32_to_cpu(ip6_addr[3]);
481 	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
482 	if (mask)
483 		offset = CORE_CFP_MASK_PORT(4);
484 	else
485 		offset = CORE_CFP_DATA_PORT(4);
486 	core_writel(priv, val, offset);
487 
488 	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
489 	 * UDF_n_B6		[23:8] (addr[31:16])
490 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
491 	 */
492 	tmp = be32_to_cpu(ip6_addr[2]);
493 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
494 	      ((tmp >> 8) & 0xff);
495 	if (mask)
496 		offset = CORE_CFP_MASK_PORT(3);
497 	else
498 		offset = CORE_CFP_DATA_PORT(3);
499 	core_writel(priv, val, offset);
500 
501 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
502 	 * UDF_n_B4		[23:8] (addr[63:48])
503 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
504 	 */
505 	reg = be32_to_cpu(ip6_addr[1]);
506 	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507 	      ((reg >> 8) & 0xff);
508 	if (mask)
509 		offset = CORE_CFP_MASK_PORT(2);
510 	else
511 		offset = CORE_CFP_DATA_PORT(2);
512 	core_writel(priv, val, offset);
513 
514 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
515 	 * UDF_n_B2		[23:8] (addr[95:80])
516 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
517 	 */
518 	tmp = be32_to_cpu(ip6_addr[0]);
519 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
520 	      ((tmp >> 8) & 0xff);
521 	if (mask)
522 		offset = CORE_CFP_MASK_PORT(1);
523 	else
524 		offset = CORE_CFP_DATA_PORT(1);
525 	core_writel(priv, val, offset);
526 
527 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
528 	 * UDF_n_B0		[23:8] (addr[127:112])
529 	 * Reserved		[7:4]
530 	 * Slice ID		[3:2]
531 	 * Slice valid		[1:0]
532 	 */
533 	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
534 	       SLICE_NUM(slice_num) | SLICE_VALID;
535 	if (mask)
536 		offset = CORE_CFP_MASK_PORT(0);
537 	else
538 		offset = CORE_CFP_DATA_PORT(0);
539 	core_writel(priv, reg, offset);
540 }
541 
542 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
543 					      int port, u32 location)
544 {
545 	struct cfp_rule *rule = NULL;
546 
547 	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
548 		if (rule->port == port && rule->fs.location == location)
549 			break;
550 	}
551 
552 	return rule;
553 }
554 
555 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
556 				struct ethtool_rx_flow_spec *fs)
557 {
558 	struct cfp_rule *rule = NULL;
559 	size_t fs_size = 0;
560 	int ret = 1;
561 
562 	if (list_empty(&priv->cfp.rules_list))
563 		return ret;
564 
565 	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
566 		ret = 1;
567 		if (rule->port != port)
568 			continue;
569 
570 		if (rule->fs.flow_type != fs->flow_type ||
571 		    rule->fs.ring_cookie != fs->ring_cookie ||
572 		    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
573 			continue;
574 
575 		switch (fs->flow_type & ~FLOW_EXT) {
576 		case TCP_V6_FLOW:
577 		case UDP_V6_FLOW:
578 			fs_size = sizeof(struct ethtool_tcpip6_spec);
579 			break;
580 		case TCP_V4_FLOW:
581 		case UDP_V4_FLOW:
582 			fs_size = sizeof(struct ethtool_tcpip4_spec);
583 			break;
584 		default:
585 			continue;
586 		}
587 
588 		ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
589 		ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
590 		if (ret == 0)
591 			break;
592 	}
593 
594 	return ret;
595 }
596 
597 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
598 				     unsigned int port_num,
599 				     unsigned int queue_num,
600 				     struct ethtool_rx_flow_spec *fs)
601 {
602 	struct ethtool_rx_flow_spec_input input = {};
603 	unsigned int slice_num, rule_index[2];
604 	const struct cfp_udf_layout *layout;
605 	struct ethtool_rx_flow_rule *flow;
606 	struct flow_match_ipv6_addrs ipv6;
607 	struct flow_match_ports ports;
608 	u8 ip_proto, ip_frag;
609 	int ret = 0;
610 	u8 num_udf;
611 	u32 reg;
612 
613 	switch (fs->flow_type & ~FLOW_EXT) {
614 	case TCP_V6_FLOW:
615 		ip_proto = IPPROTO_TCP;
616 		break;
617 	case UDP_V6_FLOW:
618 		ip_proto = IPPROTO_UDP;
619 		break;
620 	default:
621 		return -EINVAL;
622 	}
623 
624 	ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
625 
626 	layout = &udf_tcpip6_layout;
627 	slice_num = bcm_sf2_get_slice_number(layout, 0);
628 	if (slice_num == UDF_NUM_SLICES)
