1 /* 2 * Broadcom Starfighter 2 DSA switch driver 3 * 4 * Copyright (C) 2014, Broadcom Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 */ 11 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/netdevice.h> 15 #include <linux/interrupt.h> 16 #include <linux/platform_device.h> 17 #include <linux/of.h> 18 #include <linux/phy.h> 19 #include <linux/phy_fixed.h> 20 #include <linux/mii.h> 21 #include <linux/of.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_address.h> 24 #include <net/dsa.h> 25 #include <linux/ethtool.h> 26 #include <linux/if_bridge.h> 27 #include <linux/brcmphy.h> 28 29 #include "bcm_sf2.h" 30 #include "bcm_sf2_regs.h" 31 32 /* String, offset, and register size in bytes if different from 4 bytes */ 33 static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = { 34 { "TxOctets", 0x000, 8 }, 35 { "TxDropPkts", 0x020 }, 36 { "TxQPKTQ0", 0x030 }, 37 { "TxBroadcastPkts", 0x040 }, 38 { "TxMulticastPkts", 0x050 }, 39 { "TxUnicastPKts", 0x060 }, 40 { "TxCollisions", 0x070 }, 41 { "TxSingleCollision", 0x080 }, 42 { "TxMultipleCollision", 0x090 }, 43 { "TxDeferredCollision", 0x0a0 }, 44 { "TxLateCollision", 0x0b0 }, 45 { "TxExcessiveCollision", 0x0c0 }, 46 { "TxFrameInDisc", 0x0d0 }, 47 { "TxPausePkts", 0x0e0 }, 48 { "TxQPKTQ1", 0x0f0 }, 49 { "TxQPKTQ2", 0x100 }, 50 { "TxQPKTQ3", 0x110 }, 51 { "TxQPKTQ4", 0x120 }, 52 { "TxQPKTQ5", 0x130 }, 53 { "RxOctets", 0x140, 8 }, 54 { "RxUndersizePkts", 0x160 }, 55 { "RxPausePkts", 0x170 }, 56 { "RxPkts64Octets", 0x180 }, 57 { "RxPkts65to127Octets", 0x190 }, 58 { "RxPkts128to255Octets", 0x1a0 }, 59 { "RxPkts256to511Octets", 0x1b0 }, 60 { "RxPkts512to1023Octets", 0x1c0 }, 61 { "RxPkts1024toMaxPktsOctets", 0x1d0 }, 62 { "RxOversizePkts", 0x1e0 }, 63 { "RxJabbers", 0x1f0 }, 64 { "RxAlignmentErrors", 0x200 }, 65 { "RxFCSErrors", 0x210 }, 66 { "RxGoodOctets", 0x220, 8 }, 67 { "RxDropPkts", 0x240 }, 68 { "RxUnicastPkts", 0x250 }, 69 { "RxMulticastPkts", 0x260 }, 70 { "RxBroadcastPkts", 0x270 }, 71 { "RxSAChanges", 0x280 }, 72 { "RxFragments", 0x290 }, 73 { "RxJumboPkt", 0x2a0 }, 74 { "RxSymblErr", 0x2b0 }, 75 { "InRangeErrCount", 0x2c0 }, 76 { "OutRangeErrCount", 0x2d0 }, 77 { "EEELpiEvent", 0x2e0 }, 78 { "EEELpiDuration", 0x2f0 }, 79 { "RxDiscard", 0x300, 8 }, 80 { "TxQPKTQ6", 0x320 }, 81 { "TxQPKTQ7", 0x330 }, 82 { "TxPkts64Octets", 0x340 }, 83 { "TxPkts65to127Octets", 0x350 }, 84 { "TxPkts128to255Octets", 0x360 }, 85 { "TxPkts256to511Ocets", 0x370 }, 86 { "TxPkts512to1023Ocets", 0x380 }, 87 { "TxPkts1024toMaxPktOcets", 0x390 }, 88 }; 89 90 #define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib) 91 92 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, 93 int port, uint8_t *data) 94 { 95 unsigned int i; 96 97 for (i = 0; i < BCM_SF2_STATS_SIZE; i++) 98 memcpy(data + i * ETH_GSTRING_LEN, 99 bcm_sf2_mib[i].string, ETH_GSTRING_LEN); 100 } 101 102 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, 103 int port, uint64_t *data) 104 { 105 struct bcm_sf2_priv *priv = ds_to_priv(ds); 106 const struct bcm_sf2_hw_stats *s; 107 unsigned int i; 108 u64 val = 0; 109 u32 offset; 110 111 mutex_lock(&priv->stats_mutex); 112 113 /* Now fetch the per-port counters */ 114 for (i = 0; i < BCM_SF2_STATS_SIZE; i++) { 115 s = &bcm_sf2_mib[i]; 116 117 /* Do a latched 64-bit read if needed */ 118 offset = s->reg + CORE_P_MIB_OFFSET(port); 119 if (s->sizeof_stat == 8) 120 val = core_readq(priv, offset); 121 else 122 val = core_readl(priv, offset); 123 124 data[i] = (u64)val; 125 } 126 127 mutex_unlock(&priv->stats_mutex); 128 } 129 130 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds) 131 { 132 return BCM_SF2_STATS_SIZE; 133 } 134 135 static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr) 136 { 137 return "Broadcom Starfighter 2"; 138 } 139 140 static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port) 141 { 142 struct bcm_sf2_priv *priv = ds_to_priv(ds); 143 unsigned int i; 144 u32 reg; 145 146 /* Enable the IMP Port to be in the same VLAN as the other ports 147 * on a per-port basis such that we only have Port i and IMP in 148 * the same VLAN. 149 */ 150 for (i = 0; i < priv->hw_params.num_ports; i++) { 151 if (!