xref: /openbmc/linux/drivers/net/dsa/b53/b53_common.c (revision fcc8487d)
1 /*
2  * B53 switch driver main logic
3  *
4  * Copyright (C) 2011-2013 Jonas Gorski <jogo@openwrt.org>
5  * Copyright (C) 2016 Florian Fainelli <f.fainelli@gmail.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/delay.h>
23 #include <linux/export.h>
24 #include <linux/gpio.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/platform_data/b53.h>
28 #include <linux/phy.h>
29 #include <linux/etherdevice.h>
30 #include <linux/if_bridge.h>
31 #include <net/dsa.h>
32 #include <net/switchdev.h>
33 
34 #include "b53_regs.h"
35 #include "b53_priv.h"
36 
37 struct b53_mib_desc {
38 	u8 size;
39 	u8 offset;
40 	const char *name;
41 };
42 
43 /* BCM5365 MIB counters */
44 static const struct b53_mib_desc b53_mibs_65[] = {
45 	{ 8, 0x00, "TxOctets" },
46 	{ 4, 0x08, "TxDropPkts" },
47 	{ 4, 0x10, "TxBroadcastPkts" },
48 	{ 4, 0x14, "TxMulticastPkts" },
49 	{ 4, 0x18, "TxUnicastPkts" },
50 	{ 4, 0x1c, "TxCollisions" },
51 	{ 4, 0x20, "TxSingleCollision" },
52 	{ 4, 0x24, "TxMultipleCollision" },
53 	{ 4, 0x28, "TxDeferredTransmit" },
54 	{ 4, 0x2c, "TxLateCollision" },
55 	{ 4, 0x30, "TxExcessiveCollision" },
56 	{ 4, 0x38, "TxPausePkts" },
57 	{ 8, 0x44, "RxOctets" },
58 	{ 4, 0x4c, "RxUndersizePkts" },
59 	{ 4, 0x50, "RxPausePkts" },
60 	{ 4, 0x54, "Pkts64Octets" },
61 	{ 4, 0x58, "Pkts65to127Octets" },
62 	{ 4, 0x5c, "Pkts128to255Octets" },
63 	{ 4, 0x60, "Pkts256to511Octets" },
64 	{ 4, 0x64, "Pkts512to1023Octets" },
65 	{ 4, 0x68, "Pkts1024to1522Octets" },
66 	{ 4, 0x6c, "RxOversizePkts" },
67 	{ 4, 0x70, "RxJabbers" },
68 	{ 4, 0x74, "RxAlignmentErrors" },
69 	{ 4, 0x78, "RxFCSErrors" },
70 	{ 8, 0x7c, "RxGoodOctets" },
71 	{ 4, 0x84, "RxDropPkts" },
72 	{ 4, 0x88, "RxUnicastPkts" },
73 	{ 4, 0x8c, "RxMulticastPkts" },
74 	{ 4, 0x90, "RxBroadcastPkts" },
75 	{ 4, 0x94, "RxSAChanges" },
76 	{ 4, 0x98, "RxFragments" },
77 };
78 
79 #define B53_MIBS_65_SIZE	ARRAY_SIZE(b53_mibs_65)
80 
81 /* BCM63xx MIB counters */
82 static const struct b53_mib_desc b53_mibs_63xx[] = {
83 	{ 8, 0x00, "TxOctets" },
84 	{ 4, 0x08, "TxDropPkts" },
85 	{ 4, 0x0c, "TxQoSPkts" },
86 	{ 4, 0x10, "TxBroadcastPkts" },
87 	{ 4, 0x14, "TxMulticastPkts" },
88 	{ 4, 0x18, "TxUnicastPkts" },
89 	{ 4, 0x1c, "TxCollisions" },
90 	{ 4, 0x20, "TxSingleCollision" },
91 	{ 4, 0x24, "TxMultipleCollision" },
92 	{ 4, 0x28, "TxDeferredTransmit" },
93 	{ 4, 0x2c, "TxLateCollision" },
94 	{ 4, 0x30, "TxExcessiveCollision" },
95 	{ 4, 0x38, "TxPausePkts" },
96 	{ 8, 0x3c, "TxQoSOctets" },
97 	{ 8, 0x44, "RxOctets" },
98 	{ 4, 0x4c, "RxUndersizePkts" },
99 	{ 4, 0x50, "RxPausePkts" },
100 	{ 4, 0x54, "Pkts64Octets" },
101 	{ 4, 0x58, "Pkts65to127Octets" },
102 	{ 4, 0x5c, "Pkts128to255Octets" },
103 	{ 4, 0x60, "Pkts256to511Octets" },
104 	{ 4, 0x64, "Pkts512to1023Octets" },
105 	{ 4, 0x68, "Pkts1024to1522Octets" },
106 	{ 4, 0x6c, "RxOversizePkts" },
107 	{ 4, 0x70, "RxJabbers" },
108 	{ 4, 0x74, "RxAlignmentErrors" },
109 	{ 4, 0x78, "RxFCSErrors" },
110 	{ 8, 0x7c, "RxGoodOctets" },
111 	{ 4, 0x84, "RxDropPkts" },
112 	{ 4, 0x88, "RxUnicastPkts" },
113 	{ 4, 0x8c, "RxMulticastPkts" },
114 	{ 4, 0x90, "RxBroadcastPkts" },
115 	{ 4, 0x94, "RxSAChanges" },
116 	{ 4, 0x98, "RxFragments" },
117 	{ 4, 0xa0, "RxSymbolErrors" },
118 	{ 4, 0xa4, "RxQoSPkts" },
119 	{ 8, 0xa8, "RxQoSOctets" },
120 	{ 4, 0xb0, "Pkts1523to2047Octets" },
121 	{ 4, 0xb4, "Pkts2048to4095Octets" },
122 	{ 4, 0xb8, "Pkts4096to8191Octets" },
123 	{ 4, 0xbc, "Pkts8192to9728Octets" },
124 	{ 4, 0xc0, "RxDiscarded" },
125 };
126 
127 #define B53_MIBS_63XX_SIZE	ARRAY_SIZE(b53_mibs_63xx)
128 
129 /* MIB counters */
130 static const struct b53_mib_desc b53_mibs[] = {
131 	{ 8, 0x00, "TxOctets" },
132 	{ 4, 0x08, "TxDropPkts" },
133 	{ 4, 0x10, "TxBroadcastPkts" },
134 	{ 4, 0x14, "TxMulticastPkts" },
135 	{ 4, 0x18, "TxUnicastPkts" },
136 	{ 4, 0x1c, "TxCollisions" },
137 	{ 4, 0x20, "TxSingleCollision" },
138 	{ 4, 0x24, "TxMultipleCollision" },
139 	{ 4, 0x28, "TxDeferredTransmit" },
140 	{ 4, 0x2c, "TxLateCollision" },
141 	{ 4, 0x30, "TxExcessiveCollision" },
142 	{ 4, 0x38, "TxPausePkts" },
143 	{ 8, 0x50, "RxOctets" },
144 	{ 4, 0x58, "RxUndersizePkts" },
145 	{ 4, 0x5c, "RxPausePkts" },
146 	{ 4, 0x60, "Pkts64Octets" },
147 	{ 4, 0x64, "Pkts65to127Octets" },
148 	{ 4, 0x68, "Pkts128to255Octets" },
149 	{ 4, 0x6c, "Pkts256to511Octets" },
150 	{ 4, 0x70, "Pkts512to1023Octets" },
151 	{ 4, 0x74, "Pkts1024to1522Octets" },
152 	{ 4, 0x78, "RxOversizePkts" },
153 	{ 4, 0x7c, "RxJabbers" },
154 	{ 4, 0x80, "RxAlignmentErrors" },
155 	{ 4, 0x84, "RxFCSErrors" },
156 	{ 8, 0x88, "RxGoodOctets" },
157 	{ 4, 0x90, "RxDropPkts" },
158 	{ 4, 0x94, "RxUnicastPkts" },
159 	{ 4, 0x98, "RxMulticastPkts" },
160 	{ 4, 0x9c, "RxBroadcastPkts" },
161 	{ 4, 0xa0, "RxSAChanges" },
162 	{ 4, 0xa4, "RxFragments" },
163 	{ 4, 0xa8, "RxJumboPkts" },
164 	{ 4, 0xac, "RxSymbolErrors" },
165 	{ 4, 0xc0, "RxDiscarded" },
166 };
167 
168 #define B53_MIBS_SIZE	ARRAY_SIZE(b53_mibs)
169 
170 static const struct b53_mib_desc b53_mibs_58xx[] = {
171 	{ 8, 0x00, "TxOctets" },
172 	{ 4, 0x08, "TxDropPkts" },
173 	{ 4, 0x0c, "TxQPKTQ0" },
174 	{ 4, 0x10, "TxBroadcastPkts" },
175 	{ 4, 0x14, "TxMulticastPkts" },
176 	{ 4, 0x18, "TxUnicastPKts" },
177 	{ 4, 0x1c, "TxCollisions" },
178 	{ 4, 0x20, "TxSingleCollision" },
179 	{ 4, 0x24, "TxMultipleCollision" },
180 	{ 4, 0x28, "TxDeferredCollision" },
181 	{ 4, 0x2c, "TxLateCollision" },
182 	{ 4, 0x30, "TxExcessiveCollision" },
183 	{ 4, 0x34, "TxFrameInDisc" },
184 	{ 4, 0x38, "TxPausePkts" },
185 	{ 4, 0x3c, "TxQPKTQ1" },
186 	{ 4, 0x40, "TxQPKTQ2" },
187 	{ 4, 0x44, "TxQPKTQ3" },
188 	{ 4, 0x48, "TxQPKTQ4" },
189 	{ 4, 0x4c, "TxQPKTQ5" },
190 	{ 8, 0x50, "RxOctets" },
191 	{ 4, 0x58, "RxUndersizePkts" },
192 	{ 4, 0x5c, "RxPausePkts" },
193 	{ 4, 0x60, "RxPkts64Octets" },
194 	{ 4, 0x64, "RxPkts65to127Octets" },
195 	{ 4, 0x68, "RxPkts128to255Octets" },
196 	{ 4, 0x6c, "RxPkts256to511Octets" },
197 	{ 4, 0x70, "RxPkts512to1023Octets" },
198 	{ 4, 0x74, "RxPkts1024toMaxPktsOctets" },
199 	{ 4, 0x78, "RxOversizePkts" },
200 	{ 4, 0x7c, "RxJabbers" },
201 	{ 4, 0x80, "RxAlignmentErrors" },
202 	{ 4, 0x84, "RxFCSErrors" },
203 	{ 8, 0x88, "RxGoodOctets" },
204 	{ 4, 0x90, "RxDropPkts" },
205 	{ 4, 0x94, "RxUnicastPkts" },
206 	{ 4, 0x98, "RxMulticastPkts" },
207 	{ 4, 0x9c, "RxBroadcastPkts" },
208 	{ 4, 0xa0, "RxSAChanges" },
209 	{ 4, 0xa4, "RxFragments" },
210 	{ 4, 0xa8, "RxJumboPkt" },
211 	{ 4, 0xac, "RxSymblErr" },
212 	{ 4, 0xb0, "InRangeErrCount" },
213 	{ 4, 0xb4, "OutRangeErrCount" },
214 	{ 4, 0xb8, "EEELpiEvent" },
215 	{ 4, 0xbc, "EEELpiDuration" },
216 	{ 4, 0xc0, "RxDiscard" },
217 	{ 4, 0xc8, "TxQPKTQ6" },
218 	{ 4, 0xcc, "TxQPKTQ7" },
219 	{ 4, 0xd0, "TxPkts64Octets" },
220 	{ 4, 0xd4, "TxPkts65to127Octets" },
221 	{ 4, 0xd8, "TxPkts128to255Octets" },
222 	{ 4, 0xdc, "TxPkts256to511Ocets" },
223 	{ 4, 0xe0, "TxPkts512to1023Ocets" },
224 	{ 4, 0xe4, "TxPkts1024toMaxPktOcets" },
225 };
226 
227 #define B53_MIBS_58XX_SIZE	ARRAY_SIZE(b53_mibs_58xx)
228 
229 static int b53_do_vlan_op(struct b53_device *dev, u8 op)
230 {
231 	unsigned int i;
232 
233 	b53_write8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], VTA_START_CMD | op);
234 
235 	for (i = 0; i < 10; i++) {
236 		u8 vta;
237 
238 		b53_read8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], &vta);
239 		if (!(vta & VTA_START_CMD))
240 			return 0;
241 
242 		usleep_range(100, 200);
243 	}
244 
245 	return -EIO;
246 }
247 
248 static void b53_set_vlan_entry(struct b53_device *dev, u16 vid,
249 			       struct b53_vlan *vlan)
250 {
251 	if (is5325(dev)) {
252 		u32 entry = 0;
253 
254 		if (vlan->members) {
255 			entry = ((vlan->untag & VA_UNTAG_MASK_25) <<
256 				 VA_UNTAG_S_25) | vlan->members;
257 			if (dev->core_rev >= 3)
258 				entry |= VA_VALID_25_R4 | vid << VA_VID_HIGH_S;
