xref: /openbmc/linux/drivers/net/dsa/bcm_sf2_cfp.c (revision 0c874100)
1 /*
2  * Broadcom Starfighter 2 DSA switch CFP support
3  *
4  * Copyright (C) 2016, Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 #include <linux/list.h>
13 #include <linux/ethtool.h>
14 #include <linux/if_ether.h>
15 #include <linux/in.h>
16 #include <linux/netdevice.h>
17 #include <net/dsa.h>
18 #include <linux/bitmap.h>
19 
20 #include "bcm_sf2.h"
21 #include "bcm_sf2_regs.h"
22 
23 struct cfp_udf_slice_layout {
24 	u8 slices[UDFS_PER_SLICE];
25 	u32 mask_value;
26 	u32 base_offset;
27 };
28 
29 struct cfp_udf_layout {
30 	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
31 };
32 
33 static const u8 zero_slice[UDFS_PER_SLICE] = { };
34 
35 /* UDF slices layout for a TCPv4/UDPv4 specification */
36 static const struct cfp_udf_layout udf_tcpip4_layout = {
37 	.udfs = {
38 		[1] = {
39 			.slices = {
40 				/* End of L2, byte offset 12, src IP[0:15] */
41 				CFG_UDF_EOL2 | 6,
42 				/* End of L2, byte offset 14, src IP[16:31] */
43 				CFG_UDF_EOL2 | 7,
44 				/* End of L2, byte offset 16, dst IP[0:15] */
45 				CFG_UDF_EOL2 | 8,
46 				/* End of L2, byte offset 18, dst IP[16:31] */
47 				CFG_UDF_EOL2 | 9,
48 				/* End of L3, byte offset 0, src port */
49 				CFG_UDF_EOL3 | 0,
50 				/* End of L3, byte offset 2, dst port */
51 				CFG_UDF_EOL3 | 1,
52 				0, 0, 0
53 			},
54 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
55 			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
56 		},
57 	},
58 };
59 
60 /* UDF slices layout for a TCPv6/UDPv6 specification */
61 static const struct cfp_udf_layout udf_tcpip6_layout = {
62 	.udfs = {
63 		[0] = {
64 			.slices = {
65 				/* End of L2, byte offset 8, src IP[0:15] */
66 				CFG_UDF_EOL2 | 4,
67 				/* End of L2, byte offset 10, src IP[16:31] */
68 				CFG_UDF_EOL2 | 5,
69 				/* End of L2, byte offset 12, src IP[32:47] */
70 				CFG_UDF_EOL2 | 6,
71 				/* End of L2, byte offset 14, src IP[48:63] */
72 				CFG_UDF_EOL2 | 7,
73 				/* End of L2, byte offset 16, src IP[64:79] */
74 				CFG_UDF_EOL2 | 8,
75 				/* End of L2, byte offset 18, src IP[80:95] */
76 				CFG_UDF_EOL2 | 9,
77 				/* End of L2, byte offset 20, src IP[96:111] */
78 				CFG_UDF_EOL2 | 10,
79 				/* End of L2, byte offset 22, src IP[112:127] */
80 				CFG_UDF_EOL2 | 11,
81 				/* End of L3, byte offset 0, src port */
82 				CFG_UDF_EOL3 | 0,
83 			},
84 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
85 			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
86 		},
87 		[3] = {
88 			.slices = {
89 				/* End of L2, byte offset 24, dst IP[0:15] */
90 				CFG_UDF_EOL2 | 12,
91 				/* End of L2, byte offset 26, dst IP[16:31] */
92 				CFG_UDF_EOL2 | 13,
93 				/* End of L2, byte offset 28, dst IP[32:47] */
94 				CFG_UDF_EOL2 | 14,
95 				/* End of L2, byte offset 30, dst IP[48:63] */
96 				CFG_UDF_EOL2 | 15,
97 				/* End of L2, byte offset 32, dst IP[64:79] */
98 				CFG_UDF_EOL2 | 16,
99 				/* End of L2, byte offset 34, dst IP[80:95] */
100 				CFG_UDF_EOL2 | 17,
101 				/* End of L2, byte offset 36, dst IP[96:111] */
102 				CFG_UDF_EOL2 | 18,
103 				/* End of L2, byte offset 38, dst IP[112:127] */
104 				CFG_UDF_EOL2 | 19,
105 				/* End of L3, byte offset 2, dst port */
106 				CFG_UDF_EOL3 | 1,
107 			},
108 			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
109 			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
110 		},
111 	},
112 };
113 
114 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
115 {
116 	unsigned int i, count = 0;
117 
118 	for (i = 0; i < UDFS_PER_SLICE; i++) {
119 		if (layout[i] != 0)
120 			count++;
121 	}
122 
123 	return count;
124 }
125 
126 static inline u32 udf_upper_bits(unsigned int num_udf)
127 {
128 	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
129 }
130 
131 static inline u32 udf_lower_bits(unsigned int num_udf)
132 {
133 	return (u8)GENMASK(num_udf - 1, 0);
134 }
135 
136 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
137 					     unsigned int start)
138 {
139 	const struct cfp_udf_slice_layout *slice_layout;
140 	unsigned int slice_idx;
141 
142 	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
143 		slice_layout = &l->udfs[slice_idx];
144 		if (memcmp(slice_layout->slices, zero_slice,
145 			   sizeof(zero_slice)))
146 			break;
147 	}
148 
149 	return slice_idx;
150 }
151 
152 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
153 				const struct cfp_udf_layout *layout,
154 				unsigned int slice_num)
155 {
156 	u32 offset = layout->udfs[slice_num].base_offset;
157 	unsigned int i;
158 
159 	for (i = 0; i < UDFS_PER_SLICE; i++)
160 		core_writel(priv, layout->udfs[slice_num].slices[i],
161 			    offset + i * 4);
162 }
163 
164 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
165 {
166 	unsigned int timeout = 1000;
167 	u32 reg;
168 
169 	reg = core_readl(priv, CORE_CFP_ACC);
170 	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
171 	reg |= OP_STR_DONE | op;
172 	core_writel(priv, reg, CORE_CFP_ACC);
