xref: /openbmc/linux/drivers/net/dsa/bcm_sf2.c (revision 56d06fa2)
1 /*
2  * Broadcom Starfighter 2 DSA switch driver
3  *
4  * Copyright (C) 2014, Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  */
11 
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/phy.h>
19 #include <linux/phy_fixed.h>
20 #include <linux/mii.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/of_net.h>
25 #include <net/dsa.h>
26 #include <linux/ethtool.h>
27 #include <linux/if_bridge.h>
28 #include <linux/brcmphy.h>
29 #include <linux/etherdevice.h>
30 #include <net/switchdev.h>
31 
32 #include "bcm_sf2.h"
33 #include "bcm_sf2_regs.h"
34 
35 /* String, offset, and register size in bytes if different from 4 bytes */
36 static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
37 	{ "TxOctets",		0x000, 8	},
38 	{ "TxDropPkts",		0x020		},
39 	{ "TxQPKTQ0",		0x030		},
40 	{ "TxBroadcastPkts",	0x040		},
41 	{ "TxMulticastPkts",	0x050		},
42 	{ "TxUnicastPKts",	0x060		},
43 	{ "TxCollisions",	0x070		},
44 	{ "TxSingleCollision",	0x080		},
45 	{ "TxMultipleCollision", 0x090		},
46 	{ "TxDeferredCollision", 0x0a0		},
47 	{ "TxLateCollision",	0x0b0		},
48 	{ "TxExcessiveCollision", 0x0c0		},
49 	{ "TxFrameInDisc",	0x0d0		},
50 	{ "TxPausePkts",	0x0e0		},
51 	{ "TxQPKTQ1",		0x0f0		},
52 	{ "TxQPKTQ2",		0x100		},
53 	{ "TxQPKTQ3",		0x110		},
54 	{ "TxQPKTQ4",		0x120		},
55 	{ "TxQPKTQ5",		0x130		},
56 	{ "RxOctets",		0x140, 8	},
57 	{ "RxUndersizePkts",	0x160		},
58 	{ "RxPausePkts",	0x170		},
59 	{ "RxPkts64Octets",	0x180		},
60 	{ "RxPkts65to127Octets", 0x190		},
61 	{ "RxPkts128to255Octets", 0x1a0		},
62 	{ "RxPkts256to511Octets", 0x1b0		},
63 	{ "RxPkts512to1023Octets", 0x1c0	},
64 	{ "RxPkts1024toMaxPktsOctets", 0x1d0	},
65 	{ "RxOversizePkts",	0x1e0		},
66 	{ "RxJabbers",		0x1f0		},
67 	{ "RxAlignmentErrors",	0x200		},
68 	{ "RxFCSErrors",	0x210		},
69 	{ "RxGoodOctets",	0x220, 8	},
70 	{ "RxDropPkts",		0x240		},
71 	{ "RxUnicastPkts",	0x250		},
72 	{ "RxMulticastPkts",	0x260		},
73 	{ "RxBroadcastPkts",	0x270		},
74 	{ "RxSAChanges",	0x280		},
75 	{ "RxFragments",	0x290		},
76 	{ "RxJumboPkt",		0x2a0		},
77 	{ "RxSymblErr",		0x2b0		},
78 	{ "InRangeErrCount",	0x2c0		},
79 	{ "OutRangeErrCount",	0x2d0		},
80 	{ "EEELpiEvent",	0x2e0		},
81 	{ "EEELpiDuration",	0x2f0		},
82 	{ "RxDiscard",		0x300, 8	},
83 	{ "TxQPKTQ6",		0x320		},
84 	{ "TxQPKTQ7",		0x330		},
85 	{ "TxPkts64Octets",	0x340		},
86 	{ "TxPkts65to127Octets", 0x350		},
87 	{ "TxPkts128to255Octets", 0x360		},
88 	{ "TxPkts256to511Ocets", 0x370		},
89 	{ "TxPkts512to1023Ocets", 0x380		},
90 	{ "TxPkts1024toMaxPktOcets", 0x390	},
91 };
92 
93 #define BCM_SF2_STATS_SIZE	ARRAY_SIZE(bcm_sf2_mib)
94 
95 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
96 				   int port, uint8_t *data)
97 {
98 	unsigned int i;
99 
100 	for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
101 		memcpy(data + i * ETH_GSTRING_LEN,
102 		       bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
103 }
104 
105 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
106 					 int port, uint64_t *data)
107 {
108 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
109 	const struct bcm_sf2_hw_stats *s;
110 	unsigned int i;
111 	u64 val = 0;
112 	u32 offset;
113 
114 	mutex_lock(&priv->stats_mutex);
115 
116 	/* Now fetch the per-port counters */
117 	for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
118 		s = &bcm_sf2_mib[i];
119 
120 		/* Do a latched 64-bit read if needed */
121 		offset = s->reg + CORE_P_MIB_OFFSET(port);
122 		if (s->sizeof_stat == 8)
123 			val = core_readq(priv, offset);
124 		else
125 			val = core_readl(priv, offset);
126 
127 		data[i] = (u64)val;
128 	}
129 
130 	mutex_unlock(&priv->stats_mutex);
131 }
132 
133 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
134 {
135 	return BCM_SF2_STATS_SIZE;
136 }
137 
138 static char *bcm_sf2_sw_probe(struct device *host_dev, int sw_addr)
139 {
140 	return "Broadcom Starfighter 2";
141 }
142 
143 static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
144 {
145 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
146 	unsigned int i;
147 	u32 reg;
148 
149 	/* Enable the IMP Port to be in the same VLAN as the other ports
150 	 * on a per-port basis such that we only have Port i and IMP in
151 	 * the same VLAN.