629 		return -EINVAL;
630 
631 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
632 
633 	/* Negotiate two indexes, one for the second half which we are chained
634 	 * from, which is what we will return to user-space, and a second one
635 	 * which is used to store its first half. That first half does not
636 	 * allow any choice of placement, so it just needs to find the next
637 	 * available bit. We return the second half as fs->location because
638 	 * that helps with the rule lookup later on since the second half is
639 	 * chained from its first half, we can easily identify IPv6 CFP rules
640 	 * by looking whether they carry a CHAIN_ID.
641 	 *
642 	 * We also want the second half to have a lower rule_index than its
643 	 * first half because the HW search is by incrementing addresses.
644 	 */
645 	if (fs->location == RX_CLS_LOC_ANY)
646 		rule_index[1] = find_first_zero_bit(priv->cfp.used,
647 						    priv->num_cfp_rules);
648 	else
649 		rule_index[1] = fs->location;
650 	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
651 		return -ENOSPC;
652 
653 	/* Flag it as used (cleared on error path) such that we can immediately
654 	 * obtain a second one to chain from.
655 	 */
656 	set_bit(rule_index[1], priv->cfp.used);
657 
658 	rule_index[0] = find_first_zero_bit(priv->cfp.used,
659 					    priv->num_cfp_rules);
660 	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
661 		ret = -ENOSPC;
662 		goto out_err;
663 	}
664 
665 	input.fs = fs;
666 	flow = ethtool_rx_flow_rule_create(&input);
667 	if (IS_ERR(flow)) {
668 		ret = PTR_ERR(flow);
669 		goto out_err;
670 	}
671 	flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
672 	flow_rule_match_ports(flow->rule, &ports);
673 
674 	/* Apply the UDF layout for this filter */
675 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
676 
677 	/* Apply to all packets received through this port */
678 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
679 
680 	/* Source port map match */
681 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
682 
683 	/* S-Tag status		[31:30]
684 	 * C-Tag status		[29:28]
685 	 * L2 framing		[27:26]
686 	 * L3 framing		[25:24]
687 	 * IP ToS		[23:16]
688 	 * IP proto		[15:08]
689 	 * IP Fragm		[7]
690 	 * Non 1st frag		[6]
691 	 * IP Authen		[5]
692 	 * TTL range		[4:3]
693 	 * PPPoE session	[2]
694 	 * Reserved		[1]
695 	 * UDF_Valid[8]		[0]
696 	 */
697 	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
698 		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
699 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
700 
701 	/* Mask with the specific layout for IPv6 packets including
702 	 * UDF_Valid[8]
703 	 */
704 	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
705 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
706 
707 	/* UDF_Valid[7:0]	[31:24]
708 	 * S-Tag		[23:8]
709 	 * C-Tag		[7:0]
710 	 */
711 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
712 
713 	/* Mask all but valid UDFs */
714 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
715 
716 	/* Slice the IPv6 source address and port */
717 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
718 			       ports.key->src, slice_num, false);
719 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
720 			       ports.mask->src, SLICE_NUM_MASK, true);
721 
722 	/* Insert into TCAM now because we need to insert a second rule */
723 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
724 
725 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
726 	if (ret) {
727 		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
728 		goto out_err_flow_rule;
729 	}
730 
731 	/* Insert into Action and policer RAMs now */
732 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
733 				      queue_num, false);
734 	if (ret)
735 		goto out_err_flow_rule;
736 
737 	/* Now deal with the second slice to chain this rule */
738 	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
739 	if (slice_num == UDF_NUM_SLICES) {
740 		ret = -EINVAL;
741 		goto out_err_flow_rule;
742 	}
743 
744 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
745 
746 	/* Apply the UDF layout for this filter */
747 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
748 
749 	/* Chained rule, source port match is coming from the rule we are
750 	 * chained from.
