xref: /openbmc/linux/drivers/net/dsa/b53/b53_common.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * B53 switch driver main logic
3  *
4  * Copyright (C) 2011-2013 Jonas Gorski <jogo@openwrt.org>
5  * Copyright (C) 2016 Florian Fainelli <f.fainelli@gmail.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/delay.h>
23 #include <linux/export.h>
24 #include <linux/gpio.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/platform_data/b53.h>
28 #include <linux/phy.h>
29 #include <linux/etherdevice.h>
30 #include <linux/if_bridge.h>
31 #include <net/dsa.h>
32 
33 #include "b53_regs.h"
34 #include "b53_priv.h"
35 
36 struct b53_mib_desc {
37 	u8 size;
38 	u8 offset;
39 	const char *name;
40 };
41 
42 /* BCM5365 MIB counters */
43 static const struct b53_mib_desc b53_mibs_65[] = {
44 	{ 8, 0x00, "TxOctets" },
45 	{ 4, 0x08, "TxDropPkts" },
46 	{ 4, 0x10, "TxBroadcastPkts" },
47 	{ 4, 0x14, "TxMulticastPkts" },
48 	{ 4, 0x18, "TxUnicastPkts" },
49 	{ 4, 0x1c, "TxCollisions" },
50 	{ 4, 0x20, "TxSingleCollision" },
51 	{ 4, 0x24, "TxMultipleCollision" },
52 	{ 4, 0x28, "TxDeferredTransmit" },
53 	{ 4, 0x2c, "TxLateCollision" },
54 	{ 4, 0x30, "TxExcessiveCollision" },
55 	{ 4, 0x38, "TxPausePkts" },
56 	{ 8, 0x44, "RxOctets" },
57 	{ 4, 0x4c, "RxUndersizePkts" },
58 	{ 4, 0x50, "RxPausePkts" },
59 	{ 4, 0x54, "Pkts64Octets" },
60 	{ 4, 0x58, "Pkts65to127Octets" },
61 	{ 4, 0x5c, "Pkts128to255Octets" },
62 	{ 4, 0x60, "Pkts256to511Octets" },
63 	{ 4, 0x64, "Pkts512to1023Octets" },
64 	{ 4, 0x68, "Pkts1024to1522Octets" },
65 	{ 4, 0x6c, "RxOversizePkts" },
66 	{ 4, 0x70, "RxJabbers" },
67 	{ 4, 0x74, "RxAlignmentErrors" },
68 	{ 4, 0x78, "RxFCSErrors" },
69 	{ 8, 0x7c, "RxGoodOctets" },
70 	{ 4, 0x84, "RxDropPkts" },
71 	{ 4, 0x88, "RxUnicastPkts" },
72 	{ 4, 0x8c, "RxMulticastPkts" },
73 	{ 4, 0x90, "RxBroadcastPkts" },
74 	{ 4, 0x94, "RxSAChanges" },
75 	{ 4, 0x98, "RxFragments" },
76 };
77 
78 #define B53_MIBS_65_SIZE	ARRAY_SIZE(b53_mibs_65)
79 
80 /* BCM63xx MIB counters */
81 static const struct b53_mib_desc b53_mibs_63xx[] = {
82 	{ 8, 0x00, "TxOctets" },
83 	{ 4, 0x08, "TxDropPkts" },
84 	{ 4, 0x0c, "TxQoSPkts" },
85 	{ 4, 0x10, "TxBroadcastPkts" },
86 	{ 4, 0x14, "TxMulticastPkts" },
87 	{ 4, 0x18, "TxUnicastPkts" },
88 	{ 4, 0x1c, "TxCollisions" },
89 	{ 4, 0x20, "TxSingleCollision" },
90 	{ 4, 0x24, "TxMultipleCollision" },
91 	{ 4, 0x28, "TxDeferredTransmit" },
92 	{ 4, 0x2c, "TxLateCollision" },
93 	{ 4, 0x30, "TxExcessiveCollision" },
94 	{ 4, 0x38, "TxPausePkts" },
95 	{ 8, 0x3c, "TxQoSOctets" },
96 	{ 8, 0x44, "RxOctets" },
97 	{ 4, 0x4c, "RxUndersizePkts" },
98 	{ 4, 0x50, "RxPausePkts" },
99 	{ 4, 0x54, "Pkts64Octets" },
100 	{ 4, 0x58, "Pkts65to127Octets" },
101 	{ 4, 0x5c, "Pkts128to255Octets" },
102 	{ 4, 0x60, "Pkts256to511Octets" },
103 	{ 4, 0x64, "Pkts512to1023Octets" },
104 	{ 4, 0x68, "Pkts1024to1522Octets" },
105 	{ 4, 0x6c, "RxOversizePkts" },
106 	{ 4, 0x70, "RxJabbers" },
107 	{ 4, 0x74, "RxAlignmentErrors" },
108 	{ 4, 0x78, "RxFCSErrors" },
109 	{ 8, 0x7c, "RxGoodOctets" },
110 	{ 4, 0x84, "RxDropPkts" },
111 	{ 4, 0x88, "RxUnicastPkts" },
112 	{ 4, 0x8c, "RxMulticastPkts" },
113 	{ 4, 0x90, "RxBroadcastPkts" },
114 	{ 4, 0x94, "RxSAChanges" },
115 	{ 4, 0x98, "RxFragments" },
116 	{ 4, 0xa0, "RxSymbolErrors" },
117 	{ 4, 0xa4, "RxQoSPkts" },
118 	{ 8, 0xa8, "RxQoSOctets" },
119 	{ 4, 0xb0, "Pkts1523to2047Octets" },
120 	{ 4, 0xb4, "Pkts2048to4095Octets" },
121 	{ 4, 0xb8, "Pkts4096to8191Octets" },
122 	{ 4, 0xbc, "Pkts8192to9728Octets" },
123 	{ 4, 0xc0, "RxDiscarded" },
124 };
125 
126 #define B53_MIBS_63XX_SIZE	ARRAY_SIZE(b53_mibs_63xx)
127 
128 /* MIB counters */
129 static const struct b53_mib_desc b53_mibs[] = {
130 	{ 8, 0x00, "TxOctets" },
131 	{ 4, 0x08, "TxDropPkts" },
132 	{ 4, 0x10, "TxBroadcastPkts" },
133 	{ 4, 0x14, "TxMulticastPkts" },
134 	{ 4, 0x18, "TxUnicastPkts" },
135 	{ 4, 0x1c, "TxCollisions" },
136 	{ 4, 0x20, "TxSingleCollision" },
137 	{ 4, 0x24, "TxMultipleCollision" },
138 	{ 4, 0x28, "TxDeferredTransmit" },
139 	{ 4, 0x2c, "TxLateCollision" },
140 	{ 4, 0x30, "TxExcessiveCollision" },
141 	{ 4, 0x38, "TxPausePkts" },
142 	{ 8, 0x50, "RxOctets" },
143 	{ 4, 0x58, "RxUndersizePkts" },
144 	{ 4, 0x5c, "RxPausePkts" },
145 	{ 4, 0x60, "Pkts64Octets" },
146 	{ 4, 0x64, "Pkts65to127Octets" },
147 	{ 4, 0x68, "Pkts128to255Octets" },
148 	{ 4, 0x6c, "Pkts256to511Octets" },
149 	{ 4, 0x70, "Pkts512to1023Octets" },
150 	{ 4, 0x74, "Pkts1024to1522Octets" },
151 	{ 4, 0x78, "RxOversizePkts" },
152 	{ 4, 0x7c, "RxJabbers" },
153 	{ 4, 0x80, "RxAlignmentErrors" },
154 	{ 4, 0x84, "RxFCSErrors" },
155 	{ 8, 0x88, "RxGoodOctets" },
156 	{ 4, 0x90, "RxDropPkts" },
157 	{ 4, 0x94, "RxUnicastPkts" },
158 	{ 4, 0x98, "RxMulticastPkts" },
159 	{ 4, 0x9c, "RxBroadcastPkts" },
160 	{ 4, 0xa0, "RxSAChanges" },
161 	{ 4, 0xa4, "RxFragments" },
162 	{ 4, 0xa8, "RxJumboPkts" },
163 	{ 4, 0xac, "RxSymbolErrors" },
164 	{ 4, 0xc0, "RxDiscarded" },
165 };
166 
167 #define B53_MIBS_SIZE	ARRAY_SIZE(b53_mibs)
168 
169 static const struct b53_mib_desc b53_mibs_58xx[] = {
170 	{ 8, 0x00, "TxOctets" },
171 	{ 4, 0x08, "TxDropPkts" },
172 	{ 4, 0x0c, "TxQPKTQ0" },
173 	{ 4, 0x10, "TxBroadcastPkts" },
174 	{ 4, 0x14, "TxMulticastPkts" },
175 	{ 4, 0x18, "TxUnicastPKts" },
176 	{ 4, 0x1c, "TxCollisions" },
177 	{ 4, 0x20, "TxSingleCollision" },
178 	{ 4, 0x24, "TxMultipleCollision" },
179 	{ 4, 0x28, "TxDeferredCollision" },
180 	{ 4, 0x2c, "TxLateCollision" },
181 	{ 4, 0x30, "TxExcessiveCollision" },
182 	{ 4, 0x34, "TxFrameInDisc" },
183 	{ 4, 0x38, "TxPausePkts" },
184 	{ 4, 0x3c, "TxQPKTQ1" },
185 	{ 4, 0x40, "TxQPKTQ2" },
186 	{ 4, 0x44, "TxQPKTQ3" },
187 	{ 4, 0x48, "TxQPKTQ4" },
188 	{ 4, 0x4c, "TxQPKTQ5" },
189 	{ 8, 0x50, "RxOctets" },
190 	{ 4, 0x58, "RxUndersizePkts" },
191 	{ 4, 0x5c, "RxPausePkts" },
192 	{ 4, 0x60, "RxPkts64Octets" },
193 	{ 4, 0x64, "RxPkts65to127Octets" },
194 	{ 4, 0x68, "RxPkts128to255Octets" },
195 	{ 4, 0x6c, "RxPkts256to511Octets" },
196 	{ 4, 0x70, "RxPkts512to1023Octets" },
197 	{ 4, 0x74, "RxPkts1024toMaxPktsOctets" },
198 	{ 4, 0x78, "RxOversizePkts" },
199 	{ 4, 0x7c, "RxJabbers" },
200 	{ 4, 0x80, "RxAlignmentErrors" },
201 	{ 4, 0x84, "RxFCSErrors" },
202 	{ 8, 0x88, "RxGoodOctets" },
203 	{ 4, 0x90, "RxDropPkts" },
204 	{ 4, 0x94, "RxUnicastPkts" },
205 	{ 4, 0x98, "RxMulticastPkts" },
206 	{ 4, 0x9c, "RxBroadcastPkts" },
207 	{ 4, 0xa0, "RxSAChanges" },
208 	{ 4, 0xa4, "RxFragments" },
209 	{ 4, 0xa8, "RxJumboPkt" },
210 	{ 4, 0xac, "RxSymblErr" },
211 	{ 4, 0xb0, "InRangeErrCount" },
212 	{ 4, 0xb4, "OutRangeErrCount" },
213 	{ 4, 0xb8, "EEELpiEvent" },
214 	{ 4, 0xbc, "EEELpiDuration" },
215 	{ 4, 0xc0, "RxDiscard" },
216 	{ 4, 0xc8, "TxQPKTQ6" },
217 	{ 4, 0xcc, "TxQPKTQ7" },
218 	{ 4, 0xd0, "TxPkts64Octets" },
219 	{ 4, 0xd4, "TxPkts65to127Octets" },
220 	{ 4, 0xd8, "TxPkts128to255Octets" },
221 	{ 4, 0xdc, "TxPkts256to511Ocets" },
222 	{ 4, 0xe0, "TxPkts512to1023Ocets" },
223 	{ 4, 0xe4, "TxPkts1024toMaxPktOcets" },
224 };
225 
226 #define B53_MIBS_58XX_SIZE	ARRAY_SIZE(b53_mibs_58xx)
227 
228 static int b53_do_vlan_op(struct b53_device *dev, u8 op)
229 {
230 	unsigned int i;
231 
232 	b53_write8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], VTA_START_CMD | op);
233 
234 	for (i = 0; i < 10; i++) {
235 		u8 vta;
236 
237 		b53_read8(dev, B53_ARLIO_PAGE, dev->vta_regs[0], &vta);
238 		if (!(vta & VTA_START_CMD))
239 			return 0;
240 
241 		usleep_range(100, 200);
242 	}
243 
244 	return -EIO;
245 }
246 
247 static void b53_set_vlan_entry(struct b53_device *dev, u16 vid,
248 			       struct b53_vlan *vlan)
249 {
250 	if (is5325(dev)) {
251 		u32 entry = 0;
252 
253 		if (vlan->members) {
254 			entry = ((vlan->untag & VA_UNTAG_MASK_25) <<
255 				 VA_UNTAG_S_25) | vlan->members;
256 			if (dev->core_rev >= 3)
257 				entry |= VA_VALID_25_R4 | vid << VA_VID_HIGH_S;
258 			else
