xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision ecd2dc2f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
3  *
4  * Copyright (C) 2012 - 2022 Xilinx, Inc.
5  * Copyright (C) 2009 PetaLogix. All rights reserved.
6  * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
7  *
8  * Description:
9  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 #include <linux/can/dev.h>
30 #include <linux/can/error.h>
31 #include <linux/phy/phy.h>
32 #include <linux/pm_runtime.h>
33 
34 #define DRIVER_NAME	"xilinx_can"
35 
36 /* CAN registers set */
37 enum xcan_reg {
38 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
39 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
40 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
41 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
42 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
43 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
44 	XCAN_SR_OFFSET		= 0x18, /* Status */
45 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
46 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
47 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
48 
49 	/* not on CAN FD cores */
50 	XCAN_TXFIFO_OFFSET	= 0x30, /* TX FIFO base */
51 	XCAN_RXFIFO_OFFSET	= 0x50, /* RX FIFO base */
52 	XCAN_AFR_OFFSET		= 0x60, /* Acceptance Filter */
53 
54 	/* only on CAN FD cores */
55 	XCAN_F_BRPR_OFFSET	= 0x088, /* Data Phase Baud Rate
56 					  * Prescaler
57 					  */
58 	XCAN_F_BTR_OFFSET	= 0x08C, /* Data Phase Bit Timing */
59 	XCAN_TRR_OFFSET		= 0x0090, /* TX Buffer Ready Request */
60 	XCAN_AFR_EXT_OFFSET	= 0x00E0, /* Acceptance Filter */
61 	XCAN_FSR_OFFSET		= 0x00E8, /* RX FIFO Status */
62 	XCAN_TXMSG_BASE_OFFSET	= 0x0100, /* TX Message Space */
63 	XCAN_RXMSG_BASE_OFFSET	= 0x1100, /* RX Message Space */
64 	XCAN_RXMSG_2_BASE_OFFSET	= 0x2100, /* RX Message Space */
65 	XCAN_AFR_2_MASK_OFFSET	= 0x0A00, /* Acceptance Filter MASK */
66 	XCAN_AFR_2_ID_OFFSET	= 0x0A04, /* Acceptance Filter ID */
67 };
68 
69 #define XCAN_FRAME_ID_OFFSET(frame_base)	((frame_base) + 0x00)
70 #define XCAN_FRAME_DLC_OFFSET(frame_base)	((frame_base) + 0x04)
71 #define XCAN_FRAME_DW1_OFFSET(frame_base)	((frame_base) + 0x08)
72 #define XCAN_FRAME_DW2_OFFSET(frame_base)	((frame_base) + 0x0C)
73 #define XCANFD_FRAME_DW_OFFSET(frame_base)	((frame_base) + 0x08)
74 
75 #define XCAN_CANFD_FRAME_SIZE		0x48
76 #define XCAN_TXMSG_FRAME_OFFSET(n)	(XCAN_TXMSG_BASE_OFFSET + \
77 					 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_FRAME_OFFSET(n)	(XCAN_RXMSG_BASE_OFFSET + \
79 					 XCAN_CANFD_FRAME_SIZE * (n))
80 #define XCAN_RXMSG_2_FRAME_OFFSET(n)	(XCAN_RXMSG_2_BASE_OFFSET + \
81 					 XCAN_CANFD_FRAME_SIZE * (n))
82 
83 /* the single TX mailbox used by this driver on CAN FD HW */
84 #define XCAN_TX_MAILBOX_IDX		0
85 
86 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
87 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
88 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
89 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
90 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
91 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
92 #define XCAN_BRPR_TDCO_MASK		GENMASK(12, 8)  /* TDCO */
93 #define XCAN_2_BRPR_TDCO_MASK		GENMASK(13, 8)  /* TDCO for CANFD 2.0 */
94 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
95 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
96 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
97 #define XCAN_BTR_SJW_MASK_CANFD		0x000F0000 /* Synchronous jump width */
98 #define XCAN_BTR_TS2_MASK_CANFD		0x00000F00 /* Time segment 2 */
99 #define XCAN_BTR_TS1_MASK_CANFD		0x0000003F /* Time segment 1 */
100 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
101 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
102 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
103 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
104 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
105 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
106 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
107 #define XCAN_SR_TDCV_MASK		GENMASK(22, 16) /* TDCV Value */
108 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
109 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
110 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
111 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
112 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
113 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
114 #define XCAN_IXR_RXMNF_MASK		0x00020000 /* RX match not finished */
115 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
116 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
117 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
118 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
119 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
120 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
121 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
122 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
123 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
124 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
125 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
126 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
127 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
128 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
129 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
130 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
131 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
132 #define XCAN_FSR_FL_MASK		0x00003F00 /* RX Fill Level */
133 #define XCAN_2_FSR_FL_MASK		0x00007F00 /* RX Fill Level */
134 #define XCAN_FSR_IRI_MASK		0x00000080 /* RX Increment Read Index */
135 #define XCAN_FSR_RI_MASK		0x0000001F /* RX Read Index */
136 #define XCAN_2_FSR_RI_MASK		0x0000003F /* RX Read Index */
137 #define XCAN_DLCR_EDL_MASK		0x08000000 /* EDL Mask in DLC */
138 #define XCAN_DLCR_BRS_MASK		0x04000000 /* BRS Mask in DLC */
139 
140 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
141 #define XCAN_BRPR_TDC_ENABLE		BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
142 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
143 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
144 #define XCAN_BTR_SJW_SHIFT_CANFD	16 /* Synchronous jump width */
145 #define XCAN_BTR_TS2_SHIFT_CANFD	8  /* Time segment 2 */
146 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
147 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
148 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
149 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
150 
151 /* CAN frame length constants */
152 #define XCAN_FRAME_MAX_DATA_LEN		8
153 #define XCANFD_DW_BYTES			4
154 #define XCAN_TIMEOUT			(1 * HZ)
155 
156 /* TX-FIFO-empty interrupt available */
157 #define XCAN_FLAG_TXFEMP	0x0001
158 /* RX Match Not Finished interrupt available */
159 #define XCAN_FLAG_RXMNF		0x0002
160 /* Extended acceptance filters with control at 0xE0 */
161 #define XCAN_FLAG_EXT_FILTERS	0x0004
162 /* TX mailboxes instead of TX FIFO */
163 #define XCAN_FLAG_TX_MAILBOXES	0x0008
164 /* RX FIFO with each buffer in separate registers at 0x1100
165  * instead of the regular FIFO at 0x50
166  */
167 #define XCAN_FLAG_RX_FIFO_MULTI	0x0010
168 #define XCAN_FLAG_CANFD_2	0x0020
169 
170 enum xcan_ip_type {
171 	XAXI_CAN = 0,
172 	XZYNQ_CANPS,
173 	XAXI_CANFD,
174 	XAXI_CANFD_2_0,
175 };
176 
177 struct xcan_devtype_data {
178 	enum xcan_ip_type cantype;
179 	unsigned int flags;
180 	const struct can_bittiming_const *bittiming_const;
181 	const char *bus_clk_name;
182 	unsigned int btr_ts2_shift;
183 	unsigned int btr_sjw_shift;
184 };
185 
186 /**
187  * struct xcan_priv - This definition define CAN driver instance
188  * @can:			CAN private data structure.