259 			else
260 				entry |= VA_VALID_25;
261 		}
262 
263 		b53_write32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, entry);
264 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
265 			    VTA_RW_STATE_WR | VTA_RW_OP_EN);
266 	} else if (is5365(dev)) {
267 		u16 entry = 0;
268 
269 		if (vlan->members)
270 			entry = ((vlan->untag & VA_UNTAG_MASK_65) <<
271 				 VA_UNTAG_S_65) | vlan->members | VA_VALID_65;
272 
273 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, entry);
274 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
275 			    VTA_RW_STATE_WR | VTA_RW_OP_EN);
276 	} else {
277 		b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
278 		b53_write32(dev, B53_ARLIO_PAGE, dev->vta_regs[2],
279 			    (vlan->untag << VTE_UNTAG_S) | vlan->members);
280 
281 		b53_do_vlan_op(dev, VTA_CMD_WRITE);
282 	}
283 
284 	dev_dbg(dev->ds->dev, "VID: %d, members: 0x%04x, untag: 0x%04x\n",
285 		vid, vlan->members, vlan->untag);
286 }
287 
288 static void b53_get_vlan_entry(struct b53_device *dev, u16 vid,
289 			       struct b53_vlan *vlan)
290 {
291 	if (is5325(dev)) {
292 		u32 entry = 0;
293 
294 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
295 			    VTA_RW_STATE_RD | VTA_RW_OP_EN);
296 		b53_read32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, &entry);
297 
298 		if (dev->core_rev >= 3)
299 			vlan->valid = !!(entry & VA_VALID_25_R4);
300 		else
301 			vlan->valid = !!(entry & VA_VALID_25);
302 		vlan->members = entry & VA_MEMBER_MASK;
303 		vlan->untag = (entry >> VA_UNTAG_S_25) & VA_UNTAG_MASK_25;
304 
305 	} else if (is5365(dev)) {
306 		u16 entry = 0;
307 
308 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
309 			    VTA_RW_STATE_WR | VTA_RW_OP_EN);
310 		b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, &entry);
311 
312 		vlan->valid = !!(entry & VA_VALID_65);
313 		vlan->members = entry & VA_MEMBER_MASK;
314 		vlan->untag = (entry >> VA_UNTAG_S_65) & VA_UNTAG_MASK_65;
315 	} else {
316 		u32 entry = 0;
317 
318 		b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
319 		b53_do_vlan_op(dev, VTA_CMD_READ);
320 		b53_read32(dev, B53_ARLIO_PAGE, dev->vta_regs[2], &entry);
321 		vlan->members = entry & VTE_MEMBERS;
322 		vlan->untag = (entry >> VTE_UNTAG_S) & VTE_MEMBERS;
323 		vlan->valid = true;
324 	}
325 }
326 
327 static void b53_set_forwarding(struct b53_device *dev, int enable)
328 {
329 	struct dsa_switch *ds = dev->ds;
330 	u8 mgmt;
331 
332 	b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
333 
334 	if (enable)
335 		mgmt |= SM_SW_FWD_EN;
336 	else
337 		mgmt &= ~SM_SW_FWD_EN;
338 
339 	b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
340 
341 	/* Include IMP port in dumb forwarding mode when no tagging protocol is
342 	 * set
343 	 */
344 	if (ds->ops->get_tag_protocol(ds) == DSA_TAG_PROTO_NONE) {
345 		b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, &mgmt);
346 		mgmt |= B53_MII_DUMB_FWDG_EN;
347 		b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, mgmt);
348 	}
349 }
350 
351 static void b53_enable_vlan(struct b53_device *dev, bool enable)
352 {
353 	u8 mgmt, vc0, vc1, vc4 = 0, vc5;
354 
355 	b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
356 	b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, &vc0);
357 	b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, &vc1);
358 
359 	if (is5325(dev) || is5365(dev)) {
360 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
361 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, &vc5);
362 	} else if (is63xx(dev)) {
363 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, &vc4);
364 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, &vc5);
365 	} else {
366 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, &vc4);
367 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, &vc5);
368 	}
369 
370 	mgmt &= ~SM_SW_FWD_MODE;
371 
372 	if (enable) {
373 		vc0 |= VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID;
374 		vc1 |= VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN;
375 		vc4 &= ~VC4_ING_VID_CHECK_MASK;
376 		vc4 |= VC4_ING_VID_VIO_DROP << VC4_ING_VID_CHECK_S;
377 		vc5 |= VC5_DROP_VTABLE_MISS;
378 
379 		if (is5325(dev))
380 			vc0 &= ~VC0_RESERVED_1;
381 
382 		if (is5325(dev) || is5365(dev))
383 			vc1 |= VC1_RX_MCST_TAG_EN;
384 
385 	} else {
386 		vc0 &= ~(VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID);
387 		vc1 &= ~(VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN);
388 		vc4 &= ~VC4_ING_VID_CHECK_MASK;
389 		vc5 &= ~VC5_DROP_VTABLE_MISS;
390 
391 		if (is5325(dev) || is5365(dev))
392 			vc4 |= VC4_ING_VID_VIO_FWD << VC4_ING_VID_CHECK_S;
393 		else
394 			vc4 |= VC4_ING_VID_VIO_TO_IMP << VC4_ING_VID_CHECK_S;
395 
396 		if (is5325(dev) || is5365(dev))
397 			vc1 &= ~VC1_RX_MCST_TAG_EN;
398 	}
399 
400 	if (!is5325(dev) && !is5365(dev))
401 		vc5 &= ~VC5_VID_FFF_EN;
402 
403 	b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, vc0);
404 	b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, vc1);
405 
406 	if (is5325(dev) || is5365(dev)) {
407 		/* enable the high 8 bit vid check on 5325 */
408 		if (is5325(dev) && enable)
409 			b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3,
410 				   VC3_HIGH_8BIT_EN);
411 		else
412 			b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
413 
414 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, vc4);
415 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, vc5);
416 	} else if (is63xx(dev)) {
417 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3_63XX, 0);
418 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, vc4);
419 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, vc5);
420 	} else {
421 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
422 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, vc4);
423 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, vc5);
424 	}
425 
426 	b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
427 }
428 
429 static int b53_set_jumbo(struct b53_device *dev, bool enable, bool allow_10_100)
430 {
431 	u32 port_mask = 0;
432 	u16 max_size = JMS_MIN_SIZE;
433 
434 	if (is5325(dev) || is5365(dev))
435 		return -EINVAL;
436 
437 	if (enable) {
438 		port_mask = dev->enabled_ports;
439 		max_size = JMS_MAX_SIZE;
440 		if (allow_10_100)
441 			port_mask |= JPM_10_100_JUMBO_EN;
442 	}
443 
444 	b53_write32(dev, B53_JUMBO_PAGE, dev->jumbo_pm_reg, port_mask);
445 	return b53_write16(dev, B53_JUMBO_PAGE, dev->jumbo_size_reg, max_size);
446 }
447 
448 static int b53_flush_arl(struct b53_device *dev, u8 mask)
449 {
450 	unsigned int i;
451 
452 	b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
453 		   FAST_AGE_DONE | FAST_AGE_DYNAMIC | mask);
454 
455 	for (i = 0; i < 10; i++) {
456 		u8 fast_age_ctrl;
457 
458 		b53_read8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
459 			  &fast_age_ctrl);
460 
461 		if (!(fast_age_ctrl & FAST_AGE_DONE))
462 			goto out;
463 
464 		msleep(1);
465 	}
466 
467 	return -ETIMEDOUT;
468 out:
469 	/* Only age dynamic entries (default behavior) */
470 	b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DYNAMIC);
471 	return 0;
472 }
473 
474 static int b53_fast_age_port(struct b53_device *dev, int port)
475 {
476 	b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_PORT_CTRL, port);
477 
478 	return b53_flush_arl(dev, FAST_AGE_PORT);
479 }
480 
481 static int b53_fast_age_vlan(struct b53_device *dev, u16 vid)
482 {
483 	b53_write16(dev, B53_CTRL_PAGE, B53_FAST_AGE_VID_CTRL, vid);
484 
485 	return b53_flush_arl(dev, FAST_AGE_VLAN);
486 }
487 
488 static void b53_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
489 {
490 	struct b53_device *dev = ds->priv;
491 	unsigned int i;
492 	u16 pvlan;
493 
494 	/* Enable the IMP port to be in the same VLAN as the other ports
495 	 * on a per-port basis such that we only have Port i and IMP in
496 	 * the same VLAN.
