xref: /openbmc/linux/drivers/net/dsa/bcm_sf2.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Broadcom Starfighter 2 DSA switch driver
4  *
5  * Copyright (C) 2014, Broadcom Corporation
6  */
7 
8 #include <linux/list.h>
9 #include <linux/module.h>
10 #include <linux/netdevice.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/phy.h>
14 #include <linux/phy_fixed.h>
15 #include <linux/phylink.h>
16 #include <linux/mii.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_address.h>
20 #include <linux/of_net.h>
21 #include <linux/of_mdio.h>
22 #include <net/dsa.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_bridge.h>
25 #include <linux/brcmphy.h>
26 #include <linux/etherdevice.h>
27 #include <linux/platform_data/b53.h>
28 
29 #include "bcm_sf2.h"
30 #include "bcm_sf2_regs.h"
31 #include "b53/b53_priv.h"
32 #include "b53/b53_regs.h"
33 
34 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
35 {
36 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
37 	unsigned int i;
38 	u32 reg, offset;
39 
40 	if (priv->type == BCM7445_DEVICE_ID)
41 		offset = CORE_STS_OVERRIDE_IMP;
42 	else
43 		offset = CORE_STS_OVERRIDE_IMP2;
44 
45 	/* Enable the port memories */
46 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
47 	reg &= ~P_TXQ_PSM_VDD(port);
48 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
49 
50 	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
51 	reg = core_readl(priv, CORE_IMP_CTL);
52 	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
53 	reg &= ~(RX_DIS | TX_DIS);
54 	core_writel(priv, reg, CORE_IMP_CTL);
55 
56 	/* Enable forwarding */
57 	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
58 
59 	/* Enable IMP port in dumb mode */
60 	reg = core_readl(priv, CORE_SWITCH_CTRL);
61 	reg |= MII_DUMB_FWDG_EN;
62 	core_writel(priv, reg, CORE_SWITCH_CTRL);
63 
64 	/* Configure Traffic Class to QoS mapping, allow each priority to map
65 	 * to a different queue number
66 	 */
67 	reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
68 	for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
69 		reg |= i << (PRT_TO_QID_SHIFT * i);
70 	core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));
71 
72 	b53_brcm_hdr_setup(ds, port);
73 
74 	/* Force link status for IMP port */
75 	reg = core_readl(priv, offset);
76 	reg |= (MII_SW_OR | LINK_STS);
77 	core_writel(priv, reg, offset);
78 }
79 
80 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
81 {
82 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
83 	u32 reg;
84 
85 	reg = reg_readl(priv, REG_SPHY_CNTRL);
86 	if (enable) {
87 		reg |= PHY_RESET;
88 		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | IDDQ_GLOBAL_PWR | CK25_DIS);
89 		reg_writel(priv, reg, REG_SPHY_CNTRL);
90 		udelay(21);
91 		reg = reg_readl(priv, REG_SPHY_CNTRL);
92 		reg &= ~PHY_RESET;
93 	} else {
94 		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
95 		reg_writel(priv, reg, REG_SPHY_CNTRL);
96 		mdelay(1);
97 		reg |= CK25_DIS;
98 	}
99 	reg_writel(priv, reg, REG_SPHY_CNTRL);
100 
101 	/* Use PHY-driven LED signaling */
102 	if (!enable) {
103 		reg = reg_readl(priv, REG_LED_CNTRL(0));
104 		reg |= SPDLNK_SRC_SEL;
105 		reg_writel(priv, reg, REG_LED_CNTRL(0));
106 	}
107 }
108 
109 static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
110 					    int port)
111 {
112 	unsigned int off;
113 
114 	switch (port) {
115 	case 7:
116 		off = P7_IRQ_OFF;
117 		break;
118 	case 0:
119 		/* Port 0 interrupts are located on the first bank */
120 		intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
121 		return;
122 	default:
123 		off = P_IRQ_OFF(port);
124 		break;
125 	}
126 
127 	intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
128 }
129 
130 static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
131 					     int port)
132 {
133 	unsigned int off;
134 
135 	switch (port) {
136 	case 7:
137 		off = P7_IRQ_OFF;
138 		break;
139 	case 0:
140 		/* Port 0 interrupts are located on the first bank */
141 		intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
142 		intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
143 		return;
144 	default:
145 		off = P_IRQ_OFF(port);
146 		break;
147 	}
148 
149 	intrl2_1_mask_set(priv, P_IRQ_MASK(off));
150 	intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
151 }
152 
153 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
154 			      struct phy_device *phy)
155 {
156 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
157 	unsigned int i;
158 	u32 reg;
159 
160 	/* Clear the memory power down */
161 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
162 	reg &= ~P_TXQ_PSM_VDD(port);
163 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
164 
165 	/* Enable learning */
166 	reg = core_readl(priv, CORE_DIS_LEARN);
167 	reg &= ~BIT(port);
168 	core_writel(priv, reg, CORE_DIS_LEARN);
169 
170 	/* Enable Broadcom tags for that port if requested */
171 	if (priv->brcm_tag_mask & BIT(port))
172 		b53_brcm_hdr_setup(ds, port);
173 
174 	/* Configure Traffic Class to QoS mapping, allow each priority to map
175 	 * to a different queue number
176 	 */
177 	reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port));
178 	for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++)
179 		reg |= i << (PRT_TO_QID_SHIFT * i);
180 	core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port));
181 
182 	/* Re-enable the GPHY and re-apply workarounds */
183 	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
184 		bcm_sf2_gphy_enable_set(ds, true);
185 		if (phy) {
186 			/* if phy_stop() has been called before, phy
187 			 * will be in halted state, and phy_start()
188 			 * will call resume.