189  * @tx_lock:			Lock for synchronizing TX interrupt handling
190  * @tx_head:			Tx CAN packets ready to send on the queue
191  * @tx_tail:			Tx CAN packets successfully sended on the queue
192  * @tx_max:			Maximum number packets the driver can send
193  * @napi:			NAPI structure
194  * @read_reg:			For reading data from CAN registers
195  * @write_reg:			For writing data to CAN registers
196  * @dev:			Network device data structure
197  * @reg_base:			Ioremapped address to registers
198  * @irq_flags:			For request_irq()
199  * @bus_clk:			Pointer to struct clk
200  * @can_clk:			Pointer to struct clk
201  * @devtype:			Device type specific constants
202  * @transceiver:		Optional pointer to associated CAN transceiver
203  */
204 struct xcan_priv {
205 	struct can_priv can;
206 	spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
207 	unsigned int tx_head;
208 	unsigned int tx_tail;
209 	unsigned int tx_max;
210 	struct napi_struct napi;
211 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
212 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
213 			  u32 val);
214 	struct device *dev;
215 	void __iomem *reg_base;
216 	unsigned long irq_flags;
217 	struct clk *bus_clk;
218 	struct clk *can_clk;
219 	struct xcan_devtype_data devtype;
220 	struct phy *transceiver;
221 };
222 
223 /* CAN Bittiming constants as per Xilinx CAN specs */
224 static const struct can_bittiming_const xcan_bittiming_const = {
225 	.name = DRIVER_NAME,
226 	.tseg1_min = 1,
227 	.tseg1_max = 16,
228 	.tseg2_min = 1,
229 	.tseg2_max = 8,
230 	.sjw_max = 4,
231 	.brp_min = 1,
232 	.brp_max = 256,
233 	.brp_inc = 1,
234 };
235 
236 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
237 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
238 	.name = DRIVER_NAME,
239 	.tseg1_min = 1,
240 	.tseg1_max = 64,
241 	.tseg2_min = 1,
242 	.tseg2_max = 16,
243 	.sjw_max = 16,
244 	.brp_min = 1,
245 	.brp_max = 256,
246 	.brp_inc = 1,
247 };
248 
249 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
250 static const struct can_bittiming_const xcan_data_bittiming_const_canfd = {
251 	.name = DRIVER_NAME,
252 	.tseg1_min = 1,
253 	.tseg1_max = 16,
254 	.tseg2_min = 1,
255 	.tseg2_max = 8,
256 	.sjw_max = 8,
257 	.brp_min = 1,
258 	.brp_max = 256,
259 	.brp_inc = 1,
260 };
261 
262 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
263 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
264 	.name = DRIVER_NAME,
265 	.tseg1_min = 1,
266 	.tseg1_max = 256,
267 	.tseg2_min = 1,
268 	.tseg2_max = 128,
269 	.sjw_max = 128,
270 	.brp_min = 1,
271 	.brp_max = 256,
272 	.brp_inc = 1,
273 };
274 
275 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
276 static const struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
277 	.name = DRIVER_NAME,
278 	.tseg1_min = 1,
279 	.tseg1_max = 32,
280 	.tseg2_min = 1,
281 	.tseg2_max = 16,
282 	.sjw_max = 16,
283 	.brp_min = 1,
284 	.brp_max = 256,
285 	.brp_inc = 1,
286 };
287 
288 /* Transmission Delay Compensation constants for CANFD 1.0 */
289 static const struct can_tdc_const xcan_tdc_const_canfd = {
290 	.tdcv_min = 0,
291 	.tdcv_max = 0, /* Manual mode not supported. */
292 	.tdco_min = 0,
293 	.tdco_max = 32,
294 	.tdcf_min = 0, /* Filter window not supported */
295 	.tdcf_max = 0,
296 };
297 
298 /* Transmission Delay Compensation constants for CANFD 2.0 */
299 static const struct can_tdc_const xcan_tdc_const_canfd2 = {
300 	.tdcv_min = 0,
301 	.tdcv_max = 0, /* Manual mode not supported. */
302 	.tdco_min = 0,
303 	.tdco_max = 64,
304 	.tdcf_min = 0, /* Filter window not supported */
305 	.tdcf_max = 0,
306 };
307 
308 /**
309  * xcan_write_reg_le - Write a value to the device register little endian
310  * @priv:	Driver private data structure
311  * @reg:	Register offset
312  * @val:	Value to write at the Register offset
313  *
314  * Write data to the paricular CAN register
315  */
316 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
317 			      u32 val)
318 {
319 	iowrite32(val, priv->reg_base + reg);
320 }
321 
322 /**
323  * xcan_read_reg_le - Read a value from the device register little endian
324  * @priv:	Driver private data structure
325  * @reg:	Register offset
326  *
327  * Read data from the particular CAN register
328  * Return: value read from the CAN register
329  */
330 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
331 {
332 	return ioread32(priv->reg_base + reg);
333 }
334 
335 /**
336  * xcan_write_reg_be - Write a value to the device register big endian
337  * @priv:	Driver private data structure
338  * @reg:	Register offset
339  * @val:	Value to write at the Register offset
340  *
341  * Write data to the paricular CAN register
342  */
343 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
344 			      u32 val)
345 {
346 	iowrite32be(val, priv->reg_base + reg);
347 }
348 
349 /**
350  * xcan_read_reg_be - Read a value from the device register big endian
351  * @priv:	Driver private data structure
352  * @reg:	Register offset
353  *
354  * Read data from the particular CAN register
355  * Return: value read from the CAN register
356  */
357 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
358 {
359 	return ioread32be(priv->reg_base + reg);
360 }
361 
362 /**
363  * xcan_rx_int_mask - Get the mask for the receive interrupt
364  * @priv:	Driver private data structure
365  *
366  * Return: The receive interrupt mask used by the driver on this HW
367  */
368 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
369 {
370 	/* RXNEMP is better suited for our use case as it cannot be cleared
371 	 * while the FIFO is non-empty, but CAN FD HW does not have it
372 	 */
373 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
374 		return XCAN_IXR_RXOK_MASK;
375 	else
376 		return XCAN_IXR_RXNEMP_MASK;
377 }
378 
379 /**
380  * set_reset_mode - Resets the CAN device mode
381  * @ndev:	Pointer to net_device structure
382  *
383  * This is the driver reset mode routine.The driver
384  * enters into configuration mode.
385  *
386  * Return: 0 on success and failure value on error
387  */
388 static int set_reset_mode(struct net_device *ndev)
389 {
390 	struct xcan_priv *priv = netdev_priv(ndev);
391 	unsigned long timeout;
392 
393 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
394 
395 	timeout = jiffies + XCAN_TIMEOUT;
396 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
397 		if (time_after(jiffies, timeout)) {
398 			netdev_warn(ndev, "timed out for config mode\n");
399 			return -ETIMEDOUT;
400 		}
401 		usleep_range(500, 10000);
402 	}
403 
404 	/* reset clears FIFOs */
405 	priv->tx_head = 0;
406 	priv->tx_tail = 0;
407 
408 	return 0;
409 }
410 
411 /**
412  * xcan_set_bittiming - CAN set bit timing routine
413  * @ndev:	Pointer to net_device structure
414  *
415  * This is the driver set bittiming  routine.
416  * Return: 0 on success and failure value on error
417  */
418 static int xcan_set_bittiming(struct net_device *ndev)
419 {
420 	struct xcan_priv *priv = netdev_priv(ndev);
421 	struct can_bittiming *bt = &priv->can.bittiming;
422 	struct can_bittiming *dbt = &priv->can.data_bittiming;
423 	u32 btr0, btr1;
424 	u32 is_config_mode;
425 
426 	/* Check whether Xilinx CAN is in configuration mode.
427 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
428 	 */
429 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
430 				XCAN_SR_CONFIG_MASK;
431 	if (!is_config_mode) {
432 		netdev_alert(ndev,
433 			     "BUG! Cannot set bittiming - CAN is not in config mode\n");
434 		return -EPERM;
435 	}
436 
437 	/* Setting Baud Rate prescaler value in BRPR Register */
438 	btr0 = (bt->brp - 1);
439 
440 	/* Setting Time Segment 1 in BTR Register */
441 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
442 
443 	/* Setting Time Segment 2 in BTR Register */
444 	btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
445 
446 	/* Setting Synchronous jump width in BTR Register */
447 	btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
448 
449 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
450 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
451 
452 	if (priv->devtype.cantype == XAXI_CANFD ||
453 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
454 		/* Setting Baud Rate prescaler value in F_BRPR Register */
455 		btr0 = dbt->brp - 1;
456 		if (can_tdc_is_enabled(&priv->can)) {
457 			if (priv->devtype.cantype == XAXI_CANFD)
458 				btr0 |= FIELD_PREP(XCAN_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
459 					XCAN_BRPR_TDC_ENABLE;
460 			else
461 				btr0 |= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK, priv->can.tdc.tdco) |
462 					XCAN_BRPR_TDC_ENABLE;
463 		}
464 
465 		/* Setting Time Segment 1 in BTR Register */
466 		btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
467 
468 		/* Setting Time Segment 2 in BTR Register */
469 		btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
470 
471 		/* Setting Synchronous jump width in BTR Register */
472 		btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
473 
474 		priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
475 		priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
476 	}
477 
478 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
479 		   priv->read_reg(priv, XCAN_BRPR_OFFSET),
480 		   priv->read_reg(priv, XCAN_BTR_OFFSET));
481 
482 	return 0;
483 }
484 
485 /**
486  * xcan_chip_start - This the drivers start routine
487  * @ndev:	Pointer to net_device structure
488  *
489  * This is the drivers start routine.