497 	 */
498 	b53_for_each_port(dev, i) {
499 		b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &pvlan);
500 		pvlan |= BIT(cpu_port);
501 		b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), pvlan);
502 	}
503 }
504 
505 static int b53_enable_port(struct dsa_switch *ds, int port,
506 			   struct phy_device *phy)
507 {
508 	struct b53_device *dev = ds->priv;
509 	unsigned int cpu_port = dev->cpu_port;
510 	u16 pvlan;
511 
512 	/* Clear the Rx and Tx disable bits and set to no spanning tree */
513 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), 0);
514 
515 	/* Set this port, and only this one to be in the default VLAN,
516 	 * if member of a bridge, restore its membership prior to
517 	 * bringing down this port.
518 	 */
519 	b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
520 	pvlan &= ~0x1ff;
521 	pvlan |= BIT(port);
522 	pvlan |= dev->ports[port].vlan_ctl_mask;
523 	b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
524 
525 	b53_imp_vlan_setup(ds, cpu_port);
526 
527 	return 0;
528 }
529 
530 static void b53_disable_port(struct dsa_switch *ds, int port,
531 			     struct phy_device *phy)
532 {
533 	struct b53_device *dev = ds->priv;
534 	u8 reg;
535 
536 	/* Disable Tx/Rx for the port */
537 	b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
538 	reg |= PORT_CTRL_RX_DISABLE | PORT_CTRL_TX_DISABLE;
539 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
540 }
541 
542 static void b53_enable_cpu_port(struct b53_device *dev)
543 {
544 	unsigned int cpu_port = dev->cpu_port;
545 	u8 port_ctrl;
546 
547 	/* BCM5325 CPU port is at 8 */
548 	if ((is5325(dev) || is5365(dev)) && cpu_port == B53_CPU_PORT_25)
549 		cpu_port = B53_CPU_PORT;
550 
551 	port_ctrl = PORT_CTRL_RX_BCST_EN |
552 		    PORT_CTRL_RX_MCST_EN |
553 		    PORT_CTRL_RX_UCST_EN;
554 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(cpu_port), port_ctrl);
555 }
556 
557 static void b53_enable_mib(struct b53_device *dev)
558 {
559 	u8 gc;
560 
561 	b53_read8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
562 	gc &= ~(GC_RESET_MIB | GC_MIB_AC_EN);
563 	b53_write8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc);
564 }
565 
566 static int b53_configure_vlan(struct b53_device *dev)
567 {
568 	struct b53_vlan vl = { 0 };
569 	int i;
570 
571 	/* clear all vlan entries */
572 	if (is5325(dev) || is5365(dev)) {
573 		for (i = 1; i < dev->num_vlans; i++)
574 			b53_set_vlan_entry(dev, i, &vl);
575 	} else {
576 		b53_do_vlan_op(dev, VTA_CMD_CLEAR);
577 	}
578 
579 	b53_enable_vlan(dev, false);
580 
581 	b53_for_each_port(dev, i)
582 		b53_write16(dev, B53_VLAN_PAGE,
583 			    B53_VLAN_PORT_DEF_TAG(i), 1);
584 
585 	if (!is5325(dev) && !is5365(dev))
586 		b53_set_jumbo(dev, dev->enable_jumbo, false);
587 
588 	return 0;
589 }
590 
591 static void b53_switch_reset_gpio(struct b53_device *dev)
592 {
593 	int gpio = dev->reset_gpio;
594 
595 	if (gpio < 0)
596 		return;
597 
598 	/* Reset sequence: RESET low(50ms)->high(20ms)
599 	 */
600 	gpio_set_value(gpio, 0);
601 	mdelay(50);
602 
603 	gpio_set_value(gpio, 1);
604 	mdelay(20);
605 
606 	dev->current_page = 0xff;
607 }
608 
609 static int b53_switch_reset(struct b53_device *dev)
610 {
611 	unsigned int timeout = 1000;
612 	u8 mgmt, reg;
613 
614 	b53_switch_reset_gpio(dev);
615 
616 	if (is539x(dev)) {
617 		b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x83);
618 		b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x00);
619 	}
620 
621 	/* This is specific to 58xx devices here, do not use is58xx() which
622 	 * covers the larger Starfigther 2 family, including 7445/7278 which
623 	 * still use this driver as a library and need to perform the reset
624 	 * earlier.
625 	 */
626 	if (dev->chip_id == BCM58XX_DEVICE_ID) {
627 		b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
628 		reg |= SW_RST | EN_SW_RST | EN_CH_RST;
629 		b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, reg);
630 
631 		do {
632 			b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
633 			if (!(reg & SW_RST))
634 				break;
635 
636 			usleep_range(1000, 2000);
637 		} while (timeout-- > 0);
638 
639 		if (timeout == 0)
640 			return -ETIMEDOUT;
641 	}
642 
643 	b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
644 
645 	if (!(mgmt & SM_SW_FWD_EN)) {
646 		mgmt &= ~SM_SW_FWD_MODE;
647 		mgmt |= SM_SW_FWD_EN;
648 
649 		b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
650 		b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
651 
652 		if (!(mgmt & SM_SW_FWD_EN)) {
653 			dev_err(dev->dev, "Failed to enable switch!\n");
654 			return -EINVAL;
655 		}
656 	}
657 
658 	b53_enable_mib(dev);
659 
660 	return b53_flush_arl(dev, FAST_AGE_STATIC);
661 }
662 
663 static int b53_phy_read16(struct dsa_switch *ds, int addr, int reg)
664 {
665 	struct b53_device *priv = ds->priv;
666 	u16 value = 0;
667 	int ret;
668 
669 	if (priv->ops->phy_read16)
670 		ret = priv->ops->phy_read16(priv, addr, reg, &value);
671 	else
672 		ret = b53_read16(priv, B53_PORT_MII_PAGE(addr),
673 				 reg * 2, &value);
674 
675 	return ret ? ret : value;
676 }
677 
678 static int b53_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
679 {
680 	struct b53_device *priv = ds->priv;
681 
682 	if (priv->ops->phy_write16)
683 		return priv->ops->phy_write16(priv, addr, reg, val);
684 
685 	return b53_write16(priv, B53_PORT_MII_PAGE(addr), reg * 2, val);
686 }
687 
688 static int b53_reset_switch(struct b53_device *priv)
689 {
690 	/* reset vlans */
691 	priv->enable_jumbo = false;
692 
693 	memset(priv->vlans, 0, sizeof(*priv->vlans) * priv->num_vlans);