189 			 *
190 			 * the resume path does not configure back
191 			 * autoneg settings, and since we hard reset
192 			 * the phy manually here, we need to reset the
193 			 * state machine also.
194 			 */
195 			phy->state = PHY_READY;
196 			phy_init_hw(phy);
197 		}
198 	}
199 
200 	/* Enable MoCA port interrupts to get notified */
201 	if (port == priv->moca_port)
202 		bcm_sf2_port_intr_enable(priv, port);
203 
204 	/* Set per-queue pause threshold to 32 */
205 	core_writel(priv, 32, CORE_TXQ_THD_PAUSE_QN_PORT(port));
206 
207 	/* Set ACB threshold to 24 */
208 	for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) {
209 		reg = acb_readl(priv, ACB_QUEUE_CFG(port *
210 						    SF2_NUM_EGRESS_QUEUES + i));
211 		reg &= ~XOFF_THRESHOLD_MASK;
212 		reg |= 24;
213 		acb_writel(priv, reg, ACB_QUEUE_CFG(port *
214 						    SF2_NUM_EGRESS_QUEUES + i));
215 	}
216 
217 	return b53_enable_port(ds, port, phy);
218 }
219 
220 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port)
221 {
222 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
223 	u32 reg;
224 
225 	/* Disable learning while in WoL mode */
226 	if (priv->wol_ports_mask & (1 << port)) {
227 		reg = core_readl(priv, CORE_DIS_LEARN);
228 		reg |= BIT(port);
229 		core_writel(priv, reg, CORE_DIS_LEARN);
230 		return;
231 	}
232 
233 	if (port == priv->moca_port)
234 		bcm_sf2_port_intr_disable(priv, port);
235 
236 	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
237 		bcm_sf2_gphy_enable_set(ds, false);
238 
239 	b53_disable_port(ds, port);
240 
241 	/* Power down the port memory */
242 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
243 	reg |= P_TXQ_PSM_VDD(port);
244 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
245 }
246 
247 
248 static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr,
249 			       int regnum, u16 val)
250 {
251 	int ret = 0;
252 	u32 reg;
253 
254 	reg = reg_readl(priv, REG_SWITCH_CNTRL);
255 	reg |= MDIO_MASTER_SEL;
256 	reg_writel(priv, reg, REG_SWITCH_CNTRL);
257 
258 	/* Page << 8 | offset */
259 	reg = 0x70;
260 	reg <<= 2;
261 	core_writel(priv, addr, reg);
262 
263 	/* Page << 8 | offset */
264 	reg = 0x80 << 8 | regnum << 1;
265 	reg <<= 2;
266 
267 	if (op)
268 		ret = core_readl(priv, reg);
269 	else
270 		core_writel(priv, val, reg);
271 
272 	reg = reg_readl(priv, REG_SWITCH_CNTRL);
273 	reg &= ~MDIO_MASTER_SEL;
274 	reg_writel(priv, reg, REG_SWITCH_CNTRL);
275 
276 	return ret & 0xffff;
277 }
278 
279 static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
280 {
281 	struct bcm_sf2_priv *priv = bus->priv;
282 
283 	/* Intercept reads from Broadcom pseudo-PHY address, else, send
284 	 * them to our master MDIO bus controller
285 	 */
286 	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
287 		return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0);
288 	else
289 		return mdiobus_read_nested(priv->master_mii_bus, addr, regnum);
290 }
291 
292 static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
293 				 u16 val)
294 {
295 	struct bcm_sf2_priv *priv = bus->priv;
296 
297 	/* Intercept writes to the Broadcom pseudo-PHY address, else,
298 	 * send them to our master MDIO bus controller
299 	 */
300 	if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr))
301 		return bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val);
302 	else
303 		return mdiobus_write_nested(priv->master_mii_bus, addr,
304 				regnum, val);
305 }
306 
307 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
308 {
309 	struct dsa_switch *ds = dev_id;
310 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
311 
312 	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
313 				~priv->irq0_mask;
314 	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
315 
316 	return IRQ_HANDLED;
317 }
318 
319 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
320 {
321 	struct dsa_switch *ds = dev_id;
322 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
323 
324 	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
325 				~priv->irq1_mask;
326 	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
327 
328 	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) {
329 		priv->port_sts[7].link = true;
330 		dsa_port_phylink_mac_change(ds, 7, true);
331 	}
332 	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) {
333 		priv->port_sts[7].link = false;
334 		dsa_port_phylink_mac_change(ds, 7, false);
335 	}
336 
337 	return IRQ_HANDLED;
338 }
339 
340 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
341 {
342 	unsigned int timeout = 1000;
343 	u32 reg;
344 
345 	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
346 	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
347 	core_writel(priv, reg, CORE_WATCHDOG_CTRL);
348 
349 	do {
350 		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
351 		if (!(reg & SOFTWARE_RESET))
352 			break;
353 