173 
174 	do {
175 		reg = core_readl(priv, CORE_CFP_ACC);
176 		if (!(reg & OP_STR_DONE))
177 			break;
178 
179 		cpu_relax();
180 	} while (timeout--);
181 
182 	if (!timeout)
183 		return -ETIMEDOUT;
184 
185 	return 0;
186 }
187 
188 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
189 					     unsigned int addr)
190 {
191 	u32 reg;
192 
193 	WARN_ON(addr >= priv->num_cfp_rules);
194 
195 	reg = core_readl(priv, CORE_CFP_ACC);
196 	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
197 	reg |= addr << XCESS_ADDR_SHIFT;
198 	core_writel(priv, reg, CORE_CFP_ACC);
199 }
200 
201 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
202 {
203 	/* Entry #0 is reserved */
204 	return priv->num_cfp_rules - 1;
205 }
206 
207 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
208 				   unsigned int rule_index,
209 				   unsigned int port_num,
210 				   unsigned int queue_num,
211 				   bool fwd_map_change)
212 {
213 	int ret;
214 	u32 reg;
215 
216 	/* Replace ARL derived destination with DST_MAP derived, define
217 	 * which port and queue this should be forwarded to.
218 	 */
219 	if (fwd_map_change)
220 		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
221 		      BIT(port_num + DST_MAP_IB_SHIFT) |
222 		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
223 	else
224 		reg = 0;
225 
226 	core_writel(priv, reg, CORE_ACT_POL_DATA0);
227 
228 	/* Set classification ID that needs to be put in Broadcom tag */
229 	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
230 
231 	core_writel(priv, 0, CORE_ACT_POL_DATA2);
232 
233 	/* Configure policer RAM now */
234 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
235 	if (ret) {
236 		pr_err("Policer entry at %d failed\n", rule_index);
237 		return ret;
238 	}
239 
240 	/* Disable the policer */
241 	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
242 
243 	/* Now the rate meter */
244 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
245 	if (ret) {
246 		pr_err("Meter entry at %d failed\n", rule_index);
247 		return ret;
248 	}
249 
250 	return 0;
251 }
252 
253 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
254 				   struct ethtool_tcpip4_spec *v4_spec,
255 				   unsigned int slice_num,
256 				   bool mask)
257 {
258 	u32 reg, offset;
259 
260 	/* C-Tag		[31:24]
261 	 * UDF_n_A8		[23:8]
262 	 * UDF_n_A7		[7:0]
263 	 */
264 	reg = 0;
265 	if (mask)
266 		offset = CORE_CFP_MASK_PORT(4);
267 	else
268 		offset = CORE_CFP_DATA_PORT(4);
269 	core_writel(priv, reg, offset);
270 
271 	/* UDF_n_A7		[31:24]
272 	 * UDF_n_A6		[23:8]
273 	 * UDF_n_A5		[7:0]
274 	 */
275 	reg = be16_to_cpu(v4_spec->pdst) >> 8;
276 	if (mask)
277 		offset = CORE_CFP_MASK_PORT(3);
278 	else
279 		offset = CORE_CFP_DATA_PORT(3);
280 	core_writel(priv, reg, offset);
281 
282 	/* UDF_n_A5		[31:24]
283 	 * UDF_n_A4		[23:8]
284 	 * UDF_n_A3		[7:0]
285 	 */
286 	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
287 	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
288 	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
289 	if (mask)
290 		offset = CORE_CFP_MASK_PORT(2);
291 	else
292 		offset = CORE_CFP_DATA_PORT(2);
293 	core_writel(priv, reg, offset);
294 
295 	/* UDF_n_A3		[31:24]
296 	 * UDF_n_A2		[23:8]
297 	 * UDF_n_A1		[7:0]
298 	 */
299 	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
300 	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
301 	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
302 	if (mask)
303 		offset = CORE_CFP_MASK_PORT(1);
304 	else
305 		offset = CORE_CFP_DATA_PORT(1);
306 	core_writel(priv, reg, offset);
307 
308 	/* UDF_n_A1		[31:24]
309 	 * UDF_n_A0		[23:8]
310 	 * Reserved		[7:4]
311 	 * Slice ID		[3:2]
312 	 * Slice valid		[1:0]
313 	 */
314 	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
315 	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
316 	      SLICE_NUM(slice_num) | SLICE_VALID;
317 	if (mask)
318 		offset = CORE_CFP_MASK_PORT(0);
319 	else
320 		offset = CORE_CFP_DATA_PORT(0);
321 	core_writel(priv, reg, offset);
322 }
323 
324 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
325 				     unsigned int port_num,
326 				     unsigned int queue_num,
327 				     struct ethtool_rx_flow_spec *fs)
328 {
329 	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
330 	const struct cfp_udf_layout *layout;
331 	unsigned int slice_num, rule_index;
332 	u8 ip_proto, ip_frag;
333 	u8 num_udf;
334 	u32 reg;
335 	int ret;
336 
337 	switch (fs->flow_type & ~FLOW_EXT) {
338 	case TCP_V4_FLOW:
339 		ip_proto = IPPROTO_TCP;
340 		v4_spec = &fs->h_u.tcp_ip4_spec;
341 		v4_m_spec = &fs->m_u.tcp_ip4_spec;
342 		break;
343 	case UDP_V4_FLOW:
344 		ip_proto = IPPROTO_UDP;
345 		v4_spec = &fs->h_u.udp_ip4_spec;
346 		v4_m_spec = &fs->m_u.udp_ip4_spec;
347 		break;
348 	default:
349 		return -EINVAL;
350 	}
351 
352 	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
353 
354 	/* Locate the first rule available */
355 	if (fs->location == RX_CLS_LOC_ANY)