694 	memset(priv->ports, 0, sizeof(*priv->ports) * priv->num_ports);
695 
696 	return b53_switch_reset(priv);
697 }
698 
699 static int b53_apply_config(struct b53_device *priv)
700 {
701 	/* disable switching */
702 	b53_set_forwarding(priv, 0);
703 
704 	b53_configure_vlan(priv);
705 
706 	/* enable switching */
707 	b53_set_forwarding(priv, 1);
708 
709 	return 0;
710 }
711 
712 static void b53_reset_mib(struct b53_device *priv)
713 {
714 	u8 gc;
715 
716 	b53_read8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
717 
718 	b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc | GC_RESET_MIB);
719 	msleep(1);
720 	b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc & ~GC_RESET_MIB);
721 	msleep(1);
722 }
723 
724 static const struct b53_mib_desc *b53_get_mib(struct b53_device *dev)
725 {
726 	if (is5365(dev))
727 		return b53_mibs_65;
728 	else if (is63xx(dev))
729 		return b53_mibs_63xx;
730 	else if (is58xx(dev))
731 		return b53_mibs_58xx;
732 	else
733 		return b53_mibs;
734 }
735 
736 static unsigned int b53_get_mib_size(struct b53_device *dev)
737 {
738 	if (is5365(dev))
739 		return B53_MIBS_65_SIZE;
740 	else if (is63xx(dev))
741 		return B53_MIBS_63XX_SIZE;
742 	else if (is58xx(dev))
743 		return B53_MIBS_58XX_SIZE;
744 	else
745 		return B53_MIBS_SIZE;
746 }
747 
748 void b53_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
749 {
750 	struct b53_device *dev = ds->priv;
751 	const struct b53_mib_desc *mibs = b53_get_mib(dev);
752 	unsigned int mib_size = b53_get_mib_size(dev);
753 	unsigned int i;
754 
755 	for (i = 0; i < mib_size; i++)
756 		memcpy(data + i * ETH_GSTRING_LEN,
757 		       mibs[i].name, ETH_GSTRING_LEN);
758 }
759 EXPORT_SYMBOL(b53_get_strings);
760 
761 void b53_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data)
762 {
763 	struct b53_device *dev = ds->priv;
764 	const struct b53_mib_desc *mibs = b53_get_mib(dev);
765 	unsigned int mib_size = b53_get_mib_size(dev);
766 	const struct b53_mib_desc *s;
767 	unsigned int i;
768 	u64 val = 0;
769 
770 	if (is5365(dev) && port == 5)
771 		port = 8;
772 
773 	mutex_lock(&dev->stats_mutex);
774 
775 	for (i = 0; i < mib_size; i++) {
776 		s = &mibs[i];
777 
778 		if (s->size == 8) {
779 			b53_read64(dev, B53_MIB_PAGE(port), s->offset, &val);
780 		} else {
781 			u32 val32;
782 
783 			b53_read32(dev, B53_MIB_PAGE(port), s->offset,
784 				   &val32);
785 			val = val32;
786 		}
787 		data[i] = (u64)val;
788 	}
789 
790 	mutex_unlock(&dev->stats_mutex);
791 }
792 EXPORT_SYMBOL(b53_get_ethtool_stats);
793 
794 int b53_get_sset_count(struct dsa_switch *ds)
795 {
796 	struct b53_device *dev = ds->priv;
797 
798 	return b53_get_mib_size(dev);
799 }
800 EXPORT_SYMBOL(b53_get_sset_count);
801 
802 static int b53_setup(struct dsa_switch *ds)
803 {
804 	struct b53_device *dev = ds->priv;
805 	unsigned int port;
806 	int ret;
807 
808 	ret = b53_reset_switch(dev);
809 	if (ret) {
810 		dev_err(ds->dev, "failed to reset switch\n");
811 		return ret;
812 	}
813 
814 	b53_reset_mib(dev);
815 
816 	ret = b53_apply_config(dev);
817 	if (ret)
818 		dev_err(ds->dev, "failed to apply configuration\n");
819 
820 	for (port = 0; port < dev->num_ports; port++) {
821 		if (BIT(port) & ds->enabled_port_mask)
822 			b53_enable_port(ds, port, NULL);
823 		else if (dsa_is_cpu_port(ds, port))
824 			b53_enable_cpu_port(dev);
825 		else
826 			b53_disable_port(ds, port, NULL);
827 	}
828 
829 	return ret;
830 }
831 
832 static void b53_adjust_link(struct dsa_switch *ds, int port,
833 			    struct phy_device *phydev)
834 {
835 	struct b53_device *dev = ds->priv;
836 	u8 rgmii_ctrl = 0, reg = 0, off;
837 
838 	if (!phy_is_pseudo_fixed_link(phydev))
839 		return;
840 
841 	/* Override the port settings */
842 	if (port == dev->cpu_port) {
843 		off = B53_PORT_OVERRIDE_CTRL;
844 		reg = PORT_OVERRIDE_EN;
845 	} else {
846 		off = B53_GMII_PORT_OVERRIDE_CTRL(port);
847 		reg = GMII_PO_EN;
848 	}
849 
850 	/* Set the link UP */
851 	if (phydev->link)
852 		reg |= PORT_OVERRIDE_LINK;
853 
854 	if (phydev->duplex == DUPLEX_FULL)
855 		reg |= PORT_OVERRIDE_FULL_DUPLEX;
856 
857 	switch (phydev->speed) {
858 	case 2000:
859 		reg |= PORT_OVERRIDE_SPEED_2000M;
860 		/* fallthrough */
861 	case SPEED_1000:
862 		reg |= PORT_OVERRIDE_SPEED_1000M;
863 		break;
864 	case SPEED_100:
865 		reg |= PORT_OVERRIDE_SPEED_100M;
866 		break;
867 	case SPEED_10:
868 		reg |= PORT_OVERRIDE_SPEED_10M;
869 		break;
870 	default:
871 		dev_err(ds->dev, "unknown speed: %d\n", phydev->speed);
872 		return;
873 	}
874 
875 	/* Enable flow control on BCM5301x's CPU port */
876 	if (is5301x(dev) && port == dev->cpu_port)
877 		reg |= PORT_OVERRIDE_RX_FLOW | PORT_OVERRIDE_TX_FLOW;
878 
879 	if (phydev->pause) {
880 		if (phydev->asym_pause)
881 			reg |= PORT_OVERRIDE_TX_FLOW;
882 		reg |= PORT_OVERRIDE_RX_FLOW;
883 	}
884 
885 	b53_write8(dev, B53_CTRL_PAGE, off, reg);
886 
887 	if (is531x5(dev) && phy_interface_is_rgmii(phydev)) {
888 		if (port == 8)
889 			off = B53_RGMII_CTRL_IMP;
890 		else
891 			off = B53_RGMII_CTRL_P(port);
892 
893 		/* Configure the port RGMII clock delay by DLL disabled and
894 		 * tx_clk aligned timing (restoring to reset defaults)
895 		 */
896 		b53_read8(dev, B53_CTRL_PAGE, off, &rgmii_ctrl);
897 		rgmii_ctrl &= ~(RGMII_CTRL_DLL_RXC | RGMII_CTRL_DLL_TXC |
898 				RGMII_CTRL_TIMING_SEL);
899 
900 		/* PHY_INTERFACE_MODE_RGMII_TXID means TX internal delay, make
901 		 * sure that we enable the port TX clock internal delay to
902 		 * account for this internal delay that is inserted, otherwise
903 		 * the switch won't be able to receive correctly.