354 		usleep_range(1000, 2000);
355 	} while (timeout-- > 0);
356 
357 	if (timeout == 0)
358 		return -ETIMEDOUT;
359 
360 	return 0;
361 }
362 
363 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
364 {
365 	intrl2_0_mask_set(priv, 0xffffffff);
366 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
367 	intrl2_1_mask_set(priv, 0xffffffff);
368 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
369 }
370 
371 static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
372 				   struct device_node *dn)
373 {
374 	struct device_node *port;
375 	int mode;
376 	unsigned int port_num;
377 
378 	priv->moca_port = -1;
379 
380 	for_each_available_child_of_node(dn, port) {
381 		if (of_property_read_u32(port, "reg", &port_num))
382 			continue;
383 
384 		/* Internal PHYs get assigned a specific 'phy-mode' property
385 		 * value: "internal" to help flag them before MDIO probing
386 		 * has completed, since they might be turned off at that
387 		 * time
388 		 */
389 		mode = of_get_phy_mode(port);
390 		if (mode < 0)
391 			continue;
392 
393 		if (mode == PHY_INTERFACE_MODE_INTERNAL)
394 			priv->int_phy_mask |= 1 << port_num;
395 
396 		if (mode == PHY_INTERFACE_MODE_MOCA)
397 			priv->moca_port = port_num;
398 
399 		if (of_property_read_bool(port, "brcm,use-bcm-hdr"))
400 			priv->brcm_tag_mask |= 1 << port_num;
401 	}
402 }
403 
404 static int bcm_sf2_mdio_register(struct dsa_switch *ds)
405 {
406 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
407 	struct device_node *dn;
408 	static int index;
409 	int err;
410 
411 	/* Find our integrated MDIO bus node */
412 	dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio");
413 	priv->master_mii_bus = of_mdio_find_bus(dn);
414 	if (!priv->master_mii_bus)
415 		return -EPROBE_DEFER;
416 
417 	get_device(&priv->master_mii_bus->dev);
418 	priv->master_mii_dn = dn;
419 
420 	priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
421 	if (!priv->slave_mii_bus)
422 		return -ENOMEM;
423 
424 	priv->slave_mii_bus->priv = priv;
425 	priv->slave_mii_bus->name = "sf2 slave mii";
426 	priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read;
427 	priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write;
428 	snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d",
429 		 index++);
430 	priv->slave_mii_bus->dev.of_node = dn;
431 
432 	/* Include the pseudo-PHY address to divert reads towards our
433 	 * workaround. This is only required for 7445D0, since 7445E0
434 	 * disconnects the internal switch pseudo-PHY such that we can use the
435 	 * regular SWITCH_MDIO master controller instead.
436 	 *
437 	 * Here we flag the pseudo PHY as needing special treatment and would
438 	 * otherwise make all other PHY read/writes go to the master MDIO bus
439 	 * controller that comes with this switch backed by the "mdio-unimac"
440 	 * driver.
441 	 */
442 	if (of_machine_is_compatible("brcm,bcm7445d0"))
443 		priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR);
444 	else
445 		priv->indir_phy_mask = 0;
446 
447 	ds->phys_mii_mask = priv->indir_phy_mask;
448 	ds->slave_mii_bus = priv->slave_mii_bus;
449 	priv->slave_mii_bus->parent = ds->dev->parent;
450 	priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask;
451 
452 	err = of_mdiobus_register(priv->slave_mii_bus, dn);
453 	if (err && dn)
454 		of_node_put(dn);
455 
456 	return err;
457 }
458 
459 static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv)
460 {
461 	mdiobus_unregister(priv->slave_mii_bus);
462 	of_node_put(priv->master_mii_dn);
463 }
464 
465 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
466 {
467 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
468 
469 	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
470 	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
471 	 * the REG_PHY_REVISION register layout is.
472 	 */
473 
474 	return priv->hw_params.gphy_rev;
475 }
476 
477 static void bcm_sf2_sw_validate(struct dsa_switch *ds, int port,
478 				unsigned long *supported,
479 				struct phylink_link_state *state)
480 {
481 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
482 
483 	if (!phy_interface_mode_is_rgmii(state->interface) &&
484 	    state->interface != PHY_INTERFACE_MODE_MII &&
485 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
486 	    state->interface != PHY_INTERFACE_MODE_GMII &&
487 	    state->interface != PHY_INTERFACE_MODE_INTERNAL &&
488 	    state->interface != PHY_INTERFACE_MODE_MOCA) {
489 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
490 		dev_err(ds->dev,
491 			"Unsupported interface: %d\n", state->interface);
492 		return;
493 	}
494 
495 	/* Allow all the expected bits */
496 	phylink_set(mask, Autoneg);
497 	phylink_set_port_modes(mask);
498 	phylink_set(mask, Pause);
499 	phylink_set(mask, Asym_Pause);
500 
501 	/* With the exclusion of MII and Reverse MII, we support Gigabit,
502 	 * including Half duplex