259 				entry |= VA_VALID_25;
260 		}
261 
262 		b53_write32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, entry);
263 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
264 			    VTA_RW_STATE_WR | VTA_RW_OP_EN);
265 	} else if (is5365(dev)) {
266 		u16 entry = 0;
267 
268 		if (vlan->members)
269 			entry = ((vlan->untag & VA_UNTAG_MASK_65) <<
270 				 VA_UNTAG_S_65) | vlan->members | VA_VALID_65;
271 
272 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, entry);
273 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
274 			    VTA_RW_STATE_WR | VTA_RW_OP_EN);
275 	} else {
276 		b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
277 		b53_write32(dev, B53_ARLIO_PAGE, dev->vta_regs[2],
278 			    (vlan->untag << VTE_UNTAG_S) | vlan->members);
279 
280 		b53_do_vlan_op(dev, VTA_CMD_WRITE);
281 	}
282 
283 	dev_dbg(dev->ds->dev, "VID: %d, members: 0x%04x, untag: 0x%04x\n",
284 		vid, vlan->members, vlan->untag);
285 }
286 
287 static void b53_get_vlan_entry(struct b53_device *dev, u16 vid,
288 			       struct b53_vlan *vlan)
289 {
290 	if (is5325(dev)) {
291 		u32 entry = 0;
292 
293 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, vid |
294 			    VTA_RW_STATE_RD | VTA_RW_OP_EN);
295 		b53_read32(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_25, &entry);
296 
297 		if (dev->core_rev >= 3)
298 			vlan->valid = !!(entry & VA_VALID_25_R4);
299 		else
300 			vlan->valid = !!(entry & VA_VALID_25);
301 		vlan->members = entry & VA_MEMBER_MASK;
302 		vlan->untag = (entry >> VA_UNTAG_S_25) & VA_UNTAG_MASK_25;
303 
304 	} else if (is5365(dev)) {
305 		u16 entry = 0;
306 
307 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_65, vid |
308 			    VTA_RW_STATE_WR | VTA_RW_OP_EN);
309 		b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_WRITE_65, &entry);
310 
311 		vlan->valid = !!(entry & VA_VALID_65);
312 		vlan->members = entry & VA_MEMBER_MASK;
313 		vlan->untag = (entry >> VA_UNTAG_S_65) & VA_UNTAG_MASK_65;
314 	} else {
315 		u32 entry = 0;
316 
317 		b53_write16(dev, B53_ARLIO_PAGE, dev->vta_regs[1], vid);
318 		b53_do_vlan_op(dev, VTA_CMD_READ);
319 		b53_read32(dev, B53_ARLIO_PAGE, dev->vta_regs[2], &entry);
320 		vlan->members = entry & VTE_MEMBERS;
321 		vlan->untag = (entry >> VTE_UNTAG_S) & VTE_MEMBERS;
322 		vlan->valid = true;
323 	}
324 }
325 
326 static void b53_set_forwarding(struct b53_device *dev, int enable)
327 {
328 	struct dsa_switch *ds = dev->ds;
329 	u8 mgmt;
330 
331 	b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
332 
333 	if (enable)
334 		mgmt |= SM_SW_FWD_EN;
335 	else
336 		mgmt &= ~SM_SW_FWD_EN;
337 
338 	b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
339 
340 	/* Include IMP port in dumb forwarding mode when no tagging protocol is
341 	 * set
342 	 */
343 	if (ds->ops->get_tag_protocol(ds) == DSA_TAG_PROTO_NONE) {
344 		b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, &mgmt);
345 		mgmt |= B53_MII_DUMB_FWDG_EN;
346 		b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_CTRL, mgmt);
347 	}
348 }
349 
350 static void b53_enable_vlan(struct b53_device *dev, bool enable)
351 {
352 	u8 mgmt, vc0, vc1, vc4 = 0, vc5;
353 
354 	b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
355 	b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, &vc0);
356 	b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, &vc1);
357 
358 	if (is5325(dev) || is5365(dev)) {
359 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
360 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, &vc5);
361 	} else if (is63xx(dev)) {
362 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, &vc4);
363 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, &vc5);
364 	} else {
365 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, &vc4);
366 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, &vc5);
367 	}
368 
369 	mgmt &= ~SM_SW_FWD_MODE;
370 
371 	if (enable) {
372 		vc0 |= VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID;
373 		vc1 |= VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN;
374 		vc4 &= ~VC4_ING_VID_CHECK_MASK;
375 		vc4 |= VC4_ING_VID_VIO_DROP << VC4_ING_VID_CHECK_S;
376 		vc5 |= VC5_DROP_VTABLE_MISS;
377 
378 		if (is5325(dev))
379 			vc0 &= ~VC0_RESERVED_1;
380 
381 		if (is5325(dev) || is5365(dev))
382 			vc1 |= VC1_RX_MCST_TAG_EN;
383 
384 	} else {
385 		vc0 &= ~(VC0_VLAN_EN | VC0_VID_CHK_EN | VC0_VID_HASH_VID);
386 		vc1 &= ~(VC1_RX_MCST_UNTAG_EN | VC1_RX_MCST_FWD_EN);
387 		vc4 &= ~VC4_ING_VID_CHECK_MASK;
388 		vc5 &= ~VC5_DROP_VTABLE_MISS;
389 
390 		if (is5325(dev) || is5365(dev))
391 			vc4 |= VC4_ING_VID_VIO_FWD << VC4_ING_VID_CHECK_S;
392 		else
393 			vc4 |= VC4_ING_VID_VIO_TO_IMP << VC4_ING_VID_CHECK_S;
394 
395 		if (is5325(dev) || is5365(dev))
396 			vc1 &= ~VC1_RX_MCST_TAG_EN;
397 	}
398 
399 	if (!is5325(dev) && !is5365(dev))
400 		vc5 &= ~VC5_VID_FFF_EN;
401 
402 	b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL0, vc0);
403 	b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL1, vc1);
404 
405 	if (is5325(dev) || is5365(dev)) {
406 		/* enable the high 8 bit vid check on 5325 */
407 		if (is5325(dev) && enable)
408 			b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3,
409 				   VC3_HIGH_8BIT_EN);
410 		else
411 			b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
412 
413 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, vc4);
414 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_25, vc5);
415 	} else if (is63xx(dev)) {
416 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3_63XX, 0);
417 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_63XX, vc4);
418 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5_63XX, vc5);
419 	} else {
420 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_CTRL3, 0);
421 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4, vc4);
422 		b53_write8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL5, vc5);
423 	}
424 
425 	b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
426 }
427 
428 static int b53_set_jumbo(struct b53_device *dev, bool enable, bool allow_10_100)
429 {
430 	u32 port_mask = 0;
431 	u16 max_size = JMS_MIN_SIZE;
432 
433 	if (is5325(dev) || is5365(dev))
434 		return -EINVAL;
435 
436 	if (enable) {
437 		port_mask = dev->enabled_ports;
438 		max_size = JMS_MAX_SIZE;
439 		if (allow_10_100)
440 			port_mask |= JPM_10_100_JUMBO_EN;
441 	}
442 
443 	b53_write32(dev, B53_JUMBO_PAGE, dev->jumbo_pm_reg, port_mask);
444 	return b53_write16(dev, B53_JUMBO_PAGE, dev->jumbo_size_reg, max_size);
445 }
446 
447 static int b53_flush_arl(struct b53_device *dev, u8 mask)
448 {
449 	unsigned int i;
450 
451 	b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
452 		   FAST_AGE_DONE | FAST_AGE_DYNAMIC | mask);
453 
454 	for (i = 0; i < 10; i++) {
455 		u8 fast_age_ctrl;
456 
457 		b53_read8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL,
458 			  &fast_age_ctrl);
459 
460 		if (!(fast_age_ctrl & FAST_AGE_DONE))
461 			goto out;
462 
463 		msleep(1);
464 	}
465 
466 	return -ETIMEDOUT;
467 out:
468 	/* Only age dynamic entries (default behavior) */
469 	b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_CTRL, FAST_AGE_DYNAMIC);
470 	return 0;
471 }
472 
473 static int b53_fast_age_port(struct b53_device *dev, int port)
474 {
475 	b53_write8(dev, B53_CTRL_PAGE, B53_FAST_AGE_PORT_CTRL, port);
476 
477 	return b53_flush_arl(dev, FAST_AGE_PORT);
478 }
479 
480 static int b53_fast_age_vlan(struct b53_device *dev, u16 vid)
481 {
482 	b53_write16(dev, B53_CTRL_PAGE, B53_FAST_AGE_VID_CTRL, vid);
483 
484 	return b53_flush_arl(dev, FAST_AGE_VLAN);
485 }
486 
487 static void b53_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
488 {
489 	struct b53_device *dev = ds->priv;
490 	unsigned int i;
491 	u16 pvlan;
492 
493 	/* Enable the IMP port to be in the same VLAN as the other ports
494 	 * on a per-port basis such that we only have Port i and IMP in
495 	 * the same VLAN.