356 		rule_index = find_first_zero_bit(priv->cfp.used,
357 						 priv->num_cfp_rules);
358 	else
359 		rule_index = fs->location;
360 
361 	if (rule_index > bcm_sf2_cfp_rule_size(priv))
362 		return -ENOSPC;
363 
364 	layout = &udf_tcpip4_layout;
365 	/* We only use one UDF slice for now */
366 	slice_num = bcm_sf2_get_slice_number(layout, 0);
367 	if (slice_num == UDF_NUM_SLICES)
368 		return -EINVAL;
369 
370 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
371 
372 	/* Apply the UDF layout for this filter */
373 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
374 
375 	/* Apply to all packets received through this port */
376 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
377 
378 	/* Source port map match */
379 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
380 
381 	/* S-Tag status		[31:30]
382 	 * C-Tag status		[29:28]
383 	 * L2 framing		[27:26]
384 	 * L3 framing		[25:24]
385 	 * IP ToS		[23:16]
386 	 * IP proto		[15:08]
387 	 * IP Fragm		[7]
388 	 * Non 1st frag		[6]
389 	 * IP Authen		[5]
390 	 * TTL range		[4:3]
391 	 * PPPoE session	[2]
392 	 * Reserved		[1]
393 	 * UDF_Valid[8]		[0]
394 	 */
395 	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
396 		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
397 		    udf_upper_bits(num_udf),
398 		    CORE_CFP_DATA_PORT(6));
399 
400 	/* Mask with the specific layout for IPv4 packets */
401 	core_writel(priv, layout->udfs[slice_num].mask_value |
402 		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
403 
404 	/* UDF_Valid[7:0]	[31:24]
405 	 * S-Tag		[23:8]
406 	 * C-Tag		[7:0]
407 	 */
408 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
409 
410 	/* Mask all but valid UDFs */
411 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
412 
413 	/* Program the match and the mask */
414 	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
415 	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
416 
417 	/* Insert into TCAM now */
418 	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
419 
420 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
421 	if (ret) {
422 		pr_err("TCAM entry at addr %d failed\n", rule_index);
423 		return ret;
424 	}
425 
426 	/* Insert into Action and policer RAMs now */
427 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
428 				      queue_num, true);
429 	if (ret)
430 		return ret;
431 
432 	/* Turn on CFP for this rule now */
433 	reg = core_readl(priv, CORE_CFP_CTL_REG);
434 	reg |= BIT(port);
435 	core_writel(priv, reg, CORE_CFP_CTL_REG);
436 
437 	/* Flag the rule as being used and return it */
438 	set_bit(rule_index, priv->cfp.used);
439 	set_bit(rule_index, priv->cfp.unique);
440 	fs->location = rule_index;
441 
442 	return 0;
443 }
444 
445 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
446 				   const __be32 *ip6_addr, const __be16 port,
447 				   unsigned int slice_num,
448 				   bool mask)
449 {
450 	u32 reg, tmp, val, offset;
451 
452 	/* C-Tag		[31:24]
453 	 * UDF_n_B8		[23:8]	(port)
454 	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
455 	 */
456 	reg = be32_to_cpu(ip6_addr[3]);
457 	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
458 	if (mask)
459 		offset = CORE_CFP_MASK_PORT(4);
460 	else
461 		offset = CORE_CFP_DATA_PORT(4);
462 	core_writel(priv, val, offset);
463 
464 	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
465 	 * UDF_n_B6		[23:8] (addr[31:16])
466 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
467 	 */
468 	tmp = be32_to_cpu(ip6_addr[2]);
469 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
470 	      ((tmp >> 8) & 0xff);
471 	if (mask)
472 		offset = CORE_CFP_MASK_PORT(3);
473 	else
474 		offset = CORE_CFP_DATA_PORT(3);
475 	core_writel(priv, val, offset);
476 
477 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
478 	 * UDF_n_B4		[23:8] (addr[63:48])
479 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
480 	 */
481 	reg = be32_to_cpu(ip6_addr[1]);
482 	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
483 	      ((reg >> 8) & 0xff);
484 	if (mask)
485 		offset = CORE_CFP_MASK_PORT(2);
486 	else
487 		offset = CORE_CFP_DATA_PORT(2);
488 	core_writel(priv, val, offset);
489 
490 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
491 	 * UDF_n_B2		[23:8] (addr[95:80])
492 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
493 	 */
494 	tmp = be32_to_cpu(ip6_addr[0]);
495 	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
496 	      ((tmp >> 8) & 0xff);
497 	if (mask)
498 		offset = CORE_CFP_MASK_PORT(1);
499 	else
500 		offset = CORE_CFP_DATA_PORT(1);
501 	core_writel(priv, val, offset);
502 
503 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
504 	 * UDF_n_B0		[23:8] (addr[127:112])
505 	 * Reserved		[7:4]
506 	 * Slice ID		[3:2]
507 	 * Slice valid		[1:0]
508 	 */
509 	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
510 	       SLICE_NUM(slice_num) | SLICE_VALID;
511 	if (mask)
512 		offset = CORE_CFP_MASK_PORT(0);
513 	else
514 		offset = CORE_CFP_DATA_PORT(0);