152 	 */
153 	for (i = 0; i < priv->hw_params.num_ports; i++) {
154 		if (!((1 << i) & ds->phys_port_mask))
155 			continue;
156 
157 		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
158 		reg |= (1 << cpu_port);
159 		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
160 	}
161 }
162 
163 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
164 {
165 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
166 	u32 reg, val;
167 
168 	/* Enable the port memories */
169 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
170 	reg &= ~P_TXQ_PSM_VDD(port);
171 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
172 
173 	/* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
174 	reg = core_readl(priv, CORE_IMP_CTL);
175 	reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
176 	reg &= ~(RX_DIS | TX_DIS);
177 	core_writel(priv, reg, CORE_IMP_CTL);
178 
179 	/* Enable forwarding */
180 	core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
181 
182 	/* Enable IMP port in dumb mode */
183 	reg = core_readl(priv, CORE_SWITCH_CTRL);
184 	reg |= MII_DUMB_FWDG_EN;
185 	core_writel(priv, reg, CORE_SWITCH_CTRL);
186 
187 	/* Resolve which bit controls the Broadcom tag */
188 	switch (port) {
189 	case 8:
190 		val = BRCM_HDR_EN_P8;
191 		break;
192 	case 7:
193 		val = BRCM_HDR_EN_P7;
194 		break;
195 	case 5:
196 		val = BRCM_HDR_EN_P5;
197 		break;
198 	default:
199 		val = 0;
200 		break;
201 	}
202 
203 	/* Enable Broadcom tags for IMP port */
204 	reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
205 	reg |= val;
206 	core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
207 
208 	/* Enable reception Broadcom tag for CPU TX (switch RX) to
209 	 * allow us to tag outgoing frames
210 	 */
211 	reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
212 	reg &= ~(1 << port);
213 	core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
214 
215 	/* Enable transmission of Broadcom tags from the switch (CPU RX) to
216 	 * allow delivering frames to the per-port net_devices
217 	 */
218 	reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
219 	reg &= ~(1 << port);
220 	core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
221 
222 	/* Force link status for IMP port */
223 	reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
224 	reg |= (MII_SW_OR | LINK_STS);
225 	core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
226 }
227 
228 static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
229 {
230 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
231 	u32 reg;
232 
233 	reg = core_readl(priv, CORE_EEE_EN_CTRL);
234 	if (enable)
235 		reg |= 1 << port;
236 	else
237 		reg &= ~(1 << port);
238 	core_writel(priv, reg, CORE_EEE_EN_CTRL);
239 }
240 
241 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
242 {
243 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
244 	u32 reg;
245 
246 	reg = reg_readl(priv, REG_SPHY_CNTRL);
247 	if (enable) {
248 		reg |= PHY_RESET;
249 		reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
250 		reg_writel(priv, reg, REG_SPHY_CNTRL);
251 		udelay(21);
252 		reg = reg_readl(priv, REG_SPHY_CNTRL);
253 		reg &= ~PHY_RESET;
254 	} else {
255 		reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
256 		reg_writel(priv, reg, REG_SPHY_CNTRL);
257 		mdelay(1);
258 		reg |= CK25_DIS;
259 	}
260 	reg_writel(priv, reg, REG_SPHY_CNTRL);
261 
262 	/* Use PHY-driven LED signaling */
263 	if (!enable) {
264 		reg = reg_readl(priv, REG_LED_CNTRL(0));
265 		reg |= SPDLNK_SRC_SEL;
266 		reg_writel(priv, reg, REG_LED_CNTRL(0));
267 	}
268 }
269 
270 static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
271 					    int port)
272 {
273 	unsigned int off;
274 
275 	switch (port) {
276 	case 7:
277 		off = P7_IRQ_OFF;
278 		break;
279 	case 0:
280 		/* Port 0 interrupts are located on the first bank */
281 		intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
282 		return;
283 	default:
284 		off = P_IRQ_OFF(port);
285 		break;
286 	}
287 
288 	intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
289 }
290 
291 static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
292 					     int port)
293 {
294 	unsigned int off;
295 
296 	switch (port) {
297 	case 7:
298 		off = P7_IRQ_OFF;
299 		break;
300 	case 0:
301 		/* Port 0 interrupts are located on the first bank */
302 		intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
303 		intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
304 		return;
305 	default:
306 		off = P_IRQ_OFF(port);
307 		break;
308 	}
309 
310 	intrl2_1_mask_set(priv, P_IRQ_MASK(off));
311 	intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
312 }
313 
314 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
315 			      struct phy_device *phy)
316 {
317 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
318 	s8 cpu_port = ds->dst[ds->index].cpu_port;
319 	u32 reg;
320 
321 	/* Clear the memory power down */
322 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
323 	reg &= ~P_TXQ_PSM_VDD(port);
324 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
325 
326 	/* Clear the Rx and Tx disable bits and set to no spanning tree */
327 	core_writel(priv, 0, CORE_G_PCTL_PORT(port));
328 
329 	/* Re-enable the GPHY and re-apply workarounds */
330 	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
331 		bcm_sf2_gphy_enable_set(ds, true);
332 		if (phy) {
333 			/* if phy_stop() has been called before, phy
334 			 * will be in halted state, and phy_start()
335 			 * will call resume.
336 			 *
337 			 * the resume path does not configure back
338 			 * autoneg settings, and since we hard reset
339 			 * the phy manually here, we need to reset the
340 			 * state machine also.
341 			 */
342 			phy->state = PHY_READY;
343 			phy_init_hw(phy);
344 		}
345 	}
346 
347 	/* Enable MoCA port interrupts to get notified */
348 	if (port == priv->moca_port)
349 		bcm_sf2_port_intr_enable(priv, port);
350 
351 	/* Set this port, and only this one to be in the default VLAN,
352 	 * if member of a bridge, restore its membership prior to
353 	 * bringing down this port.