496 	 */
497 	b53_for_each_port(dev, i) {
498 		b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &pvlan);
499 		pvlan |= BIT(cpu_port);
500 		b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), pvlan);
501 	}
502 }
503 
504 static int b53_enable_port(struct dsa_switch *ds, int port,
505 			   struct phy_device *phy)
506 {
507 	struct b53_device *dev = ds->priv;
508 	unsigned int cpu_port = dev->cpu_port;
509 	u16 pvlan;
510 
511 	/* Clear the Rx and Tx disable bits and set to no spanning tree */
512 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), 0);
513 
514 	/* Set this port, and only this one to be in the default VLAN,
515 	 * if member of a bridge, restore its membership prior to
516 	 * bringing down this port.
517 	 */
518 	b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
519 	pvlan &= ~0x1ff;
520 	pvlan |= BIT(port);
521 	pvlan |= dev->ports[port].vlan_ctl_mask;
522 	b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
523 
524 	b53_imp_vlan_setup(ds, cpu_port);
525 
526 	return 0;
527 }
528 
529 static void b53_disable_port(struct dsa_switch *ds, int port,
530 			     struct phy_device *phy)
531 {
532 	struct b53_device *dev = ds->priv;
533 	u8 reg;
534 
535 	/* Disable Tx/Rx for the port */
536 	b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
537 	reg |= PORT_CTRL_RX_DISABLE | PORT_CTRL_TX_DISABLE;
538 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
539 }
540 
541 static void b53_enable_cpu_port(struct b53_device *dev)
542 {
543 	unsigned int cpu_port = dev->cpu_port;
544 	u8 port_ctrl;
545 
546 	/* BCM5325 CPU port is at 8 */
547 	if ((is5325(dev) || is5365(dev)) && cpu_port == B53_CPU_PORT_25)
548 		cpu_port = B53_CPU_PORT;
549 
550 	port_ctrl = PORT_CTRL_RX_BCST_EN |
551 		    PORT_CTRL_RX_MCST_EN |
552 		    PORT_CTRL_RX_UCST_EN;
553 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(cpu_port), port_ctrl);
554 }
555 
556 static void b53_enable_mib(struct b53_device *dev)
557 {
558 	u8 gc;
559 
560 	b53_read8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
561 	gc &= ~(GC_RESET_MIB | GC_MIB_AC_EN);
562 	b53_write8(dev, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc);
563 }
564 
565 static int b53_configure_vlan(struct b53_device *dev)
566 {
567 	struct b53_vlan vl = { 0 };
568 	int i;
569 
570 	/* clear all vlan entries */
571 	if (is5325(dev) || is5365(dev)) {
572 		for (i = 1; i < dev->num_vlans; i++)
573 			b53_set_vlan_entry(dev, i, &vl);
574 	} else {
575 		b53_do_vlan_op(dev, VTA_CMD_CLEAR);
576 	}
577 
578 	b53_enable_vlan(dev, false);
579 
580 	b53_for_each_port(dev, i)
581 		b53_write16(dev, B53_VLAN_PAGE,
582 			    B53_VLAN_PORT_DEF_TAG(i), 1);
583 
584 	if (!is5325(dev) && !is5365(dev))
585 		b53_set_jumbo(dev, dev->enable_jumbo, false);
586 
587 	return 0;
588 }
589 
590 static void b53_switch_reset_gpio(struct b53_device *dev)
591 {
592 	int gpio = dev->reset_gpio;
593 
594 	if (gpio < 0)
595 		return;
596 
597 	/* Reset sequence: RESET low(50ms)->high(20ms)
598 	 */
599 	gpio_set_value(gpio, 0);
600 	mdelay(50);
601 
602 	gpio_set_value(gpio, 1);
603 	mdelay(20);
604 
605 	dev->current_page = 0xff;
606 }
607 
608 static int b53_switch_reset(struct b53_device *dev)
609 {
610 	unsigned int timeout = 1000;
611 	u8 mgmt, reg;
612 
613 	b53_switch_reset_gpio(dev);
614 
615 	if (is539x(dev)) {
616 		b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x83);
617 		b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, 0x00);
618 	}
619 
620 	/* This is specific to 58xx devices here, do not use is58xx() which
621 	 * covers the larger Starfigther 2 family, including 7445/7278 which
622 	 * still use this driver as a library and need to perform the reset
623 	 * earlier.
624 	 */
625 	if (dev->chip_id == BCM58XX_DEVICE_ID) {
626 		b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
627 		reg |= SW_RST | EN_SW_RST | EN_CH_RST;
628 		b53_write8(dev, B53_CTRL_PAGE, B53_SOFTRESET, reg);
629 
630 		do {
631 			b53_read8(dev, B53_CTRL_PAGE, B53_SOFTRESET, &reg);
632 			if (!(reg & SW_RST))
633 				break;
634 
635 			usleep_range(1000, 2000);
636 		} while (timeout-- > 0);
637 
638 		if (timeout == 0)
639 			return -ETIMEDOUT;
640 	}
641 
642 	b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
643 
644 	if (!(mgmt & SM_SW_FWD_EN)) {
645 		mgmt &= ~SM_SW_FWD_MODE;
646 		mgmt |= SM_SW_FWD_EN;
647 
648 		b53_write8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, mgmt);
649 		b53_read8(dev, B53_CTRL_PAGE, B53_SWITCH_MODE, &mgmt);
650 
651 		if (!(mgmt & SM_SW_FWD_EN)) {
652 			dev_err(dev->dev, "Failed to enable switch!\n");
653 			return -EINVAL;
654 		}
655 	}
656 
657 	b53_enable_mib(dev);
658 
659 	return b53_flush_arl(dev, FAST_AGE_STATIC);
660 }
661 
662 static int b53_phy_read16(struct dsa_switch *ds, int addr, int reg)
663 {
664 	struct b53_device *priv = ds->priv;
665 	u16 value = 0;
666 	int ret;
667 
668 	if (priv->ops->phy_read16)
669 		ret = priv->ops->phy_read16(priv, addr, reg, &value);
670 	else
671 		ret = b53_read16(priv, B53_PORT_MII_PAGE(addr),
672 				 reg * 2, &value);
673 
674 	return ret ? ret : value;
675 }
676 
677 static int b53_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
678 {
679 	struct b53_device *priv = ds->priv;
680 
681 	if (priv->ops->phy_write16)
682 		return priv->ops->phy_write16(priv, addr, reg, val);
683 
684 	return b53_write16(priv, B53_PORT_MII_PAGE(addr), reg * 2, val);
685 }
686 
687 static int b53_reset_switch(struct b53_device *priv)
688 {
689 	/* reset vlans */
690 	priv->enable_jumbo = false;
691 
692 	memset(priv->vlans, 0, sizeof(*priv->vlans) * priv->num_vlans);
693 	memset(priv->ports, 0, sizeof(*priv->ports) * priv->num_ports);
694 
695 	return b53_switch_reset(priv);
696 }
697 
698 static int b53_apply_config(struct b53_device *priv)
699 {
700 	/* disable switching */
701 	b53_set_forwarding(priv, 0);
702 
703 	b53_configure_vlan(priv);
704 
705 	/* enable switching */
706 	b53_set_forwarding(priv, 1);
707 
708 	return 0;
709 }
710 
711 static void b53_reset_mib(struct b53_device *priv)
712 {
713 	u8 gc;
714 
715 	b53_read8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, &gc);
716 
717 	b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc | GC_RESET_MIB);
718 	msleep(1);
719 	b53_write8(priv, B53_MGMT_PAGE, B53_GLOBAL_CONFIG, gc & ~GC_RESET_MIB);
720 	msleep(1);
721 }
722 
723 static const struct b53_mib_desc *b53_get_mib(struct b53_device *dev)
724 {
725 	if (is5365(dev))
726 		return b53_mibs_65;
727 	else if (is63xx(dev))
728 		return b53_mibs_63xx;
729 	else if (is58xx(dev))
730 		return b53_mibs_58xx;
731 	else
732 		return b53_mibs;
733 }
734 
735 static unsigned int b53_get_mib_size(struct b53_device *dev)
736 {
737 	if (is5365(dev))
738 		return B53_MIBS_65_SIZE;
739 	else if (is63xx(dev))
740 		return B53_MIBS_63XX_SIZE;
741 	else if (is58xx(dev))
742 		return B53_MIBS_58XX_SIZE;
743 	else
744 		return B53_MIBS_SIZE;
745 }
746 
747 void b53_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
748 {
749 	struct b53_device *dev = ds->priv;
750 	const struct b53_mib_desc *mibs = b53_get_mib(dev);
751 	unsigned int mib_size = b53_get_mib_size(dev);
752 	unsigned int i;
753 
754 	for (i = 0; i < mib_size; i++)
755 		memcpy(data + i * ETH_GSTRING_LEN,
756 		       mibs[i].name, ETH_GSTRING_LEN);
757 }
758 EXPORT_SYMBOL(b53_get_strings);