503 	 */
504 	if (state->interface != PHY_INTERFACE_MODE_MII &&
505 	    state->interface != PHY_INTERFACE_MODE_REVMII) {
506 		phylink_set(mask, 1000baseT_Full);
507 		phylink_set(mask, 1000baseT_Half);
508 	}
509 
510 	phylink_set(mask, 10baseT_Half);
511 	phylink_set(mask, 10baseT_Full);
512 	phylink_set(mask, 100baseT_Half);
513 	phylink_set(mask, 100baseT_Full);
514 
515 	bitmap_and(supported, supported, mask,
516 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
517 	bitmap_and(state->advertising, state->advertising, mask,
518 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
519 }
520 
521 static void bcm_sf2_sw_mac_config(struct dsa_switch *ds, int port,
522 				  unsigned int mode,
523 				  const struct phylink_link_state *state)
524 {
525 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
526 	u32 id_mode_dis = 0, port_mode;
527 	u32 reg, offset;
528 
529 	if (priv->type == BCM7445_DEVICE_ID)
530 		offset = CORE_STS_OVERRIDE_GMIIP_PORT(port);
531 	else
532 		offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port);
533 
534 	switch (state->interface) {
535 	case PHY_INTERFACE_MODE_RGMII:
536 		id_mode_dis = 1;
537 		/* fallthrough */
538 	case PHY_INTERFACE_MODE_RGMII_TXID:
539 		port_mode = EXT_GPHY;
540 		break;
541 	case PHY_INTERFACE_MODE_MII:
542 		port_mode = EXT_EPHY;
543 		break;
544 	case PHY_INTERFACE_MODE_REVMII:
545 		port_mode = EXT_REVMII;
546 		break;
547 	default:
548 		/* all other PHYs: internal and MoCA */
549 		goto force_link;
550 	}
551 
552 	/* Clear id_mode_dis bit, and the existing port mode, let
553 	 * RGMII_MODE_EN bet set by mac_link_{up,down}
554 	 */
555 	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
556 	reg &= ~ID_MODE_DIS;
557 	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
558 	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
559 
560 	reg |= port_mode;
561 	if (id_mode_dis)
562 		reg |= ID_MODE_DIS;
563 
564 	if (state->pause & MLO_PAUSE_TXRX_MASK) {
565 		if (state->pause & MLO_PAUSE_TX)
566 			reg |= TX_PAUSE_EN;
567 		reg |= RX_PAUSE_EN;
568 	}
569 
570 	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
571 
572 force_link:
573 	/* Force link settings detected from the PHY */
574 	reg = SW_OVERRIDE;
575 	switch (state->speed) {
576 	case SPEED_1000:
577 		reg |= SPDSTS_1000 << SPEED_SHIFT;
578 		break;
579 	case SPEED_100:
580 		reg |= SPDSTS_100 << SPEED_SHIFT;
581 		break;
582 	}
583 
584 	if (state->link)
585 		reg |= LINK_STS;
586 	if (state->duplex == DUPLEX_FULL)
587 		reg |= DUPLX_MODE;
588 
589 	core_writel(priv, reg, offset);
590 }
591 
592 static void bcm_sf2_sw_mac_link_set(struct dsa_switch *ds, int port,
593 				    phy_interface_t interface, bool link)
594 {
595 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
596 	u32 reg;
597 
598 	if (!phy_interface_mode_is_rgmii(interface) &&
599 	    interface != PHY_INTERFACE_MODE_MII &&
600 	    interface != PHY_INTERFACE_MODE_REVMII)
601 		return;
602 
603 	/* If the link is down, just disable the interface to conserve power */
604 	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
605 	if (link)
606 		reg |= RGMII_MODE_EN;
607 	else
608 		reg &= ~RGMII_MODE_EN;
609 	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
610 }
611 
612 static void bcm_sf2_sw_mac_link_down(struct dsa_switch *ds, int port,
613 				     unsigned int mode,
614 				     phy_interface_t interface)
615 {
616 	bcm_sf2_sw_mac_link_set(ds, port, interface, false);
617 }
618 
619 static void bcm_sf2_sw_mac_link_up(struct dsa_switch *ds, int port,
620 				   unsigned int mode,
621 				   phy_interface_t interface,
622 				   struct phy_device *phydev)
623 {
624 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
625 	struct ethtool_eee *p = &priv->dev->ports[port].eee;
626 
627 	bcm_sf2_sw_mac_link_set(ds, port, interface, true);
628 
629 	if (mode == MLO_AN_PHY && phydev)
630 		p->eee_enabled = b53_eee_init(ds, port, phydev);
631 }
632 
633 static void bcm_sf2_sw_fixed_state(struct dsa_switch *ds, int port,
634 				   struct phylink_link_state *status)
635 {
636 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
637 
638 	status->link = false;
639 
640 	/* MoCA port is special as we do not get link status from CORE_LNKSTS,
641 	 * which means that we need to force the link at the port override
642 	 * level to get the data to flow. We do use what the interrupt handler
643 	 * did determine before.
644 	 *
645 	 * For the other ports, we just force the link status, since this is
646 	 * a fixed PHY device.
647 	 */
648 	if (port == priv->moca_port) {
649 		status->link = priv->port_sts[port].link;
650 		/* For MoCA interfaces, also force a link down notification
651 		 * since some version of the user-space daemon (mocad) use
652 		 * cmd->autoneg to force the link, which messes up the PHY
653 		 * state machine and make it go in PHY_FORCING state instead.