904 		 *
905 		 * PHY_INTERFACE_MODE_RGMII means that we are not introducing
906 		 * any delay neither on transmission nor reception, so the
907 		 * BCM53125 must also be configured accordingly to account for
908 		 * the lack of delay and introduce
909 		 *
910 		 * The BCM53125 switch has its RX clock and TX clock control
911 		 * swapped, hence the reason why we modify the TX clock path in
912 		 * the "RGMII" case
913 		 */
914 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
915 			rgmii_ctrl |= RGMII_CTRL_DLL_TXC;
916 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
917 			rgmii_ctrl |= RGMII_CTRL_DLL_TXC | RGMII_CTRL_DLL_RXC;
918 		rgmii_ctrl |= RGMII_CTRL_TIMING_SEL;
919 		b53_write8(dev, B53_CTRL_PAGE, off, rgmii_ctrl);
920 
921 		dev_info(ds->dev, "Configured port %d for %s\n", port,
922 			 phy_modes(phydev->interface));
923 	}
924 
925 	/* configure MII port if necessary */
926 	if (is5325(dev)) {
927 		b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
928 			  &reg);
929 
930 		/* reverse mii needs to be enabled */
931 		if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
932 			b53_write8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
933 				   reg | PORT_OVERRIDE_RV_MII_25);
934 			b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
935 				  &reg);
936 
937 			if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
938 				dev_err(ds->dev,
939 					"Failed to enable reverse MII mode\n");
940 				return;
941 			}
942 		}
943 	} else if (is5301x(dev)) {
944 		if (port != dev->cpu_port) {
945 			u8 po_reg = B53_GMII_PORT_OVERRIDE_CTRL(dev->cpu_port);
946 			u8 gmii_po;
947 
948 			b53_read8(dev, B53_CTRL_PAGE, po_reg, &gmii_po);
949 			gmii_po |= GMII_PO_LINK |
950 				   GMII_PO_RX_FLOW |
951 				   GMII_PO_TX_FLOW |
952 				   GMII_PO_EN |
953 				   GMII_PO_SPEED_2000M;
954 			b53_write8(dev, B53_CTRL_PAGE, po_reg, gmii_po);
955 		}
956 	}
957 }
958 
959 int b53_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering)
960 {
961 	return 0;
962 }
963 EXPORT_SYMBOL(b53_vlan_filtering);
964 
965 int b53_vlan_prepare(struct dsa_switch *ds, int port,
966 		     const struct switchdev_obj_port_vlan *vlan,
967 		     struct switchdev_trans *trans)
968 {
969 	struct b53_device *dev = ds->priv;
970 
971 	if ((is5325(dev) || is5365(dev)) && vlan->vid_begin == 0)
972 		return -EOPNOTSUPP;
973 
974 	if (vlan->vid_end > dev->num_vlans)
975 		return -ERANGE;
976 
977 	b53_enable_vlan(dev, true);
978 
979 	return 0;
980 }
981 EXPORT_SYMBOL(b53_vlan_prepare);
982 
983 void b53_vlan_add(struct dsa_switch *ds, int port,
984 		  const struct switchdev_obj_port_vlan *vlan,
985 		  struct switchdev_trans *trans)
986 {
987 	struct b53_device *dev = ds->priv;
988 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
989 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
990 	unsigned int cpu_port = dev->cpu_port;
991 	struct b53_vlan *vl;
992 	u16 vid;
993 
994 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
995 		vl = &dev->vlans[vid];
996 
997 		b53_get_vlan_entry(dev, vid, vl);
998 
999 		vl->members |= BIT(port) | BIT(cpu_port);
1000 		if (untagged)
1001 			vl->untag |= BIT(port);
1002 		else
1003 			vl->untag &= ~BIT(port);
1004 		vl->untag &= ~BIT(cpu_port);
1005 
1006 		b53_set_vlan_entry(dev, vid, vl);
1007 		b53_fast_age_vlan(dev, vid);
1008 	}
1009 
1010 	if (pvid) {
1011 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port),
1012 			    vlan->vid_end);
1013 		b53_fast_age_vlan(dev, vid);
1014 	}
1015 }
1016 EXPORT_SYMBOL(b53_vlan_add);
1017 
1018 int b53_vlan_del(struct dsa_switch *ds, int port,
1019 		 const struct switchdev_obj_port_vlan *vlan)
1020 {
1021 	struct b53_device *dev = ds->priv;
1022 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1023 	struct b53_vlan *vl;
1024 	u16 vid;
1025 	u16 pvid;
1026 
1027 	b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
1028 
1029 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1030 		vl = &dev->vlans[vid];
1031 
1032 		b53_get_vlan_entry(dev, vid, vl);
1033 
1034 		vl->members &= ~BIT(port);
1035 
1036 		if (pvid == vid) {
1037 			if (is5325(dev) || is5365(dev))
1038 				pvid = 1;
1039 			else
1040 				pvid = 0;
1041 		}
1042 
1043 		if (untagged)
1044 			vl->untag &= ~(BIT(port));
1045 
1046 		b53_set_vlan_entry(dev, vid, vl);
1047 		b53_fast_age_vlan(dev, vid);
1048 	}
1049 
1050 	b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), pvid);
1051 	b53_fast_age_vlan(dev, pvid);
1052 
1053 	return 0;
1054 }
1055 EXPORT_SYMBOL(b53_vlan_del);
1056 
1057 int b53_vlan_dump(struct dsa_switch *ds, int port,
1058 		  struct switchdev_obj_port_vlan *vlan,
1059 		  int (*cb)(struct switchdev_obj *obj))
1060 {
1061 	struct b53_device *dev = ds->priv;
1062 	u16 vid, vid_start = 0, pvid;
1063 	struct b53_vlan *vl;
1064 	int err = 0;
1065 
1066 	if (is5325(dev) || is5365(dev))
1067 		vid_start = 1;
1068 
1069 	b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
1070 
1071 	/* Use our software cache for dumps, since we do not have any HW
1072 	 * operation returning only the used/valid VLANs
1073 	 */
1074 	for (vid = vid_start; vid < dev->num_vlans; vid++) {
1075 		vl = &dev->vlans[vid];
1076 
1077 		if (!vl->valid)
1078 			continue;
1079 
1080 		if (!(vl->members & BIT(port)))
1081 			continue;
1082 
1083 		vlan->vid_begin = vlan->vid_end = vid;
1084 		vlan->flags = 0;
1085 
1086 		if (vl->untag & BIT(port))
1087 			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1088 		if (pvid == vid)
1089 			vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1090 
1091 		err = cb(&vlan->obj);
1092 		if (err)
1093 			break;
1094 	}
1095 
1096 	return err;
1097 }
1098 EXPORT_SYMBOL(b53_vlan_dump);
1099 
1100 /* Address Resolution Logic routines */
1101 static int b53_arl_op_wait(struct b53_device *dev)
1102 {
1103 	unsigned int timeout = 10;
1104 	u8 reg;
1105 
1106 	do {
1107 		b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
1108 		if (!(reg & ARLTBL_START_DONE))
1109 			return 0;
1110 
1111 		usleep_range(1000, 2000);
1112 	} while (timeout--);
1113 
1114 	dev_warn(dev->dev, "timeout waiting for ARL to finish: 0x%02x\n", reg);
1115 
1116 	return -ETIMEDOUT;
1117 }
1118 
1119 static int b53_arl_rw_op(struct b53_device *dev, unsigned int op)
1120 {
1121 	u8 reg;
1122 
1123 	if (op > ARLTBL_RW)
1124 		return -EINVAL;
1125 
1126 	b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
1127 	reg |= ARLTBL_START_DONE;
1128 	if (op)
1129 		reg |= ARLTBL_RW;
1130 	else
1131 		reg &= ~ARLTBL_RW;
1132 	b53_write8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, reg);
1133 
1134 	return b53_arl_op_wait(dev);
1135 }
1136 
1137 static int b53_arl_read(struct b53_device *dev, u64 mac,
1138 			u16 vid, struct b53_arl_entry *ent, u8 *idx,
1139 			bool is_valid)
1140 {
1141 	unsigned int i;
1142 	int ret;
1143 
1144 	ret = b53_arl_op_wait(dev);
1145 	if (ret)
1146 		return ret;
1147 
1148 	/* Read the bins */
1149 	for (i = 0; i < dev->num_arl_entries; i++) {
1150 		u64 mac_vid;
1151 		u32 fwd_entry;
1152 
1153 		b53_read64(dev, B53_ARLIO_PAGE,
1154 			   B53_ARLTBL_MAC_VID_ENTRY(i), &mac_vid);
1155 		b53_read32(dev, B53_ARLIO_PAGE,
1156 			   B53_ARLTBL_DATA_ENTRY(i), &fwd_entry);
1157 		b53_arl_to_entry(ent, mac_vid, fwd_entry);
1158 
1159 		if (!(fwd_entry & ARLTBL_VALID))
1160 			continue;
1161 		if ((mac_vid & ARLTBL_MAC_MASK) != mac)
1162 			continue;
1163 		*idx = i;
1164 	}
1165 
1166 	return -ENOENT;
1167 }
1168 
1169 static int b53_arl_op(struct b53_device *dev, int op, int port,
1170 		      const unsigned char *addr, u16 vid, bool is_valid)
1171 {
1172 	struct b53_arl_entry ent;
1173 	u32 fwd_entry;
1174 	u64 mac, mac_vid = 0;
1175 	u8 idx = 0;
1176 	int ret;
1177 
1178 	/* Convert the array into a 64-bit MAC */
1179 	mac = ether_addr_to_u64(addr);
1180 
1181 	/* Perform a read for the given MAC and VID */
1182 	b53_write48(dev, B53_ARLIO_PAGE, B53_MAC_ADDR_IDX, mac);
1183 	b53_write16(dev, B53_ARLIO_PAGE, B53_VLAN_ID_IDX, vid);
1184 
1185 	/* Issue a read operation for this MAC */
1186 	ret = b53_arl_rw_op(dev, 1);
1187 	if (ret)
1188 		return ret;
1189 
1190 	ret = b53_arl_read(dev, mac, vid, &ent, &idx, is_valid);