354 	 */
355 	reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
356 	reg &= ~PORT_VLAN_CTRL_MASK;
357 	reg |= (1 << port);
358 	reg |= priv->port_sts[port].vlan_ctl_mask;
359 	core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
360 
361 	bcm_sf2_imp_vlan_setup(ds, cpu_port);
362 
363 	/* If EEE was enabled, restore it */
364 	if (priv->port_sts[port].eee.eee_enabled)
365 		bcm_sf2_eee_enable_set(ds, port, true);
366 
367 	return 0;
368 }
369 
370 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
371 				 struct phy_device *phy)
372 {
373 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
374 	u32 off, reg;
375 
376 	if (priv->wol_ports_mask & (1 << port))
377 		return;
378 
379 	if (port == priv->moca_port)
380 		bcm_sf2_port_intr_disable(priv, port);
381 
382 	if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
383 		bcm_sf2_gphy_enable_set(ds, false);
384 
385 	if (dsa_is_cpu_port(ds, port))
386 		off = CORE_IMP_CTL;
387 	else
388 		off = CORE_G_PCTL_PORT(port);
389 
390 	reg = core_readl(priv, off);
391 	reg |= RX_DIS | TX_DIS;
392 	core_writel(priv, reg, off);
393 
394 	/* Power down the port memory */
395 	reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
396 	reg |= P_TXQ_PSM_VDD(port);
397 	core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
398 }
399 
400 /* Returns 0 if EEE was not enabled, or 1 otherwise
401  */
402 static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
403 			    struct phy_device *phy)
404 {
405 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
406 	struct ethtool_eee *p = &priv->port_sts[port].eee;
407 	int ret;
408 
409 	p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
410 
411 	ret = phy_init_eee(phy, 0);
412 	if (ret)
413 		return 0;
414 
415 	bcm_sf2_eee_enable_set(ds, port, true);
416 
417 	return 1;
418 }
419 
420 static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
421 			      struct ethtool_eee *e)
422 {
423 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
424 	struct ethtool_eee *p = &priv->port_sts[port].eee;
425 	u32 reg;
426 
427 	reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
428 	e->eee_enabled = p->eee_enabled;
429 	e->eee_active = !!(reg & (1 << port));
430 
431 	return 0;
432 }
433 
434 static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
435 			      struct phy_device *phydev,
436 			      struct ethtool_eee *e)
437 {
438 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
439 	struct ethtool_eee *p = &priv->port_sts[port].eee;
440 
441 	p->eee_enabled = e->eee_enabled;
442 
443 	if (!p->eee_enabled) {
444 		bcm_sf2_eee_enable_set(ds, port, false);
445 	} else {
446 		p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
447 		if (!p->eee_enabled)
448 			return -EOPNOTSUPP;
449 	}
450 
451 	return 0;
452 }
453 
454 /* Fast-ageing of ARL entries for a given port, equivalent to an ARL
455  * flush for that port.
456  */
457 static int bcm_sf2_sw_fast_age_port(struct dsa_switch  *ds, int port)
458 {
459 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
460 	unsigned int timeout = 1000;
461 	u32 reg;
462 
463 	core_writel(priv, port, CORE_FAST_AGE_PORT);
464 
465 	reg = core_readl(priv, CORE_FAST_AGE_CTRL);
466 	reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
467 	core_writel(priv, reg, CORE_FAST_AGE_CTRL);
468 
469 	do {
470 		reg = core_readl(priv, CORE_FAST_AGE_CTRL);
471 		if (!(reg & FAST_AGE_STR_DONE))
472 			break;
473 
474 		cpu_relax();
475 	} while (timeout--);
476 
477 	if (!timeout)
478 		return -ETIMEDOUT;
479 
480 	core_writel(priv, 0, CORE_FAST_AGE_CTRL);
481 
482 	return 0;
483 }
484 
485 static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
486 			      struct net_device *bridge)
487 {
488 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
489 	unsigned int i;
490 	u32 reg, p_ctl;
491 
492 	priv->port_sts[port].bridge_dev = bridge;
493 	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
494 
495 	for (i = 0; i < priv->hw_params.num_ports; i++) {
496 		if (priv->port_sts[i].bridge_dev != bridge)
497 			continue;
498 
499 		/* Add this local port to the remote port VLAN control
500 		 * membership and update the remote port bitmask
501 		 */
502 		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
503 		reg |= 1 << port;
504 		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
505 		priv->port_sts[i].vlan_ctl_mask = reg;
506 
507 		p_ctl |= 1 << i;
508 	}
509 
510 	/* Configure the local port VLAN control membership to include
511 	 * remote ports and update the local port bitmask
512 	 */
513 	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
514 	priv->port_sts[port].vlan_ctl_mask = p_ctl;
515 
516 	return 0;
517 }
518 
519 static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
520 {
521 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
522 	struct net_device *bridge = priv->port_sts[port].bridge_dev;
523 	unsigned int i;
524 	u32 reg, p_ctl;
525 
526 	p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
527 
528 	for (i = 0; i < priv->hw_params.num_ports; i++) {
529 		/* Don't touch the remaining ports */
530 		if (priv->port_sts[i].bridge_dev != bridge)
531 			continue;
532 
533 		reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