759 
760 void b53_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data)
761 {
762 	struct b53_device *dev = ds->priv;
763 	const struct b53_mib_desc *mibs = b53_get_mib(dev);
764 	unsigned int mib_size = b53_get_mib_size(dev);
765 	const struct b53_mib_desc *s;
766 	unsigned int i;
767 	u64 val = 0;
768 
769 	if (is5365(dev) && port == 5)
770 		port = 8;
771 
772 	mutex_lock(&dev->stats_mutex);
773 
774 	for (i = 0; i < mib_size; i++) {
775 		s = &mibs[i];
776 
777 		if (s->size == 8) {
778 			b53_read64(dev, B53_MIB_PAGE(port), s->offset, &val);
779 		} else {
780 			u32 val32;
781 
782 			b53_read32(dev, B53_MIB_PAGE(port), s->offset,
783 				   &val32);
784 			val = val32;
785 		}
786 		data[i] = (u64)val;
787 	}
788 
789 	mutex_unlock(&dev->stats_mutex);
790 }
791 EXPORT_SYMBOL(b53_get_ethtool_stats);
792 
793 int b53_get_sset_count(struct dsa_switch *ds)
794 {
795 	struct b53_device *dev = ds->priv;
796 
797 	return b53_get_mib_size(dev);
798 }
799 EXPORT_SYMBOL(b53_get_sset_count);
800 
801 static int b53_setup(struct dsa_switch *ds)
802 {
803 	struct b53_device *dev = ds->priv;
804 	unsigned int port;
805 	int ret;
806 
807 	ret = b53_reset_switch(dev);
808 	if (ret) {
809 		dev_err(ds->dev, "failed to reset switch\n");
810 		return ret;
811 	}
812 
813 	b53_reset_mib(dev);
814 
815 	ret = b53_apply_config(dev);
816 	if (ret)
817 		dev_err(ds->dev, "failed to apply configuration\n");
818 
819 	for (port = 0; port < dev->num_ports; port++) {
820 		if (BIT(port) & ds->enabled_port_mask)
821 			b53_enable_port(ds, port, NULL);
822 		else if (dsa_is_cpu_port(ds, port))
823 			b53_enable_cpu_port(dev);
824 		else
825 			b53_disable_port(ds, port, NULL);
826 	}
827 
828 	return ret;
829 }
830 
831 static void b53_adjust_link(struct dsa_switch *ds, int port,
832 			    struct phy_device *phydev)
833 {
834 	struct b53_device *dev = ds->priv;
835 	u8 rgmii_ctrl = 0, reg = 0, off;
836 
837 	if (!phy_is_pseudo_fixed_link(phydev))
838 		return;
839 
840 	/* Override the port settings */
841 	if (port == dev->cpu_port) {
842 		off = B53_PORT_OVERRIDE_CTRL;
843 		reg = PORT_OVERRIDE_EN;
844 	} else {
845 		off = B53_GMII_PORT_OVERRIDE_CTRL(port);
846 		reg = GMII_PO_EN;
847 	}
848 
849 	/* Set the link UP */
850 	if (phydev->link)
851 		reg |= PORT_OVERRIDE_LINK;
852 
853 	if (phydev->duplex == DUPLEX_FULL)
854 		reg |= PORT_OVERRIDE_FULL_DUPLEX;
855 
856 	switch (phydev->speed) {
857 	case 2000:
858 		reg |= PORT_OVERRIDE_SPEED_2000M;
859 		/* fallthrough */
860 	case SPEED_1000:
861 		reg |= PORT_OVERRIDE_SPEED_1000M;
862 		break;
863 	case SPEED_100:
864 		reg |= PORT_OVERRIDE_SPEED_100M;
865 		break;
866 	case SPEED_10:
867 		reg |= PORT_OVERRIDE_SPEED_10M;
868 		break;
869 	default:
870 		dev_err(ds->dev, "unknown speed: %d\n", phydev->speed);
871 		return;
872 	}
873 
874 	/* Enable flow control on BCM5301x's CPU port */
875 	if (is5301x(dev) && port == dev->cpu_port)
876 		reg |= PORT_OVERRIDE_RX_FLOW | PORT_OVERRIDE_TX_FLOW;
877 
878 	if (phydev->pause) {
879 		if (phydev->asym_pause)
880 			reg |= PORT_OVERRIDE_TX_FLOW;
881 		reg |= PORT_OVERRIDE_RX_FLOW;
882 	}
883 
884 	b53_write8(dev, B53_CTRL_PAGE, off, reg);
885 
886 	if (is531x5(dev) && phy_interface_is_rgmii(phydev)) {
887 		if (port == 8)
888 			off = B53_RGMII_CTRL_IMP;
889 		else
890 			off = B53_RGMII_CTRL_P(port);
891 
892 		/* Configure the port RGMII clock delay by DLL disabled and
893 		 * tx_clk aligned timing (restoring to reset defaults)
894 		 */
895 		b53_read8(dev, B53_CTRL_PAGE, off, &rgmii_ctrl);
896 		rgmii_ctrl &= ~(RGMII_CTRL_DLL_RXC | RGMII_CTRL_DLL_TXC |
897 				RGMII_CTRL_TIMING_SEL);
898 
899 		/* PHY_INTERFACE_MODE_RGMII_TXID means TX internal delay, make
900 		 * sure that we enable the port TX clock internal delay to
901 		 * account for this internal delay that is inserted, otherwise
902 		 * the switch won't be able to receive correctly.
903 		 *
904 		 * PHY_INTERFACE_MODE_RGMII means that we are not introducing
905 		 * any delay neither on transmission nor reception, so the
906 		 * BCM53125 must also be configured accordingly to account for
907 		 * the lack of delay and introduce
908 		 *
909 		 * The BCM53125 switch has its RX clock and TX clock control
910 		 * swapped, hence the reason why we modify the TX clock path in
911 		 * the "RGMII" case
912 		 */
913 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
914 			rgmii_ctrl |= RGMII_CTRL_DLL_TXC;
915 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII)
916 			rgmii_ctrl |= RGMII_CTRL_DLL_TXC | RGMII_CTRL_DLL_RXC;
917 		rgmii_ctrl |= RGMII_CTRL_TIMING_SEL;
918 		b53_write8(dev, B53_CTRL_PAGE, off, rgmii_ctrl);
919 
920 		dev_info(ds->dev, "Configured port %d for %s\n", port,
921 			 phy_modes(phydev->interface));
922 	}
923 
924 	/* configure MII port if necessary */
925 	if (is5325(dev)) {
926 		b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
927 			  &reg);
928 
929 		/* reverse mii needs to be enabled */
930 		if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
931 			b53_write8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
932 				   reg | PORT_OVERRIDE_RV_MII_25);
933 			b53_read8(dev, B53_CTRL_PAGE, B53_PORT_OVERRIDE_CTRL,
934 				  &reg);
935 
936 			if (!(reg & PORT_OVERRIDE_RV_MII_25)) {
937 				dev_err(ds->dev,
938 					"Failed to enable reverse MII mode\n");
939 				return;
940 			}
941 		}
942 	} else if (is5301x(dev)) {
943 		if (port != dev->cpu_port) {
944 			u8 po_reg = B53_GMII_PORT_OVERRIDE_CTRL(dev->cpu_port);
945 			u8 gmii_po;
946 
947 			b53_read8(dev, B53_CTRL_PAGE, po_reg, &gmii_po);
948 			gmii_po |= GMII_PO_LINK |
949 				   GMII_PO_RX_FLOW |
950 				   GMII_PO_TX_FLOW |
951 				   GMII_PO_EN |
952 				   GMII_PO_SPEED_2000M;
953 			b53_write8(dev, B53_CTRL_PAGE, po_reg, gmii_po);
954 		}
955 	}
956 }
957 
958 int b53_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering)
959 {
960 	return 0;
961 }
962 EXPORT_SYMBOL(b53_vlan_filtering);
963 
964 int b53_vlan_prepare(struct dsa_switch *ds, int port,
965 		     const struct switchdev_obj_port_vlan *vlan,
966 		     struct switchdev_trans *trans)
967 {
968 	struct b53_device *dev = ds->priv;
969 
970 	if ((is5325(dev) || is5365(dev)) && vlan->vid_begin == 0)
971 		return -EOPNOTSUPP;
972 
973 	if (vlan->vid_end > dev->num_vlans)
974 		return -ERANGE;
975 
976 	b53_enable_vlan(dev, true);
977 
978 	return 0;
979 }
980 EXPORT_SYMBOL(b53_vlan_prepare);
981 
982 void b53_vlan_add(struct dsa_switch *ds, int port,
983 		  const struct switchdev_obj_port_vlan *vlan,
984 		  struct switchdev_trans *trans)
985 {
986 	struct b53_device *dev = ds->priv;
987 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
988 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
989 	unsigned int cpu_port = dev->cpu_port;
990 	struct b53_vlan *vl;
991 	u16 vid;
992 
993 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
994 		vl = &dev->vlans[vid];
995 
996 		b53_get_vlan_entry(dev, vid, vl);
997 
998 		vl->members |= BIT(port) | BIT(cpu_port);
999 		if (untagged)
1000 			vl->untag |= BIT(port);
1001 		else
1002 			vl->untag &= ~BIT(port);
1003 		vl->untag &= ~BIT(cpu_port);
1004 
1005 		b53_set_vlan_entry(dev, vid, vl);
1006 		b53_fast_age_vlan(dev, vid);
1007 	}
1008 
1009 	if (pvid) {
1010 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port),