((1 << i) & ds->phys_port_mask)) 152 continue; 153 154 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i)); 155 reg |= (1 << cpu_port); 156 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i)); 157 } 158 } 159 160 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port) 161 { 162 struct bcm_sf2_priv *priv = ds_to_priv(ds); 163 u32 reg, val; 164 165 /* Enable the port memories */ 166 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); 167 reg &= ~P_TXQ_PSM_VDD(port); 168 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); 169 170 /* Enable Broadcast, Multicast, Unicast forwarding to IMP port */ 171 reg = core_readl(priv, CORE_IMP_CTL); 172 reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN); 173 reg &= ~(RX_DIS | TX_DIS); 174 core_writel(priv, reg, CORE_IMP_CTL); 175 176 /* Enable forwarding */ 177 core_writel(priv, SW_FWDG_EN, CORE_SWMODE); 178 179 /* Enable IMP port in dumb mode */ 180 reg = core_readl(priv, CORE_SWITCH_CTRL); 181 reg |= MII_DUMB_FWDG_EN; 182 core_writel(priv, reg, CORE_SWITCH_CTRL); 183 184 /* Resolve which bit controls the Broadcom tag */ 185 switch (port) { 186 case 8: 187 val = BRCM_HDR_EN_P8; 188 break; 189 case 7: 190 val = BRCM_HDR_EN_P7; 191 break; 192 case 5: 193 val = BRCM_HDR_EN_P5; 194 break; 195 default: 196 val = 0; 197 break; 198 } 199 200 /* Enable Broadcom tags for IMP port */ 201 reg = core_readl(priv, CORE_BRCM_HDR_CTRL); 202 reg |= val; 203 core_writel(priv, reg, CORE_BRCM_HDR_CTRL); 204 205 /* Enable reception Broadcom tag for CPU TX (switch RX) to 206 * allow us to tag outgoing frames 207 */ 208 reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS); 209 reg &= ~(1 << port); 210 core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS); 211 212 /* Enable transmission of Broadcom tags from the switch (CPU RX) to 213 * allow delivering frames to the per-port net_devices 214 */ 215 reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS); 216 reg &= ~(1 << port); 217 core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS); 218 219 /* Force link status for IMP port */ 220 reg = core_readl(priv, CORE_STS_OVERRIDE_IMP); 221 reg |= (MII_SW_OR | LINK_STS); 222 core_writel(priv, reg, CORE_STS_OVERRIDE_IMP); 223 } 224 225 static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable) 226 { 227 struct bcm_sf2_priv *priv = ds_to_priv(ds); 228 u32 reg; 229 230 reg = core_readl(priv, CORE_EEE_EN_CTRL); 231 if (enable) 232 reg |= 1 << port; 233 else 234 reg &= ~(1 << port); 235 core_writel(priv, reg, CORE_EEE_EN_CTRL); 236 } 237 238 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable) 239 { 240 struct bcm_sf2_priv *priv = ds_to_priv(ds); 241 u32 reg; 242 243 reg = reg_readl(priv, REG_SPHY_CNTRL); 244 if (enable) { 245 reg |= PHY_RESET; 246 reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS); 247 reg_writel(priv, reg, REG_SPHY_CNTRL); 248 udelay(21); 249 reg = reg_readl(priv, REG_SPHY_CNTRL); 250 reg &= ~PHY_RESET; 251 } else { 252 reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET; 253 reg_writel(priv, reg, REG_SPHY_CNTRL); 254 mdelay(1); 255 reg |= CK25_DIS; 256 } 257 reg_writel(priv, reg, REG_SPHY_CNTRL); 258 259 /* Use PHY-driven LED signaling */ 260 if (!enable) { 261 reg = reg_readl(priv, REG_LED_CNTRL(0)); 262 reg |= SPDLNK_SRC_SEL; 263 reg_writel(priv, reg, REG_LED_CNTRL(0)); 264 } 265 } 266 267 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port, 268 struct phy_device *phy) 269 { 270 struct bcm_sf2_priv *priv = ds_to_priv(ds); 271 s8 cpu_port = ds->dst[ds->index].cpu_port; 272 u32 reg; 273 274 /* Clear the memory power down */ 275 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); 276 reg &= ~P_TXQ_PSM_VDD(port); 277 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); 278 279 /* Clear the Rx and Tx disable bits and set to no spanning tree */ 280 core_writel(priv, 0, CORE_G_PCTL_PORT(port)); 281 282 /* Re-enable the GPHY and re-apply workarounds */ 283 if (port == 0 && priv->hw_params.num_gphy == 1) { 284 bcm_sf2_gphy_enable_set(ds, true); 285 if (phy) { 286 /* if phy_stop() has been called before, phy 287 * will be in halted state, and phy_start() 288 * will call resume. 