490  * Based on the State of the CAN device it puts
491  * the CAN device into a proper mode.
492  *
493  * Return: 0 on success and failure value on error
494  */
495 static int xcan_chip_start(struct net_device *ndev)
496 {
497 	struct xcan_priv *priv = netdev_priv(ndev);
498 	u32 reg_msr;
499 	int err;
500 	u32 ier;
501 
502 	/* Check if it is in reset mode */
503 	err = set_reset_mode(ndev);
504 	if (err < 0)
505 		return err;
506 
507 	err = xcan_set_bittiming(ndev);
508 	if (err < 0)
509 		return err;
510 
511 	/* Enable interrupts
512 	 *
513 	 * We enable the ERROR interrupt even with
514 	 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
515 	 * dedicated interrupt for a state change to
516 	 * ERROR_WARNING/ERROR_PASSIVE.
517 	 */
518 	ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
519 		XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
520 		XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
521 		XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
522 
523 	if (priv->devtype.flags & XCAN_FLAG_RXMNF)
524 		ier |= XCAN_IXR_RXMNF_MASK;
525 
526 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
527 
528 	/* Check whether it is loopback mode or normal mode  */
529 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
530 		reg_msr = XCAN_MSR_LBACK_MASK;
531 	else
532 		reg_msr = 0x0;
533 
534 	/* enable the first extended filter, if any, as cores with extended
535 	 * filtering default to non-receipt if all filters are disabled
536 	 */
537 	if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
538 		priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
539 
540 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
541 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
542 
543 	netdev_dbg(ndev, "status:#x%08x\n",
544 		   priv->read_reg(priv, XCAN_SR_OFFSET));
545 
546 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
547 	return 0;
548 }
549 
550 /**
551  * xcan_do_set_mode - This sets the mode of the driver
552  * @ndev:	Pointer to net_device structure
553  * @mode:	Tells the mode of the driver
554  *
555  * This check the drivers state and calls the corresponding modes to set.
556  *
557  * Return: 0 on success and failure value on error
558  */
559 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
560 {
561 	int ret;
562 
563 	switch (mode) {
564 	case CAN_MODE_START:
565 		ret = xcan_chip_start(ndev);
566 		if (ret < 0) {
567 			netdev_err(ndev, "xcan_chip_start failed!\n");
568 			return ret;
569 		}
570 		netif_wake_queue(ndev);
571 		break;
572 	default:
573 		ret = -EOPNOTSUPP;
574 		break;
575 	}
576 
577 	return ret;
578 }
579 
580 /**
581  * xcan_write_frame - Write a frame to HW
582  * @ndev:		Pointer to net_device structure
583  * @skb:		sk_buff pointer that contains data to be Txed
584  * @frame_offset:	Register offset to write the frame to
585  */
586 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
587 			     int frame_offset)
588 {
589 	u32 id, dlc, data[2] = {0, 0};
590 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
591 	u32 ramoff, dwindex = 0, i;
592 	struct xcan_priv *priv = netdev_priv(ndev);
593 
594 	/* Watch carefully on the bit sequence */
595 	if (cf->can_id & CAN_EFF_FLAG) {
596 		/* Extended CAN ID format */
597 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
598 			XCAN_IDR_ID2_MASK;
599 		id |= (((cf->can_id & CAN_EFF_MASK) >>
600 			(CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
601 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
602 
603 		/* The substibute remote TX request bit should be "1"
604 		 * for extended frames as in the Xilinx CAN datasheet
605 		 */
606 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
607 
608 		if (cf->can_id & CAN_RTR_FLAG)
609 			/* Extended frames remote TX request */
610 			id |= XCAN_IDR_RTR_MASK;
611 	} else {
612 		/* Standard CAN ID format */
613 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
614 			XCAN_IDR_ID1_MASK;
615 
616 		if (cf->can_id & CAN_RTR_FLAG)
617 			/* Standard frames remote TX request */
618 			id |= XCAN_IDR_SRR_MASK;
619 	}
620 
621 	dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
622 	if (can_is_canfd_skb(skb)) {
623 		if (cf->flags & CANFD_BRS)
624 			dlc |= XCAN_DLCR_BRS_MASK;
625 		dlc |= XCAN_DLCR_EDL_MASK;
626 	}
627 
628 	if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
629 	    (priv->devtype.flags & XCAN_FLAG_TXFEMP))
630 		can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max, 0);
631 	else
632 		can_put_echo_skb(skb, ndev, 0, 0);
633 
634 	priv->tx_head++;
635 
636 	priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
637 	/* If the CAN frame is RTR frame this write triggers transmission
638 	 * (not on CAN FD)
639 	 */
640 	priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
641 	if (priv->devtype.cantype == XAXI_CANFD ||
642 	    priv->devtype.cantype == XAXI_CANFD_2_0) {
643 		for (i = 0; i < cf->len; i += 4) {
644 			ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
645 					(dwindex * XCANFD_DW_BYTES);
646 			priv->write_reg(priv, ramoff,
647 					be32_to_cpup((__be32 *)(cf->data + i)));
648 			dwindex++;
649 		}
650 	} else {
651 		if (cf->len > 0)
652 			data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
653 		if (cf->len > 4)
654 			data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
655 
656 		if (!(cf->can_id & CAN_RTR_FLAG)) {
657 			priv->write_reg(priv,
658 					XCAN_FRAME_DW1_OFFSET(frame_offset),
659 					data[0]);
660 			/* If the CAN frame is Standard/Extended frame this
661 			 * write triggers transmission (not on CAN FD)
662 			 */
663 			priv->write_reg(priv,
664 					XCAN_FRAME_DW2_OFFSET(frame_offset),
665 					data[1]);
666 		}
667 	}
668 }
669 
670 /**
671  * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
672  * @skb:	sk_buff pointer that contains data to be Txed
673  * @ndev:	Pointer to net_device structure
674  *
675  * Return: 0 on success, -ENOSPC if FIFO is full.
676  */
677 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
678 {
679 	struct xcan_priv *priv = netdev_priv(ndev);
680 	unsigned long flags;
681 
682 	/* Check if the TX buffer is full */
683 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
684 			XCAN_SR_TXFLL_MASK))
685 		return -ENOSPC;
686 
687 	spin_lock_irqsave(&priv->tx_lock, flags);
688 
689 	xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
690 
691 	/* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
692 	if (priv->tx_max > 1)
693 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
694 
695 	/* Check if the TX buffer is full */
696 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
697 		netif_stop_queue(ndev);
698 
699 	spin_unlock_irqrestore(&priv->tx_lock, flags);
700 
701 	return 0;
702 }
703 
704 /**
705  * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
706  * @skb:	sk_buff pointer that contains data to be Txed
707  * @ndev:	Pointer to net_device structure
708  *
709  * Return: 0 on success, -ENOSPC if there is no space
710  */
711 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
712 {
713 	struct xcan_priv *priv = netdev_priv(ndev);
714 	unsigned long flags;
715 
716 	if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
717 		     BIT(XCAN_TX_MAILBOX_IDX)))
718 		return -ENOSPC;
719 
720 	spin_lock_irqsave(&priv->tx_lock, flags);
721 
722 	xcan_write_frame(ndev, skb,
723 			 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
724 
725 	/* Mark buffer as ready for transmit */
726 	priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
727 
728 	netif_stop_queue(ndev);
729 
730 	spin_unlock_irqrestore(&priv->tx_lock, flags);
731 
732 	return 0;
733 }
734 
735 /**
736  * xcan_start_xmit - Starts the transmission
737  * @skb:	sk_buff pointer that contains data to be Txed
738  * @ndev:	Pointer to net_device structure
739  *
740  * This function is invoked from upper layers to initiate transmission.