515 	core_writel(priv, reg, offset);
516 }
517 
518 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
519 				     unsigned int port_num,
520 				     unsigned int queue_num,
521 				     struct ethtool_rx_flow_spec *fs)
522 {
523 	struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
524 	unsigned int slice_num, rule_index[2];
525 	const struct cfp_udf_layout *layout;
526 	u8 ip_proto, ip_frag;
527 	int ret = 0;
528 	u8 num_udf;
529 	u32 reg;
530 
531 	switch (fs->flow_type & ~FLOW_EXT) {
532 	case TCP_V6_FLOW:
533 		ip_proto = IPPROTO_TCP;
534 		v6_spec = &fs->h_u.tcp_ip6_spec;
535 		v6_m_spec = &fs->m_u.tcp_ip6_spec;
536 		break;
537 	case UDP_V6_FLOW:
538 		ip_proto = IPPROTO_UDP;
539 		v6_spec = &fs->h_u.udp_ip6_spec;
540 		v6_m_spec = &fs->m_u.udp_ip6_spec;
541 		break;
542 	default:
543 		return -EINVAL;
544 	}
545 
546 	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
547 
548 	layout = &udf_tcpip6_layout;
549 	slice_num = bcm_sf2_get_slice_number(layout, 0);
550 	if (slice_num == UDF_NUM_SLICES)
551 		return -EINVAL;
552 
553 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
554 
555 	/* Negotiate two indexes, one for the second half which we are chained
556 	 * from, which is what we will return to user-space, and a second one
557 	 * which is used to store its first half. That first half does not
558 	 * allow any choice of placement, so it just needs to find the next
559 	 * available bit. We return the second half as fs->location because
560 	 * that helps with the rule lookup later on since the second half is
561 	 * chained from its first half, we can easily identify IPv6 CFP rules
562 	 * by looking whether they carry a CHAIN_ID.
563 	 *
564 	 * We also want the second half to have a lower rule_index than its
565 	 * first half because the HW search is by incrementing addresses.
566 	 */
567 	if (fs->location == RX_CLS_LOC_ANY)
568 		rule_index[1] = find_first_zero_bit(priv->cfp.used,
569 						    priv->num_cfp_rules);
570 	else
571 		rule_index[1] = fs->location;
572 	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
573 		return -ENOSPC;
574 
575 	/* Flag it as used (cleared on error path) such that we can immediately
576 	 * obtain a second one to chain from.
577 	 */
578 	set_bit(rule_index[1], priv->cfp.used);
579 
580 	rule_index[0] = find_first_zero_bit(priv->cfp.used,
581 					    priv->num_cfp_rules);
582 	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
583 		ret = -ENOSPC;
584 		goto out_err;
585 	}
586 
587 	/* Apply the UDF layout for this filter */
588 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
589 
590 	/* Apply to all packets received through this port */
591 	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
592 
593 	/* Source port map match */
594 	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
595 
596 	/* S-Tag status		[31:30]
597 	 * C-Tag status		[29:28]
598 	 * L2 framing		[27:26]
599 	 * L3 framing		[25:24]
600 	 * IP ToS		[23:16]
601 	 * IP proto		[15:08]
602 	 * IP Fragm		[7]
603 	 * Non 1st frag		[6]
604 	 * IP Authen		[5]
605 	 * TTL range		[4:3]
606 	 * PPPoE session	[2]
607 	 * Reserved		[1]
608 	 * UDF_Valid[8]		[0]
609 	 */
610 	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
611 		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
612 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
613 
614 	/* Mask with the specific layout for IPv6 packets including
615 	 * UDF_Valid[8]
616 	 */
617 	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
618 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
619 
620 	/* UDF_Valid[7:0]	[31:24]
621 	 * S-Tag		[23:8]
622 	 * C-Tag		[7:0]
623 	 */
624 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
625 
626 	/* Mask all but valid UDFs */
627 	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
628 
629 	/* Slice the IPv6 source address and port */
630 	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
631 				slice_num, false);
632 	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
633 				SLICE_NUM_MASK, true);
634 
635 	/* Insert into TCAM now because we need to insert a second rule */
636 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
637 
638 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
639 	if (ret) {
640 		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
641 		goto out_err;
642 	}
643 
644 	/* Insert into Action and policer RAMs now */
645 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
646 				      queue_num, false);
647 	if (ret)
648 		goto out_err;
649 
650 	/* Now deal with the second slice to chain this rule */
651 	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
652 	if (slice_num == UDF_NUM_SLICES) {
653 		ret = -EINVAL;
654 		goto out_err;
655 	}
656 
657 	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
658 
659 	/* Apply the UDF layout for this filter */
660 	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
661 
662 	/* Chained rule, source port match is coming from the rule we are
663 	 * chained from.