751 	 */
752 	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
753 	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
754 
755 	/*
756 	 * CHAIN ID		[31:24] chain to previous slice
757 	 * Reserved		[23:20]
758 	 * UDF_Valid[11:8]	[19:16]
759 	 * UDF_Valid[7:0]	[15:8]
760 	 * UDF_n_D11		[7:0]
761 	 */
762 	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
763 		udf_lower_bits(num_udf) << 8;
764 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
765 
766 	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
767 	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
768 		udf_lower_bits(num_udf) << 8;
769 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
770 
771 	/* Don't care */
772 	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
773 
774 	/* Mask all */
775 	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
776 
777 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
778 			       ports.key->dst, slice_num, false);
779 	bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
780 			       ports.key->dst, SLICE_NUM_MASK, true);
781 
782 	/* Insert into TCAM now */
783 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
784 
785 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
786 	if (ret) {
787 		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
788 		goto out_err_flow_rule;
789 	}
790 
791 	/* Insert into Action and policer RAMs now, set chain ID to
792 	 * the one we are chained to
793 	 */
794 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
795 				      queue_num, true);
796 	if (ret)
797 		goto out_err_flow_rule;
798 
799 	/* Turn on CFP for this rule now */
800 	reg = core_readl(priv, CORE_CFP_CTL_REG);
801 	reg |= BIT(port);
802 	core_writel(priv, reg, CORE_CFP_CTL_REG);
803 
804 	/* Flag the second half rule as being used now, return it as the
805 	 * location, and flag it as unique while dumping rules
806 	 */
807 	set_bit(rule_index[0], priv->cfp.used);
808 	set_bit(rule_index[1], priv->cfp.unique);
809 	fs->location = rule_index[1];
810 
811 	return ret;
812 
813 out_err_flow_rule:
814 	ethtool_rx_flow_rule_destroy(flow);
815 out_err:
816 	clear_bit(rule_index[1], priv->cfp.used);
817 	return ret;
818 }
819 
820 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
821 				   struct ethtool_rx_flow_spec *fs)
822 {
823 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
824 	s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
825 	__u64 ring_cookie = fs->ring_cookie;
826 	unsigned int queue_num, port_num;
827 	int ret;
828 
829 	/* This rule is a Wake-on-LAN filter and we must specifically
830 	 * target the CPU port in order for it to be working.
831 	 */
832 	if (ring_cookie == RX_CLS_FLOW_WAKE)
833 		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
834 
835 	/* We do not support discarding packets, check that the
836 	 * destination port is enabled and that we are within the
837 	 * number of ports supported by the switch
838 	 */
839 	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
840 
841 	if (ring_cookie == RX_CLS_FLOW_DISC ||
842 	    !(dsa_is_user_port(ds, port_num) ||
843 	      dsa_is_cpu_port(ds, port_num)) ||
844 	    port_num >= priv->hw_params.num_ports)
845 		return -EINVAL;
846 	/*
847 	 * We have a small oddity where Port 6 just does not have a
848 	 * valid bit here (so we substract by one).