654 		 */
655 		if (!status->link)
656 			netif_carrier_off(ds->ports[port].slave);
657 		status->duplex = DUPLEX_FULL;
658 	} else {
659 		status->link = true;
660 	}
661 }
662 
663 static void bcm_sf2_enable_acb(struct dsa_switch *ds)
664 {
665 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
666 	u32 reg;
667 
668 	/* Enable ACB globally */
669 	reg = acb_readl(priv, ACB_CONTROL);
670 	reg |= (ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
671 	acb_writel(priv, reg, ACB_CONTROL);
672 	reg &= ~(ACB_FLUSH_MASK << ACB_FLUSH_SHIFT);
673 	reg |= ACB_EN | ACB_ALGORITHM;
674 	acb_writel(priv, reg, ACB_CONTROL);
675 }
676 
677 static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
678 {
679 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
680 	unsigned int port;
681 
682 	bcm_sf2_intr_disable(priv);
683 
684 	/* Disable all ports physically present including the IMP
685 	 * port, the other ones have already been disabled during
686 	 * bcm_sf2_sw_setup
687 	 */
688 	for (port = 0; port < ds->num_ports; port++) {
689 		if (dsa_is_user_port(ds, port) || dsa_is_cpu_port(ds, port))
690 			bcm_sf2_port_disable(ds, port);
691 	}
692 
693 	return 0;
694 }
695 
696 static int bcm_sf2_sw_resume(struct dsa_switch *ds)
697 {
698 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
699 	int ret;
700 
701 	ret = bcm_sf2_sw_rst(priv);
702 	if (ret) {
703 		pr_err("%s: failed to software reset switch\n", __func__);
704 		return ret;
705 	}
706 
707 	ret = bcm_sf2_cfp_resume(ds);
708 	if (ret)
709 		return ret;
710 
711 	if (priv->hw_params.num_gphy == 1)
712 		bcm_sf2_gphy_enable_set(ds, true);
713 
714 	ds->ops->setup(ds);
715 
716 	return 0;
717 }
718 
719 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
720 			       struct ethtool_wolinfo *wol)
721 {
722 	struct net_device *p = ds->ports[port].cpu_dp->master;
723 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
724 	struct ethtool_wolinfo pwol = { };
725 
726 	/* Get the parent device WoL settings */
727 	if (p->ethtool_ops->get_wol)
728 		p->ethtool_ops->get_wol(p, &pwol);
729 
730 	/* Advertise the parent device supported settings */
731 	wol->supported = pwol.supported;
732 	memset(&wol->sopass, 0, sizeof(wol->sopass));
733 
734 	if (pwol.wolopts & WAKE_MAGICSECURE)
735 		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
736 
737 	if (priv->wol_ports_mask & (1 << port))
738 		wol->wolopts = pwol.wolopts;
739 	else
740 		wol->wolopts = 0;
741 }
742 
743 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
744 			      struct ethtool_wolinfo *wol)
745 {
746 	struct net_device *p = ds->ports[port].cpu_dp->master;
747 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
748 	s8 cpu_port = ds->ports[port].cpu_dp->index;
749 	struct ethtool_wolinfo pwol =  { };
750 
751 	if (p->ethtool_ops->get_wol)
752 		p->ethtool_ops->get_wol(p, &pwol);
753 	if (wol->wolopts & ~pwol.supported)
754 		return -EINVAL;
755 
756 	if (wol->wolopts)
757 		priv->wol_ports_mask |= (1 << port);
758 	else
759 		priv->wol_ports_mask &= ~(1 << port);
760 
761 	/* If we have at least one port enabled, make sure the CPU port
762 	 * is also enabled. If the CPU port is the last one enabled, we disable
763 	 * it since this configuration does not make sense.
764 	 */
765 	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
766 		priv->wol_ports_mask |= (1 << cpu_port);
767 	else
768 		priv->wol_ports_mask &= ~(1 << cpu_port);
769 
770 	return p->ethtool_ops->set_wol(p, wol);
771 }
772 
773 static int bcm_sf2_sw_setup(struct dsa_switch *ds)
774 {
775 	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
776 	unsigned int port;
777 
778 	/* Enable all valid ports and disable those unused */
779 	for (port = 0; port < priv->hw_params.num_ports; port++) {
780 		/* IMP port receives special treatment */
781 		if (dsa_is_user_port(ds, port))
782 			bcm_sf2_port_setup(ds, port, NULL);
783 		else if (dsa_is_cpu_port(ds, port))
784 			bcm_sf2_imp_setup(ds, port);
785 		else
786 			bcm_sf2_port_disable(ds, port);
787 	}
788 
789 	b53_configure_vlan(ds);
790 	bcm_sf2_enable_acb(ds);
791 
792 	return 0;
793 }
794 
795 /* The SWITCH_CORE register space is managed by b53 but operates on a page +
796  * register basis so we need to translate that into an address that the
797  * bus-glue understands.