741  *
742  * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
743  */
744 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
745 {
746 	struct xcan_priv *priv = netdev_priv(ndev);
747 	int ret;
748 
749 	if (can_dev_dropped_skb(ndev, skb))
750 		return NETDEV_TX_OK;
751 
752 	if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
753 		ret = xcan_start_xmit_mailbox(skb, ndev);
754 	else
755 		ret = xcan_start_xmit_fifo(skb, ndev);
756 
757 	if (ret < 0) {
758 		netdev_err(ndev, "BUG!, TX full when queue awake!\n");
759 		netif_stop_queue(ndev);
760 		return NETDEV_TX_BUSY;
761 	}
762 
763 	return NETDEV_TX_OK;
764 }
765 
766 /**
767  * xcan_rx -  Is called from CAN isr to complete the received
768  *		frame  processing
769  * @ndev:	Pointer to net_device structure
770  * @frame_base:	Register offset to the frame to be read
771  *
772  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
773  * does minimal processing and invokes "netif_receive_skb" to complete further
774  * processing.
775  * Return: 1 on success and 0 on failure.
776  */
777 static int xcan_rx(struct net_device *ndev, int frame_base)
778 {
779 	struct xcan_priv *priv = netdev_priv(ndev);
780 	struct net_device_stats *stats = &ndev->stats;
781 	struct can_frame *cf;
782 	struct sk_buff *skb;
783 	u32 id_xcan, dlc, data[2] = {0, 0};
784 
785 	skb = alloc_can_skb(ndev, &cf);
786 	if (unlikely(!skb)) {
787 		stats->rx_dropped++;
788 		return 0;
789 	}
790 
791 	/* Read a frame from Xilinx zynq CANPS */
792 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
793 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
794 				   XCAN_DLCR_DLC_SHIFT;
795 
796 	/* Change Xilinx CAN data length format to socketCAN data format */
797 	cf->len = can_cc_dlc2len(dlc);
798 
799 	/* Change Xilinx CAN ID format to socketCAN ID format */
800 	if (id_xcan & XCAN_IDR_IDE_MASK) {
801 		/* The received frame is an Extended format frame */
802 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
803 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
804 				XCAN_IDR_ID2_SHIFT;
805 		cf->can_id |= CAN_EFF_FLAG;
806 		if (id_xcan & XCAN_IDR_RTR_MASK)
807 			cf->can_id |= CAN_RTR_FLAG;
808 	} else {
809 		/* The received frame is a standard format frame */
810 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
811 				XCAN_IDR_ID1_SHIFT;
812 		if (id_xcan & XCAN_IDR_SRR_MASK)
813 			cf->can_id |= CAN_RTR_FLAG;
814 	}
815 
816 	/* DW1/DW2 must always be read to remove message from RXFIFO */
817 	data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
818 	data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
819 
820 	if (!(cf->can_id & CAN_RTR_FLAG)) {
821 		/* Change Xilinx CAN data format to socketCAN data format */
822 		if (cf->len > 0)
823 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
824 		if (cf->len > 4)
825 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
826 
827 		stats->rx_bytes += cf->len;
828 	}
829 	stats->rx_packets++;
830 
831 	netif_receive_skb(skb);
832 
833 	return 1;
834 }
835 
836 /**
837  * xcanfd_rx -  Is called from CAN isr to complete the received
838  *		frame  processing
839  * @ndev:	Pointer to net_device structure
840  * @frame_base:	Register offset to the frame to be read
841  *
842  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
843  * does minimal processing and invokes "netif_receive_skb" to complete further
844  * processing.
845  * Return: 1 on success and 0 on failure.
846  */
847 static int xcanfd_rx(struct net_device *ndev, int frame_base)
848 {
849 	struct xcan_priv *priv = netdev_priv(ndev);
850 	struct net_device_stats *stats = &ndev->stats;
851 	struct canfd_frame *cf;
852 	struct sk_buff *skb;
853 	u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
854 
855 	id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
856 	dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
857 	if (dlc & XCAN_DLCR_EDL_MASK)
858 		skb = alloc_canfd_skb(ndev, &cf);
859 	else
860 		skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
861 
862 	if (unlikely(!skb)) {
863 		stats->rx_dropped++;
864 		return 0;
865 	}
866 
867 	/* Change Xilinx CANFD data length format to socketCAN data
868 	 * format
869 	 */
870 	if (dlc & XCAN_DLCR_EDL_MASK)
871 		cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
872 				  XCAN_DLCR_DLC_SHIFT);
873 	else
874 		cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
875 					  XCAN_DLCR_DLC_SHIFT);
876 
877 	/* Change Xilinx CAN ID format to socketCAN ID format */
878 	if (id_xcan & XCAN_IDR_IDE_MASK) {
879 		/* The received frame is an Extended format frame */
880 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
881 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
882 				XCAN_IDR_ID2_SHIFT;
883 		cf->can_id |= CAN_EFF_FLAG;
884 		if (id_xcan & XCAN_IDR_RTR_MASK)
885 			cf->can_id |= CAN_RTR_FLAG;
886 	} else {
887 		/* The received frame is a standard format frame */
888 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
889 				XCAN_IDR_ID1_SHIFT;
890 		if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
891 					XCAN_IDR_SRR_MASK))
892 			cf->can_id |= CAN_RTR_FLAG;
893 	}
894 
895 	/* Check the frame received is FD or not*/
896 	if (dlc & XCAN_DLCR_EDL_MASK) {
897 		for (i = 0; i < cf->len; i += 4) {
898 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
899 					(dwindex * XCANFD_DW_BYTES);
900 			data[0] = priv->read_reg(priv, dw_offset);
901 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
902 			dwindex++;
903 		}
904 	} else {
905 		for (i = 0; i < cf->len; i += 4) {
906 			dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
907 			data[0] = priv->read_reg(priv, dw_offset + i);
908 			*(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
909 		}
910 	}
911 
912 	if (!(cf->can_id & CAN_RTR_FLAG))
913 		stats->rx_bytes += cf->len;
914 	stats->rx_packets++;
915 
916 	netif_receive_skb(skb);
917 
918 	return 1;
919 }
920 
921 /**
922  * xcan_current_error_state - Get current error state from HW
923  * @ndev:	Pointer to net_device structure
924  *
925  * Checks the current CAN error state from the HW. Note that this
926  * only checks for ERROR_PASSIVE and ERROR_WARNING.
927  *
928  * Return:
929  * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
930  * otherwise.
931  */
932 static enum can_state xcan_current_error_state(struct net_device *ndev)
933 {
934 	struct xcan_priv *priv = netdev_priv(ndev);
935 	u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
936 
937 	if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
938 		return CAN_STATE_ERROR_PASSIVE;
939 	else if (status & XCAN_SR_ERRWRN_MASK)
940 		return CAN_STATE_ERROR_WARNING;
941 	else
942 		return CAN_STATE_ERROR_ACTIVE;
943 }
944 
945 /**
946  * xcan_set_error_state - Set new CAN error state
947  * @ndev:	Pointer to net_device structure
948  * @new_state:	The new CAN state to be set
949  * @cf:		Error frame to be populated or NULL
950  *
951  * Set new CAN error state for the device, updating statistics and
952  * populating the error frame if given.
953  */
954 static void xcan_set_error_state(struct net_device *ndev,
955 				 enum can_state new_state,
956 				 struct can_frame *cf)
957 {
958 	struct xcan_priv *priv = netdev_priv(ndev);
959 	u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
960 	u32 txerr = ecr & XCAN_ECR_TEC_MASK;
961 	u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
962 	enum can_state tx_state = txerr >= rxerr ? new_state : 0;
963 	enum can_state rx_state = txerr <= rxerr ? new_state : 0;
964 
965 	/* non-ERROR states are handled elsewhere */
966 	if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
967 		return;
968 
969 	can_change_state(ndev, cf, tx_state, rx_state);
970 
971 	if (cf) {
972 		cf->can_id |= CAN_ERR_CNT;
973 		cf->data[6] = txerr;
974 		cf->data[7] = rxerr;
975 	}
976 }
977 
978 /**
979  * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
980  * @ndev:	Pointer to net_device structure
981  *
982  * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
983  * the performed RX/TX has caused it to drop to a lesser state and set
984  * the interface state accordingly.