534 		reg &= ~(1 << port);
535 		core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
536 		priv->port_sts[port].vlan_ctl_mask = reg;
537 
538 		/* Prevent self removal to preserve isolation */
539 		if (port != i)
540 			p_ctl &= ~(1 << i);
541 	}
542 
543 	core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
544 	priv->port_sts[port].vlan_ctl_mask = p_ctl;
545 	priv->port_sts[port].bridge_dev = NULL;
546 }
547 
548 static int bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
549 				       u8 state)
550 {
551 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
552 	u8 hw_state, cur_hw_state;
553 	int ret = 0;
554 	u32 reg;
555 
556 	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
557 	cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
558 
559 	switch (state) {
560 	case BR_STATE_DISABLED:
561 		hw_state = G_MISTP_DIS_STATE;
562 		break;
563 	case BR_STATE_LISTENING:
564 		hw_state = G_MISTP_LISTEN_STATE;
565 		break;
566 	case BR_STATE_LEARNING:
567 		hw_state = G_MISTP_LEARN_STATE;
568 		break;
569 	case BR_STATE_FORWARDING:
570 		hw_state = G_MISTP_FWD_STATE;
571 		break;
572 	case BR_STATE_BLOCKING:
573 		hw_state = G_MISTP_BLOCK_STATE;
574 		break;
575 	default:
576 		pr_err("%s: invalid STP state: %d\n", __func__, state);
577 		return -EINVAL;
578 	}
579 
580 	/* Fast-age ARL entries if we are moving a port from Learning or
581 	 * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
582 	 * state (hw_state)
583 	 */
584 	if (cur_hw_state != hw_state) {
585 		if (cur_hw_state >= G_MISTP_LEARN_STATE &&
586 		    hw_state <= G_MISTP_LISTEN_STATE) {
587 			ret = bcm_sf2_sw_fast_age_port(ds, port);
588 			if (ret) {
589 				pr_err("%s: fast-ageing failed\n", __func__);
590 				return ret;
591 			}
592 		}
593 	}
594 
595 	reg = core_readl(priv, CORE_G_PCTL_PORT(port));
596 	reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
597 	reg |= hw_state;
598 	core_writel(priv, reg, CORE_G_PCTL_PORT(port));
599 
600 	return 0;
601 }
602 
603 /* Address Resolution Logic routines */
604 static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
605 {
606 	unsigned int timeout = 10;
607 	u32 reg;
608 
609 	do {
610 		reg = core_readl(priv, CORE_ARLA_RWCTL);
611 		if (!(reg & ARL_STRTDN))
612 			return 0;
613 
614 		usleep_range(1000, 2000);
615 	} while (timeout--);
616 
617 	return -ETIMEDOUT;
618 }
619 
620 static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
621 {
622 	u32 cmd;
623 
624 	if (op > ARL_RW)
625 		return -EINVAL;
626 
627 	cmd = core_readl(priv, CORE_ARLA_RWCTL);
628 	cmd &= ~IVL_SVL_SELECT;
629 	cmd |= ARL_STRTDN;
630 	if (op)
631 		cmd |= ARL_RW;
632 	else
633 		cmd &= ~ARL_RW;
634 	core_writel(priv, cmd, CORE_ARLA_RWCTL);
635 
636 	return bcm_sf2_arl_op_wait(priv);
637 }
638 
639 static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
640 			    u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
641 			    bool is_valid)
642 {
643 	unsigned int i;
644 	int ret;
645 
646 	ret = bcm_sf2_arl_op_wait(priv);
647 	if (ret)
648 		return ret;
649 
650 	/* Read the 4 bins */
651 	for (i = 0; i < 4; i++) {
652 		u64 mac_vid;
653 		u32 fwd_entry;
654 
655 		mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
656 		fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
657 		bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
658 
659 		if (ent->is_valid && is_valid) {
660 			*idx = i;
661 			return 0;
662 		}
663 
664 		/* This is the MAC we just deleted */
665 		if (!is_valid && (mac_vid & mac))
666 			return 0;
667 	}
668 
669 	return -ENOENT;
670 }
671 
672 static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
673 			  const unsigned char *addr, u16 vid, bool is_valid)
674 {
675 	struct bcm_sf2_arl_entry ent;
676 	u32 fwd_entry;
677 	u64 mac, mac_vid = 0;
678 	u8 idx = 0;
679 	int ret;
680 
681 	/* Convert the array into a 64-bit MAC */
682 	mac = bcm_sf2_mac_to_u64(addr);
683 
684 	/* Perform a read for the given MAC and VID */
685 	core_writeq(priv, mac, CORE_ARLA_MAC);
686 	core_writel(priv, vid, CORE_ARLA_VID);
687 
688 	/* Issue a read operation for this MAC */
689 	ret = bcm_sf2_arl_rw_op(priv, 1);
690 	if (ret)
691 		return ret;
692 
693 	ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
694 	/* If this is a read, just finish now */
695 	if (op)
696 		return ret;
697 
698 	/* We could not find a matching MAC, so reset to a new entry */
699 	if (ret) {
700 		fwd_entry = 0;
701 		idx = 0;
702 	}
703 
704 	memset(&ent, 0, sizeof(ent));
705 	ent.port = port;
706 	ent.is_valid = is_valid;
707 	ent.vid = vid;
708 	ent.is_static = true;
709 	memcpy(ent.mac, addr, ETH_ALEN);
710 	bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
711 
712 	core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
713 	core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
714 
715 	ret = bcm_sf2_arl_rw_op(priv, 0);
716 	if (ret)
717 		return ret;
718 
719 	/* Re-read the entry to check */
720 	return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
721 }
722 
723 static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
724 				  const struct switchdev_obj_port_fdb *fdb,
725 				  struct switchdev_trans *trans)
726 {
727 	/* We do not need to do anything specific here yet */