664 	 */
665 	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
666 	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
667 
668 	/*
669 	 * CHAIN ID		[31:24] chain to previous slice
670 	 * Reserved		[23:20]
671 	 * UDF_Valid[11:8]	[19:16]
672 	 * UDF_Valid[7:0]	[15:8]
673 	 * UDF_n_D11		[7:0]
674 	 */
675 	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
676 		udf_lower_bits(num_udf) << 8;
677 	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
678 
679 	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
680 	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
681 		udf_lower_bits(num_udf) << 8;
682 	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
683 
684 	/* Don't care */
685 	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
686 
687 	/* Mask all */
688 	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
689 
690 	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
691 			       false);
692 	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
693 			       SLICE_NUM_MASK, true);
694 
695 	/* Insert into TCAM now */
696 	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
697 
698 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
699 	if (ret) {
700 		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
701 		goto out_err;
702 	}
703 
704 	/* Insert into Action and policer RAMs now, set chain ID to
705 	 * the one we are chained to
706 	 */
707 	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
708 				      queue_num, true);
709 	if (ret)
710 		goto out_err;
711 
712 	/* Turn on CFP for this rule now */
713 	reg = core_readl(priv, CORE_CFP_CTL_REG);
714 	reg |= BIT(port);
715 	core_writel(priv, reg, CORE_CFP_CTL_REG);
716 
717 	/* Flag the second half rule as being used now, return it as the
718 	 * location, and flag it as unique while dumping rules
719 	 */
720 	set_bit(rule_index[0], priv->cfp.used);
721 	set_bit(rule_index[1], priv->cfp.unique);
722 	fs->location = rule_index[1];
723 
724 	return ret;
725 
726 out_err:
727 	clear_bit(rule_index[1], priv->cfp.used);
728 	return ret;
729 }
730 
731 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
732 				struct ethtool_rx_flow_spec *fs)
733 {
734 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
735 	s8 cpu_port = ds->ports[port].cpu_dp->index;
736 	__u64 ring_cookie = fs->ring_cookie;
737 	unsigned int queue_num, port_num;
738 	int ret = -EINVAL;
739 
740 	/* Check for unsupported extensions */
741 	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
742 	     fs->m_ext.data[1]))
743 		return -EINVAL;
744 
745 	if (fs->location != RX_CLS_LOC_ANY &&
746 	    test_bit(fs->location, priv->cfp.used))
747 		return -EBUSY;
748 
749 	if (fs->location != RX_CLS_LOC_ANY &&
750 	    fs->location > bcm_sf2_cfp_rule_size(priv))
751 		return -EINVAL;
752 
753 	/* This rule is a Wake-on-LAN filter and we must specifically
754 	 * target the CPU port in order for it to be working.
755 	 */
756 	if (ring_cookie == RX_CLS_FLOW_WAKE)
757 		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
758 
759 	/* We do not support discarding packets, check that the
760 	 * destination port is enabled and that we are within the
761 	 * number of ports supported by the switch
762 	 */
763 	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
764 
765 	if (ring_cookie == RX_CLS_FLOW_DISC ||
766 	    !(dsa_is_user_port(ds, port_num) ||
767 	      dsa_is_cpu_port(ds, port_num)) ||
768 	    port_num >= priv->hw_params.num_ports)
769 		return -EINVAL;
770 	/*
771 	 * We have a small oddity where Port 6 just does not have a
772 	 * valid bit here (so we substract by one).