985  */
986 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
987 {
988 	struct xcan_priv *priv = netdev_priv(ndev);
989 	enum can_state old_state = priv->can.state;
990 	enum can_state new_state;
991 
992 	/* changing error state due to successful frame RX/TX can only
993 	 * occur from these states
994 	 */
995 	if (old_state != CAN_STATE_ERROR_WARNING &&
996 	    old_state != CAN_STATE_ERROR_PASSIVE)
997 		return;
998 
999 	new_state = xcan_current_error_state(ndev);
1000 
1001 	if (new_state != old_state) {
1002 		struct sk_buff *skb;
1003 		struct can_frame *cf;
1004 
1005 		skb = alloc_can_err_skb(ndev, &cf);
1006 
1007 		xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
1008 
1009 		if (skb)
1010 			netif_rx(skb);
1011 	}
1012 }
1013 
1014 /**
1015  * xcan_err_interrupt - error frame Isr
1016  * @ndev:	net_device pointer
1017  * @isr:	interrupt status register value
1018  *
1019  * This is the CAN error interrupt and it will
1020  * check the type of error and forward the error
1021  * frame to upper layers.
1022  */
1023 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
1024 {
1025 	struct xcan_priv *priv = netdev_priv(ndev);
1026 	struct net_device_stats *stats = &ndev->stats;
1027 	struct can_frame cf = { };
1028 	u32 err_status;
1029 
1030 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
1031 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
1032 
1033 	if (isr & XCAN_IXR_BSOFF_MASK) {
1034 		priv->can.state = CAN_STATE_BUS_OFF;
1035 		priv->can.can_stats.bus_off++;
1036 		/* Leave device in Config Mode in bus-off state */
1037 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1038 		can_bus_off(ndev);
1039 		cf.can_id |= CAN_ERR_BUSOFF;
1040 	} else {
1041 		enum can_state new_state = xcan_current_error_state(ndev);
1042 
1043 		if (new_state != priv->can.state)
1044 			xcan_set_error_state(ndev, new_state, &cf);
1045 	}
1046 
1047 	/* Check for Arbitration lost interrupt */
1048 	if (isr & XCAN_IXR_ARBLST_MASK) {
1049 		priv->can.can_stats.arbitration_lost++;
1050 		cf.can_id |= CAN_ERR_LOSTARB;
1051 		cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1052 	}
1053 
1054 	/* Check for RX FIFO Overflow interrupt */
1055 	if (isr & XCAN_IXR_RXOFLW_MASK) {
1056 		stats->rx_over_errors++;
1057 		stats->rx_errors++;
1058 		cf.can_id |= CAN_ERR_CRTL;
1059 		cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1060 	}
1061 
1062 	/* Check for RX Match Not Finished interrupt */
1063 	if (isr & XCAN_IXR_RXMNF_MASK) {
1064 		stats->rx_dropped++;
1065 		stats->rx_errors++;
1066 		netdev_err(ndev, "RX match not finished, frame discarded\n");
1067 		cf.can_id |= CAN_ERR_CRTL;
1068 		cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1069 	}
1070 
1071 	/* Check for error interrupt */
1072 	if (isr & XCAN_IXR_ERROR_MASK) {
1073 		bool berr_reporting = false;
1074 
1075 		if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1076 			berr_reporting = true;
1077 			cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1078 		}
1079 
1080 		/* Check for Ack error interrupt */
1081 		if (err_status & XCAN_ESR_ACKER_MASK) {
1082 			stats->tx_errors++;
1083 			if (berr_reporting) {
1084 				cf.can_id |= CAN_ERR_ACK;
1085 				cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1086 			}
1087 		}
1088 
1089 		/* Check for Bit error interrupt */
1090 		if (err_status & XCAN_ESR_BERR_MASK) {
1091 			stats->tx_errors++;
1092 			if (berr_reporting) {
1093 				cf.can_id |= CAN_ERR_PROT;
1094 				cf.data[2] = CAN_ERR_PROT_BIT;
1095 			}
1096 		}
1097 
1098 		/* Check for Stuff error interrupt */
1099 		if (err_status & XCAN_ESR_STER_MASK) {
1100 			stats->rx_errors++;
1101 			if (berr_reporting) {
1102 				cf.can_id |= CAN_ERR_PROT;
1103 				cf.data[2] = CAN_ERR_PROT_STUFF;
1104 			}
1105 		}
1106 
1107 		/* Check for Form error interrupt */
1108 		if (err_status & XCAN_ESR_FMER_MASK) {
1109 			stats->rx_errors++;
1110 			if (berr_reporting) {
1111 				cf.can_id |= CAN_ERR_PROT;
1112 				cf.data[2] = CAN_ERR_PROT_FORM;
1113 			}
1114 		}
1115 
1116 		/* Check for CRC error interrupt */
1117 		if (err_status & XCAN_ESR_CRCER_MASK) {
1118 			stats->rx_errors++;
1119 			if (berr_reporting) {
1120 				cf.can_id |= CAN_ERR_PROT;
1121 				cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1122 			}
1123 		}
1124 		priv->can.can_stats.bus_error++;
1125 	}
1126 
1127 	if (cf.can_id) {
1128 		struct can_frame *skb_cf;
1129 		struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1130 
1131 		if (skb) {
1132 			skb_cf->can_id |= cf.can_id;
1133 			memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1134 			netif_rx(skb);
1135 		}
1136 	}
1137 
1138 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
1139 		   __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1140 }
1141 
1142 /**
1143  * xcan_state_interrupt - It will check the state of the CAN device
1144  * @ndev:	net_device pointer
1145  * @isr:	interrupt status register value
1146  *
1147  * This will checks the state of the CAN device
1148  * and puts the device into appropriate state.
1149  */
1150 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1151 {
1152 	struct xcan_priv *priv = netdev_priv(ndev);
1153 
1154 	/* Check for Sleep interrupt if set put CAN device in sleep state */
1155 	if (isr & XCAN_IXR_SLP_MASK)
1156 		priv->can.state = CAN_STATE_SLEEPING;
1157 
1158 	/* Check for Wake up interrupt if set put CAN device in Active state */
1159 	if (isr & XCAN_IXR_WKUP_MASK)
1160 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1161 }
1162 
1163 /**
1164  * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1165  * @priv:	Driver private data structure
1166  *
1167  * Return: Register offset of the next frame in RX FIFO.
1168  */
1169 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1170 {
1171 	int offset;
1172 
1173 	if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1174 		u32 fsr, mask;
1175 
1176 		/* clear RXOK before the is-empty check so that any newly
1177 		 * received frame will reassert it without a race
1178 		 */
1179 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1180 
1181 		fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1182 
1183 		/* check if RX FIFO is empty */
1184 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1185 			mask = XCAN_2_FSR_FL_MASK;
1186 		else
1187 			mask = XCAN_FSR_FL_MASK;
1188 
1189 		if (!(fsr & mask))
1190 			return -ENOENT;
1191 
1192 		if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1193 			offset =
1194 			  XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1195 		else
1196 			offset =
1197 			  XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1198 
1199 	} else {
1200 		/* check if RX FIFO is empty */
1201 		if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1202 		      XCAN_IXR_RXNEMP_MASK))
1203 			return -ENOENT;
1204 
1205 		/* frames are read from a static offset */
1206 		offset = XCAN_RXFIFO_OFFSET;
1207 	}
1208 
1209 	return offset;
1210 }
1211 
1212 /**
1213  * xcan_rx_poll - Poll routine for rx packets (NAPI)
1214  * @napi:	napi structure pointer
1215  * @quota:	Max number of rx packets to be processed.
1216  *
1217  * This is the poll routine for rx part.
1218  * It will process the packets maximux quota value.