1011 			    vlan->vid_end);
1012 		b53_fast_age_vlan(dev, vid);
1013 	}
1014 }
1015 EXPORT_SYMBOL(b53_vlan_add);
1016 
1017 int b53_vlan_del(struct dsa_switch *ds, int port,
1018 		 const struct switchdev_obj_port_vlan *vlan)
1019 {
1020 	struct b53_device *dev = ds->priv;
1021 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1022 	struct b53_vlan *vl;
1023 	u16 vid;
1024 	u16 pvid;
1025 
1026 	b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
1027 
1028 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1029 		vl = &dev->vlans[vid];
1030 
1031 		b53_get_vlan_entry(dev, vid, vl);
1032 
1033 		vl->members &= ~BIT(port);
1034 
1035 		if (pvid == vid) {
1036 			if (is5325(dev) || is5365(dev))
1037 				pvid = 1;
1038 			else
1039 				pvid = 0;
1040 		}
1041 
1042 		if (untagged)
1043 			vl->untag &= ~(BIT(port));
1044 
1045 		b53_set_vlan_entry(dev, vid, vl);
1046 		b53_fast_age_vlan(dev, vid);
1047 	}
1048 
1049 	b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), pvid);
1050 	b53_fast_age_vlan(dev, pvid);
1051 
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL(b53_vlan_del);
1055 
1056 int b53_vlan_dump(struct dsa_switch *ds, int port,
1057 		  struct switchdev_obj_port_vlan *vlan,
1058 		  switchdev_obj_dump_cb_t *cb)
1059 {
1060 	struct b53_device *dev = ds->priv;
1061 	u16 vid, vid_start = 0, pvid;
1062 	struct b53_vlan *vl;
1063 	int err = 0;
1064 
1065 	if (is5325(dev) || is5365(dev))
1066 		vid_start = 1;
1067 
1068 	b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_PORT_DEF_TAG(port), &pvid);
1069 
1070 	/* Use our software cache for dumps, since we do not have any HW
1071 	 * operation returning only the used/valid VLANs
1072 	 */
1073 	for (vid = vid_start; vid < dev->num_vlans; vid++) {
1074 		vl = &dev->vlans[vid];
1075 
1076 		if (!vl->valid)
1077 			continue;
1078 
1079 		if (!(vl->members & BIT(port)))
1080 			continue;
1081 
1082 		vlan->vid_begin = vlan->vid_end = vid;
1083 		vlan->flags = 0;
1084 
1085 		if (vl->untag & BIT(port))
1086 			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1087 		if (pvid == vid)
1088 			vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1089 
1090 		err = cb(&vlan->obj);
1091 		if (err)
1092 			break;
1093 	}
1094 
1095 	return err;
1096 }
1097 EXPORT_SYMBOL(b53_vlan_dump);
1098 
1099 /* Address Resolution Logic routines */
1100 static int b53_arl_op_wait(struct b53_device *dev)
1101 {
1102 	unsigned int timeout = 10;
1103 	u8 reg;
1104 
1105 	do {
1106 		b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
1107 		if (!(reg & ARLTBL_START_DONE))
1108 			return 0;
1109 
1110 		usleep_range(1000, 2000);
1111 	} while (timeout--);
1112 
1113 	dev_warn(dev->dev, "timeout waiting for ARL to finish: 0x%02x\n", reg);
1114 
1115 	return -ETIMEDOUT;
1116 }
1117 
1118 static int b53_arl_rw_op(struct b53_device *dev, unsigned int op)
1119 {
1120 	u8 reg;
1121 
1122 	if (op > ARLTBL_RW)
1123 		return -EINVAL;
1124 
1125 	b53_read8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, &reg);
1126 	reg |= ARLTBL_START_DONE;
1127 	if (op)
1128 		reg |= ARLTBL_RW;
1129 	else
1130 		reg &= ~ARLTBL_RW;
1131 	b53_write8(dev, B53_ARLIO_PAGE, B53_ARLTBL_RW_CTRL, reg);
1132 
1133 	return b53_arl_op_wait(dev);
1134 }
1135 
1136 static int b53_arl_read(struct b53_device *dev, u64 mac,
1137 			u16 vid, struct b53_arl_entry *ent, u8 *idx,
1138 			bool is_valid)
1139 {
1140 	unsigned int i;
1141 	int ret;
1142 
1143 	ret = b53_arl_op_wait(dev);
1144 	if (ret)
1145 		return ret;
1146 
1147 	/* Read the bins */
1148 	for (i = 0; i < dev->num_arl_entries; i++) {
1149 		u64 mac_vid;
1150 		u32 fwd_entry;
1151 
1152 		b53_read64(dev, B53_ARLIO_PAGE,
1153 			   B53_ARLTBL_MAC_VID_ENTRY(i), &mac_vid);
1154 		b53_read32(dev, B53_ARLIO_PAGE,
1155 			   B53_ARLTBL_DATA_ENTRY(i), &fwd_entry);
1156 		b53_arl_to_entry(ent, mac_vid, fwd_entry);
1157 
1158 		if (!(fwd_entry & ARLTBL_VALID))
1159 			continue;
1160 		if ((mac_vid & ARLTBL_MAC_MASK) != mac)
1161 			continue;
1162 		*idx = i;
1163 	}
1164 
1165 	return -ENOENT;
1166 }
1167 
1168 static int b53_arl_op(struct b53_device *dev, int op, int port,
1169 		      const unsigned char *addr, u16 vid, bool is_valid)
1170 {
1171 	struct b53_arl_entry ent;
1172 	u32 fwd_entry;
1173 	u64 mac, mac_vid = 0;
1174 	u8 idx = 0;
1175 	int ret;
1176 
1177 	/* Convert the array into a 64-bit MAC */
1178 	mac = ether_addr_to_u64(addr);
1179 
1180 	/* Perform a read for the given MAC and VID */
1181 	b53_write48(dev, B53_ARLIO_PAGE, B53_MAC_ADDR_IDX, mac);
1182 	b53_write16(dev, B53_ARLIO_PAGE, B53_VLAN_ID_IDX, vid);
1183 
1184 	/* Issue a read operation for this MAC */
1185 	ret = b53_arl_rw_op(dev, 1);
1186 	if (ret)
1187 		return ret;
1188 
1189 	ret = b53_arl_read(dev, mac, vid, &ent, &idx, is_valid);
1190 	/* If this is a read, just finish now */
1191 	if (op)
1192 		return ret;
1193 
1194 	/* We could not find a matching MAC, so reset to a new entry */
1195 	if (ret) {
1196 		fwd_entry = 0;
1197 		idx = 1;
1198 	}
1199 
1200 	memset(&ent, 0, sizeof(ent));
1201 	ent.port = port;
1202 	ent.is_valid = is_valid;
1203 	ent.vid = vid;
1204 	ent.is_static = true;
1205 	memcpy(ent.mac, addr, ETH_ALEN);
1206 	b53_arl_from_entry(&mac_vid, &fwd_entry, &ent);
1207 
1208 	b53_write64(dev, B53_ARLIO_PAGE,
1209 		    B53_ARLTBL_MAC_VID_ENTRY(idx), mac_vid);
1210 	b53_write32(dev, B53_ARLIO_PAGE,
1211 		    B53_ARLTBL_DATA_ENTRY(idx), fwd_entry);
1212 
1213 	return b53_arl_rw_op(dev, 0);
1214 }
1215 
1216 int b53_fdb_prepare(struct dsa_switch *ds, int port,
1217 		    const struct switchdev_obj_port_fdb *fdb,
1218 		    struct switchdev_trans *trans)
1219 {
1220 	struct b53_device *priv = ds->priv;
1221 
1222 	/* 5325 and 5365 require some more massaging, but could
1223 	 * be supported eventually
1224 	 */
1225 	if (is5325(priv) || is5365(priv))
1226 		return -EOPNOTSUPP;
1227 
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL(b53_fdb_prepare);
1231 
1232 void b53_fdb_add(struct dsa_switch *ds, int port,
1233 		 const struct switchdev_obj_port_fdb *fdb,
1234 		 struct switchdev_trans *trans)
1235 {
1236 	struct b53_device *priv = ds->priv;
1237 
1238 	if (b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
1239 		pr_err("%s: failed to add MAC address\n", __func__);
1240 }
1241 EXPORT_SYMBOL(b53_fdb_add);
1242 
1243 int b53_fdb_del(struct dsa_switch *ds, int port,
1244 		const struct switchdev_obj_port_fdb *fdb)
1245 {
1246 	struct b53_device *priv = ds->priv;
1247 
1248 	return b53_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
1249 }
1250 EXPORT_SYMBOL(b53_fdb_del);
1251 
1252 static int b53_arl_search_wait(struct b53_device *dev)
1253 {
1254 	unsigned int timeout = 1000;
1255 	u8 reg;
1256 
1257 	do {
1258 		b53_read8(dev, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, &reg);
1259 		if (!(reg & ARL_SRCH_STDN))
1260 			return 0;
1261 
1262 		if (reg & ARL_SRCH_VLID)
1263 			return 0;
1264 
1265 		usleep_range(1000, 2000);
1266 	} while (timeout--);
1267 
1268 	return -ETIMEDOUT;
1269 }
1270 
1271 static void b53_arl_search_rd(struct b53_device *dev, u8 idx,
1272 			      struct b53_arl_entry *ent)
1273 {
1274 	u64 mac_vid;
1275 	u32 fwd_entry;
1276 
1277 	b53_read64(dev, B53_ARLIO_PAGE,
1278 		   B53_ARL_SRCH_RSTL_MACVID(idx), &mac_vid);
1279 	b53_read32(dev, B53_ARLIO_PAGE,