773 	 */
774 	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
775 	if (port_num >= 7)
776 		port_num -= 1;
777 
778 	switch (fs->flow_type & ~FLOW_EXT) {
779 	case TCP_V4_FLOW:
780 	case UDP_V4_FLOW:
781 		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
782 						queue_num, fs);
783 		break;
784 	case TCP_V6_FLOW:
785 	case UDP_V6_FLOW:
786 		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
787 						queue_num, fs);
788 		break;
789 	default:
790 		break;
791 	}
792 
793 	return ret;
794 }
795 
796 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
797 				    u32 loc, u32 *next_loc)
798 {
799 	int ret;
800 	u32 reg;
801 
802 	/* Indicate which rule we want to read */
803 	bcm_sf2_cfp_rule_addr_set(priv, loc);
804 
805 	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
806 	if (ret)
807 		return ret;
808 
809 	/* Check if this is possibly an IPv6 rule that would
810 	 * indicate we need to delete its companion rule
811 	 * as well
812 	 */
813 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
814 	if (next_loc)
815 		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
816 
817 	/* Clear its valid bits */
818 	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
819 	reg &= ~SLICE_VALID;
820 	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
821 
822 	/* Write back this entry into the TCAM now */
823 	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
824 	if (ret)
825 		return ret;
826 
827 	clear_bit(loc, priv->cfp.used);
828 	clear_bit(loc, priv->cfp.unique);
829 
830 	return 0;
831 }
832 
833 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
834 				u32 loc)
835 {
836 	u32 next_loc = 0;
837 	int ret;
838 
839 	/* Refuse deleting unused rules, and those that are not unique since
840 	 * that could leave IPv6 rules with one of the chained rule in the
841 	 * table.
842 	 */
843 	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
844 		return -EINVAL;
845 
846 	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
847 	if (ret)
848 		return ret;
849 
850 	/* If this was an IPv6 rule, delete is companion rule too */
851 	if (next_loc)
852 		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
853 
854 	return ret;
855 }
856 
857 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
858 {
859 	unsigned int i;
860 
861 	for (i = 0; i < sizeof(flow->m_u); i++)
862 		flow->m_u.hdata[i] ^= 0xff;
863 
864 	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
865 	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
866 	flow->m_ext.data[0] ^= cpu_to_be32(~0);
867 	flow->m_ext.data[1] ^= cpu_to_be32(~0);
868 }
869 
870 static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
871 				    struct ethtool_tcpip4_spec *v4_spec,
872 				    bool mask)
873 {
874 	u32 reg, offset, ipv4;
875 	u16 src_dst_port;
876 
877 	if (mask)
878 		offset = CORE_CFP_MASK_PORT(3);
879 	else
880 		offset = CORE_CFP_DATA_PORT(3);
881 
882 	reg = core_readl(priv, offset);
883 	/* src port [15:8] */
884 	src_dst_port = reg << 8;
885 
886 	if (mask)
887 		offset = CORE_CFP_MASK_PORT(2);
888 	else
889 		offset = CORE_CFP_DATA_PORT(2);
890 
891 	reg = core_readl(priv, offset);
892 	/* src port [7:0] */
893 	src_dst_port |= (reg >> 24);
894 
895 	v4_spec->pdst = cpu_to_be16(src_dst_port);
896 	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
897 
898 	/* IPv4 dst [15:8] */
899 	ipv4 = (reg & 0xff) << 8;
900 
901 	if (mask)
902 		offset = CORE_CFP_MASK_PORT(1);
903 	else
904 		offset = CORE_CFP_DATA_PORT(1);
905 
906 	reg = core_readl(priv, offset);
907 	/* IPv4 dst [31:16] */
908 	ipv4 |= ((reg >> 8) & 0xffff) << 16;
909 	/* IPv4 dst [7:0] */
910 	ipv4 |= (reg >> 24) & 0xff;
911 	v4_spec->ip4dst = cpu_to_be32(ipv4);
912 
913 	/* IPv4 src [15:8] */
914 	ipv4 = (reg & 0xff) << 8;
915 
916 	if (mask)
917 		offset = CORE_CFP_MASK_PORT(0);
918 	else
919 		offset = CORE_CFP_DATA_PORT(0);
920 	reg = core_readl(priv, offset);
921 
922 	/* Once the TCAM is programmed, the mask reflects the slice number
923 	 * being matched, don't bother checking it when reading back the
924 	 * mask spec
925 	 */
926 	if (!mask && !(reg & SLICE_VALID))
927 		return -EINVAL;
928 
929 	/* IPv4 src [7:0] */
930 	ipv4 |= (reg >> 24) & 0xff;
931 	/* IPv4 src [31:16] */
932 	ipv4 |= ((reg >> 8) & 0xffff) << 16;
933 	v4_spec->ip4src = cpu_to_be32(ipv4);
934 
935 	return 0;
936 }
937 
938 static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
939 				     struct ethtool_rx_flow_spec *fs)
940 {
941 	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
942 	u32 reg;
943 	int ret;
944 
945 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
946 
947 	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
948 	case IPPROTO_TCP:
949 		fs->flow_type = TCP_V4_FLOW;
950 		v4_spec = &fs->h_u.tcp_ip4_spec;
951 		v4_m_spec = &fs->m_u.tcp_ip4_spec;
952 		break;
953 	case IPPROTO_UDP:
954 		fs->flow_type = UDP_V4_FLOW;
955 		v4_spec = &fs->h_u.udp_ip4_spec;
956 		v4_m_spec = &fs->m_u.udp_ip4_spec;
957 		break;
958 	default:
959 		return -EINVAL;
960 	}
961 
962 	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
963 	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
964 
965 	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
966 	if (ret)
967 		return ret;
968 
969 	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
970 }
971 
972 static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
973 				     __be32 *ip6_addr, __be16 *port,
974 				     bool mask)