849 	 */
850 	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
851 	if (port_num >= 7)
852 		port_num -= 1;
853 
854 	switch (fs->flow_type & ~FLOW_EXT) {
855 	case TCP_V4_FLOW:
856 	case UDP_V4_FLOW:
857 		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
858 						queue_num, fs);
859 		break;
860 	case TCP_V6_FLOW:
861 	case UDP_V6_FLOW:
862 		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
863 						queue_num, fs);
864 		break;
865 	default:
866 		ret = -EINVAL;
867 		break;
868 	}
869 
870 	return ret;
871 }
872 
873 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
874 				struct ethtool_rx_flow_spec *fs)
875 {
876 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
877 	struct cfp_rule *rule = NULL;
878 	int ret = -EINVAL;
879 
880 	/* Check for unsupported extensions */
881 	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
882 	     fs->m_ext.data[1]))
883 		return -EINVAL;
884 
885 	if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
886 		return -EINVAL;
887 
888 	if (fs->location != RX_CLS_LOC_ANY &&
889 	    test_bit(fs->location, priv->cfp.used))
890 		return -EBUSY;
891 
892 	if (fs->location != RX_CLS_LOC_ANY &&
893 	    fs->location > bcm_sf2_cfp_rule_size(priv))
894 		return -EINVAL;
895 
896 	ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
897 	if (ret == 0)
898 		return -EEXIST;
899 
900 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
901 	if (!rule)
902 		return -ENOMEM;
903 
904 	ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
905 	if (ret) {
906 		kfree(rule);
907 		return ret;
908 	}
909 
910 	rule->port = port;
911 	memcpy(&rule->fs, fs, sizeof(*fs));
912 	list_add_tail(&rule->next, &priv->cfp.rules_list);
913 
914 	return ret;
915 }
916 
917 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
918 				    u32 loc, u32 *next_loc)
919 {
920 	int ret;
921 	u32 reg;
922 
923 	/* Indicate which rule we want to read */
924 	bcm_sf2_cfp_rule_addr_set(priv, loc);
925 
926 	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
927 	if (ret)
928 		return ret;
929 
930 	/* Check if this is possibly an IPv6 rule that would
931 	 * indicate we need to delete its companion rule
932 	 * as well
933 	 */
934 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
935 	if (next_loc)
936 		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
937 
938 	/* Clear its valid bits */
939 	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
940 	reg &= ~SLICE_VALID;
941 	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
942 
943 	/* Write back this entry into the TCAM now */
944 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
945 	if (ret)
946 		return ret;
947 
948 	clear_bit(loc, priv->cfp.used);
949 	clear_bit(loc, priv->cfp.unique);
950 
951 	return 0;
952 }
953 
954 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
955 				   u32 loc)
956 {
957 	u32 next_loc = 0;
958 	int ret;
959 
960 	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
961 	if (ret)
962 		return ret;
963 
964 	/* If this was an IPv6 rule, delete is companion rule too */
965 	if (next_loc)
966 		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
967 
968 	return ret;
969 }
970 
971 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
972 {
973 	struct cfp_rule *rule;
974 	int ret;
975 
976 	if (loc >= CFP_NUM_RULES)
977 		return -EINVAL;
978 
979 	/* Refuse deleting unused rules, and those that are not unique since
980 	 * that could leave IPv6 rules with one of the chained rule in the
981 	 * table.