1219  *
1220  * Return: number of packets received
1221  */
1222 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1223 {
1224 	struct net_device *ndev = napi->dev;
1225 	struct xcan_priv *priv = netdev_priv(ndev);
1226 	u32 ier;
1227 	int work_done = 0;
1228 	int frame_offset;
1229 
1230 	while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1231 	       (work_done < quota)) {
1232 		if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1233 			work_done += xcanfd_rx(ndev, frame_offset);
1234 		else
1235 			work_done += xcan_rx(ndev, frame_offset);
1236 
1237 		if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1238 			/* increment read index */
1239 			priv->write_reg(priv, XCAN_FSR_OFFSET,
1240 					XCAN_FSR_IRI_MASK);
1241 		else
1242 			/* clear rx-not-empty (will actually clear only if
1243 			 * empty)
1244 			 */
1245 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1246 					XCAN_IXR_RXNEMP_MASK);
1247 	}
1248 
1249 	if (work_done)
1250 		xcan_update_error_state_after_rxtx(ndev);
1251 
1252 	if (work_done < quota) {
1253 		if (napi_complete_done(napi, work_done)) {
1254 			ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1255 			ier |= xcan_rx_int_mask(priv);
1256 			priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1257 		}
1258 	}
1259 	return work_done;
1260 }
1261 
1262 /**
1263  * xcan_tx_interrupt - Tx Done Isr
1264  * @ndev:	net_device pointer
1265  * @isr:	Interrupt status register value
1266  */
1267 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1268 {
1269 	struct xcan_priv *priv = netdev_priv(ndev);
1270 	struct net_device_stats *stats = &ndev->stats;
1271 	unsigned int frames_in_fifo;
1272 	int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1273 	unsigned long flags;
1274 	int retries = 0;
1275 
1276 	/* Synchronize with xmit as we need to know the exact number
1277 	 * of frames in the FIFO to stay in sync due to the TXFEMP
1278 	 * handling.
1279 	 * This also prevents a race between netif_wake_queue() and
1280 	 * netif_stop_queue().
1281 	 */
1282 	spin_lock_irqsave(&priv->tx_lock, flags);
1283 
1284 	frames_in_fifo = priv->tx_head - priv->tx_tail;
1285 
1286 	if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1287 		/* clear TXOK anyway to avoid getting back here */
1288 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1289 		spin_unlock_irqrestore(&priv->tx_lock, flags);
1290 		return;
1291 	}
1292 
1293 	/* Check if 2 frames were sent (TXOK only means that at least 1
1294 	 * frame was sent).
1295 	 */
1296 	if (frames_in_fifo > 1) {
1297 		WARN_ON(frames_in_fifo > priv->tx_max);
1298 
1299 		/* Synchronize TXOK and isr so that after the loop:
1300 		 * (1) isr variable is up-to-date at least up to TXOK clear
1301 		 *     time. This avoids us clearing a TXOK of a second frame
1302 		 *     but not noticing that the FIFO is now empty and thus
1303 		 *     marking only a single frame as sent.
1304 		 * (2) No TXOK is left. Having one could mean leaving a
1305 		 *     stray TXOK as we might process the associated frame
1306 		 *     via TXFEMP handling as we read TXFEMP *after* TXOK
1307 		 *     clear to satisfy (1).
1308 		 */
1309 		while ((isr & XCAN_IXR_TXOK_MASK) &&
1310 		       !WARN_ON(++retries == 100)) {
1311 			priv->write_reg(priv, XCAN_ICR_OFFSET,
1312 					XCAN_IXR_TXOK_MASK);
1313 			isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1314 		}
1315 
1316 		if (isr & XCAN_IXR_TXFEMP_MASK) {
1317 			/* nothing in FIFO anymore */
1318 			frames_sent = frames_in_fifo;
1319 		}
1320 	} else {
1321 		/* single frame in fifo, just clear TXOK */
1322 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1323 	}
1324 
1325 	while (frames_sent--) {
1326 		stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1327 						    priv->tx_max, NULL);
1328 		priv->tx_tail++;
1329 		stats->tx_packets++;
1330 	}
1331 
1332 	netif_wake_queue(ndev);
1333 
1334 	spin_unlock_irqrestore(&priv->tx_lock, flags);
1335 
1336 	xcan_update_error_state_after_rxtx(ndev);
1337 }
1338 
1339 /**
1340  * xcan_interrupt - CAN Isr
1341  * @irq:	irq number
1342  * @dev_id:	device id pointer
1343  *
1344  * This is the xilinx CAN Isr. It checks for the type of interrupt
1345  * and invokes the corresponding ISR.
1346  *
1347  * Return:
1348  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1349  */
1350 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1351 {
1352 	struct net_device *ndev = (struct net_device *)dev_id;
1353 	struct xcan_priv *priv = netdev_priv(ndev);
1354 	u32 isr, ier;
1355 	u32 isr_errors;
1356 	u32 rx_int_mask = xcan_rx_int_mask(priv);
1357 
1358 	/* Get the interrupt status from Xilinx CAN */
1359 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1360 	if (!isr)
1361 		return IRQ_NONE;
1362 
1363 	/* Check for the type of interrupt and Processing it */
1364 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1365 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1366 				XCAN_IXR_WKUP_MASK));
1367 		xcan_state_interrupt(ndev, isr);
1368 	}
1369 
1370 	/* Check for Tx interrupt and Processing it */
1371 	if (isr & XCAN_IXR_TXOK_MASK)
1372 		xcan_tx_interrupt(ndev, isr);
1373 
1374 	/* Check for the type of error interrupt and Processing it */
1375 	isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1376 			    XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1377 			    XCAN_IXR_RXMNF_MASK);
1378 	if (isr_errors) {
1379 		priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1380 		xcan_err_interrupt(ndev, isr);
1381 	}
1382 
1383 	/* Check for the type of receive interrupt and Processing it */
1384 	if (isr & rx_int_mask) {
1385 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1386 		ier &= ~rx_int_mask;
1387 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1388 		napi_schedule(&priv->napi);
1389 	}
1390 	return IRQ_HANDLED;
1391 }
1392 
1393 /**
1394  * xcan_chip_stop - Driver stop routine
1395  * @ndev:	Pointer to net_device structure
1396  *
1397  * This is the drivers stop routine. It will disable the
1398  * interrupts and put the device into configuration mode.
1399  */
1400 static void xcan_chip_stop(struct net_device *ndev)
1401 {
1402 	struct xcan_priv *priv = netdev_priv(ndev);
1403 	int ret;
1404 
1405 	/* Disable interrupts and leave the can in configuration mode */
1406 	ret = set_reset_mode(ndev);
1407 	if (ret < 0)
1408 		netdev_dbg(ndev, "set_reset_mode() Failed\n");
1409 
1410 	priv->can.state = CAN_STATE_STOPPED;
1411 }
1412 
1413 /**
1414  * xcan_open - Driver open routine
1415  * @ndev:	Pointer to net_device structure
1416  *
1417  * This is the driver open routine.
1418  * Return: 0 on success and failure value on error
1419  */
1420 static int xcan_open(struct net_device *ndev)
1421 {
1422 	struct xcan_priv *priv = netdev_priv(ndev);
1423 	int ret;
1424 
1425 	ret = phy_power_on(priv->transceiver);
1426 	if (ret)
1427 		return ret;
1428 
1429 	ret = pm_runtime_get_sync(priv->dev);
1430 	if (ret < 0) {
1431 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1432 			   __func__, ret);
1433 		goto err;
1434 	}
1435 
1436 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1437 			  ndev->name, ndev);
1438 	if (ret < 0) {
1439 		netdev_err(ndev, "irq allocation for CAN failed\n");
1440 		goto err;
1441 	}
1442 
1443 	/* Set chip into reset mode */
1444 	ret = set_reset_mode(ndev);
1445 	if (ret < 0) {
1446 		netdev_err(ndev, "mode resetting failed!\n");
1447 		goto err_irq;
1448 	}
1449 
1450 	/* Common open */
1451 	ret = open_candev(ndev);
1452 	if (ret)
1453 		goto err_irq;
1454 
1455 	ret = xcan_chip_start(ndev);
1456 	if (ret < 0) {
1457 		netdev_err(ndev, "xcan_chip_start failed!\n");
1458 		goto err_candev;
1459 	}
1460 
1461 	napi_enable(&priv->napi);
1462 	netif_start_queue(ndev);
1463 
1464 	return 0;
1465 
1466 err_candev:
1467 	close_candev(ndev);
1468 err_irq:
1469 	free_irq(ndev->irq, ndev);
1470 err:
1471 	pm_runtime_put(priv->dev);
1472 	phy_power_off(priv->transceiver);
1473 
1474 	return ret;
1475 }
1476 
1477 /**
1478  * xcan_close - Driver close routine
1479  * @ndev:	Pointer to net_device structure
1480  *
1481  * Return: 0 always
1482  */
1483 static int xcan_close(struct net_device *ndev)
1484 {
1485 	struct xcan_priv *priv = netdev_priv(ndev);
1486 
1487 	netif_stop_queue(ndev);
1488 	napi_disable(&priv->napi);
1489 	xcan_chip_stop(ndev);
1490 	free_irq(ndev->irq, ndev);
1491 	close_candev(ndev);
1492 
1493 	pm_runtime_put(priv->dev);
1494 	phy_power_off(priv->transceiver);
1495 
1496 	return 0;
1497 }
1498 
1499 /**
1500  * xcan_get_berr_counter - error counter routine
1501  * @ndev:	Pointer to net_device structure
1502  * @bec:	Pointer to can_berr_counter structure
1503  *
1504  * This is the driver error counter routine.