798  */
799 #define SF2_PAGE_REG_MKADDR(page, reg)	((page) << 10 | (reg) << 2)
800 
801 static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg,
802 			      u8 *val)
803 {
804 	struct bcm_sf2_priv *priv = dev->priv;
805 
806 	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
807 
808 	return 0;
809 }
810 
811 static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg,
812 			       u16 *val)
813 {
814 	struct bcm_sf2_priv *priv = dev->priv;
815 
816 	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
817 
818 	return 0;
819 }
820 
821 static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg,
822 			       u32 *val)
823 {
824 	struct bcm_sf2_priv *priv = dev->priv;
825 
826 	*val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg));
827 
828 	return 0;
829 }
830 
831 static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg,
832 			       u64 *val)
833 {
834 	struct bcm_sf2_priv *priv = dev->priv;
835 
836 	*val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg));
837 
838 	return 0;
839 }
840 
841 static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg,
842 			       u8 value)
843 {
844 	struct bcm_sf2_priv *priv = dev->priv;
845 
846 	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
847 
848 	return 0;
849 }
850 
851 static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg,
852 				u16 value)
853 {
854 	struct bcm_sf2_priv *priv = dev->priv;
855 
856 	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
857 
858 	return 0;
859 }
860 
861 static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg,
862 				u32 value)
863 {
864 	struct bcm_sf2_priv *priv = dev->priv;
865 
866 	core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
867 
868 	return 0;
869 }
870 
871 static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg,
872 				u64 value)
873 {
874 	struct bcm_sf2_priv *priv = dev->priv;
875 
876 	core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg));
877 
878 	return 0;
879 }
880 
881 static const struct b53_io_ops bcm_sf2_io_ops = {
882 	.read8	= bcm_sf2_core_read8,
883 	.read16	= bcm_sf2_core_read16,
884 	.read32	= bcm_sf2_core_read32,
885 	.read48	= bcm_sf2_core_read64,
886 	.read64	= bcm_sf2_core_read64,
887 	.write8	= bcm_sf2_core_write8,
888 	.write16 = bcm_sf2_core_write16,
889 	.write32 = bcm_sf2_core_write32,
890 	.write48 = bcm_sf2_core_write64,
891 	.write64 = bcm_sf2_core_write64,
892 };
893 
894 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, int port,
895 				   u32 stringset, uint8_t *data)
896 {
897 	int cnt = b53_get_sset_count(ds, port, stringset);
898 
899 	b53_get_strings(ds, port, stringset, data);
900 	bcm_sf2_cfp_get_strings(ds, port, stringset,
901 				data + cnt * ETH_GSTRING_LEN);
902 }
903 
904 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, int port,
905 					 uint64_t *data)
906 {
907 	int cnt = b53_get_sset_count(ds, port, ETH_SS_STATS);
908 
909 	b53_get_ethtool_stats(ds, port, data);
910 	bcm_sf2_cfp_get_ethtool_stats(ds, port, data + cnt);
911 }
912 
913 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds, int port,
914 				     int sset)
915 {
916 	int cnt = b53_get_sset_count(ds, port, sset);
917 
918 	if (cnt < 0)
919 		return cnt;
920 
921 	cnt += bcm_sf2_cfp_get_sset_count(ds, port, sset);
922 
923 	return cnt;
924 }
925 
926 static const struct dsa_switch_ops bcm_sf2_ops = {
927 	.get_tag_protocol	= b53_get_tag_protocol,
928 	.setup			= bcm_sf2_sw_setup,
929 	.get_strings		= bcm_sf2_sw_get_strings,
930 	.get_ethtool_stats	= bcm_sf2_sw_get_ethtool_stats,
931 	.get_sset_count		= bcm_sf2_sw_get_sset_count,
932 	.get_ethtool_phy_stats	= b53_get_ethtool_phy_stats,
933 	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
934 	.phylink_validate	= bcm_sf2_sw_validate,
935 	.phylink_mac_config	= bcm_sf2_sw_mac_config,
936 	.phylink_mac_link_down	= bcm_sf2_sw_mac_link_down,
937 	.phylink_mac_link_up	= bcm_sf2_sw_mac_link_up,
938 	.phylink_fixed_state	= bcm_sf2_sw_fixed_state,
939 	.suspend		= bcm_sf2_sw_suspend,
940 	.resume			= bcm_sf2_sw_resume,
941 	.get_wol		= bcm_sf2_sw_get_wol,
942 	.set_wol		= bcm_sf2_sw_set_wol,
943 	.port_enable		= bcm_sf2_port_setup,
944 	.port_disable		= bcm_sf2_port_disable,
945 	.get_mac_eee		= b53_get_mac_eee,
946 	.set_mac_eee		= b53_set_mac_eee,
947 	.port_bridge_join	= b53_br_join,
948 	.port_bridge_leave	= b53_br_leave,
949 	.port_stp_state_set	= b53_br_set_stp_state,
950 	.port_fast_age		= b53_br_fast_age,
951 	.port_vlan_filtering	= b53_vlan_filtering,
952 	.port_vlan_prepare	= b53_vlan_prepare,
953 	.port_vlan_add		= b53_vlan_add,
954 	.port_vlan_del		= b53_vlan_del,
955 	.port_fdb_dump		= b53_fdb_dump,
956 	.port_fdb_add		= b53_fdb_add,
957 	.port_fdb_del		= b53_fdb_del,