289 * 290 * the resume path does not configure back 291 * autoneg settings, and since we hard reset 292 * the phy manually here, we need to reset the 293 * state machine also. 294 */ 295 phy->state = PHY_READY; 296 phy_init_hw(phy); 297 } 298 } 299 300 /* Enable port 7 interrupts to get notified */ 301 if (port == 7) 302 intrl2_1_mask_clear(priv, P_IRQ_MASK(P7_IRQ_OFF)); 303 304 /* Set this port, and only this one to be in the default VLAN, 305 * if member of a bridge, restore its membership prior to 306 * bringing down this port. 307 */ 308 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port)); 309 reg &= ~PORT_VLAN_CTRL_MASK; 310 reg |= (1 << port); 311 reg |= priv->port_sts[port].vlan_ctl_mask; 312 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port)); 313 314 bcm_sf2_imp_vlan_setup(ds, cpu_port); 315 316 /* If EEE was enabled, restore it */ 317 if (priv->port_sts[port].eee.eee_enabled) 318 bcm_sf2_eee_enable_set(ds, port, true); 319 320 return 0; 321 } 322 323 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port, 324 struct phy_device *phy) 325 { 326 struct bcm_sf2_priv *priv = ds_to_priv(ds); 327 u32 off, reg; 328 329 if (priv->wol_ports_mask & (1 << port)) 330 return; 331 332 if (port == 7) { 333 intrl2_1_mask_set(priv, P_IRQ_MASK(P7_IRQ_OFF)); 334 intrl2_1_writel(priv, P_IRQ_MASK(P7_IRQ_OFF), INTRL2_CPU_CLEAR); 335 } 336 337 if (port == 0 && priv->hw_params.num_gphy == 1) 338 bcm_sf2_gphy_enable_set(ds, false); 339 340 if (dsa_is_cpu_port(ds, port)) 341 off = CORE_IMP_CTL; 342 else 343 off = CORE_G_PCTL_PORT(port); 344 345 reg = core_readl(priv, off); 346 reg |= RX_DIS | TX_DIS; 347 core_writel(priv, reg, off); 348 349 /* Power down the port memory */ 350 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); 351 reg |= P_TXQ_PSM_VDD(port); 352 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); 353 } 354 355 /* Returns 0 if EEE was not enabled, or 1 otherwise 356 */ 357 static int bcm_sf2_eee_init(struct dsa_switch *ds, int port, 358 struct phy_device *phy) 359 { 360 struct bcm_sf2_priv *priv = ds_to_priv(ds); 361 struct ethtool_eee *p = &priv->port_sts[port].eee; 362 int ret; 363 364 p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full); 365 366 ret = phy_init_eee(phy, 0); 367 if (ret) 368 return 0; 369 370 bcm_sf2_eee_enable_set(ds, port, true); 371 372 return 1; 373 } 374 375 static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port, 376 struct ethtool_eee *e) 377 { 378 struct bcm_sf2_priv *priv = ds_to_priv(ds); 379 struct ethtool_eee *p = &priv->port_sts[port].eee; 380 u32 reg; 381 382 reg = core_readl(priv, CORE_EEE_LPI_INDICATE); 383 e->eee_enabled = p->eee_enabled; 384 e->eee_active = !!(reg & (1 << port)); 385 386 return 0; 387 } 388 389 static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port, 390 struct phy_device *phydev, 391 struct ethtool_eee *e) 392 { 393 struct bcm_sf2_priv *priv = ds_to_priv(ds); 394 struct ethtool_eee *p = &priv->port_sts[port].eee; 395 396 p->eee_enabled = e->eee_enabled; 397 398 if (!p->eee_enabled) { 399 bcm_sf2_eee_enable_set(ds, port, false); 400 } else { 401 p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev); 402 if (!p->eee_enabled) 403 return -EOPNOTSUPP; 404 } 405 406 return 0; 407 } 408 409 /* Fast-ageing of ARL entries for a given port, equivalent to an ARL 410 * flush for that port. 411 */ 412 static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port) 413 { 414 struct bcm_sf2_priv *priv = ds_to_priv(ds); 415 unsigned int timeout = 1000; 416 u32 reg; 417 418 core_writel(priv, port, CORE_FAST_AGE_PORT); 419 420 reg = core_readl(priv, CORE_FAST_AGE_CTRL); 421 reg |= EN_AGE_PORT | FAST_AGE_STR_DONE; 422 core_writel(priv, reg, CORE_FAST_AGE_CTRL); 423 424 do { 425 reg = core_readl(priv, CORE_FAST_AGE_CTRL); 426 if (!