982 	 */
983 	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
984 		return -EINVAL;
985 
986 	rule = bcm_sf2_cfp_rule_find(priv, port, loc);
987 	if (!rule)
988 		return -EINVAL;
989 
990 	ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
991 
992 	list_del(&rule->next);
993 	kfree(rule);
994 
995 	return ret;
996 }
997 
998 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
999 {
1000 	unsigned int i;
1001 
1002 	for (i = 0; i < sizeof(flow->m_u); i++)
1003 		flow->m_u.hdata[i] ^= 0xff;
1004 
1005 	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1006 	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1007 	flow->m_ext.data[0] ^= cpu_to_be32(~0);
1008 	flow->m_ext.data[1] ^= cpu_to_be32(~0);
1009 }
1010 
1011 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1012 				struct ethtool_rxnfc *nfc)
1013 {
1014 	struct cfp_rule *rule;
1015 
1016 	rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1017 	if (!rule)
1018 		return -EINVAL;
1019 
1020 	memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1021 
1022 	bcm_sf2_invert_masks(&nfc->fs);
1023 
1024 	/* Put the TCAM size here */
1025 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1026 
1027 	return 0;
1028 }
1029 
1030 /* We implement the search doing a TCAM search operation */
1031 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1032 				    int port, struct ethtool_rxnfc *nfc,
1033 				    u32 *rule_locs)
1034 {
1035 	unsigned int index = 1, rules_cnt = 0;
1036 
1037 	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1038 		rule_locs[rules_cnt] = index;
1039 		rules_cnt++;
1040 	}
1041 
1042 	/* Put the TCAM size here */
1043 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1044 	nfc->rule_cnt = rules_cnt;
1045 
1046 	return 0;
1047 }
1048 
1049 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1050 		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1051 {
1052 	struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
1053 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1054 	int ret = 0;
1055 
1056 	mutex_lock(&priv->cfp.lock);
1057 
1058 	switch (nfc->cmd) {
1059 	case ETHTOOL_GRXCLSRLCNT:
1060 		/* Subtract the default, unusable rule */
1061 		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1062 					      priv->num_cfp_rules) - 1;
1063 		/* We support specifying rule locations */
1064 		nfc->data |= RX_CLS_LOC_SPECIAL;
1065 		break;
1066 	case ETHTOOL_GRXCLSRULE:
1067 		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1068 		break;
1069 	case ETHTOOL_GRXCLSRLALL:
1070 		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1071 		break;
1072 	default:
1073 		ret = -EOPNOTSUPP;
1074 		break;
1075 	}
1076 
1077 	mutex_unlock(&priv->cfp.lock);
1078 
1079 	if (ret)
1080 		return ret;
1081 
1082 	/* Pass up the commands to the attached master network device */
1083 	if (p->ethtool_ops->get_rxnfc) {
1084 		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1085 		if (ret == -EOPNOTSUPP)
1086 			ret = 0;
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1093 		      struct ethtool_rxnfc *nfc)
1094 {
1095 	struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
1096 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1097 	int ret = 0;
1098 
1099 	mutex_lock(&priv->cfp.lock);
1100 
1101 	switch (nfc->cmd) {
1102 	case ETHTOOL_SRXCLSRLINS:
1103 		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1104 		break;
1105 
1106 	case ETHTOOL_SRXCLSRLDEL:
1107 		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1108 		break;
1109 	default:
1110 		ret = -EOPNOTSUPP;
1111 		break;
1112 	}
1113 
1114 	mutex_unlock(&priv->cfp.lock);
1115 
1116 	if (ret)
1117 		return ret;
1118 
1119 	/* Pass up the commands to the attached master network device.
1120 	 * This can fail, so rollback the operation if we need to.