1191 	/* If this is a read, just finish now */
1192 	if (op)
1193 		return ret;
1194 
1195 	/* We could not find a matching MAC, so reset to a new entry */
1196 	if (ret) {
1197 		fwd_entry = 0;
1198 		idx = 1;
1199 	}
1200 
1201 	memset(&ent, 0, sizeof(ent));
1202 	ent.port = port;
1203 	ent.is_valid = is_valid;
1204 	ent.vid = vid;
1205 	ent.is_static = true;
1206 	memcpy(ent.mac, addr, ETH_ALEN);
1207 	b53_arl_from_entry(&mac_vid, &fwd_entry, &ent);
1208 
1209 	b53_write64(dev, B53_ARLIO_PAGE,
1210 		    B53_ARLTBL_MAC_VID_ENTRY(idx), mac_vid);
1211 	b53_write32(dev, B53_ARLIO_PAGE,
1212 		    B53_ARLTBL_DATA_ENTRY(idx), fwd_entry);
1213 
1214 	return b53_arl_rw_op(dev, 0);
1215 }
1216 
1217 int b53_fdb_prepare(struct dsa_switch *ds, int port,
1218 		    const struct switchdev_obj_port_fdb *fdb,
1219 		    struct switchdev_trans *trans)
1220 {
1221 	struct b53_device *priv = ds->priv;
1222 
1223 	/* 5325 and 5365 require some more massaging, but could
1224 	 * be supported eventually
1225 	 */
1226 	if (is5325(priv) || is5365(priv))
1227 		return -EOPNOTSUPP;
1228 
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL(b53_fdb_prepare);
1232 
1233 void b53_fdb_add(struct dsa_switch *ds, int port,
1234 		 const struct switchdev_obj_port_fdb *fdb,
1235 		 struct switchdev_trans *trans)
1236 {
1237 	struct b53_device *priv = ds->priv;
1238 
1239 	if (b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
1240 		pr_err("%s: failed to add MAC address\n", __func__);
1241 }
1242 EXPORT_SYMBOL(b53_fdb_add);
1243 
1244 int b53_fdb_del(struct dsa_switch *ds, int port,
1245 		const struct switchdev_obj_port_fdb *fdb)
1246 {
1247 	struct b53_device *priv = ds->priv;
1248 
1249 	return b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
1250 }
1251 EXPORT_SYMBOL(b53_fdb_del);
1252 
1253 static int b53_arl_search_wait(struct b53_device *dev)
1254 {
1255 	unsigned int timeout = 1000;
1256 	u8 reg;
1257 
1258 	do {
1259 		b53_read8(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, &reg);
1260 		if (!(reg & ARL_SRCH_STDN))
1261 			return 0;
1262 
1263 		if (reg & ARL_SRCH_VLID)
1264 			return 0;
1265 
1266 		usleep_range(1000, 2000);
1267 	} while (timeout--);
1268 
1269 	return -ETIMEDOUT;
1270 }
1271 
1272 static void b53_arl_search_rd(struct b53_device *dev, u8 idx,
1273 			      struct b53_arl_entry *ent)
1274 {
1275 	u64 mac_vid;
1276 	u32 fwd_entry;
1277 
1278 	b53_read64(dev, B53_ARLIO_PAGE,
1279 		   B53_ARL_SRCH_RSTL_MACVID(idx), &mac_vid);
1280 	b53_read32(dev, B53_ARLIO_PAGE,
1281 		   B53_ARL_SRCH_RSTL(idx), &fwd_entry);
1282 	b53_arl_to_entry(ent, mac_vid, fwd_entry);
1283 }
1284 
1285 static int b53_fdb_copy(struct net_device *dev, int port,
1286 			const struct b53_arl_entry *ent,
1287 			struct switchdev_obj_port_fdb *fdb,
1288 			int (*cb)(struct switchdev_obj *obj))
1289 {
1290 	if (!ent->is_valid)
1291 		return 0;
1292 
1293 	if (port != ent->port)
1294 		return 0;
1295 
1296 	ether_addr_copy(fdb->addr, ent->mac);
1297 	fdb->vid = ent->vid;
1298 	fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
1299 
1300 	return cb(&fdb->obj);
1301 }
1302 
1303 int b53_fdb_dump(struct dsa_switch *ds, int port,
1304 		 struct switchdev_obj_port_fdb *fdb,
1305 		 int (*cb)(struct switchdev_obj *obj))
1306 {
1307 	struct b53_device *priv = ds->priv;
1308 	struct net_device *dev = ds->ports[port].netdev;
1309 	struct b53_arl_entry results[2];
1310 	unsigned int count = 0;
1311 	int ret;
1312 	u8 reg;
1313 
1314 	/* Start search operation */
1315 	reg = ARL_SRCH_STDN;
1316 	b53_write8(priv, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, reg);
1317 
1318 	do {
1319 		ret = b53_arl_search_wait(priv);
1320 		if (ret)
1321 			return ret;
1322 
1323 		b53_arl_search_rd(priv, 0, &results[0]);
1324 		ret = b53_fdb_copy(dev, port, &results[0], fdb, cb);
1325 		if (ret)
1326 			return ret;
1327 
1328 		if (priv->num_arl_entries > 2) {
1329 			b53_arl_search_rd(priv, 1, &results[1]);
1330 			ret = b53_fdb_copy(dev, port, &results[1], fdb, cb);
1331 			if (ret)
1332 				return ret;
1333 
1334 			if (!results[0].is_valid && !results[1].is_valid)
1335 				break;
1336 		}
1337 
1338 	} while (count++ < 1024);
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(b53_fdb_dump);
1343 
1344 int b53_br_join(struct dsa_switch *ds, int port, struct net_device *br)
1345 {
1346 	struct b53_device *dev = ds->priv;
1347 	s8 cpu_port = ds->dst->cpu_port;
1348 	u16 pvlan, reg;
1349 	unsigned int i;
1350 
1351 	/* Make this port leave the all VLANs join since we will have proper
1352 	 * VLAN entries from now on
1353 	 */
1354 	if (is58xx(dev)) {
1355 		b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, &reg);
1356 		reg &= ~BIT(port);
1357 		if ((reg & BIT(cpu_port)) == BIT(cpu_port))
1358 			reg &= ~BIT(cpu_port);
1359 		b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg);
1360 	}
1361 
1362 	b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
1363 
1364 	b53_for_each_port(dev, i) {
1365 		if (ds->ports[i].bridge_dev != br)
1366 			continue;
1367 
1368 		/* Add this local port to the remote port VLAN control
1369 		 * membership and update the remote port bitmask
1370 		 */
1371 		b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
1372 		reg |= BIT(port);
1373 		b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
1374 		dev->ports[i].vlan_ctl_mask = reg;
1375 
1376 		pvlan |= BIT(i);
1377 	}
1378 
1379 	/* Configure the local port VLAN control membership to include
1380 	 * remote ports and update the local port bitmask
1381 	 */
1382 	b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
1383 	dev->ports[port].vlan_ctl_mask = pvlan;
1384 
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL(b53_br_join);
1388 
1389 void b53_br_leave(struct dsa_switch *ds, int port, struct net_device *br)
1390 {
1391 	struct b53_device *dev = ds->priv;
1392 	struct b53_vlan *vl = &dev->vlans[0];
1393 	s8 cpu_port = ds->dst->cpu_port;
1394 	unsigned int i;
1395 	u16 pvlan, reg, pvid;
1396 
1397 	b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
1398 
1399 	b53_for_each_port(dev, i) {
1400 		/* Don't touch the remaining ports */
1401 		if (ds->ports[i].bridge_dev != br)
1402 			continue;
1403 
1404 		b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
1405 		reg &= ~BIT(port);
1406 		b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
1407 		dev->ports[port].vlan_ctl_mask = reg;
1408 
1409 		/* Prevent self removal to preserve isolation */
1410 		if (port != i)
1411 			pvlan &= ~BIT(i);
1412 	}
1413 
1414 	b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
1415 	dev->ports[port].vlan_ctl_mask = pvlan;
1416 
1417 	if (is5325(dev) || is5365(dev))
1418 		pvid = 1;
1419 	else
1420 		pvid = 0;
1421 
1422 	/* Make this port join all VLANs without VLAN entries */
1423 	if (is58xx(dev)) {
1424 		b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, &reg);
1425 		reg |= BIT(port);
1426 		if (!(reg & BIT(cpu_port)))
1427 			reg |= BIT(cpu_port);
1428 		b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg);
1429 	} else {
1430 		b53_get_vlan_entry(dev, pvid, vl);
1431 		vl->members |= BIT(port) | BIT(dev->cpu_port);
1432 		vl->untag |= BIT(port) | BIT(dev->cpu_port);
1433 		b53_set_vlan_entry(dev, pvid, vl);
1434 	}
1435 }
1436 EXPORT_SYMBOL(b53_br_leave);
1437 
1438 void b53_br_set_stp_state(struct dsa_switch *ds, int port, u8 state)
1439 {
1440 	struct b53_device *dev = ds->priv;
1441 	u8 hw_state;
1442 	u8 reg;
1443 
1444 	switch (state) {
1445 	case BR_STATE_DISABLED:
1446 		hw_state = PORT_CTRL_DIS_STATE;
1447 		break;
1448 	case BR_STATE_LISTENING:
1449 		hw_state = PORT_CTRL_LISTEN_STATE;
1450 		break;
1451 	case BR_STATE_LEARNING:
1452 		hw_state = PORT_CTRL_LEARN_STATE;
1453 		break;
1454 	case BR_STATE_FORWARDING:
1455 		hw_state = PORT_CTRL_FWD_STATE;
1456 		break;
1457 	case BR_STATE_BLOCKING:
1458 		hw_state = PORT_CTRL_BLOCK_STATE;
1459 		break;
1460 	default:
1461 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1462 		return;
1463 	}
1464 
1465 	b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
1466 	reg &= ~PORT_CTRL_STP_STATE_MASK;
1467 	reg |= hw_state;
1468 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