(reg & FAST_AGE_STR_DONE)) 427 break; 428 429 cpu_relax(); 430 } while (timeout--); 431 432 if (!timeout) 433 return -ETIMEDOUT; 434 435 return 0; 436 } 437 438 static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port, 439 u32 br_port_mask) 440 { 441 struct bcm_sf2_priv *priv = ds_to_priv(ds); 442 unsigned int i; 443 u32 reg, p_ctl; 444 445 p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port)); 446 447 for (i = 0; i < priv->hw_params.num_ports; i++) { 448 if (!((1 << i) & br_port_mask)) 449 continue; 450 451 /* Add this local port to the remote port VLAN control 452 * membership and update the remote port bitmask 453 */ 454 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i)); 455 reg |= 1 << port; 456 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i)); 457 priv->port_sts[i].vlan_ctl_mask = reg; 458 459 p_ctl |= 1 << i; 460 } 461 462 /* Configure the local port VLAN control membership to include 463 * remote ports and update the local port bitmask 464 */ 465 core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port)); 466 priv->port_sts[port].vlan_ctl_mask = p_ctl; 467 468 return 0; 469 } 470 471 static int bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port, 472 u32 br_port_mask) 473 { 474 struct bcm_sf2_priv *priv = ds_to_priv(ds); 475 unsigned int i; 476 u32 reg, p_ctl; 477 478 p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port)); 479 480 for (i = 0; i < priv->hw_params.num_ports; i++) { 481 /* Don't touch the remaining ports */ 482 if (!((1 << i) & br_port_mask)) 483 continue; 484 485 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i)); 486 reg &= ~(1 << port); 487 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i)); 488 priv->port_sts[port].vlan_ctl_mask = reg; 489 490 /* Prevent self removal to preserve isolation */ 491 if (port != i) 492 p_ctl &= ~(1 << i); 493 } 494 495 core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port)); 496 priv->port_sts[port].vlan_ctl_mask = p_ctl; 497 498 return 0; 499 } 500 501 static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port, 502 u8 state) 503 { 504 struct bcm_sf2_priv *priv = ds_to_priv(ds); 505 u8 hw_state, cur_hw_state; 506 int ret = 0; 507 u32 reg; 508 509 reg = core_readl(priv, CORE_G_PCTL_PORT(port)); 510 cur_hw_state = reg >> G_MISTP_STATE_SHIFT; 511 512 switch (state) { 513 case BR_STATE_DISABLED: 514 hw_state = G_MISTP_DIS_STATE; 515 break; 516 case BR_STATE_LISTENING: 517 hw_state = G_MISTP_LISTEN_STATE; 518 break; 519 case BR_STATE_LEARNING: 520 hw_state = G_MISTP_LEARN_STATE; 521 break; 522 case BR_STATE_FORWARDING: 523 hw_state = G_MISTP_FWD_STATE; 524 break; 525 case BR_STATE_BLOCKING: 526 hw_state = G_MISTP_BLOCK_STATE; 527 break; 528 default: 529 pr_err("%s: invalid STP state: %d\n", __func__, state); 530 return -EINVAL; 531 } 532 533 /* Fast-age ARL entries if we are moving a port from Learning or 534 * Forwarding state to Disabled, Blocking or Listening state 535 */ 536 if (cur_hw_state != hw_state) { 537 if (cur_hw_state & 4 && !