1121 	 */
1122 	if (p->ethtool_ops->set_rxnfc) {
1123 		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1124 		if (ret && ret != -EOPNOTSUPP) {
1125 			mutex_lock(&priv->cfp.lock);
1126 			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1127 			mutex_unlock(&priv->cfp.lock);
1128 		} else {
1129 			ret = 0;
1130 		}
1131 	}
1132 
1133 	return ret;
1134 }
1135 
1136 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1137 {
1138 	unsigned int timeout = 1000;
1139 	u32 reg;
1140 
1141 	reg = core_readl(priv, CORE_CFP_ACC);
1142 	reg |= TCAM_RESET;
1143 	core_writel(priv, reg, CORE_CFP_ACC);
1144 
1145 	do {
1146 		reg = core_readl(priv, CORE_CFP_ACC);
1147 		if (!(reg & TCAM_RESET))
1148 			break;
1149 
1150 		cpu_relax();
1151 	} while (timeout--);
1152 
1153 	if (!timeout)
1154 		return -ETIMEDOUT;
1155 
1156 	return 0;
1157 }
1158 
1159 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1160 {
1161 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1162 	struct cfp_rule *rule, *n;
1163 
1164 	if (list_empty(&priv->cfp.rules_list))
1165 		return;
1166 
1167 	list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1168 		bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1169 }
1170 
1171 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1172 {
1173 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1174 	struct cfp_rule *rule;
1175 	int ret = 0;
1176 	u32 reg;
1177 
1178 	if (list_empty(&priv->cfp.rules_list))
1179 		return ret;
1180 
1181 	reg = core_readl(priv, CORE_CFP_CTL_REG);
1182 	reg &= ~CFP_EN_MAP_MASK;
1183 	core_writel(priv, reg, CORE_CFP_CTL_REG);
1184 
1185 	ret = bcm_sf2_cfp_rst(priv);
1186 	if (ret)
1187 		return ret;
1188 
1189 	list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1190 		ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1191 					      rule->fs.location);
1192 		if (ret) {
1193 			dev_err(ds->dev, "failed to remove rule\n");
1194 			return ret;
1195 		}
1196 
1197 		ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1198 		if (ret) {
1199 			dev_err(ds->dev, "failed to restore rule\n");
1200 			return ret;
1201 		}
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 static const struct bcm_sf2_cfp_stat {
1208 	unsigned int offset;
1209 	unsigned int ram_loc;
1210 	const char *name;
1211 } bcm_sf2_cfp_stats[] = {
1212 	{
1213 		.offset = CORE_STAT_GREEN_CNTR,
1214 		.ram_loc = GREEN_STAT_RAM,
1215 		.name = "Green"
1216 	},
1217 	{
1218 		.offset = CORE_STAT_YELLOW_CNTR,
1219 		.ram_loc = YELLOW_STAT_RAM,
1220 		.name = "Yellow"
1221 	},
1222 	{
1223 		.offset = CORE_STAT_RED_CNTR,
1224 		.ram_loc = RED_STAT_RAM,
1225 		.name = "Red"
1226 	},
1227 };
1228 
1229 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1230 			     u32 stringset, uint8_t *data)
1231 {
1232 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1233 	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1234 	char buf[ETH_GSTRING_LEN];
1235 	unsigned int i, j, iter;
1236 
1237 	if (stringset != ETH_SS_STATS)
1238 		return;
1239 
1240 	for (i = 1; i < priv->num_cfp_rules; i++) {
1241 		for (j = 0; j < s; j++) {
1242 			snprintf(buf, sizeof(buf),
1243 				 "CFP%03d_%sCntr",
1244 				 i, bcm_sf2_cfp_stats[j].name);
1245 			iter = (i - 1) * s + j;
1246 			strlcpy(data + iter * ETH_GSTRING_LEN,
1247 				buf, ETH_GSTRING_LEN);
1248 		}
1249 	}
1250 }
1251 
1252 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1253 				   uint64_t *data)
1254 {
1255 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1256 	unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1257 	const struct bcm_sf2_cfp_stat *stat;
1258 	unsigned int i, j, iter;
1259 	struct cfp_rule *rule;
1260 	int ret;
1261 
1262 	mutex_lock(&priv->cfp.lock);
1263 	for (i = 1; i < priv->num_cfp_rules; i++) {
1264 		rule = bcm_sf2_cfp_rule_find(priv, port, i);
1265 		if (!rule)
1266 			continue;
1267 
1268 		for (j = 0; j < s; j++) {
1269 			stat = &bcm_sf2_cfp_stats[j];
1270 
1271 			bcm_sf2_cfp_rule_addr_set(priv, i);
1272 			ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1273 			if (ret)
1274 				continue;
1275 
1276 			iter = (i - 1) * s + j;
1277 			data[iter] = core_readl(priv, stat->offset);
1278 		}
1279 
1280 	}
1281 	mutex_unlock(&priv->cfp.lock);
1282 }
1283 
1284 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1285 {
1286 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1287 
1288 	if (sset != ETH_SS_STATS)
1289 		return 0;
1290 
1291 	/* 3 counters per CFP rules */
1292 	return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1293 }
1294