728 	return 0;
729 }
730 
731 static int bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
732 			      const struct switchdev_obj_port_fdb *fdb,
733 			      struct switchdev_trans *trans)
734 {
735 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
736 
737 	return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true);
738 }
739 
740 static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
741 			      const struct switchdev_obj_port_fdb *fdb)
742 {
743 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
744 
745 	return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
746 }
747 
748 static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
749 {
750 	unsigned timeout = 1000;
751 	u32 reg;
752 
753 	do {
754 		reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
755 		if (!(reg & ARLA_SRCH_STDN))
756 			return 0;
757 
758 		if (reg & ARLA_SRCH_VLID)
759 			return 0;
760 
761 		usleep_range(1000, 2000);
762 	} while (timeout--);
763 
764 	return -ETIMEDOUT;
765 }
766 
767 static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
768 				  struct bcm_sf2_arl_entry *ent)
769 {
770 	u64 mac_vid;
771 	u32 fwd_entry;
772 
773 	mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
774 	fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
775 	bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
776 }
777 
778 static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
779 			       const struct bcm_sf2_arl_entry *ent,
780 			       struct switchdev_obj_port_fdb *fdb,
781 			       int (*cb)(struct switchdev_obj *obj))
782 {
783 	if (!ent->is_valid)
784 		return 0;
785 
786 	if (port != ent->port)
787 		return 0;
788 
789 	ether_addr_copy(fdb->addr, ent->mac);
790 	fdb->vid = ent->vid;
791 	fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
792 
793 	return cb(&fdb->obj);
794 }
795 
796 static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
797 			       struct switchdev_obj_port_fdb *fdb,
798 			       int (*cb)(struct switchdev_obj *obj))
799 {
800 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
801 	struct net_device *dev = ds->ports[port];
802 	struct bcm_sf2_arl_entry results[2];
803 	unsigned int count = 0;
804 	int ret;
805 
806 	/* Start search operation */
807 	core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
808 
809 	do {
810 		ret = bcm_sf2_arl_search_wait(priv);
811 		if (ret)
812 			return ret;
813 
814 		/* Read both entries, then return their values back */
815 		bcm_sf2_arl_search_rd(priv, 0, &results[0]);
816 		ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
817 		if (ret)
818 			return ret;
819 
820 		bcm_sf2_arl_search_rd(priv, 1, &results[1]);
821 		ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
822 		if (ret)
823 			return ret;
824 
825 		if (!results[0].is_valid && !results[1].is_valid)
826 			break;
827 
828 	} while (count++ < CORE_ARLA_NUM_ENTRIES);
829 
830 	return 0;
831 }
832 
833 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
834 {
835 	struct bcm_sf2_priv *priv = dev_id;
836 
837 	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
838 				~priv->irq0_mask;
839 	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
840 
841 	return IRQ_HANDLED;
842 }
843 
844 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
845 {
846 	struct bcm_sf2_priv *priv = dev_id;
847 
848 	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
849 				~priv->irq1_mask;
850 	intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
851 
852 	if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
853 		priv->port_sts[7].link = 1;
854 	if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
855 		priv->port_sts[7].link = 0;
856 
857 	return IRQ_HANDLED;
858 }
859 
860 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
861 {
862 	unsigned int timeout = 1000;
863 	u32 reg;
864 
865 	reg = core_readl(priv, CORE_WATCHDOG_CTRL);
866 	reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
867 	core_writel(priv, reg, CORE_WATCHDOG_CTRL);
868 
869 	do {
870 		reg = core_readl(priv, CORE_WATCHDOG_CTRL);
871 		if (!(reg & SOFTWARE_RESET))
872 			break;
873 
874 		usleep_range(1000, 2000);
875 	} while (timeout-- > 0);
876 
877 	if (timeout == 0)
878 		return -ETIMEDOUT;
879 
880 	return 0;
881 }
882 
883 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
884 {
885 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
886 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
887 	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
888 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
889 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
890 	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
891 }
892 
893 static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
894 				   struct device_node *dn)
895 {
896 	struct device_node *port;
897 	const char *phy_mode_str;
898 	int mode;
899 	unsigned int port_num;
900 	int ret;
901 
902 	priv->moca_port = -1;
903 
904 	for_each_available_child_of_node(dn, port) {
905 		if (of_property_read_u32(port, "reg", &port_num))
906 			continue;
907 
908 		/* Internal PHYs get assigned a specific 'phy-mode' property
909 		 * value: "internal" to help flag them before MDIO probing