1505  * Return: 0 on success and failure value on error
1506  */
1507 static int xcan_get_berr_counter(const struct net_device *ndev,
1508 				 struct can_berr_counter *bec)
1509 {
1510 	struct xcan_priv *priv = netdev_priv(ndev);
1511 	int ret;
1512 
1513 	ret = pm_runtime_get_sync(priv->dev);
1514 	if (ret < 0) {
1515 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1516 			   __func__, ret);
1517 		pm_runtime_put(priv->dev);
1518 		return ret;
1519 	}
1520 
1521 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1522 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1523 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1524 
1525 	pm_runtime_put(priv->dev);
1526 
1527 	return 0;
1528 }
1529 
1530 /**
1531  * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1532  * @ndev:	Pointer to net_device structure
1533  * @tdcv:	Pointer to TDCV value
1534  *
1535  * Return: 0 on success
1536  */
1537 static int xcan_get_auto_tdcv(const struct net_device *ndev, u32 *tdcv)
1538 {
1539 	struct xcan_priv *priv = netdev_priv(ndev);
1540 
1541 	*tdcv = FIELD_GET(XCAN_SR_TDCV_MASK, priv->read_reg(priv, XCAN_SR_OFFSET));
1542 
1543 	return 0;
1544 }
1545 
1546 static const struct net_device_ops xcan_netdev_ops = {
1547 	.ndo_open	= xcan_open,
1548 	.ndo_stop	= xcan_close,
1549 	.ndo_start_xmit	= xcan_start_xmit,
1550 	.ndo_change_mtu	= can_change_mtu,
1551 };
1552 
1553 static const struct ethtool_ops xcan_ethtool_ops = {
1554 	.get_ts_info = ethtool_op_get_ts_info,
1555 };
1556 
1557 /**
1558  * xcan_suspend - Suspend method for the driver
1559  * @dev:	Address of the device structure
1560  *
1561  * Put the driver into low power mode.
1562  * Return: 0 on success and failure value on error
1563  */
1564 static int __maybe_unused xcan_suspend(struct device *dev)
1565 {
1566 	struct net_device *ndev = dev_get_drvdata(dev);
1567 
1568 	if (netif_running(ndev)) {
1569 		netif_stop_queue(ndev);
1570 		netif_device_detach(ndev);
1571 		xcan_chip_stop(ndev);
1572 	}
1573 
1574 	return pm_runtime_force_suspend(dev);
1575 }
1576 
1577 /**
1578  * xcan_resume - Resume from suspend
1579  * @dev:	Address of the device structure
1580  *
1581  * Resume operation after suspend.
1582  * Return: 0 on success and failure value on error
1583  */
1584 static int __maybe_unused xcan_resume(struct device *dev)
1585 {
1586 	struct net_device *ndev = dev_get_drvdata(dev);
1587 	int ret;
1588 
1589 	ret = pm_runtime_force_resume(dev);
1590 	if (ret) {
1591 		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1592 		return ret;
1593 	}
1594 
1595 	if (netif_running(ndev)) {
1596 		ret = xcan_chip_start(ndev);
1597 		if (ret) {
1598 			dev_err(dev, "xcan_chip_start failed on resume\n");
1599 			return ret;
1600 		}
1601 
1602 		netif_device_attach(ndev);
1603 		netif_start_queue(ndev);
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 /**
1610  * xcan_runtime_suspend - Runtime suspend method for the driver
1611  * @dev:	Address of the device structure
1612  *
1613  * Put the driver into low power mode.
1614  * Return: 0 always
1615  */
1616 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1617 {
1618 	struct net_device *ndev = dev_get_drvdata(dev);
1619 	struct xcan_priv *priv = netdev_priv(ndev);
1620 
1621 	clk_disable_unprepare(priv->bus_clk);
1622 	clk_disable_unprepare(priv->can_clk);
1623 
1624 	return 0;
1625 }
1626 
1627 /**
1628  * xcan_runtime_resume - Runtime resume from suspend
1629  * @dev:	Address of the device structure
1630  *
1631  * Resume operation after suspend.
1632  * Return: 0 on success and failure value on error
1633  */
1634 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1635 {
1636 	struct net_device *ndev = dev_get_drvdata(dev);
1637 	struct xcan_priv *priv = netdev_priv(ndev);
1638 	int ret;
1639 
1640 	ret = clk_prepare_enable(priv->bus_clk);
1641 	if (ret) {
1642 		dev_err(dev, "Cannot enable clock.\n");
1643 		return ret;
1644 	}
1645 	ret = clk_prepare_enable(priv->can_clk);
1646 	if (ret) {
1647 		dev_err(dev, "Cannot enable clock.\n");
1648 		clk_disable_unprepare(priv->bus_clk);
1649 		return ret;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static const struct dev_pm_ops xcan_dev_pm_ops = {
1656 	SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1657 	SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1658 };
1659 
1660 static const struct xcan_devtype_data xcan_zynq_data = {
1661 	.cantype = XZYNQ_CANPS,
1662 	.flags = XCAN_FLAG_TXFEMP,
1663 	.bittiming_const = &xcan_bittiming_const,
1664 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1665 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1666 	.bus_clk_name = "pclk",
1667 };
1668 
1669 static const struct xcan_devtype_data xcan_axi_data = {
1670 	.cantype = XAXI_CAN,
1671 	.bittiming_const = &xcan_bittiming_const,
1672 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1673 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1674 	.bus_clk_name = "s_axi_aclk",
1675 };
1676 
1677 static const struct xcan_devtype_data xcan_canfd_data = {
1678 	.cantype = XAXI_CANFD,
1679 	.flags = XCAN_FLAG_EXT_FILTERS |
1680 		 XCAN_FLAG_RXMNF |
1681 		 XCAN_FLAG_TX_MAILBOXES |
1682 		 XCAN_FLAG_RX_FIFO_MULTI,
1683 	.bittiming_const = &xcan_bittiming_const_canfd,
1684 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1685 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1686 	.bus_clk_name = "s_axi_aclk",
1687 };
1688 
1689 static const struct xcan_devtype_data xcan_canfd2_data = {
1690 	.cantype = XAXI_CANFD_2_0,
1691 	.flags = XCAN_FLAG_EXT_FILTERS |
1692 		 XCAN_FLAG_RXMNF |
1693 		 XCAN_FLAG_TX_MAILBOXES |
1694 		 XCAN_FLAG_CANFD_2 |
1695 		 XCAN_FLAG_RX_FIFO_MULTI,
1696 	.bittiming_const = &xcan_bittiming_const_canfd2,
1697 	.btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1698 	.btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1699 	.bus_clk_name = "s_axi_aclk",
1700 };
1701 
1702 /* Match table for OF platform binding */
1703 static const struct of_device_id xcan_of_match[] = {
1704 	{ .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1705 	{ .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1706 	{ .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1707 	{ .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1708 	{ /* end of list */ },
1709 };
1710 MODULE_DEVICE_TABLE(of, xcan_of_match);
1711 
1712 /**
1713  * xcan_probe - Platform registration call
1714  * @pdev:	Handle to the platform device structure
1715  *
1716  * This function does all the memory allocation and registration for the CAN
1717  * device.