1469 }
1470 EXPORT_SYMBOL(b53_br_set_stp_state);
1471 
1472 void b53_br_fast_age(struct dsa_switch *ds, int port)
1473 {
1474 	struct b53_device *dev = ds->priv;
1475 
1476 	if (b53_fast_age_port(dev, port))
1477 		dev_err(ds->dev, "fast ageing failed\n");
1478 }
1479 EXPORT_SYMBOL(b53_br_fast_age);
1480 
1481 static enum dsa_tag_protocol b53_get_tag_protocol(struct dsa_switch *ds)
1482 {
1483 	return DSA_TAG_PROTO_NONE;
1484 }
1485 
1486 int b53_mirror_add(struct dsa_switch *ds, int port,
1487 		   struct dsa_mall_mirror_tc_entry *mirror, bool ingress)
1488 {
1489 	struct b53_device *dev = ds->priv;
1490 	u16 reg, loc;
1491 
1492 	if (ingress)
1493 		loc = B53_IG_MIR_CTL;
1494 	else
1495 		loc = B53_EG_MIR_CTL;
1496 
1497 	b53_read16(dev, B53_MGMT_PAGE, loc, &reg);
1498 	reg &= ~MIRROR_MASK;
1499 	reg |= BIT(port);
1500 	b53_write16(dev, B53_MGMT_PAGE, loc, reg);
1501 
1502 	b53_read16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, &reg);
1503 	reg &= ~CAP_PORT_MASK;
1504 	reg |= mirror->to_local_port;
1505 	reg |= MIRROR_EN;
1506 	b53_write16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, reg);
1507 
1508 	return 0;
1509 }
1510 EXPORT_SYMBOL(b53_mirror_add);
1511 
1512 void b53_mirror_del(struct dsa_switch *ds, int port,
1513 		    struct dsa_mall_mirror_tc_entry *mirror)
1514 {
1515 	struct b53_device *dev = ds->priv;
1516 	bool loc_disable = false, other_loc_disable = false;
1517 	u16 reg, loc;
1518 
1519 	if (mirror->ingress)
1520 		loc = B53_IG_MIR_CTL;
1521 	else
1522 		loc = B53_EG_MIR_CTL;
1523 
1524 	/* Update the desired ingress/egress register */
1525 	b53_read16(dev, B53_MGMT_PAGE, loc, &reg);
1526 	reg &= ~BIT(port);
1527 	if (!(reg & MIRROR_MASK))
1528 		loc_disable = true;
1529 	b53_write16(dev, B53_MGMT_PAGE, loc, reg);
1530 
1531 	/* Now look at the other one to know if we can disable mirroring
1532 	 * entirely
1533 	 */
1534 	if (mirror->ingress)
1535 		b53_read16(dev, B53_MGMT_PAGE, B53_EG_MIR_CTL, &reg);
1536 	else
1537 		b53_read16(dev, B53_MGMT_PAGE, B53_IG_MIR_CTL, &reg);
1538 	if (!(reg & MIRROR_MASK))
1539 		other_loc_disable = true;
1540 
1541 	b53_read16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, &reg);
1542 	/* Both no longer have ports, let's disable mirroring */
1543 	if (loc_disable && other_loc_disable) {
1544 		reg &= ~MIRROR_EN;
1545 		reg &= ~mirror->to_local_port;
1546 	}
1547 	b53_write16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, reg);
1548 }
1549 EXPORT_SYMBOL(b53_mirror_del);
1550 
1551 static const struct dsa_switch_ops b53_switch_ops = {
1552 	.get_tag_protocol	= b53_get_tag_protocol,
1553 	.setup			= b53_setup,
1554 	.get_strings		= b53_get_strings,
1555 	.get_ethtool_stats	= b53_get_ethtool_stats,
1556 	.get_sset_count		= b53_get_sset_count,
1557 	.phy_read		= b53_phy_read16,
1558 	.phy_write		= b53_phy_write16,
1559 	.adjust_link		= b53_adjust_link,
1560 	.port_enable		= b53_enable_port,
1561 	.port_disable		= b53_disable_port,
1562 	.port_bridge_join	= b53_br_join,
1563 	.port_bridge_leave	= b53_br_leave,
1564 	.port_stp_state_set	= b53_br_set_stp_state,
1565 	.port_fast_age		= b53_br_fast_age,
1566 	.port_vlan_filtering	= b53_vlan_filtering,
1567 	.port_vlan_prepare	= b53_vlan_prepare,
1568 	.port_vlan_add		= b53_vlan_add,
1569 	.port_vlan_del		= b53_vlan_del,
1570 	.port_vlan_dump		= b53_vlan_dump,
1571 	.port_fdb_prepare	= b53_fdb_prepare,
1572 	.port_fdb_dump		= b53_fdb_dump,
1573 	.port_fdb_add		= b53_fdb_add,
1574 	.port_fdb_del		= b53_fdb_del,
1575 	.port_mirror_add	= b53_mirror_add,
1576 	.port_mirror_del	= b53_mirror_del,
1577 };
1578 
1579 struct b53_chip_data {
1580 	u32 chip_id;
1581 	const char *dev_name;
1582 	u16 vlans;
1583 	u16 enabled_ports;
1584 	u8 cpu_port;
1585 	u8 vta_regs[3];
1586 	u8 arl_entries;
1587 	u8 duplex_reg;
1588 	u8 jumbo_pm_reg;
1589 	u8 jumbo_size_reg;
1590 };
1591 
1592 #define B53_VTA_REGS	\
1593 	{ B53_VT_ACCESS, B53_VT_INDEX, B53_VT_ENTRY }
1594 #define B53_VTA_REGS_9798 \
1595 	{ B53_VT_ACCESS_9798, B53_VT_INDEX_9798, B53_VT_ENTRY_9798 }
1596 #define B53_VTA_REGS_63XX \
1597 	{ B53_VT_ACCESS_63XX, B53_VT_INDEX_63XX, B53_VT_ENTRY_63XX }
1598 
1599 static const struct b53_chip_data b53_switch_chips[] = {
1600 	{
1601 		.chip_id = BCM5325_DEVICE_ID,
1602 		.dev_name = "BCM5325",
1603 		.vlans = 16,
1604 		.enabled_ports = 0x1f,
1605 		.arl_entries = 2,
1606 		.cpu_port = B53_CPU_PORT_25,
1607 		.duplex_reg = B53_DUPLEX_STAT_FE,
1608 	},
1609 	{
1610 		.chip_id = BCM5365_DEVICE_ID,
1611 		.dev_name = "BCM5365",
1612 		.vlans = 256,
1613 		.enabled_ports = 0x1f,
1614 		.arl_entries = 2,
1615 		.cpu_port = B53_CPU_PORT_25,
1616 		.duplex_reg = B53_DUPLEX_STAT_FE,
1617 	},
1618 	{
1619 		.chip_id = BCM5395_DEVICE_ID,
1620 		.dev_name = "BCM5395",
1621 		.vlans = 4096,
1622 		.enabled_ports = 0x1f,
1623 		.arl_entries = 4,
1624 		.cpu_port = B53_CPU_PORT,
1625 		.vta_regs = B53_VTA_REGS,
1626 		.duplex_reg = B53_DUPLEX_STAT_GE,
1627 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1628 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1629 	},
1630 	{
1631 		.chip_id = BCM5397_DEVICE_ID,
1632 		.dev_name = "BCM5397",
1633 		.vlans = 4096,
1634 		.enabled_ports = 0x1f,
1635 		.arl_entries = 4,
1636 		.cpu_port = B53_CPU_PORT,
1637 		.vta_regs = B53_VTA_REGS_9798,
1638 		.duplex_reg = B53_DUPLEX_STAT_GE,
1639 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1640 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1641 	},
1642 	{
1643 		.chip_id = BCM5398_DEVICE_ID,
1644 		.dev_name = "BCM5398",
1645 		.vlans = 4096,
1646 		.enabled_ports = 0x7f,
1647 		.arl_entries = 4,
1648 		.cpu_port = B53_CPU_PORT,
1649 		.vta_regs = B53_VTA_REGS_9798,
1650 		.duplex_reg = B53_DUPLEX_STAT_GE,
1651 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1652 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1653 	},
1654 	{
1655 		.chip_id = BCM53115_DEVICE_ID,
1656 		.dev_name = "BCM53115",
1657 		.vlans = 4096,
1658 		.enabled_ports = 0x1f,
1659 		.arl_entries = 4,
1660 		.vta_regs = B53_VTA_REGS,
1661 		.cpu_port = B53_CPU_PORT,
1662 		.duplex_reg = B53_DUPLEX_STAT_GE,
1663 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1664 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1665 	},
1666 	{
1667 		.chip_id = BCM53125_DEVICE_ID,
1668 		.dev_name = "BCM53125",
1669 		.vlans = 4096,
1670 		.enabled_ports = 0xff,
1671 		.cpu_port = B53_CPU_PORT,
1672 		.vta_regs = B53_VTA_REGS,
1673 		.duplex_reg = B53_DUPLEX_STAT_GE,
1674 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1675 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1676 	},
1677 	{
1678 		.chip_id = BCM53128_DEVICE_ID,
1679 		.dev_name = "BCM53128",
1680 		.vlans = 4096,
1681 		.enabled_ports = 0x1ff,
1682 		.arl_entries = 4,
1683 		.cpu_port = B53_CPU_PORT,
1684 		.vta_regs = B53_VTA_REGS,
1685 		.duplex_reg = B53_DUPLEX_STAT_GE,
1686 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1687 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1688 	},
1689 	{
1690 		.chip_id = BCM63XX_DEVICE_ID,
1691 		.dev_name = "BCM63xx",
1692 		.vlans = 4096,
1693 		.enabled_ports = 0, /* pdata must provide them */
1694 		.arl_entries = 4,
1695 		.cpu_port = B53_CPU_PORT,
1696 		.vta_regs = B53_VTA_REGS_63XX,
1697 		.duplex_reg = B53_DUPLEX_STAT_63XX,
1698 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK_63XX,
1699 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE_63XX,
1700 	},
1701 	{
1702 		.chip_id = BCM53010_DEVICE_ID,
1703 		.dev_name = "BCM53010",
1704 		.vlans = 4096,
1705 		.enabled_ports = 0x1f,
1706 		.arl_entries = 4,
1707 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1708 		.vta_regs = B53_VTA_REGS,
1709 		.duplex_reg = B53_DUPLEX_STAT_GE,
1710 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1711 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1712 	},
1713 	{
1714 		.chip_id = BCM53011_DEVICE_ID,
1715 		.dev_name = "BCM53011",
1716 		.vlans = 4096,
1717 		.enabled_ports = 0x1bf,
1718 		.arl_entries = 4,
1719 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1720 		.vta_regs = B53_VTA_REGS,
1721 		.duplex_reg = B53_DUPLEX_STAT_GE,
1722 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1723 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1724 	},