(hw_state & 4)) { 538 ret = bcm_sf2_sw_fast_age_port(ds, port); 539 if (ret) { 540 pr_err("%s: fast-ageing failed\n", __func__); 541 return ret; 542 } 543 } 544 } 545 546 reg = core_readl(priv, CORE_G_PCTL_PORT(port)); 547 reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT); 548 reg |= hw_state; 549 core_writel(priv, reg, CORE_G_PCTL_PORT(port)); 550 551 return 0; 552 } 553 554 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id) 555 { 556 struct bcm_sf2_priv *priv = dev_id; 557 558 priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) & 559 ~priv->irq0_mask; 560 intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); 561 562 return IRQ_HANDLED; 563 } 564 565 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id) 566 { 567 struct bcm_sf2_priv *priv = dev_id; 568 569 priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) & 570 ~priv->irq1_mask; 571 intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); 572 573 if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) 574 priv->port_sts[7].link = 1; 575 if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) 576 priv->port_sts[7].link = 0; 577 578 return IRQ_HANDLED; 579 } 580 581 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv) 582 { 583 unsigned int timeout = 1000; 584 u32 reg; 585 586 reg = core_readl(priv, CORE_WATCHDOG_CTRL); 587 reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET; 588 core_writel(priv, reg, CORE_WATCHDOG_CTRL); 589 590 do { 591 reg = core_readl(priv, CORE_WATCHDOG_CTRL); 592 if (!(reg & SOFTWARE_RESET)) 593 break; 594 595 usleep_range(1000, 2000); 596 } while (timeout-- > 0); 597 598 if (timeout == 0) 599 return -ETIMEDOUT; 600 601 return 0; 602 } 603 604 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv) 605 { 606 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET); 607 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); 608 intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 609 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET); 610 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); 611 intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 612 } 613 614 static int bcm_sf2_sw_setup(struct dsa_switch *ds) 615 { 616 const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME; 617 struct bcm_sf2_priv *priv = ds_to_priv(ds); 618 struct device_node *dn; 619 void __iomem **base; 620 unsigned int port; 621 unsigned int i; 622 u32 reg, rev; 623 int ret; 624 625 spin_lock_init(&priv->indir_lock); 626 mutex_init(&priv->stats_mutex); 627 628 /* All the interesting properties are at the parent device_node 629 * level 630 */ 631 dn = ds->pd->of_node->parent; 632 633 priv->irq0 = irq_of_parse_and_map(dn, 0); 634 priv->irq1 = irq_of_parse_and_map(dn, 1); 635 636 base = &priv->core; 637 for (i = 0; i < BCM_SF2_REGS_NUM; i++) { 638 *base = of_iomap(dn, i); 639 if (*base == NULL) { 640 pr_err("unable to find register: %s\n", reg_names[i]); 641 ret = -ENOMEM; 642 goto out_unmap; 643 } 644 base++; 645 } 646 647 ret = bcm_sf2_sw_rst(priv); 648 if (ret) { 649 pr_err("unable to software reset switch: %d\n", ret); 650 goto out_unmap; 651 } 652 653 /* Disable all interrupts and request them */ 654 bcm_sf2_intr_disable(priv); 655 656 ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0, 657 "switch_0", priv); 658 if (ret < 0) { 659 pr_err("failed to request switch_0 IRQ\n"); 660 goto out_unmap; 661 } 662 663 ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0, 664 "switch_1", priv); 665 if (ret < 0) { 666 pr_err("failed to request switch_1 IRQ\n"); 667 goto out_free_irq0; 668 } 669 670 /* Reset the MIB counters */ 671 reg = core_readl(priv, CORE_GMNCFGCFG); 672 reg |= RST_MIB_CNT; 673 core_writel(priv, reg, CORE_GMNCFGCFG); 674 reg &= ~RST_MIB_CNT; 675 core_writel(priv, reg, CORE_GMNCFGCFG); 676 677 /* Get the maximum number of ports for this switch */ 678 priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1; 679 if (priv->hw_params.num_ports > DSA_MAX_PORTS) 680 priv->hw_params.num_ports = DSA_MAX_PORTS; 681 682 /* Assume a single GPHY setup if we can't read that property */ 683 if (of_property_read_u32(dn, "brcm,num-gphy", 684 &priv->hw_params.num_gphy)) 685 priv->hw_params.num_gphy = 1; 686 687 /* Enable all valid ports and disable those unused */ 688 for (port = 0; port < priv->hw_params.num_ports; port++) { 689 /* IMP port receives special treatment */ 690 if ((1 << port) & ds->phys_port_mask) 691 bcm_sf2_port_setup(ds, port, NULL); 692 else if (dsa_is_cpu_port(ds, port)) 693 bcm_sf2_imp_setup(ds, port); 694 else 695 bcm_sf2_port_disable(ds, port, NULL); 696 } 697 698 /* Include the pseudo-PHY address and the broadcast PHY address to 699 * divert reads towards our workaround. This is only required for 700 * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such 701 * that we can use the regular SWITCH_MDIO master controller instead. 