910 		 * has completed, since they might be turned off at that
911 		 * time
912 		 */
913 		mode = of_get_phy_mode(port);
914 		if (mode < 0) {
915 			ret = of_property_read_string(port, "phy-mode",
916 						      &phy_mode_str);
917 			if (ret < 0)
918 				continue;
919 
920 			if (!strcasecmp(phy_mode_str, "internal"))
921 				priv->int_phy_mask |= 1 << port_num;
922 		}
923 
924 		if (mode == PHY_INTERFACE_MODE_MOCA)
925 			priv->moca_port = port_num;
926 	}
927 }
928 
929 static int bcm_sf2_sw_setup(struct dsa_switch *ds)
930 {
931 	const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
932 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
933 	struct device_node *dn;
934 	void __iomem **base;
935 	unsigned int port;
936 	unsigned int i;
937 	u32 reg, rev;
938 	int ret;
939 
940 	spin_lock_init(&priv->indir_lock);
941 	mutex_init(&priv->stats_mutex);
942 
943 	/* All the interesting properties are at the parent device_node
944 	 * level
945 	 */
946 	dn = ds->pd->of_node->parent;
947 	bcm_sf2_identify_ports(priv, ds->pd->of_node);
948 
949 	priv->irq0 = irq_of_parse_and_map(dn, 0);
950 	priv->irq1 = irq_of_parse_and_map(dn, 1);
951 
952 	base = &priv->core;
953 	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
954 		*base = of_iomap(dn, i);
955 		if (*base == NULL) {
956 			pr_err("unable to find register: %s\n", reg_names[i]);
957 			ret = -ENOMEM;
958 			goto out_unmap;
959 		}
960 		base++;
961 	}
962 
963 	ret = bcm_sf2_sw_rst(priv);
964 	if (ret) {
965 		pr_err("unable to software reset switch: %d\n", ret);
966 		goto out_unmap;
967 	}
968 
969 	/* Disable all interrupts and request them */
970 	bcm_sf2_intr_disable(priv);
971 
972 	ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
973 			  "switch_0", priv);
974 	if (ret < 0) {
975 		pr_err("failed to request switch_0 IRQ\n");
976 		goto out_unmap;
977 	}
978 
979 	ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
980 			  "switch_1", priv);
981 	if (ret < 0) {
982 		pr_err("failed to request switch_1 IRQ\n");
983 		goto out_free_irq0;
984 	}
985 
986 	/* Reset the MIB counters */
987 	reg = core_readl(priv, CORE_GMNCFGCFG);
988 	reg |= RST_MIB_CNT;
989 	core_writel(priv, reg, CORE_GMNCFGCFG);
990 	reg &= ~RST_MIB_CNT;
991 	core_writel(priv, reg, CORE_GMNCFGCFG);
992 
993 	/* Get the maximum number of ports for this switch */
994 	priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
995 	if (priv->hw_params.num_ports > DSA_MAX_PORTS)
996 		priv->hw_params.num_ports = DSA_MAX_PORTS;
997 
998 	/* Assume a single GPHY setup if we can't read that property */
999 	if (of_property_read_u32(dn, "brcm,num-gphy",
1000 				 &priv->hw_params.num_gphy))
1001 		priv->hw_params.num_gphy = 1;
1002 
1003 	/* Enable all valid ports and disable those unused */
1004 	for (port = 0; port < priv->hw_params.num_ports; port++) {
1005 		/* IMP port receives special treatment */
1006 		if ((1 << port) & ds->phys_port_mask)
1007 			bcm_sf2_port_setup(ds, port, NULL);
1008 		else if (dsa_is_cpu_port(ds, port))
1009 			bcm_sf2_imp_setup(ds, port);
1010 		else
1011 			bcm_sf2_port_disable(ds, port, NULL);
1012 	}
1013 
1014 	/* Include the pseudo-PHY address and the broadcast PHY address to
1015 	 * divert reads towards our workaround. This is only required for
1016 	 * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
1017 	 * that we can use the regular SWITCH_MDIO master controller instead.
1018 	 *
1019 	 * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
1020 	 * to have a 1:1 mapping between Port address and PHY address in order
1021 	 * to utilize the slave_mii_bus instance to read from Port PHYs. This is
1022 	 * not what we want here, so we initialize phys_mii_mask 0 to always
1023 	 * utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
1024 	 */
1025 	if (of_machine_is_compatible("brcm,bcm7445d0"))
1026 		ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
1027 	else
1028 		ds->phys_mii_mask = 0;
1029 
1030 	rev = reg_readl(priv, REG_SWITCH_REVISION);
1031 	priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
1032 					SWITCH_TOP_REV_MASK;
1033 	priv->hw_params.core_rev = (rev & SF2_REV_MASK);
1034 
1035 	rev = reg_readl(priv, REG_PHY_REVISION);
1036 	priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
1037 
1038 	pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
1039 		priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
1040 		priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
1041 		priv->core, priv->irq0, priv->irq1);
1042 
1043 	return 0;
1044 
1045 out_free_irq0:
1046 	free_irq(priv->irq0, priv);
1047 out_unmap:
1048 	base = &priv->core;
1049 	for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1050 		if (*base)
1051 			iounmap(*base);
1052 		base++;
1053 	}
1054 	return ret;
1055 }
1056 
1057 static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
1058 {
1059 	return 0;
1060 }
1061 
1062 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
1063 {
1064 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1065 
1066 	/* The BCM7xxx PHY driver expects to find the integrated PHY revision
1067 	 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
1068 	 * the REG_PHY_REVISION register layout is.