958 	.get_rxnfc		= bcm_sf2_get_rxnfc,
959 	.set_rxnfc		= bcm_sf2_set_rxnfc,
960 	.port_mirror_add	= b53_mirror_add,
961 	.port_mirror_del	= b53_mirror_del,
962 };
963 
964 struct bcm_sf2_of_data {
965 	u32 type;
966 	const u16 *reg_offsets;
967 	unsigned int core_reg_align;
968 	unsigned int num_cfp_rules;
969 };
970 
971 /* Register offsets for the SWITCH_REG_* block */
972 static const u16 bcm_sf2_7445_reg_offsets[] = {
973 	[REG_SWITCH_CNTRL]	= 0x00,
974 	[REG_SWITCH_STATUS]	= 0x04,
975 	[REG_DIR_DATA_WRITE]	= 0x08,
976 	[REG_DIR_DATA_READ]	= 0x0C,
977 	[REG_SWITCH_REVISION]	= 0x18,
978 	[REG_PHY_REVISION]	= 0x1C,
979 	[REG_SPHY_CNTRL]	= 0x2C,
980 	[REG_RGMII_0_CNTRL]	= 0x34,
981 	[REG_RGMII_1_CNTRL]	= 0x40,
982 	[REG_RGMII_2_CNTRL]	= 0x4c,
983 	[REG_LED_0_CNTRL]	= 0x90,
984 	[REG_LED_1_CNTRL]	= 0x94,
985 	[REG_LED_2_CNTRL]	= 0x98,
986 };
987 
988 static const struct bcm_sf2_of_data bcm_sf2_7445_data = {
989 	.type		= BCM7445_DEVICE_ID,
990 	.core_reg_align	= 0,
991 	.reg_offsets	= bcm_sf2_7445_reg_offsets,
992 	.num_cfp_rules	= 256,
993 };
994 
995 static const u16 bcm_sf2_7278_reg_offsets[] = {
996 	[REG_SWITCH_CNTRL]	= 0x00,
997 	[REG_SWITCH_STATUS]	= 0x04,
998 	[REG_DIR_DATA_WRITE]	= 0x08,
999 	[REG_DIR_DATA_READ]	= 0x0c,
1000 	[REG_SWITCH_REVISION]	= 0x10,
1001 	[REG_PHY_REVISION]	= 0x14,
1002 	[REG_SPHY_CNTRL]	= 0x24,
1003 	[REG_RGMII_0_CNTRL]	= 0xe0,
1004 	[REG_RGMII_1_CNTRL]	= 0xec,
1005 	[REG_RGMII_2_CNTRL]	= 0xf8,
1006 	[REG_LED_0_CNTRL]	= 0x40,
1007 	[REG_LED_1_CNTRL]	= 0x4c,
1008 	[REG_LED_2_CNTRL]	= 0x58,
1009 };
1010 
1011 static const struct bcm_sf2_of_data bcm_sf2_7278_data = {
1012 	.type		= BCM7278_DEVICE_ID,
1013 	.core_reg_align	= 1,
1014 	.reg_offsets	= bcm_sf2_7278_reg_offsets,
1015 	.num_cfp_rules	= 128,
1016 };
1017 
1018 static const struct of_device_id bcm_sf2_of_match[] = {
1019 	{ .compatible = "brcm,bcm7445-switch-v4.0",
1020 	  .data = &bcm_sf2_7445_data
1021 	},
1022 	{ .compatible = "brcm,bcm7278-switch-v4.0",
1023 	  .data = &bcm_sf2_7278_data
1024 	},
1025 	{ .compatible = "brcm,bcm7278-switch-v4.8",
1026 	  .data = &bcm_sf2_7278_data
1027 	},
1028 	{ /* sentinel */ },
1029 };
1030 MODULE_DEVICE_TABLE(of, bcm_sf2_of_match);
1031 
1032 static int bcm_sf2_sw_probe(struct platform_device *pdev)
1033 {
1034 	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
1035 	struct device_node *dn = pdev->dev.of_node;
1036 	const struct of_device_id *of_id = NULL;
1037 	const struct bcm_sf2_of_data *data;
1038 	struct b53_platform_data *pdata;
1039 	struct dsa_switch_ops *ops;
1040 	struct bcm_sf2_priv *priv;
1041 	struct b53_device *dev;
1042 	struct dsa_switch *ds;
1043 	void __iomem **base;
1044 	struct resource *r;
1045 	unsigned int i;
1046 	u32 reg, rev;
1047 	int ret;
1048 
1049 	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1050 	if (!priv)
1051 		return -ENOMEM;
1052 
1053 	ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL);
1054 	if (!ops)
1055 		return -ENOMEM;
1056 
1057 	dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv);
1058 	if (!dev)
1059 		return -ENOMEM;
1060 
1061 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1062 	if (!pdata)
1063 		return -ENOMEM;
1064 
1065 	of_id = of_match_node(bcm_sf2_of_match, dn);
1066 	if (!of_id || !of_id->data)
1067 		return -EINVAL;
1068 
1069 	data = of_id->data;
1070 
1071 	/* Set SWITCH_REG register offsets and SWITCH_CORE align factor */
1072 	priv->type = data->type;
1073 	priv->reg_offsets = data->reg_offsets;
1074 	priv->core_reg_align = data->core_reg_align;
1075 	priv->num_cfp_rules = data->num_cfp_rules;
1076 
1077 	/* Auto-detection using standard registers will not work, so
1078 	 * provide an indication of what kind of device we are for
1079 	 * b53_common to work with
1080 	 */
1081 	pdata->chip_id = priv->type;
1082 	dev->pdata = pdata;
1083 
1084 	priv->dev = dev;
1085 	ds = dev->ds;
1086 	ds->ops = &bcm_sf2_ops;
1087 
1088 	/* Advertise the 8 egress queues */
1089 	ds->num_tx_queues = SF2_NUM_EGRESS_QUEUES;
1090 
1091 	dev_set_drvdata(&pdev->dev, priv);
1092 
1093 	spin_lock_init(&priv->indir_lock);
1094 	mutex_init(&priv->cfp.lock);
1095 	INIT_LIST_HEAD(&priv->cfp.rules_list);
1096 
1097 	/* CFP rule #0 cannot be used for specific classifications, flag it as
1098 	 * permanently used
1099 	 */
1100 	set_bit(0, priv->cfp.used);
1101 	set_bit(0, priv->cfp.unique);
1102 
1103 	bcm_sf2_identify_ports(priv, dn->child);
1104 
1105 	priv->irq0 = irq_of_parse_and_map(dn, 0);
1106 	priv->irq1 = irq_of_parse_and_map(dn, 1);
1107 
1108 	base = &priv->core;
1109 	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1110 		r = platform_get_resource(pdev, IORESOURCE_MEM, i);