702 * 703 * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask 704 * to have a 1:1 mapping between Port address and PHY address in order 705 * to utilize the slave_mii_bus instance to read from Port PHYs. This is 706 * not what we want here, so we initialize phys_mii_mask 0 to always 707 * utilize the "master" MDIO bus backed by the "mdio-unimac" driver. 708 */ 709 if (of_machine_is_compatible("brcm,bcm7445d0")) 710 ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0)); 711 else 712 ds->phys_mii_mask = 0; 713 714 rev = reg_readl(priv, REG_SWITCH_REVISION); 715 priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) & 716 SWITCH_TOP_REV_MASK; 717 priv->hw_params.core_rev = (rev & SF2_REV_MASK); 718 719 rev = reg_readl(priv, REG_PHY_REVISION); 720 priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK; 721 722 pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n", 723 priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff, 724 priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff, 725 priv->core, priv->irq0, priv->irq1); 726 727 return 0; 728 729 out_free_irq0: 730 free_irq(priv->irq0, priv); 731 out_unmap: 732 base = &priv->core; 733 for (i = 0; i < BCM_SF2_REGS_NUM; i++) { 734 if (*base) 735 iounmap(*base); 736 base++; 737 } 738 return ret; 739 } 740 741 static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr) 742 { 743 return 0; 744 } 745 746 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port) 747 { 748 struct bcm_sf2_priv *priv = ds_to_priv(ds); 749 750 /* The BCM7xxx PHY driver expects to find the integrated PHY revision 751 * in bits 15:8 and the patch level in bits 7:0 which is exactly what 752 * the REG_PHY_REVISION register layout is. 753 */ 754 755 return priv->hw_params.gphy_rev; 756 } 757 758 static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr, 759 int regnum, u16 val) 760 { 761 struct bcm_sf2_priv *priv = ds_to_priv(ds); 762 int ret = 0; 763 u32 reg; 764 765 reg = reg_readl(priv, REG_SWITCH_CNTRL); 766 reg |= MDIO_MASTER_SEL; 767 reg_writel(priv, reg, REG_SWITCH_CNTRL); 768 769 /* Page << 8 | offset */ 770 reg = 0x70; 771 reg <<= 2; 772 core_writel(priv, addr, reg); 773 774 /* Page << 8 | offset */ 775 reg = 0x80 << 8 | regnum << 1; 776 reg <<= 2; 777 778 if (op) 779 ret = core_readl(priv, reg); 780 else 781 core_writel(priv, val, reg); 782 783 reg = reg_readl(priv, REG_SWITCH_CNTRL); 784 reg &= ~MDIO_MASTER_SEL; 785 reg_writel(priv, reg, REG_SWITCH_CNTRL); 786 787 return ret & 0xffff; 788 } 789 790 static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum) 791 { 792 /* Intercept reads from the MDIO broadcast address or Broadcom 793 * pseudo-PHY address 794 */ 795 switch (addr) { 796 case 0: 797 case BRCM_PSEUDO_PHY_ADDR: 798 return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0); 799 default: 800 return 0xffff; 801 } 802 } 803 804 static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum, 805 u16 val) 806 { 807 /* Intercept writes to the MDIO broadcast address or Broadcom 808 * pseudo-PHY address 809 */ 810 switch (addr) { 811 case 0: 812 case BRCM_PSEUDO_PHY_ADDR: 813 bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val); 814 break; 815 } 816 817 return 0; 818 } 819 820 static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port, 821 struct phy_device *phydev) 822 { 823 struct bcm_sf2_priv *priv = ds_to_priv(ds); 824 u32 id_mode_dis = 0, port_mode; 825 const char *str = NULL; 826 u32 reg; 827 828 switch (phydev->interface) { 829 case PHY_INTERFACE_MODE_RGMII: 830 str = "RGMII (no delay)"; 831 id_mode_dis = 1; 