1280 		   B53_ARL_SRCH_RSTL(idx), &fwd_entry);
1281 	b53_arl_to_entry(ent, mac_vid, fwd_entry);
1282 }
1283 
1284 static int b53_fdb_copy(int port, const struct b53_arl_entry *ent,
1285 			struct switchdev_obj_port_fdb *fdb,
1286 			switchdev_obj_dump_cb_t *cb)
1287 {
1288 	if (!ent->is_valid)
1289 		return 0;
1290 
1291 	if (port != ent->port)
1292 		return 0;
1293 
1294 	ether_addr_copy(fdb->addr, ent->mac);
1295 	fdb->vid = ent->vid;
1296 	fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
1297 
1298 	return cb(&fdb->obj);
1299 }
1300 
1301 int b53_fdb_dump(struct dsa_switch *ds, int port,
1302 		 struct switchdev_obj_port_fdb *fdb,
1303 		 switchdev_obj_dump_cb_t *cb)
1304 {
1305 	struct b53_device *priv = ds->priv;
1306 	struct b53_arl_entry results[2];
1307 	unsigned int count = 0;
1308 	int ret;
1309 	u8 reg;
1310 
1311 	/* Start search operation */
1312 	reg = ARL_SRCH_STDN;
1313 	b53_write8(priv, B53_ARLIO_PAGE, B53_ARL_SRCH_CTL, reg);
1314 
1315 	do {
1316 		ret = b53_arl_search_wait(priv);
1317 		if (ret)
1318 			return ret;
1319 
1320 		b53_arl_search_rd(priv, 0, &results[0]);
1321 		ret = b53_fdb_copy(port, &results[0], fdb, cb);
1322 		if (ret)
1323 			return ret;
1324 
1325 		if (priv->num_arl_entries > 2) {
1326 			b53_arl_search_rd(priv, 1, &results[1]);
1327 			ret = b53_fdb_copy(port, &results[1], fdb, cb);
1328 			if (ret)
1329 				return ret;
1330 
1331 			if (!results[0].is_valid && !results[1].is_valid)
1332 				break;
1333 		}
1334 
1335 	} while (count++ < 1024);
1336 
1337 	return 0;
1338 }
1339 EXPORT_SYMBOL(b53_fdb_dump);
1340 
1341 int b53_br_join(struct dsa_switch *ds, int port, struct net_device *br)
1342 {
1343 	struct b53_device *dev = ds->priv;
1344 	s8 cpu_port = ds->dst->cpu_dp->index;
1345 	u16 pvlan, reg;
1346 	unsigned int i;
1347 
1348 	/* Make this port leave the all VLANs join since we will have proper
1349 	 * VLAN entries from now on
1350 	 */
1351 	if (is58xx(dev)) {
1352 		b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, &reg);
1353 		reg &= ~BIT(port);
1354 		if ((reg & BIT(cpu_port)) == BIT(cpu_port))
1355 			reg &= ~BIT(cpu_port);
1356 		b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg);
1357 	}
1358 
1359 	b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
1360 
1361 	b53_for_each_port(dev, i) {
1362 		if (ds->ports[i].bridge_dev != br)
1363 			continue;
1364 
1365 		/* Add this local port to the remote port VLAN control
1366 		 * membership and update the remote port bitmask
1367 		 */
1368 		b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
1369 		reg |= BIT(port);
1370 		b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
1371 		dev->ports[i].vlan_ctl_mask = reg;
1372 
1373 		pvlan |= BIT(i);
1374 	}
1375 
1376 	/* Configure the local port VLAN control membership to include
1377 	 * remote ports and update the local port bitmask
1378 	 */
1379 	b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
1380 	dev->ports[port].vlan_ctl_mask = pvlan;
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL(b53_br_join);
1385 
1386 void b53_br_leave(struct dsa_switch *ds, int port, struct net_device *br)
1387 {
1388 	struct b53_device *dev = ds->priv;
1389 	struct b53_vlan *vl = &dev->vlans[0];
1390 	s8 cpu_port = ds->dst->cpu_dp->index;
1391 	unsigned int i;
1392 	u16 pvlan, reg, pvid;
1393 
1394 	b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), &pvlan);
1395 
1396 	b53_for_each_port(dev, i) {
1397 		/* Don't touch the remaining ports */
1398 		if (ds->ports[i].bridge_dev != br)
1399 			continue;
1400 
1401 		b53_read16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), &reg);
1402 		reg &= ~BIT(port);
1403 		b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(i), reg);
1404 		dev->ports[port].vlan_ctl_mask = reg;
1405 
1406 		/* Prevent self removal to preserve isolation */
1407 		if (port != i)
1408 			pvlan &= ~BIT(i);
1409 	}
1410 
1411 	b53_write16(dev, B53_PVLAN_PAGE, B53_PVLAN_PORT_MASK(port), pvlan);
1412 	dev->ports[port].vlan_ctl_mask = pvlan;
1413 
1414 	if (is5325(dev) || is5365(dev))
1415 		pvid = 1;
1416 	else
1417 		pvid = 0;
1418 
1419 	/* Make this port join all VLANs without VLAN entries */
1420 	if (is58xx(dev)) {
1421 		b53_read16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, &reg);
1422 		reg |= BIT(port);
1423 		if (!(reg & BIT(cpu_port)))
1424 			reg |= BIT(cpu_port);
1425 		b53_write16(dev, B53_VLAN_PAGE, B53_JOIN_ALL_VLAN_EN, reg);
1426 	} else {
1427 		b53_get_vlan_entry(dev, pvid, vl);
1428 		vl->members |= BIT(port) | BIT(dev->cpu_port);
1429 		vl->untag |= BIT(port) | BIT(dev->cpu_port);
1430 		b53_set_vlan_entry(dev, pvid, vl);
1431 	}
1432 }
1433 EXPORT_SYMBOL(b53_br_leave);
1434 
1435 void b53_br_set_stp_state(struct dsa_switch *ds, int port, u8 state)
1436 {
1437 	struct b53_device *dev = ds->priv;
1438 	u8 hw_state;
1439 	u8 reg;
1440 
1441 	switch (state) {
1442 	case BR_STATE_DISABLED:
1443 		hw_state = PORT_CTRL_DIS_STATE;
1444 		break;
1445 	case BR_STATE_LISTENING:
1446 		hw_state = PORT_CTRL_LISTEN_STATE;
1447 		break;
1448 	case BR_STATE_LEARNING:
1449 		hw_state = PORT_CTRL_LEARN_STATE;
1450 		break;
1451 	case BR_STATE_FORWARDING:
1452 		hw_state = PORT_CTRL_FWD_STATE;
1453 		break;
1454 	case BR_STATE_BLOCKING:
1455 		hw_state = PORT_CTRL_BLOCK_STATE;
1456 		break;
1457 	default:
1458 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1459 		return;
1460 	}
1461 
1462 	b53_read8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), &reg);
1463 	reg &= ~PORT_CTRL_STP_STATE_MASK;
1464 	reg |= hw_state;
1465 	b53_write8(dev, B53_CTRL_PAGE, B53_PORT_CTRL(port), reg);
1466 }
1467 EXPORT_SYMBOL(b53_br_set_stp_state);
1468 
1469 void b53_br_fast_age(struct dsa_switch *ds, int port)
1470 {
1471 	struct b53_device *dev = ds->priv;
1472 
1473 	if (b53_fast_age_port(dev, port))
1474 		dev_err(ds->dev, "fast ageing failed\n");
1475 }
1476 EXPORT_SYMBOL(b53_br_fast_age);
1477 
1478 static enum dsa_tag_protocol b53_get_tag_protocol(struct dsa_switch *ds)
1479 {
1480 	return DSA_TAG_PROTO_NONE;
1481 }
1482 
1483 int b53_mirror_add(struct dsa_switch *ds, int port,
1484 		   struct dsa_mall_mirror_tc_entry *mirror, bool ingress)
1485 {
1486 	struct b53_device *dev = ds->priv;
1487 	u16 reg, loc;
1488 
1489 	if (ingress)
1490 		loc = B53_IG_MIR_CTL;
1491 	else
1492 		loc = B53_EG_MIR_CTL;
1493 
1494 	b53_read16(dev, B53_MGMT_PAGE, loc, &reg);
1495 	reg &= ~MIRROR_MASK;
1496 	reg |= BIT(port);
1497 	b53_write16(dev, B53_MGMT_PAGE, loc, reg);
1498 
1499 	b53_read16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, &reg);
1500 	reg &= ~CAP_PORT_MASK;
1501 	reg |= mirror->to_local_port;
1502 	reg |= MIRROR_EN;
1503 	b53_write16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, reg);
1504 
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(b53_mirror_add);
1508 
1509 void b53_mirror_del(struct dsa_switch *ds, int port,
1510 		    struct dsa_mall_mirror_tc_entry *mirror)
1511 {
1512 	struct b53_device *dev = ds->priv;
1513 	bool loc_disable = false, other_loc_disable = false;
1514 	u16 reg, loc;
1515 
1516 	if (mirror->ingress)
1517 		loc = B53_IG_MIR_CTL;
1518 	else
1519 		loc = B53_EG_MIR_CTL;
1520 
1521 	/* Update the desired ingress/egress register */
1522 	b53_read16(dev, B53_MGMT_PAGE, loc, &reg);
1523 	reg &= ~BIT(port);