1111 		*base = devm_ioremap_resource(&pdev->dev, r);
1112 		if (IS_ERR(*base)) {
1113 			pr_err("unable to find register: %s\n", reg_names[i]);
1114 			return PTR_ERR(*base);
1115 		}
1116 		base++;
1117 	}
1118 
1119 	ret = bcm_sf2_sw_rst(priv);
1120 	if (ret) {
1121 		pr_err("unable to software reset switch: %d\n", ret);
1122 		return ret;
1123 	}
1124 
1125 	bcm_sf2_gphy_enable_set(priv->dev->ds, true);
1126 
1127 	ret = bcm_sf2_mdio_register(ds);
1128 	if (ret) {
1129 		pr_err("failed to register MDIO bus\n");
1130 		return ret;
1131 	}
1132 
1133 	bcm_sf2_gphy_enable_set(priv->dev->ds, false);
1134 
1135 	ret = bcm_sf2_cfp_rst(priv);
1136 	if (ret) {
1137 		pr_err("failed to reset CFP\n");
1138 		goto out_mdio;
1139 	}
1140 
1141 	/* Disable all interrupts and request them */
1142 	bcm_sf2_intr_disable(priv);
1143 
1144 	ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0,
1145 			       "switch_0", ds);
1146 	if (ret < 0) {
1147 		pr_err("failed to request switch_0 IRQ\n");
1148 		goto out_mdio;
1149 	}
1150 
1151 	ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0,
1152 			       "switch_1", ds);
1153 	if (ret < 0) {
1154 		pr_err("failed to request switch_1 IRQ\n");
1155 		goto out_mdio;
1156 	}
1157 
1158 	/* Reset the MIB counters */
1159 	reg = core_readl(priv, CORE_GMNCFGCFG);
1160 	reg |= RST_MIB_CNT;
1161 	core_writel(priv, reg, CORE_GMNCFGCFG);
1162 	reg &= ~RST_MIB_CNT;
1163 	core_writel(priv, reg, CORE_GMNCFGCFG);
1164 
1165 	/* Get the maximum number of ports for this switch */
1166 	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
1167 	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
1168 		priv->hw_params.num_ports = DSA_MAX_PORTS;
1169 
1170 	/* Assume a single GPHY setup if we can't read that property */
1171 	if (of_property_read_u32(dn, "brcm,num-gphy",
1172 				 &priv->hw_params.num_gphy))
1173 		priv->hw_params.num_gphy = 1;
1174 
1175 	rev = reg_readl(priv, REG_SWITCH_REVISION);
1176 	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
1177 					SWITCH_TOP_REV_MASK;
1178 	priv->hw_params.core_rev = (rev & SF2_REV_MASK);
1179 
1180 	rev = reg_readl(priv, REG_PHY_REVISION);
1181 	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
1182 
1183 	ret = b53_switch_register(dev);
1184 	if (ret)
1185 		goto out_mdio;
1186 
1187 	dev_info(&pdev->dev,
1188 		 "Starfighter 2 top: %x.%02x, core: %x.%02x, IRQs: %d, %d\n",
1189 		 priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
1190 		 priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
1191 		 priv->irq0, priv->irq1);
1192 
1193 	return 0;
1194 
1195 out_mdio:
1196 	bcm_sf2_mdio_unregister(priv);
1197 	return ret;
1198 }
1199 
1200 static int bcm_sf2_sw_remove(struct platform_device *pdev)
1201 {
1202 	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
1203 
1204 	priv->wol_ports_mask = 0;
1205 	dsa_unregister_switch(priv->dev->ds);
1206 	bcm_sf2_cfp_exit(priv->dev->ds);
1207 	/* Disable all ports and interrupts */
1208 	bcm_sf2_sw_suspend(priv->dev->ds);
1209 	bcm_sf2_mdio_unregister(priv);
1210 
1211 	return 0;
1212 }
1213 
1214 static void bcm_sf2_sw_shutdown(struct platform_device *pdev)
1215 {
1216 	struct bcm_sf2_priv *priv = platform_get_drvdata(pdev);
1217 
1218 	/* For a kernel about to be kexec'd we want to keep the GPHY on for a
1219 	 * successful MDIO bus scan to occur. If we did turn off the GPHY
1220 	 * before (e.g: port_disable), this will also power it back on.
1221 	 *
1222 	 * Do not rely on kexec_in_progress, just power the PHY on.
1223 	 */
1224 	if (priv->hw_params.num_gphy == 1)
1225 		bcm_sf2_gphy_enable_set(priv->dev->ds, true);
1226 }
1227 
1228 #ifdef CONFIG_PM_SLEEP
1229 static int bcm_sf2_suspend(struct device *dev)
1230 {
1231 	struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
1232 
1233 	return dsa_switch_suspend(priv->dev->ds);
1234 }
1235 
1236 static int bcm_sf2_resume(struct device *dev)
1237 {
1238 	struct bcm_sf2_priv *priv = dev_get_drvdata(dev);
1239 
1240 	return dsa_switch_resume(priv->dev->ds);
1241 }
1242 #endif /* CONFIG_PM_SLEEP */
1243 
1244 static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops,
1245 			 bcm_sf2_suspend, bcm_sf2_resume);
1246 
1247 
1248 static struct platform_driver bcm_sf2_driver = {
1249 	.probe	= bcm_sf2_sw_probe,
1250 	.remove	= bcm_sf2_sw_remove,
1251 	.shutdown = bcm_sf2_sw_shutdown,
1252 	.driver = {
1253 		.name = "brcm-sf2",
1254 		.of_match_table = bcm_sf2_of_match,
1255 		.pm = &bcm_sf2_pm_ops,
1256 	},
1257 };
1258 module_platform_driver(bcm_sf2_driver);
1259 
1260 MODULE_AUTHOR("Broadcom Corporation");
1261 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
1262 MODULE_LICENSE("GPL");
1263 MODULE_ALIAS("platform:brcm-sf2");
1264