832 case PHY_INTERFACE_MODE_RGMII_TXID: 833 if (!str) 834 str = "RGMII (TX delay)"; 835 port_mode = EXT_GPHY; 836 break; 837 case PHY_INTERFACE_MODE_MII: 838 str = "MII"; 839 port_mode = EXT_EPHY; 840 break; 841 case PHY_INTERFACE_MODE_REVMII: 842 str = "Reverse MII"; 843 port_mode = EXT_REVMII; 844 break; 845 default: 846 /* All other PHYs: internal and MoCA */ 847 goto force_link; 848 } 849 850 /* If the link is down, just disable the interface to conserve power */ 851 if (!phydev->link) { 852 reg = reg_readl(priv, REG_RGMII_CNTRL_P(port)); 853 reg &= ~RGMII_MODE_EN; 854 reg_writel(priv, reg, REG_RGMII_CNTRL_P(port)); 855 goto force_link; 856 } 857 858 /* Clear id_mode_dis bit, and the existing port mode, but 859 * make sure we enable the RGMII block for data to pass 860 */ 861 reg = reg_readl(priv, REG_RGMII_CNTRL_P(port)); 862 reg &= ~ID_MODE_DIS; 863 reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT); 864 reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN); 865 866 reg |= port_mode | RGMII_MODE_EN; 867 if (id_mode_dis) 868 reg |= ID_MODE_DIS; 869 870 if (phydev->pause) { 871 if (phydev->asym_pause) 872 reg |= TX_PAUSE_EN; 873 reg |= RX_PAUSE_EN; 874 } 875 876 reg_writel(priv, reg, REG_RGMII_CNTRL_P(port)); 877 878 pr_info("Port %d configured for %s\n", port, str); 879 880 force_link: 881 /* Force link settings detected from the PHY */ 882 reg = SW_OVERRIDE; 883 switch (phydev->speed) { 884 case SPEED_1000: 885 reg |= SPDSTS_1000 << SPEED_SHIFT; 886 break; 887 case SPEED_100: 888 reg |= SPDSTS_100 << SPEED_SHIFT; 889 break; 890 } 891 892 if (phydev->link) 893 reg |= LINK_STS; 894 if (phydev->duplex == DUPLEX_FULL) 895 reg |= DUPLX_MODE; 896 897 core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port)); 898 } 899 900 static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port, 901 struct fixed_phy_status *status) 902 { 903 struct bcm_sf2_priv *priv = ds_to_priv(ds); 904 u32 duplex, pause; 905 u32 reg; 906 907 duplex = core_readl(priv, CORE_DUPSTS); 908 pause = core_readl(priv, CORE_PAUSESTS); 909 910 status->link = 0; 911 912 /* Port 7 is special as we do not get link status from CORE_LNKSTS, 913 * which means that we need to force the link at the port override 914 * level to get the data to flow. We do use what the interrupt handler 915 * did determine before. 916 * 917 * For the other ports, we just force the link status, since this is 918 * a fixed PHY device. 919 */ 920 if (port == 7) { 921 status->link = priv->port_sts[port].link; 922 /* For MoCA interfaces, also force a link down notification 923 * since some version of the user-space daemon (mocad) use 924 * cmd->autoneg to force the link, which messes up the PHY 925 * state machine and make it go in PHY_FORCING state instead. 926 */ 927 if (!status->link) 928 netif_carrier_off(ds->ports[port]); 929 status->duplex = 1; 930 } else { 931 status->link = 1; 932 status->duplex = !!(duplex & (1 << port)); 933 } 934 935 reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port)); 936 reg |= SW_OVERRIDE; 937 if (status->link) 938 reg |= LINK_STS; 939 else 940 reg &= ~LINK_STS; 941 core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port)); 942 943 if ((pause & (1 << port)) && 944 (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) { 945 status->asym_pause = 1; 946 status->pause = 1; 947 } 948 949 if (pause & (1 << port)) 950 status->pause = 1; 951 } 952 953 static int bcm_sf2_sw_suspend(struct dsa_switch *ds) 954 { 955 struct bcm_sf2_priv *priv = ds_to_priv(ds); 956 unsigned int port; 957 958 bcm_sf2_intr_disable(priv); 959 960 /* Disable all ports physically present including the IMP 961 * port, the other ones have already been disabled during 962 * bcm_sf2_sw_setup 963 */ 964 for (port = 0; port < DSA_MAX_PORTS; port++) { 965 if ((1 << port) & ds->phys_port_mask || 966 dsa_is_cpu_port(ds, port)) 967 bcm_sf2_port_disable(ds, port, NULL); 968 } 969 970 return 