1718  *
1719  * Return: 0 on success and failure value on error
1720  */
1721 static int xcan_probe(struct platform_device *pdev)
1722 {
1723 	struct net_device *ndev;
1724 	struct xcan_priv *priv;
1725 	struct phy *transceiver;
1726 	const struct of_device_id *of_id;
1727 	const struct xcan_devtype_data *devtype = &xcan_axi_data;
1728 	void __iomem *addr;
1729 	int ret;
1730 	int rx_max, tx_max;
1731 	u32 hw_tx_max = 0, hw_rx_max = 0;
1732 	const char *hw_tx_max_property;
1733 
1734 	/* Get the virtual base address for the device */
1735 	addr = devm_platform_ioremap_resource(pdev, 0);
1736 	if (IS_ERR(addr)) {
1737 		ret = PTR_ERR(addr);
1738 		goto err;
1739 	}
1740 
1741 	of_id = of_match_device(xcan_of_match, &pdev->dev);
1742 	if (of_id && of_id->data)
1743 		devtype = of_id->data;
1744 
1745 	hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1746 			     "tx-mailbox-count" : "tx-fifo-depth";
1747 
1748 	ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1749 				   &hw_tx_max);
1750 	if (ret < 0) {
1751 		dev_err(&pdev->dev, "missing %s property\n",
1752 			hw_tx_max_property);
1753 		goto err;
1754 	}
1755 
1756 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1757 				   &hw_rx_max);
1758 	if (ret < 0) {
1759 		dev_err(&pdev->dev,
1760 			"missing rx-fifo-depth property (mailbox mode is not supported)\n");
1761 		goto err;
1762 	}
1763 
1764 	/* With TX FIFO:
1765 	 *
1766 	 * There is no way to directly figure out how many frames have been
1767 	 * sent when the TXOK interrupt is processed. If TXFEMP
1768 	 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1769 	 * to determine if 1 or 2 frames have been sent.
1770 	 * Theoretically we should be able to use TXFWMEMP to determine up
1771 	 * to 3 frames, but it seems that after putting a second frame in the
1772 	 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1773 	 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1774 	 * sent), which is not a sensible state - possibly TXFWMEMP is not
1775 	 * completely synchronized with the rest of the bits?
1776 	 *
1777 	 * With TX mailboxes:
1778 	 *
1779 	 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1780 	 * we submit frames one at a time.
1781 	 */
1782 	if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1783 	    (devtype->flags & XCAN_FLAG_TXFEMP))
1784 		tx_max = min(hw_tx_max, 2U);
1785 	else
1786 		tx_max = 1;
1787 
1788 	rx_max = hw_rx_max;
1789 
1790 	/* Create a CAN device instance */
1791 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1792 	if (!ndev)
1793 		return -ENOMEM;
1794 
1795 	priv = netdev_priv(ndev);
1796 	priv->dev = &pdev->dev;
1797 	priv->can.bittiming_const = devtype->bittiming_const;
1798 	priv->can.do_set_mode = xcan_do_set_mode;
1799 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1800 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1801 					CAN_CTRLMODE_BERR_REPORTING;
1802 
1803 	if (devtype->cantype == XAXI_CANFD) {
1804 		priv->can.data_bittiming_const =
1805 			&xcan_data_bittiming_const_canfd;
1806 		priv->can.tdc_const = &xcan_tdc_const_canfd;
1807 	}
1808 
1809 	if (devtype->cantype == XAXI_CANFD_2_0) {
1810 		priv->can.data_bittiming_const =
1811 			&xcan_data_bittiming_const_canfd2;
1812 		priv->can.tdc_const = &xcan_tdc_const_canfd2;
1813 	}
1814 
1815 	if (devtype->cantype == XAXI_CANFD ||
1816 	    devtype->cantype == XAXI_CANFD_2_0) {
1817 		priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD |
1818 						CAN_CTRLMODE_TDC_AUTO;
1819 		priv->can.do_get_auto_tdcv = xcan_get_auto_tdcv;
1820 	}
1821 
1822 	priv->reg_base = addr;
1823 	priv->tx_max = tx_max;
1824 	priv->devtype = *devtype;
1825 	spin_lock_init(&priv->tx_lock);
1826 
1827 	/* Get IRQ for the device */
1828 	ret = platform_get_irq(pdev, 0);
1829 	if (ret < 0)
1830 		goto err_free;
1831 
1832 	ndev->irq = ret;
1833 
1834 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1835 
1836 	platform_set_drvdata(pdev, ndev);
1837 	SET_NETDEV_DEV(ndev, &pdev->dev);
1838 	ndev->netdev_ops = &xcan_netdev_ops;
1839 	ndev->ethtool_ops = &xcan_ethtool_ops;
1840 
1841 	/* Getting the CAN can_clk info */
1842 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1843 	if (IS_ERR(priv->can_clk)) {
1844 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->can_clk),
1845 				    "device clock not found\n");
1846 		goto err_free;
1847 	}
1848 
1849 	priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1850 	if (IS_ERR(priv->bus_clk)) {
1851 		ret = dev_err_probe(&pdev->dev, PTR_ERR(priv->bus_clk),
1852 				    "bus clock not found\n");
1853 		goto err_free;
1854 	}
1855 
1856 	transceiver = devm_phy_optional_get(&pdev->dev, NULL);
1857 	if (IS_ERR(transceiver)) {
1858 		ret = PTR_ERR(transceiver);
1859 		dev_err_probe(&pdev->dev, ret, "failed to get phy\n");
1860 		goto err_free;
1861 	}
1862 	priv->transceiver = transceiver;
1863 
1864 	priv->write_reg = xcan_write_reg_le;
1865 	priv->read_reg = xcan_read_reg_le;
1866 
1867 	pm_runtime_enable(&pdev->dev);
1868 	ret = pm_runtime_get_sync(&pdev->dev);
1869 	if (ret < 0) {
1870 		netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1871 			   __func__, ret);
1872 		goto err_disableclks;
1873 	}
1874 
1875 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1876 		priv->write_reg = xcan_write_reg_be;
1877 		priv->read_reg = xcan_read_reg_be;
1878 	}
1879 
1880 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1881 
1882 	netif_napi_add_weight(ndev, &priv->napi, xcan_rx_poll, rx_max);
1883 
1884 	ret = register_candev(ndev);
1885 	if (ret) {
1886 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1887 		goto err_disableclks;
1888 	}
1889 
1890 	of_can_transceiver(ndev);
1891 	pm_runtime_put(&pdev->dev);
1892 
1893 	if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1894 		priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1895 		priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1896 	}
1897 
1898 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1899 		   priv->reg_base, ndev->irq, priv->can.clock.freq,
1900 		   hw_tx_max, priv->tx_max);
1901 
1902 	return 0;
1903 
1904 err_disableclks:
1905 	pm_runtime_put(priv->dev);
1906 	pm_runtime_disable(&pdev->dev);
1907 err_free:
1908 	free_candev(ndev);
1909 err:
1910 	return ret;
1911 }
1912 
1913 /**
1914  * xcan_remove - Unregister the device after releasing the resources
1915  * @pdev:	Handle to the platform device structure
1916  *
1917  * This function frees all the resources allocated to the device.
1918  * Return: 0 always
1919  */
1920 static void xcan_remove(struct platform_device *pdev)
1921 {
1922 	struct net_device *ndev = platform_get_drvdata(pdev);
1923 
1924 	unregister_candev(ndev);
1925 	pm_runtime_disable(&pdev->dev);
1926 	free_candev(ndev);
1927 }
1928 
1929 static struct platform_driver xcan_driver = {
1930 	.probe = xcan_probe,
1931 	.remove_new = xcan_remove,
1932 	.driver	= {
1933 		.name = DRIVER_NAME,
1934 		.pm = &xcan_dev_pm_ops,
1935 		.of_match_table	= xcan_of_match,
1936 	},
1937 };
1938 
1939 module_platform_driver(xcan_driver);
1940 
1941 MODULE_LICENSE("GPL");
1942 MODULE_AUTHOR("Xilinx Inc");
1943 MODULE_DESCRIPTION("Xilinx CAN interface");
1944