1069 	 */
1070 
1071 	return priv->hw_params.gphy_rev;
1072 }
1073 
1074 static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
1075 			       int regnum, u16 val)
1076 {
1077 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1078 	int ret = 0;
1079 	u32 reg;
1080 
1081 	reg = reg_readl(priv, REG_SWITCH_CNTRL);
1082 	reg |= MDIO_MASTER_SEL;
1083 	reg_writel(priv, reg, REG_SWITCH_CNTRL);
1084 
1085 	/* Page << 8 | offset */
1086 	reg = 0x70;
1087 	reg <<= 2;
1088 	core_writel(priv, addr, reg);
1089 
1090 	/* Page << 8 | offset */
1091 	reg = 0x80 << 8 | regnum << 1;
1092 	reg <<= 2;
1093 
1094 	if (op)
1095 		ret = core_readl(priv, reg);
1096 	else
1097 		core_writel(priv, val, reg);
1098 
1099 	reg = reg_readl(priv, REG_SWITCH_CNTRL);
1100 	reg &= ~MDIO_MASTER_SEL;
1101 	reg_writel(priv, reg, REG_SWITCH_CNTRL);
1102 
1103 	return ret & 0xffff;
1104 }
1105 
1106 static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
1107 {
1108 	/* Intercept reads from the MDIO broadcast address or Broadcom
1109 	 * pseudo-PHY address
1110 	 */
1111 	switch (addr) {
1112 	case 0:
1113 	case BRCM_PSEUDO_PHY_ADDR:
1114 		return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
1115 	default:
1116 		return 0xffff;
1117 	}
1118 }
1119 
1120 static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
1121 				u16 val)
1122 {
1123 	/* Intercept writes to the MDIO broadcast address or Broadcom
1124 	 * pseudo-PHY address
1125 	 */
1126 	switch (addr) {
1127 	case 0:
1128 	case BRCM_PSEUDO_PHY_ADDR:
1129 		bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
1130 		break;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
1137 				   struct phy_device *phydev)
1138 {
1139 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1140 	u32 id_mode_dis = 0, port_mode;
1141 	const char *str = NULL;
1142 	u32 reg;
1143 
1144 	switch (phydev->interface) {
1145 	case PHY_INTERFACE_MODE_RGMII:
1146 		str = "RGMII (no delay)";
1147 		id_mode_dis = 1;
1148 	case PHY_INTERFACE_MODE_RGMII_TXID:
1149 		if (!str)
1150 			str = "RGMII (TX delay)";
1151 		port_mode = EXT_GPHY;
1152 		break;
1153 	case PHY_INTERFACE_MODE_MII:
1154 		str = "MII";
1155 		port_mode = EXT_EPHY;
1156 		break;
1157 	case PHY_INTERFACE_MODE_REVMII:
1158 		str = "Reverse MII";
1159 		port_mode = EXT_REVMII;
1160 		break;
1161 	default:
1162 		/* All other PHYs: internal and MoCA */
1163 		goto force_link;
1164 	}
1165 
1166 	/* If the link is down, just disable the interface to conserve power */
1167 	if (!phydev->link) {
1168 		reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
1169 		reg &= ~RGMII_MODE_EN;
1170 		reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1171 		goto force_link;
1172 	}
1173 
1174 	/* Clear id_mode_dis bit, and the existing port mode, but
1175 	 * make sure we enable the RGMII block for data to pass
1176 	 */
1177 	reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
1178 	reg &= ~ID_MODE_DIS;
1179 	reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
1180 	reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
1181 
1182 	reg |= port_mode | RGMII_MODE_EN;
1183 	if (id_mode_dis)
1184 		reg |= ID_MODE_DIS;
1185 
1186 	if (phydev->pause) {
1187 		if (phydev->asym_pause)
1188 			reg |= TX_PAUSE_EN;
1189 		reg |= RX_PAUSE_EN;
1190 	}
1191 
1192 	reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1193 
1194 	pr_info("Port %d configured for %s\n", port, str);
1195 
1196 force_link:
1197 	/* Force link settings detected from the PHY */
1198 	reg = SW_OVERRIDE;
1199 	switch (phydev->speed) {
1200 	case SPEED_1000:
1201 		reg |= SPDSTS_1000 << SPEED_SHIFT;
1202 		break;
1203 	case SPEED_100:
1204 		reg |= SPDSTS_100 << SPEED_SHIFT;
1205 		break;
1206 	}
1207 
1208 	if (phydev->link)
1209 		reg |= LINK_STS;
1210 	if (phydev->duplex == DUPLEX_FULL)
1211 		reg |= DUPLX_MODE;
1212 
1213 	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1214 }
1215 
1216 static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
1217 					 struct fixed_phy_status *status)
1218 {
1219 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1220 	u32 duplex, pause;
1221 	u32 reg;
1222 
1223 	duplex = core_readl(priv, CORE_DUPSTS);
1224 	pause = core_readl(priv, CORE_PAUSESTS);
1225 
1226 	status->link = 0;
1227 
1228 	/* MoCA port is special as we do not get link status from CORE_LNKSTS,
1229 	 * which means that we need to force the link at the port override
1230 	 * level to get the data to flow. We do use what the interrupt handler
1231 	 * did determine before.
1232 	 *
1233 	 * For the other ports, we just force the link status, since this is
1234 	 * a fixed PHY device.
1235 	 */
1236 	if (port == priv->moca_port) {
1237 		status->link = priv->port_sts[port].link;
1238 		/* For MoCA interfaces, also force a link down notification
1239 		 * since some version of the user-space daemon (mocad) use
1240 		 * cmd->autoneg to force the link, which messes up the PHY
1241 		 * state machine and make it go in PHY_FORCING state instead.