975 {
976 	u32 reg, tmp, offset;
977 
978 	/* C-Tag		[31:24]
979 	 * UDF_n_B8		[23:8] (port)
980 	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
981 	 */
982 	if (mask)
983 		offset = CORE_CFP_MASK_PORT(4);
984 	else
985 		offset = CORE_CFP_DATA_PORT(4);
986 	reg = core_readl(priv, offset);
987 	*port = cpu_to_be32(reg) >> 8;
988 	tmp = (u32)(reg & 0xff) << 8;
989 
990 	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
991 	 * UDF_n_B6		[23:8] (addr[31:16])
992 	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
993 	 */
994 	if (mask)
995 		offset = CORE_CFP_MASK_PORT(3);
996 	else
997 		offset = CORE_CFP_DATA_PORT(3);
998 	reg = core_readl(priv, offset);
999 	tmp |= (reg >> 24) & 0xff;
1000 	tmp |= (u32)((reg >> 8) << 16);
1001 	ip6_addr[3] = cpu_to_be32(tmp);
1002 	tmp = (u32)(reg & 0xff) << 8;
1003 
1004 	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
1005 	 * UDF_n_B4		[23:8] (addr[63:48])
1006 	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
1007 	 */
1008 	if (mask)
1009 		offset = CORE_CFP_MASK_PORT(2);
1010 	else
1011 		offset = CORE_CFP_DATA_PORT(2);
1012 	reg = core_readl(priv, offset);
1013 	tmp |= (reg >> 24) & 0xff;
1014 	tmp |= (u32)((reg >> 8) << 16);
1015 	ip6_addr[2] = cpu_to_be32(tmp);
1016 	tmp = (u32)(reg & 0xff) << 8;
1017 
1018 	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
1019 	 * UDF_n_B2		[23:8] (addr[95:80])
1020 	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
1021 	 */
1022 	if (mask)
1023 		offset = CORE_CFP_MASK_PORT(1);
1024 	else
1025 		offset = CORE_CFP_DATA_PORT(1);
1026 	reg = core_readl(priv, offset);
1027 	tmp |= (reg >> 24) & 0xff;
1028 	tmp |= (u32)((reg >> 8) << 16);
1029 	ip6_addr[1] = cpu_to_be32(tmp);
1030 	tmp = (u32)(reg & 0xff) << 8;
1031 
1032 	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
1033 	 * UDF_n_B0		[23:8] (addr[127:112])
1034 	 * Reserved		[7:4]
1035 	 * Slice ID		[3:2]
1036 	 * Slice valid		[1:0]
1037 	 */
1038 	if (mask)
1039 		offset = CORE_CFP_MASK_PORT(0);
1040 	else
1041 		offset = CORE_CFP_DATA_PORT(0);
1042 	reg = core_readl(priv, offset);
1043 	tmp |= (reg >> 24) & 0xff;
1044 	tmp |= (u32)((reg >> 8) << 16);
1045 	ip6_addr[0] = cpu_to_be32(tmp);
1046 
1047 	if (!mask && !(reg & SLICE_VALID))
1048 		return -EINVAL;
1049 
1050 	return 0;
1051 }
1052 
1053 static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
1054 				     struct ethtool_rx_flow_spec *fs,
1055 				     u32 next_loc)
1056 {
1057 	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
1058 	u32 reg;
1059 	int ret;
1060 
1061 	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
1062 	 * assuming tcp_ip6_spec here being an union.
1063 	 */
1064 	v6_spec = &fs->h_u.tcp_ip6_spec;
1065 	v6_m_spec = &fs->m_u.tcp_ip6_spec;
1066 
1067 	/* Read the second half first */
1068 	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
1069 				       false);
1070 	if (ret)
1071 		return ret;
1072 
1073 	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
1074 				       &v6_m_spec->pdst, true);
1075 	if (ret)
1076 		return ret;
1077 
1078 	/* Read last to avoid next entry clobbering the results during search
1079 	 * operations. We would not have the port enabled for this rule, so
1080 	 * don't bother checking it.
1081 	 */
1082 	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
1083 
1084 	/* The slice number is valid, so read the rule we are chained from now
1085 	 * which is our first half.
1086 	 */
1087 	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
1088 	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1089 	if (ret)
1090 		return ret;
1091 
1092 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1093 
1094 	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
1095 	case IPPROTO_TCP:
1096 		fs->flow_type = TCP_V6_FLOW;
1097 		break;
1098 	case IPPROTO_UDP:
1099 		fs->flow_type = UDP_V6_FLOW;
1100 		break;
1101 	default:
1102 		return -EINVAL;
1103 	}
1104 
1105 	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
1106 				       false);
1107 	if (ret)
1108 		return ret;
1109 
1110 	return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
1111 					&v6_m_spec->psrc, true);
1112 }
1113 
1114 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1115 				struct ethtool_rxnfc *nfc)
1116 {
1117 	u32 reg, ipv4_or_chain_id;
1118 	unsigned int queue_num;
1119 	int ret;
1120 
1121 	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
1122 
1123 	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
1124 	if (ret)
1125 		return ret;
1126 
1127 	reg = core_readl(priv, CORE_ACT_POL_DATA0);
1128 
1129 	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
1130 	if (ret)
1131 		return ret;
1132 
1133 	/* Extract the destination port */
1134 	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
1135 				  DST_MAP_IB_MASK) - 1;
1136 
1137 	/* There is no Port 6, so we compensate for that here */
1138 	if (nfc->fs.ring_cookie >= 6)
1139 		nfc->fs.ring_cookie++;
1140 	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
1141 
1142 	/* Extract the destination queue */
1143 	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
1144 	nfc->fs.ring_cookie += queue_num;
1145 
1146 	/* Extract the L3_FRAMING or CHAIN_ID */
1147 	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
1148 
1149 	/* With IPv6 rules this would contain a non-zero chain ID since
1150 	 * we reserve entry 0 and it cannot be used. So if we read 0 here
1151 	 * this means an IPv4 rule.
