xref: /openbmc/linux/drivers/net/can/xilinx_can.c (revision c819e2cf)
1 /* Xilinx CAN device driver
2  *
3  * Copyright (C) 2012 - 2014 Xilinx, Inc.
4  * Copyright (C) 2009 PetaLogix. All rights reserved.
5  *
6  * Description:
7  * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/skbuff.h>
30 #include <linux/string.h>
31 #include <linux/types.h>
32 #include <linux/can/dev.h>
33 #include <linux/can/error.h>
34 #include <linux/can/led.h>
35 
36 #define DRIVER_NAME	"xilinx_can"
37 
38 /* CAN registers set */
39 enum xcan_reg {
40 	XCAN_SRR_OFFSET		= 0x00, /* Software reset */
41 	XCAN_MSR_OFFSET		= 0x04, /* Mode select */
42 	XCAN_BRPR_OFFSET	= 0x08, /* Baud rate prescaler */
43 	XCAN_BTR_OFFSET		= 0x0C, /* Bit timing */
44 	XCAN_ECR_OFFSET		= 0x10, /* Error counter */
45 	XCAN_ESR_OFFSET		= 0x14, /* Error status */
46 	XCAN_SR_OFFSET		= 0x18, /* Status */
47 	XCAN_ISR_OFFSET		= 0x1C, /* Interrupt status */
48 	XCAN_IER_OFFSET		= 0x20, /* Interrupt enable */
49 	XCAN_ICR_OFFSET		= 0x24, /* Interrupt clear */
50 	XCAN_TXFIFO_ID_OFFSET	= 0x30,/* TX FIFO ID */
51 	XCAN_TXFIFO_DLC_OFFSET	= 0x34, /* TX FIFO DLC */
52 	XCAN_TXFIFO_DW1_OFFSET	= 0x38, /* TX FIFO Data Word 1 */
53 	XCAN_TXFIFO_DW2_OFFSET	= 0x3C, /* TX FIFO Data Word 2 */
54 	XCAN_RXFIFO_ID_OFFSET	= 0x50, /* RX FIFO ID */
55 	XCAN_RXFIFO_DLC_OFFSET	= 0x54, /* RX FIFO DLC */
56 	XCAN_RXFIFO_DW1_OFFSET	= 0x58, /* RX FIFO Data Word 1 */
57 	XCAN_RXFIFO_DW2_OFFSET	= 0x5C, /* RX FIFO Data Word 2 */
58 };
59 
60 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
61 #define XCAN_SRR_CEN_MASK		0x00000002 /* CAN enable */
62 #define XCAN_SRR_RESET_MASK		0x00000001 /* Soft Reset the CAN core */
63 #define XCAN_MSR_LBACK_MASK		0x00000002 /* Loop back mode select */
64 #define XCAN_MSR_SLEEP_MASK		0x00000001 /* Sleep mode select */
65 #define XCAN_BRPR_BRP_MASK		0x000000FF /* Baud rate prescaler */
66 #define XCAN_BTR_SJW_MASK		0x00000180 /* Synchronous jump width */
67 #define XCAN_BTR_TS2_MASK		0x00000070 /* Time segment 2 */
68 #define XCAN_BTR_TS1_MASK		0x0000000F /* Time segment 1 */
69 #define XCAN_ECR_REC_MASK		0x0000FF00 /* Receive error counter */
70 #define XCAN_ECR_TEC_MASK		0x000000FF /* Transmit error counter */
71 #define XCAN_ESR_ACKER_MASK		0x00000010 /* ACK error */
72 #define XCAN_ESR_BERR_MASK		0x00000008 /* Bit error */
73 #define XCAN_ESR_STER_MASK		0x00000004 /* Stuff error */
74 #define XCAN_ESR_FMER_MASK		0x00000002 /* Form error */
75 #define XCAN_ESR_CRCER_MASK		0x00000001 /* CRC error */
76 #define XCAN_SR_TXFLL_MASK		0x00000400 /* TX FIFO is full */
77 #define XCAN_SR_ESTAT_MASK		0x00000180 /* Error status */
78 #define XCAN_SR_ERRWRN_MASK		0x00000040 /* Error warning */
79 #define XCAN_SR_NORMAL_MASK		0x00000008 /* Normal mode */
80 #define XCAN_SR_LBACK_MASK		0x00000002 /* Loop back mode */
81 #define XCAN_SR_CONFIG_MASK		0x00000001 /* Configuration mode */
82 #define XCAN_IXR_TXFEMP_MASK		0x00004000 /* TX FIFO Empty */
83 #define XCAN_IXR_WKUP_MASK		0x00000800 /* Wake up interrupt */
84 #define XCAN_IXR_SLP_MASK		0x00000400 /* Sleep interrupt */
85 #define XCAN_IXR_BSOFF_MASK		0x00000200 /* Bus off interrupt */
86 #define XCAN_IXR_ERROR_MASK		0x00000100 /* Error interrupt */
87 #define XCAN_IXR_RXNEMP_MASK		0x00000080 /* RX FIFO NotEmpty intr */
88 #define XCAN_IXR_RXOFLW_MASK		0x00000040 /* RX FIFO Overflow intr */
89 #define XCAN_IXR_RXOK_MASK		0x00000010 /* Message received intr */
90 #define XCAN_IXR_TXFLL_MASK		0x00000004 /* Tx FIFO Full intr */
91 #define XCAN_IXR_TXOK_MASK		0x00000002 /* TX successful intr */