1725 	{
1726 		.chip_id = BCM53012_DEVICE_ID,
1727 		.dev_name = "BCM53012",
1728 		.vlans = 4096,
1729 		.enabled_ports = 0x1bf,
1730 		.arl_entries = 4,
1731 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1732 		.vta_regs = B53_VTA_REGS,
1733 		.duplex_reg = B53_DUPLEX_STAT_GE,
1734 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1735 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1736 	},
1737 	{
1738 		.chip_id = BCM53018_DEVICE_ID,
1739 		.dev_name = "BCM53018",
1740 		.vlans = 4096,
1741 		.enabled_ports = 0x1f,
1742 		.arl_entries = 4,
1743 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1744 		.vta_regs = B53_VTA_REGS,
1745 		.duplex_reg = B53_DUPLEX_STAT_GE,
1746 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1747 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1748 	},
1749 	{
1750 		.chip_id = BCM53019_DEVICE_ID,
1751 		.dev_name = "BCM53019",
1752 		.vlans = 4096,
1753 		.enabled_ports = 0x1f,
1754 		.arl_entries = 4,
1755 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1756 		.vta_regs = B53_VTA_REGS,
1757 		.duplex_reg = B53_DUPLEX_STAT_GE,
1758 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1759 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1760 	},
1761 	{
1762 		.chip_id = BCM58XX_DEVICE_ID,
1763 		.dev_name = "BCM585xx/586xx/88312",
1764 		.vlans	= 4096,
1765 		.enabled_ports = 0x1ff,
1766 		.arl_entries = 4,
1767 		.cpu_port = B53_CPU_PORT,
1768 		.vta_regs = B53_VTA_REGS,
1769 		.duplex_reg = B53_DUPLEX_STAT_GE,
1770 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1771 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1772 	},
1773 	{
1774 		.chip_id = BCM7445_DEVICE_ID,
1775 		.dev_name = "BCM7445",
1776 		.vlans	= 4096,
1777 		.enabled_ports = 0x1ff,
1778 		.arl_entries = 4,
1779 		.cpu_port = B53_CPU_PORT,
1780 		.vta_regs = B53_VTA_REGS,
1781 		.duplex_reg = B53_DUPLEX_STAT_GE,
1782 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1783 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1784 	},
1785 	{
1786 		.chip_id = BCM7278_DEVICE_ID,
1787 		.dev_name = "BCM7278",
1788 		.vlans = 4096,
1789 		.enabled_ports = 0x1ff,
1790 		.arl_entries= 4,
1791 		.cpu_port = B53_CPU_PORT,
1792 		.vta_regs = B53_VTA_REGS,
1793 		.duplex_reg = B53_DUPLEX_STAT_GE,
1794 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1795 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1796 	},
1797 };
1798 
1799 static int b53_switch_init(struct b53_device *dev)
1800 {
1801 	unsigned int i;
1802 	int ret;
1803 
1804 	for (i = 0; i < ARRAY_SIZE(b53_switch_chips); i++) {
1805 		const struct b53_chip_data *chip = &b53_switch_chips[i];
1806 
1807 		if (chip->chip_id == dev->chip_id) {
1808 			if (!dev->enabled_ports)
1809 				dev->enabled_ports = chip->enabled_ports;
1810 			dev->name = chip->dev_name;
1811 			dev->duplex_reg = chip->duplex_reg;
1812 			dev->vta_regs[0] = chip->vta_regs[0];
1813 			dev->vta_regs[1] = chip->vta_regs[1];
1814 			dev->vta_regs[2] = chip->vta_regs[2];
1815 			dev->jumbo_pm_reg = chip->jumbo_pm_reg;
1816 			dev->cpu_port = chip->cpu_port;
1817 			dev->num_vlans = chip->vlans;
1818 			dev->num_arl_entries = chip->arl_entries;
1819 			break;
1820 		}
1821 	}
1822 
1823 	/* check which BCM5325x version we have */
1824 	if (is5325(dev)) {
1825 		u8 vc4;
1826 
1827 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
1828 
1829 		/* check reserved bits */
1830 		switch (vc4 & 3) {
1831 		case 1:
1832 			/* BCM5325E */
1833 			break;
1834 		case 3:
1835 			/* BCM5325F - do not use port 4 */
1836 			dev->enabled_ports &= ~BIT(4);
1837 			break;
1838 		default:
1839 /* On the BCM47XX SoCs this is the supported internal switch.*/
1840 #ifndef CONFIG_BCM47XX
1841 			/* BCM5325M */
1842 			return -EINVAL;
1843 #else
1844 			break;
1845 #endif
1846 		}
1847 	} else if (dev->chip_id == BCM53115_DEVICE_ID) {
1848 		u64 strap_value;
1849 
1850 		b53_read48(dev, B53_STAT_PAGE, B53_STRAP_VALUE, &strap_value);
1851 		/* use second IMP port if GMII is enabled */
1852 		if (strap_value & SV_GMII_CTRL_115)
1853 			dev->cpu_port = 5;
1854 	}
1855 
1856 	/* cpu port is always last */
1857 	dev->num_ports = dev->cpu_port + 1;
1858 	dev->enabled_ports |= BIT(dev->cpu_port);
1859 
1860 	dev->ports = devm_kzalloc(dev->dev,
1861 				  sizeof(struct b53_port) * dev->num_ports,
1862 				  GFP_KERNEL);
1863 	if (!dev->ports)
1864 		return -ENOMEM;
1865 
1866 	dev->vlans = devm_kzalloc(dev->dev,
1867 				  sizeof(struct b53_vlan) * dev->num_vlans,
1868 				  GFP_KERNEL);
1869 	if (!dev->vlans)
1870 		return -ENOMEM;
1871 
1872 	dev->reset_gpio = b53_switch_get_reset_gpio(dev);
1873 	if (dev->reset_gpio >= 0) {
1874 		ret = devm_gpio_request_one(dev->dev, dev->reset_gpio,
1875 					    GPIOF_OUT_INIT_HIGH, "robo_reset");
1876 		if (ret)
1877 			return ret;
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 struct b53_device *b53_switch_alloc(struct device *base,
1884 				    const struct b53_io_ops *ops,
1885 				    void *priv)
1886 {
1887 	struct dsa_switch *ds;
1888 	struct b53_device *dev;
1889 
1890 	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1891 	if (!ds)
1892 		return NULL;
1893 
1894 	dev = devm_kzalloc(base, sizeof(*dev), GFP_KERNEL);
1895 	if (!dev)
1896 		return NULL;
1897 
1898 	ds->priv = dev;
1899 	dev->dev = base;
1900 
1901 	dev->ds = ds;
1902 	dev->priv = priv;
1903 	dev->ops = ops;
1904 	ds->ops = &b53_switch_ops;
1905 	mutex_init(&dev->reg_mutex);
1906 	mutex_init(&dev->stats_mutex);
1907 
1908 	return dev;
1909 }
1910 EXPORT_SYMBOL(b53_switch_alloc);
1911 
1912 int b53_switch_detect(struct b53_device *dev)
1913 {
1914 	u32 id32;
1915 	u16 tmp;
1916 	u8 id8;
1917 	int ret;
1918 
1919 	ret = b53_read8(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id8);
1920 	if (ret)
1921 		return ret;
1922 
1923 	switch (id8) {
1924 	case 0:
1925 		/* BCM5325 and BCM5365 do not have this register so reads
1926 		 * return 0. But the read operation did succeed, so assume this
1927 		 * is one of them.
1928 		 *
1929 		 * Next check if we can write to the 5325's VTA register; for
1930 		 * 5365 it is read only.
1931 		 */
1932 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, 0xf);
1933 		b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, &tmp);
1934 
1935 		if (tmp == 0xf)
1936 			dev->chip_id = BCM5325_DEVICE_ID;
1937 		else
1938 			dev->chip_id = BCM5365_DEVICE_ID;
1939 		break;
1940 	case BCM5395_DEVICE_ID:
1941 	case BCM5397_DEVICE_ID:
1942 	case BCM5398_DEVICE_ID:
1943 		dev->chip_id = id8;
1944 		break;
1945 	default:
1946 		ret = b53_read32(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id32);
1947 		if (ret)
1948 			return ret;
1949 
1950 		switch (id32) {
1951 		case BCM53115_DEVICE_ID:
1952 		case BCM53125_DEVICE_ID:
1953 		case BCM53128_DEVICE_ID:
1954 		case BCM53010_DEVICE_ID:
1955 		case BCM53011_DEVICE_ID:
1956 		case BCM53012_DEVICE_ID:
1957 		case BCM53018_DEVICE_ID:
1958 		case BCM53019_DEVICE_ID:
1959 			dev->chip_id = id32;
1960 			break;
1961 		default:
1962 			pr_err("unsupported switch detected (BCM53%02x/BCM%x)\n",
1963 			       id8, id32);
1964 			return -ENODEV;
1965 		}
1966 	}
1967 
1968 	if (dev->chip_id == BCM5325_DEVICE_ID)
1969 		return b53_read8(dev, B53_STAT_PAGE, B53_REV_ID_25,
1970 				 &dev->core_rev);
1971 	else
1972 		return b53_read8(dev, B53_MGMT_PAGE, B53_REV_ID,
1973 				 &dev->core_rev);
1974 }
1975 EXPORT_SYMBOL(b53_switch_detect);
1976 
1977 int b53_switch_register(struct b53_device *dev)
1978 {
1979 	int ret;
1980 
1981 	if (dev->pdata) {
1982 		dev->chip_id = dev->pdata->chip_id;
1983 		dev->enabled_ports = dev->pdata->enabled_ports;
1984 	}
1985 
1986 	if (!dev->chip_id && b53_switch_detect(dev))
1987 		return -EINVAL;
1988 
1989 	ret = b53_switch_init(dev);
1990 	if (ret)
1991 		return ret;
1992 
1993 	pr_info("found switch: %s, rev %i\n", dev->name, dev->core_rev);
1994 
1995 	return dsa_register_switch(dev->ds, dev->ds->dev);
1996 }
1997 EXPORT_SYMBOL(b53_switch_register);
1998 
1999 MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
2000 MODULE_DESCRIPTION("B53 switch library");
2001 MODULE_LICENSE("Dual BSD/GPL");
2002