1152 	 */
1153 	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
1154 	if (ipv4_or_chain_id == 0)
1155 		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
1156 	else
1157 		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
1158 						ipv4_or_chain_id);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/* Read last to avoid next entry clobbering the results during search
1163 	 * operations
1164 	 */
1165 	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
1166 	if (!(reg & 1 << port))
1167 		return -EINVAL;
1168 
1169 	bcm_sf2_invert_masks(&nfc->fs);
1170 
1171 	/* Put the TCAM size here */
1172 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1173 
1174 	return 0;
1175 }
1176 
1177 /* We implement the search doing a TCAM search operation */
1178 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1179 				    int port, struct ethtool_rxnfc *nfc,
1180 				    u32 *rule_locs)
1181 {
1182 	unsigned int index = 1, rules_cnt = 0;
1183 
1184 	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1185 		rule_locs[rules_cnt] = index;
1186 		rules_cnt++;
1187 	}
1188 
1189 	/* Put the TCAM size here */
1190 	nfc->data = bcm_sf2_cfp_rule_size(priv);
1191 	nfc->rule_cnt = rules_cnt;
1192 
1193 	return 0;
1194 }
1195 
1196 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1197 		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1198 {
1199 	struct net_device *p = ds->ports[port].cpu_dp->master;
1200 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1201 	int ret = 0;
1202 
1203 	mutex_lock(&priv->cfp.lock);
1204 
1205 	switch (nfc->cmd) {
1206 	case ETHTOOL_GRXCLSRLCNT:
1207 		/* Subtract the default, unusable rule */
1208 		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1209 					      priv->num_cfp_rules) - 1;
1210 		/* We support specifying rule locations */
1211 		nfc->data |= RX_CLS_LOC_SPECIAL;
1212 		break;
1213 	case ETHTOOL_GRXCLSRULE:
1214 		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1215 		break;
1216 	case ETHTOOL_GRXCLSRLALL:
1217 		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1218 		break;
1219 	default:
1220 		ret = -EOPNOTSUPP;
1221 		break;
1222 	}
1223 
1224 	mutex_unlock(&priv->cfp.lock);
1225 
1226 	if (ret)
1227 		return ret;
1228 
1229 	/* Pass up the commands to the attached master network device */
1230 	if (p->ethtool_ops->get_rxnfc) {
1231 		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1232 		if (ret == -EOPNOTSUPP)
1233 			ret = 0;
1234 	}
1235 
1236 	return ret;
1237 }
1238 
1239 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1240 		      struct ethtool_rxnfc *nfc)
1241 {
1242 	struct net_device *p = ds->ports[port].cpu_dp->master;
1243 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1244 	int ret = 0;
1245 
1246 	mutex_lock(&priv->cfp.lock);
1247 
1248 	switch (nfc->cmd) {
1249 	case ETHTOOL_SRXCLSRLINS:
1250 		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1251 		break;
1252 
1253 	case ETHTOOL_SRXCLSRLDEL:
1254 		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1255 		break;
1256 	default:
1257 		ret = -EOPNOTSUPP;
1258 		break;
1259 	}
1260 
1261 	mutex_unlock(&priv->cfp.lock);
1262 
1263 	if (ret)
1264 		return ret;
1265 
1266 	/* Pass up the commands to the attached master network device.
1267 	 * This can fail, so rollback the operation if we need to.
1268 	 */
1269 	if (p->ethtool_ops->set_rxnfc) {
1270 		ret = p->ethtool_ops->set_rxnfc(p, nfc);
1271 		if (ret && ret != -EOPNOTSUPP) {
1272 			mutex_lock(&priv->cfp.lock);
1273 			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1274 			mutex_unlock(&priv->cfp.lock);
1275 		} else {
1276 			ret = 0;
1277 		}
1278 	}
1279 
1280 	return ret;
1281 }
1282 
1283 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1284 {
1285 	unsigned int timeout = 1000;
1286 	u32 reg;
1287 
1288 	reg = core_readl(priv, CORE_CFP_ACC);
1289 	reg |= TCAM_RESET;
1290 	core_writel(priv, reg, CORE_CFP_ACC);
1291 
1292 	do {
1293 		reg = core_readl(priv, CORE_CFP_ACC);
1294 		if (!(reg & TCAM_RESET))
1295 			break;
1296 
1297 		cpu_relax();
1298 	} while (timeout--);
1299 
1300 	if (!timeout)
1301 		return -ETIMEDOUT;
1302 
1303 	return 0;
1304 }
1305