1524 	if (!(reg & MIRROR_MASK))
1525 		loc_disable = true;
1526 	b53_write16(dev, B53_MGMT_PAGE, loc, reg);
1527 
1528 	/* Now look at the other one to know if we can disable mirroring
1529 	 * entirely
1530 	 */
1531 	if (mirror->ingress)
1532 		b53_read16(dev, B53_MGMT_PAGE, B53_EG_MIR_CTL, &reg);
1533 	else
1534 		b53_read16(dev, B53_MGMT_PAGE, B53_IG_MIR_CTL, &reg);
1535 	if (!(reg & MIRROR_MASK))
1536 		other_loc_disable = true;
1537 
1538 	b53_read16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, &reg);
1539 	/* Both no longer have ports, let's disable mirroring */
1540 	if (loc_disable && other_loc_disable) {
1541 		reg &= ~MIRROR_EN;
1542 		reg &= ~mirror->to_local_port;
1543 	}
1544 	b53_write16(dev, B53_MGMT_PAGE, B53_MIR_CAP_CTL, reg);
1545 }
1546 EXPORT_SYMBOL(b53_mirror_del);
1547 
1548 static const struct dsa_switch_ops b53_switch_ops = {
1549 	.get_tag_protocol	= b53_get_tag_protocol,
1550 	.setup			= b53_setup,
1551 	.get_strings		= b53_get_strings,
1552 	.get_ethtool_stats	= b53_get_ethtool_stats,
1553 	.get_sset_count		= b53_get_sset_count,
1554 	.phy_read		= b53_phy_read16,
1555 	.phy_write		= b53_phy_write16,
1556 	.adjust_link		= b53_adjust_link,
1557 	.port_enable		= b53_enable_port,
1558 	.port_disable		= b53_disable_port,
1559 	.port_bridge_join	= b53_br_join,
1560 	.port_bridge_leave	= b53_br_leave,
1561 	.port_stp_state_set	= b53_br_set_stp_state,
1562 	.port_fast_age		= b53_br_fast_age,
1563 	.port_vlan_filtering	= b53_vlan_filtering,
1564 	.port_vlan_prepare	= b53_vlan_prepare,
1565 	.port_vlan_add		= b53_vlan_add,
1566 	.port_vlan_del		= b53_vlan_del,
1567 	.port_vlan_dump		= b53_vlan_dump,
1568 	.port_fdb_prepare	= b53_fdb_prepare,
1569 	.port_fdb_dump		= b53_fdb_dump,
1570 	.port_fdb_add		= b53_fdb_add,
1571 	.port_fdb_del		= b53_fdb_del,
1572 	.port_mirror_add	= b53_mirror_add,
1573 	.port_mirror_del	= b53_mirror_del,
1574 };
1575 
1576 struct b53_chip_data {
1577 	u32 chip_id;
1578 	const char *dev_name;
1579 	u16 vlans;
1580 	u16 enabled_ports;
1581 	u8 cpu_port;
1582 	u8 vta_regs[3];
1583 	u8 arl_entries;
1584 	u8 duplex_reg;
1585 	u8 jumbo_pm_reg;
1586 	u8 jumbo_size_reg;
1587 };
1588 
1589 #define B53_VTA_REGS	\
1590 	{ B53_VT_ACCESS, B53_VT_INDEX, B53_VT_ENTRY }
1591 #define B53_VTA_REGS_9798 \
1592 	{ B53_VT_ACCESS_9798, B53_VT_INDEX_9798, B53_VT_ENTRY_9798 }
1593 #define B53_VTA_REGS_63XX \
1594 	{ B53_VT_ACCESS_63XX, B53_VT_INDEX_63XX, B53_VT_ENTRY_63XX }
1595 
1596 static const struct b53_chip_data b53_switch_chips[] = {
1597 	{
1598 		.chip_id = BCM5325_DEVICE_ID,
1599 		.dev_name = "BCM5325",
1600 		.vlans = 16,
1601 		.enabled_ports = 0x1f,
1602 		.arl_entries = 2,
1603 		.cpu_port = B53_CPU_PORT_25,
1604 		.duplex_reg = B53_DUPLEX_STAT_FE,
1605 	},
1606 	{
1607 		.chip_id = BCM5365_DEVICE_ID,
1608 		.dev_name = "BCM5365",
1609 		.vlans = 256,
1610 		.enabled_ports = 0x1f,
1611 		.arl_entries = 2,
1612 		.cpu_port = B53_CPU_PORT_25,
1613 		.duplex_reg = B53_DUPLEX_STAT_FE,
1614 	},
1615 	{
1616 		.chip_id = BCM5395_DEVICE_ID,
1617 		.dev_name = "BCM5395",
1618 		.vlans = 4096,
1619 		.enabled_ports = 0x1f,
1620 		.arl_entries = 4,
1621 		.cpu_port = B53_CPU_PORT,
1622 		.vta_regs = B53_VTA_REGS,
1623 		.duplex_reg = B53_DUPLEX_STAT_GE,
1624 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1625 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1626 	},
1627 	{
1628 		.chip_id = BCM5397_DEVICE_ID,
1629 		.dev_name = "BCM5397",
1630 		.vlans = 4096,
1631 		.enabled_ports = 0x1f,
1632 		.arl_entries = 4,
1633 		.cpu_port = B53_CPU_PORT,
1634 		.vta_regs = B53_VTA_REGS_9798,
1635 		.duplex_reg = B53_DUPLEX_STAT_GE,
1636 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1637 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1638 	},
1639 	{
1640 		.chip_id = BCM5398_DEVICE_ID,
1641 		.dev_name = "BCM5398",
1642 		.vlans = 4096,
1643 		.enabled_ports = 0x7f,
1644 		.arl_entries = 4,
1645 		.cpu_port = B53_CPU_PORT,
1646 		.vta_regs = B53_VTA_REGS_9798,
1647 		.duplex_reg = B53_DUPLEX_STAT_GE,
1648 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1649 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1650 	},
1651 	{
1652 		.chip_id = BCM53115_DEVICE_ID,
1653 		.dev_name = "BCM53115",
1654 		.vlans = 4096,
1655 		.enabled_ports = 0x1f,
1656 		.arl_entries = 4,
1657 		.vta_regs = B53_VTA_REGS,
1658 		.cpu_port = B53_CPU_PORT,
1659 		.duplex_reg = B53_DUPLEX_STAT_GE,
1660 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1661 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1662 	},
1663 	{
1664 		.chip_id = BCM53125_DEVICE_ID,
1665 		.dev_name = "BCM53125",
1666 		.vlans = 4096,
1667 		.enabled_ports = 0xff,
1668 		.cpu_port = B53_CPU_PORT,
1669 		.vta_regs = B53_VTA_REGS,
1670 		.duplex_reg = B53_DUPLEX_STAT_GE,
1671 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1672 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1673 	},
1674 	{
1675 		.chip_id = BCM53128_DEVICE_ID,
1676 		.dev_name = "BCM53128",
1677 		.vlans = 4096,
1678 		.enabled_ports = 0x1ff,
1679 		.arl_entries = 4,
1680 		.cpu_port = B53_CPU_PORT,
1681 		.vta_regs = B53_VTA_REGS,
1682 		.duplex_reg = B53_DUPLEX_STAT_GE,
1683 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1684 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1685 	},
1686 	{
1687 		.chip_id = BCM63XX_DEVICE_ID,
1688 		.dev_name = "BCM63xx",
1689 		.vlans = 4096,
1690 		.enabled_ports = 0, /* pdata must provide them */
1691 		.arl_entries = 4,
1692 		.cpu_port = B53_CPU_PORT,
1693 		.vta_regs = B53_VTA_REGS_63XX,
1694 		.duplex_reg = B53_DUPLEX_STAT_63XX,
1695 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK_63XX,
1696 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE_63XX,
1697 	},
1698 	{
1699 		.chip_id = BCM53010_DEVICE_ID,
1700 		.dev_name = "BCM53010",
1701 		.vlans = 4096,
1702 		.enabled_ports = 0x1f,
1703 		.arl_entries = 4,
1704 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1705 		.vta_regs = B53_VTA_REGS,
1706 		.duplex_reg = B53_DUPLEX_STAT_GE,
1707 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1708 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1709 	},
1710 	{
1711 		.chip_id = BCM53011_DEVICE_ID,
1712 		.dev_name = "BCM53011",
1713 		.vlans = 4096,
1714 		.enabled_ports = 0x1bf,
1715 		.arl_entries = 4,
1716 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1717 		.vta_regs = B53_VTA_REGS,
1718 		.duplex_reg = B53_DUPLEX_STAT_GE,
1719 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1720 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1721 	},
1722 	{
1723 		.chip_id = BCM53012_DEVICE_ID,
1724 		.dev_name = "BCM53012",
1725 		.vlans = 4096,
1726 		.enabled_ports = 0x1bf,
1727 		.arl_entries = 4,
1728 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1729 		.vta_regs = B53_VTA_REGS,
1730 		.duplex_reg = B53_DUPLEX_STAT_GE,
1731 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1732 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1733 	},
1734 	{
1735 		.chip_id = BCM53018_DEVICE_ID,
1736 		.dev_name = "BCM53018",
1737 		.vlans = 4096,
1738 		.enabled_ports = 0x1f,
1739 		.arl_entries = 4,
1740 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1741 		.vta_regs = B53_VTA_REGS,
1742 		.duplex_reg = B53_DUPLEX_STAT_GE,
1743 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1744 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1745 	},