92 #define XCAN_IXR_ARBLST_MASK		0x00000001 /* Arbitration lost intr */
93 #define XCAN_IDR_ID1_MASK		0xFFE00000 /* Standard msg identifier */
94 #define XCAN_IDR_SRR_MASK		0x00100000 /* Substitute remote TXreq */
95 #define XCAN_IDR_IDE_MASK		0x00080000 /* Identifier extension */
96 #define XCAN_IDR_ID2_MASK		0x0007FFFE /* Extended message ident */
97 #define XCAN_IDR_RTR_MASK		0x00000001 /* Remote TX request */
98 #define XCAN_DLCR_DLC_MASK		0xF0000000 /* Data length code */
99 
100 #define XCAN_INTR_ALL		(XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\
101 				 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \
102 				 XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \
103 				 XCAN_IXR_ARBLST_MASK | XCAN_IXR_RXOK_MASK)
104 
105 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
106 #define XCAN_BTR_SJW_SHIFT		7  /* Synchronous jump width */
107 #define XCAN_BTR_TS2_SHIFT		4  /* Time segment 2 */
108 #define XCAN_IDR_ID1_SHIFT		21 /* Standard Messg Identifier */
109 #define XCAN_IDR_ID2_SHIFT		1  /* Extended Message Identifier */
110 #define XCAN_DLCR_DLC_SHIFT		28 /* Data length code */
111 #define XCAN_ESR_REC_SHIFT		8  /* Rx Error Count */
112 
113 /* CAN frame length constants */
114 #define XCAN_FRAME_MAX_DATA_LEN		8
115 #define XCAN_TIMEOUT			(1 * HZ)
116 
117 /**
118  * struct xcan_priv - This definition define CAN driver instance
119  * @can:			CAN private data structure.
120  * @tx_head:			Tx CAN packets ready to send on the queue
121  * @tx_tail:			Tx CAN packets successfully sended on the queue
122  * @tx_max:			Maximum number packets the driver can send
123  * @napi:			NAPI structure
124  * @read_reg:			For reading data from CAN registers
125  * @write_reg:			For writing data to CAN registers
126  * @dev:			Network device data structure
127  * @reg_base:			Ioremapped address to registers
128  * @irq_flags:			For request_irq()
129  * @bus_clk:			Pointer to struct clk
130  * @can_clk:			Pointer to struct clk
131  */
132 struct xcan_priv {
133 	struct can_priv can;
134 	unsigned int tx_head;
135 	unsigned int tx_tail;
136 	unsigned int tx_max;
137 	struct napi_struct napi;
138 	u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
139 	void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
140 			u32 val);
141 	struct net_device *dev;
142 	void __iomem *reg_base;
143 	unsigned long irq_flags;
144 	struct clk *bus_clk;
145 	struct clk *can_clk;
146 };
147 
148 /* CAN Bittiming constants as per Xilinx CAN specs */
149 static const struct can_bittiming_const xcan_bittiming_const = {
150 	.name = DRIVER_NAME,
151 	.tseg1_min = 1,
152 	.tseg1_max = 16,
153 	.tseg2_min = 1,
154 	.tseg2_max = 8,
155 	.sjw_max = 4,
156 	.brp_min = 1,
157 	.brp_max = 256,
158 	.brp_inc = 1,
159 };
160 
161 /**
162  * xcan_write_reg_le - Write a value to the device register little endian
163  * @priv:	Driver private data structure
164  * @reg:	Register offset
165  * @val:	Value to write at the Register offset
166  *
167  * Write data to the paricular CAN register
168  */
169 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
170 			u32 val)
171 {
172 	iowrite32(val, priv->reg_base + reg);
173 }
174 
175 /**
176  * xcan_read_reg_le - Read a value from the device register little endian
177  * @priv:	Driver private data structure
178  * @reg:	Register offset
179  *
180  * Read data from the particular CAN register
181  * Return: value read from the CAN register
182  */
183 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
184 {
185 	return ioread32(priv->reg_base + reg);
186 }
187 
188 /**