1242 		 */
1243 		if (!status->link)
1244 			netif_carrier_off(ds->ports[port]);
1245 		status->duplex = 1;
1246 	} else {
1247 		status->link = 1;
1248 		status->duplex = !!(duplex & (1 << port));
1249 	}
1250 
1251 	reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1252 	reg |= SW_OVERRIDE;
1253 	if (status->link)
1254 		reg |= LINK_STS;
1255 	else
1256 		reg &= ~LINK_STS;
1257 	core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1258 
1259 	if ((pause & (1 << port)) &&
1260 	    (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
1261 		status->asym_pause = 1;
1262 		status->pause = 1;
1263 	}
1264 
1265 	if (pause & (1 << port))
1266 		status->pause = 1;
1267 }
1268 
1269 static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
1270 {
1271 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1272 	unsigned int port;
1273 
1274 	bcm_sf2_intr_disable(priv);
1275 
1276 	/* Disable all ports physically present including the IMP
1277 	 * port, the other ones have already been disabled during
1278 	 * bcm_sf2_sw_setup
1279 	 */
1280 	for (port = 0; port < DSA_MAX_PORTS; port++) {
1281 		if ((1 << port) & ds->phys_port_mask ||
1282 		    dsa_is_cpu_port(ds, port))
1283 			bcm_sf2_port_disable(ds, port, NULL);
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int bcm_sf2_sw_resume(struct dsa_switch *ds)
1290 {
1291 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1292 	unsigned int port;
1293 	int ret;
1294 
1295 	ret = bcm_sf2_sw_rst(priv);
1296 	if (ret) {
1297 		pr_err("%s: failed to software reset switch\n", __func__);
1298 		return ret;
1299 	}
1300 
1301 	if (priv->hw_params.num_gphy == 1)
1302 		bcm_sf2_gphy_enable_set(ds, true);
1303 
1304 	for (port = 0; port < DSA_MAX_PORTS; port++) {
1305 		if ((1 << port) & ds->phys_port_mask)
1306 			bcm_sf2_port_setup(ds, port, NULL);
1307 		else if (dsa_is_cpu_port(ds, port))
1308 			bcm_sf2_imp_setup(ds, port);
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
1315 			       struct ethtool_wolinfo *wol)
1316 {
1317 	struct net_device *p = ds->dst[ds->index].master_netdev;
1318 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1319 	struct ethtool_wolinfo pwol;
1320 
1321 	/* Get the parent device WoL settings */
1322 	p->ethtool_ops->get_wol(p, &pwol);
1323 
1324 	/* Advertise the parent device supported settings */
1325 	wol->supported = pwol.supported;
1326 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1327 
1328 	if (pwol.wolopts & WAKE_MAGICSECURE)
1329 		memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
1330 
1331 	if (priv->wol_ports_mask & (1 << port))
1332 		wol->wolopts = pwol.wolopts;
1333 	else
1334 		wol->wolopts = 0;
1335 }
1336 
1337 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
1338 			      struct ethtool_wolinfo *wol)
1339 {
1340 	struct net_device *p = ds->dst[ds->index].master_netdev;
1341 	struct bcm_sf2_priv *priv = ds_to_priv(ds);
1342 	s8 cpu_port = ds->dst[ds->index].cpu_port;
1343 	struct ethtool_wolinfo pwol;
1344 
1345 	p->ethtool_ops->get_wol(p, &pwol);
1346 	if (wol->wolopts & ~pwol.supported)
1347 		return -EINVAL;
1348 
1349 	if (wol->wolopts)
1350 		priv->wol_ports_mask |= (1 << port);
1351 	else
1352 		priv->wol_ports_mask &= ~(1 << port);
1353 
1354 	/* If we have at least one port enabled, make sure the CPU port
1355 	 * is also enabled. If the CPU port is the last one enabled, we disable
1356 	 * it since this configuration does not make sense.
1357 	 */
1358 	if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
1359 		priv->wol_ports_mask |= (1 << cpu_port);
1360 	else
1361 		priv->wol_ports_mask &= ~(1 << cpu_port);
1362 
1363 	return p->ethtool_ops->set_wol(p, wol);
1364 }
1365 
1366 static struct dsa_switch_driver bcm_sf2_switch_driver = {
1367 	.tag_protocol		= DSA_TAG_PROTO_BRCM,
1368 	.priv_size		= sizeof(struct bcm_sf2_priv),
1369 	.probe			= bcm_sf2_sw_probe,
1370 	.setup			= bcm_sf2_sw_setup,
1371 	.set_addr		= bcm_sf2_sw_set_addr,
1372 	.get_phy_flags		= bcm_sf2_sw_get_phy_flags,
1373 	.phy_read		= bcm_sf2_sw_phy_read,
1374 	.phy_write		= bcm_sf2_sw_phy_write,
1375 	.get_strings		= bcm_sf2_sw_get_strings,
1376 	.get_ethtool_stats	= bcm_sf2_sw_get_ethtool_stats,
1377 	.get_sset_count		= bcm_sf2_sw_get_sset_count,
1378 	.adjust_link		= bcm_sf2_sw_adjust_link,
1379 	.fixed_link_update	= bcm_sf2_sw_fixed_link_update,
1380 	.suspend		= bcm_sf2_sw_suspend,
1381 	.resume			= bcm_sf2_sw_resume,
1382 	.get_wol		= bcm_sf2_sw_get_wol,
1383 	.set_wol		= bcm_sf2_sw_set_wol,
1384 	.port_enable		= bcm_sf2_port_setup,
1385 	.port_disable		= bcm_sf2_port_disable,
1386 	.get_eee		= bcm_sf2_sw_get_eee,
1387 	.set_eee		= bcm_sf2_sw_set_eee,
1388 	.port_bridge_join	= bcm_sf2_sw_br_join,
1389 	.port_bridge_leave	= bcm_sf2_sw_br_leave,
1390 	.port_stp_update	= bcm_sf2_sw_br_set_stp_state,
1391 	.port_fdb_prepare	= bcm_sf2_sw_fdb_prepare,
1392 	.port_fdb_add		= bcm_sf2_sw_fdb_add,
1393 	.port_fdb_del		= bcm_sf2_sw_fdb_del,
1394 	.port_fdb_dump		= bcm_sf2_sw_fdb_dump,
1395 };
1396 
1397 static int __init bcm_sf2_init(void)
1398 {
1399 	register_switch_driver(&bcm_sf2_switch_driver);
1400 
1401 	return 0;
1402 }
1403 module_init(bcm_sf2_init);
1404 
1405 static void __exit bcm_sf2_exit(void)
1406 {
1407 	unregister_switch_driver(&bcm_sf2_switch_driver);
1408 }
1409 module_exit(bcm_sf2_exit);
1410 
1411 MODULE_AUTHOR("Broadcom Corporation");
1412 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
1413 MODULE_LICENSE("GPL");
1414 MODULE_ALIAS("platform:brcm-sf2");
1415