1746 	{
1747 		.chip_id = BCM53019_DEVICE_ID,
1748 		.dev_name = "BCM53019",
1749 		.vlans = 4096,
1750 		.enabled_ports = 0x1f,
1751 		.arl_entries = 4,
1752 		.cpu_port = B53_CPU_PORT_25, /* TODO: auto detect */
1753 		.vta_regs = B53_VTA_REGS,
1754 		.duplex_reg = B53_DUPLEX_STAT_GE,
1755 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1756 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1757 	},
1758 	{
1759 		.chip_id = BCM58XX_DEVICE_ID,
1760 		.dev_name = "BCM585xx/586xx/88312",
1761 		.vlans	= 4096,
1762 		.enabled_ports = 0x1ff,
1763 		.arl_entries = 4,
1764 		.cpu_port = B53_CPU_PORT,
1765 		.vta_regs = B53_VTA_REGS,
1766 		.duplex_reg = B53_DUPLEX_STAT_GE,
1767 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1768 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1769 	},
1770 	{
1771 		.chip_id = BCM7445_DEVICE_ID,
1772 		.dev_name = "BCM7445",
1773 		.vlans	= 4096,
1774 		.enabled_ports = 0x1ff,
1775 		.arl_entries = 4,
1776 		.cpu_port = B53_CPU_PORT,
1777 		.vta_regs = B53_VTA_REGS,
1778 		.duplex_reg = B53_DUPLEX_STAT_GE,
1779 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1780 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1781 	},
1782 	{
1783 		.chip_id = BCM7278_DEVICE_ID,
1784 		.dev_name = "BCM7278",
1785 		.vlans = 4096,
1786 		.enabled_ports = 0x1ff,
1787 		.arl_entries= 4,
1788 		.cpu_port = B53_CPU_PORT,
1789 		.vta_regs = B53_VTA_REGS,
1790 		.duplex_reg = B53_DUPLEX_STAT_GE,
1791 		.jumbo_pm_reg = B53_JUMBO_PORT_MASK,
1792 		.jumbo_size_reg = B53_JUMBO_MAX_SIZE,
1793 	},
1794 };
1795 
1796 static int b53_switch_init(struct b53_device *dev)
1797 {
1798 	unsigned int i;
1799 	int ret;
1800 
1801 	for (i = 0; i < ARRAY_SIZE(b53_switch_chips); i++) {
1802 		const struct b53_chip_data *chip = &b53_switch_chips[i];
1803 
1804 		if (chip->chip_id == dev->chip_id) {
1805 			if (!dev->enabled_ports)
1806 				dev->enabled_ports = chip->enabled_ports;
1807 			dev->name = chip->dev_name;
1808 			dev->duplex_reg = chip->duplex_reg;
1809 			dev->vta_regs[0] = chip->vta_regs[0];
1810 			dev->vta_regs[1] = chip->vta_regs[1];
1811 			dev->vta_regs[2] = chip->vta_regs[2];
1812 			dev->jumbo_pm_reg = chip->jumbo_pm_reg;
1813 			dev->cpu_port = chip->cpu_port;
1814 			dev->num_vlans = chip->vlans;
1815 			dev->num_arl_entries = chip->arl_entries;
1816 			break;
1817 		}
1818 	}
1819 
1820 	/* check which BCM5325x version we have */
1821 	if (is5325(dev)) {
1822 		u8 vc4;
1823 
1824 		b53_read8(dev, B53_VLAN_PAGE, B53_VLAN_CTRL4_25, &vc4);
1825 
1826 		/* check reserved bits */
1827 		switch (vc4 & 3) {
1828 		case 1:
1829 			/* BCM5325E */
1830 			break;
1831 		case 3:
1832 			/* BCM5325F - do not use port 4 */
1833 			dev->enabled_ports &= ~BIT(4);
1834 			break;
1835 		default:
1836 /* On the BCM47XX SoCs this is the supported internal switch.*/
1837 #ifndef CONFIG_BCM47XX
1838 			/* BCM5325M */
1839 			return -EINVAL;
1840 #else
1841 			break;
1842 #endif
1843 		}
1844 	} else if (dev->chip_id == BCM53115_DEVICE_ID) {
1845 		u64 strap_value;
1846 
1847 		b53_read48(dev, B53_STAT_PAGE, B53_STRAP_VALUE, &strap_value);
1848 		/* use second IMP port if GMII is enabled */
1849 		if (strap_value & SV_GMII_CTRL_115)
1850 			dev->cpu_port = 5;
1851 	}
1852 
1853 	/* cpu port is always last */
1854 	dev->num_ports = dev->cpu_port + 1;
1855 	dev->enabled_ports |= BIT(dev->cpu_port);
1856 
1857 	dev->ports = devm_kzalloc(dev->dev,
1858 				  sizeof(struct b53_port) * dev->num_ports,
1859 				  GFP_KERNEL);
1860 	if (!dev->ports)
1861 		return -ENOMEM;
1862 
1863 	dev->vlans = devm_kzalloc(dev->dev,
1864 				  sizeof(struct b53_vlan) * dev->num_vlans,
1865 				  GFP_KERNEL);
1866 	if (!dev->vlans)
1867 		return -ENOMEM;
1868 
1869 	dev->reset_gpio = b53_switch_get_reset_gpio(dev);
1870 	if (dev->reset_gpio >= 0) {
1871 		ret = devm_gpio_request_one(dev->dev, dev->reset_gpio,
1872 					    GPIOF_OUT_INIT_HIGH, "robo_reset");
1873 		if (ret)
1874 			return ret;
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 struct b53_device *b53_switch_alloc(struct device *base,
1881 				    const struct b53_io_ops *ops,
1882 				    void *priv)
1883 {
1884 	struct dsa_switch *ds;
1885 	struct b53_device *dev;
1886 
1887 	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1888 	if (!ds)
1889 		return NULL;
1890 
1891 	dev = devm_kzalloc(base, sizeof(*dev), GFP_KERNEL);
1892 	if (!dev)
1893 		return NULL;
1894 
1895 	ds->priv = dev;
1896 	dev->dev = base;
1897 
1898 	dev->ds = ds;
1899 	dev->priv = priv;
1900 	dev->ops = ops;
1901 	ds->ops = &b53_switch_ops;
1902 	mutex_init(&dev->reg_mutex);
1903 	mutex_init(&dev->stats_mutex);
1904 
1905 	return dev;
1906 }
1907 EXPORT_SYMBOL(b53_switch_alloc);
1908 
1909 int b53_switch_detect(struct b53_device *dev)
1910 {
1911 	u32 id32;
1912 	u16 tmp;
1913 	u8 id8;
1914 	int ret;
1915 
1916 	ret = b53_read8(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id8);
1917 	if (ret)
1918 		return ret;
1919 
1920 	switch (id8) {
1921 	case 0:
1922 		/* BCM5325 and BCM5365 do not have this register so reads
1923 		 * return 0. But the read operation did succeed, so assume this
1924 		 * is one of them.
1925 		 *
1926 		 * Next check if we can write to the 5325's VTA register; for
1927 		 * 5365 it is read only.
1928 		 */
1929 		b53_write16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, 0xf);
1930 		b53_read16(dev, B53_VLAN_PAGE, B53_VLAN_TABLE_ACCESS_25, &tmp);
1931 
1932 		if (tmp == 0xf)
1933 			dev->chip_id = BCM5325_DEVICE_ID;
1934 		else
1935 			dev->chip_id = BCM5365_DEVICE_ID;
1936 		break;
1937 	case BCM5395_DEVICE_ID:
1938 	case BCM5397_DEVICE_ID:
1939 	case BCM5398_DEVICE_ID:
1940 		dev->chip_id = id8;
1941 		break;
1942 	default:
1943 		ret = b53_read32(dev, B53_MGMT_PAGE, B53_DEVICE_ID, &id32);
1944 		if (ret)
1945 			return ret;
1946 
1947 		switch (id32) {
1948 		case BCM53115_DEVICE_ID:
1949 		case BCM53125_DEVICE_ID:
1950 		case BCM53128_DEVICE_ID:
1951 		case BCM53010_DEVICE_ID:
1952 		case BCM53011_DEVICE_ID:
1953 		case BCM53012_DEVICE_ID:
1954 		case BCM53018_DEVICE_ID:
1955 		case BCM53019_DEVICE_ID:
1956 			dev->chip_id = id32;
1957 			break;
1958 		default:
1959 			pr_err("unsupported switch detected (BCM53%02x/BCM%x)\n",
1960 			       id8, id32);
1961 			return -ENODEV;
1962 		}
1963 	}
1964 
1965 	if (dev->chip_id == BCM5325_DEVICE_ID)
1966 		return b53_read8(dev, B53_STAT_PAGE, B53_REV_ID_25,
1967 				 &dev->core_rev);
1968 	else
1969 		return b53_read8(dev, B53_MGMT_PAGE, B53_REV_ID,
1970 				 &dev->core_rev);
1971 }
1972 EXPORT_SYMBOL(b53_switch_detect);
1973 
1974 int b53_switch_register(struct b53_device *dev)
1975 {
1976 	int ret;
1977 
1978 	if (dev->pdata) {
1979 		dev->chip_id = dev->pdata->chip_id;
1980 		dev->enabled_ports = dev->pdata->enabled_ports;
1981 	}
1982 
1983 	if (!dev->chip_id && b53_switch_detect(dev))
1984 		return -EINVAL;
1985 
1986 	ret = b53_switch_init(dev);
1987 	if (ret)
1988 		return ret;
1989 
1990 	pr_info("found switch: %s, rev %i\n", dev->name, dev->core_rev);
1991 
1992 	return dsa_register_switch(dev->ds);
1993 }
1994 EXPORT_SYMBOL(b53_switch_register);
1995 
1996 MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
1997 MODULE_DESCRIPTION("B53 switch library");
1998 MODULE_LICENSE("Dual BSD/GPL");
1999