0; 971 } 972 973 static int bcm_sf2_sw_resume(struct dsa_switch *ds) 974 { 975 struct bcm_sf2_priv *priv = ds_to_priv(ds); 976 unsigned int port; 977 int ret; 978 979 ret = bcm_sf2_sw_rst(priv); 980 if (ret) { 981 pr_err("%s: failed to software reset switch\n", __func__); 982 return ret; 983 } 984 985 if (priv->hw_params.num_gphy == 1) 986 bcm_sf2_gphy_enable_set(ds, true); 987 988 for (port = 0; port < DSA_MAX_PORTS; port++) { 989 if ((1 << port) & ds->phys_port_mask) 990 bcm_sf2_port_setup(ds, port, NULL); 991 else if (dsa_is_cpu_port(ds, port)) 992 bcm_sf2_imp_setup(ds, port); 993 } 994 995 return 0; 996 } 997 998 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port, 999 struct ethtool_wolinfo *wol) 1000 { 1001 struct net_device *p = ds->dst[ds->index].master_netdev; 1002 struct bcm_sf2_priv *priv = ds_to_priv(ds); 1003 struct ethtool_wolinfo pwol; 1004 1005 /* Get the parent device WoL settings */ 1006 p->ethtool_ops->get_wol(p, &pwol); 1007 1008 /* Advertise the parent device supported settings */ 1009 wol->supported = pwol.supported; 1010 memset(&wol->sopass, 0, sizeof(wol->sopass)); 1011 1012 if (pwol.wolopts & WAKE_MAGICSECURE) 1013 memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass)); 1014 1015 if (priv->wol_ports_mask & (1 << port)) 1016 wol->wolopts = pwol.wolopts; 1017 else 1018 wol->wolopts = 0; 1019 } 1020 1021 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port, 1022 struct ethtool_wolinfo *wol) 1023 { 1024 struct net_device *p = ds->dst[ds->index].master_netdev; 1025 struct bcm_sf2_priv *priv = ds_to_priv(ds); 1026 s8 cpu_port = ds->dst[ds->index].cpu_port; 1027 struct ethtool_wolinfo pwol; 1028 1029 p->ethtool_ops->get_wol(p, &pwol); 1030 if (wol->wolopts & ~pwol.supported) 1031 return -EINVAL; 1032 1033 if (wol->wolopts) 1034 priv->wol_ports_mask |= (1 << port); 1035 else 1036 priv->wol_ports_mask &= ~(1 << port); 1037 1038 /* If we have at least one port enabled, make sure the CPU port 1039 * is also enabled. If the CPU port is the last one enabled, we disable 1040 * it since this configuration does not make sense. 1041 */ 1042 if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port)) 1043 priv->wol_ports_mask |= (1 << cpu_port); 1044 else 1045 priv->wol_ports_mask &= ~(1 << cpu_port); 1046 1047 return p->ethtool_ops->set_wol(p, wol); 1048 } 1049 1050 static struct dsa_switch_driver bcm_sf2_switch_driver = { 1051 .tag_protocol = DSA_TAG_PROTO_BRCM, 1052 .priv_size = sizeof(struct bcm_sf2_priv), 1053 .probe = bcm_sf2_sw_probe, 1054 .setup = bcm_sf2_sw_setup, 1055 .set_addr = bcm_sf2_sw_set_addr, 1056 .get_phy_flags = bcm_sf2_sw_get_phy_flags, 1057 .phy_read = bcm_sf2_sw_phy_read, 1058 .phy_write = bcm_sf2_sw_phy_write, 1059 .get_strings = bcm_sf2_sw_get_strings, 1060 .get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats, 1061 .get_sset_count = bcm_sf2_sw_get_sset_count, 1062 .adjust_link = bcm_sf2_sw_adjust_link, 1063 .fixed_link_update = bcm_sf2_sw_fixed_link_update, 1064 .suspend = bcm_sf2_sw_suspend, 1065 .resume = bcm_sf2_sw_resume, 1066 .get_wol = bcm_sf2_sw_get_wol, 1067 .set_wol = bcm_sf2_sw_set_wol, 1068 .port_enable = bcm_sf2_port_setup, 1069 .port_disable = bcm_sf2_port_disable, 1070 .get_eee = bcm_sf2_sw_get_eee, 1071 .set_eee = bcm_sf2_sw_set_eee, 1072 .port_join_bridge = bcm_sf2_sw_br_join, 1073 .port_leave_bridge = bcm_sf2_sw_br_leave, 1074 .port_stp_update = bcm_sf2_sw_br_set_stp_state, 1075 }; 1076 1077 static int __init bcm_sf2_init(void) 1078 { 1079 register_switch_driver(&bcm_sf2_switch_driver); 1080 1081 return 0; 1082 } 1083 module_init(bcm_sf2_init); 1084 1085 static void __exit bcm_sf2_exit(void) 1086 { 1087 unregister_switch_driver(&bcm_sf2_switch_driver); 1088 } 1089 module_exit(bcm_sf2_exit); 1090 1091 MODULE_AUTHOR("Broadcom Corporation"); 1092 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip"); 1093 MODULE_LICENSE("GPL"); 1094 MODULE_ALIAS("platform:brcm-sf2"); 1095