189  * xcan_write_reg_be - Write a value to the device register big endian
190  * @priv:	Driver private data structure
191  * @reg:	Register offset
192  * @val:	Value to write at the Register offset
193  *
194  * Write data to the paricular CAN register
195  */
196 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
197 			u32 val)
198 {
199 	iowrite32be(val, priv->reg_base + reg);
200 }
201 
202 /**
203  * xcan_read_reg_be - Read a value from the device register big endian
204  * @priv:	Driver private data structure
205  * @reg:	Register offset
206  *
207  * Read data from the particular CAN register
208  * Return: value read from the CAN register
209  */
210 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
211 {
212 	return ioread32be(priv->reg_base + reg);
213 }
214 
215 /**
216  * set_reset_mode - Resets the CAN device mode
217  * @ndev:	Pointer to net_device structure
218  *
219  * This is the driver reset mode routine.The driver
220  * enters into configuration mode.
221  *
222  * Return: 0 on success and failure value on error
223  */
224 static int set_reset_mode(struct net_device *ndev)
225 {
226 	struct xcan_priv *priv = netdev_priv(ndev);
227 	unsigned long timeout;
228 
229 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
230 
231 	timeout = jiffies + XCAN_TIMEOUT;
232 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
233 		if (time_after(jiffies, timeout)) {
234 			netdev_warn(ndev, "timed out for config mode\n");
235 			return -ETIMEDOUT;
236 		}
237 		usleep_range(500, 10000);
238 	}
239 
240 	return 0;
241 }
242 
243 /**
244  * xcan_set_bittiming - CAN set bit timing routine
245  * @ndev:	Pointer to net_device structure
246  *
247  * This is the driver set bittiming  routine.
248  * Return: 0 on success and failure value on error
249  */
250 static int xcan_set_bittiming(struct net_device *ndev)
251 {
252 	struct xcan_priv *priv = netdev_priv(ndev);
253 	struct can_bittiming *bt = &priv->can.bittiming;
254 	u32 btr0, btr1;
255 	u32 is_config_mode;
256 
257 	/* Check whether Xilinx CAN is in configuration mode.
258 	 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
259 	 */
260 	is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
261 				XCAN_SR_CONFIG_MASK;
262 	if (!is_config_mode) {
263 		netdev_alert(ndev,
264 		     "BUG! Cannot set bittiming - CAN is not in config mode\n");
265 		return -EPERM;
266 	}
267 
268 	/* Setting Baud Rate prescalar value in BRPR Register */
269 	btr0 = (bt->brp - 1);
270 
271 	/* Setting Time Segment 1 in BTR Register */
272 	btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
273 
274 	/* Setting Time Segment 2 in BTR Register */
275 	btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT;
276 
277 	/* Setting Synchronous jump width in BTR Register */
278 	btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT;
279 
280 	priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
281 	priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
282 
283 	netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
284 			priv->read_reg(priv, XCAN_BRPR_OFFSET),
285 			priv->read_reg(priv, XCAN_BTR_OFFSET));
286 
287 	return 0;
288 }
289 
290 /**
291  * xcan_chip_start - This the drivers start routine
292  * @ndev:	Pointer to net_device structure
293  *
294  * This is the drivers start routine.
295  * Based on the State of the CAN device it puts
296  * the CAN device into a proper mode.
297  *
298  * Return: 0 on success and failure value on error
299  */
300 static int xcan_chip_start(struct net_device *ndev)
301 {
302 	struct xcan_priv *priv = netdev_priv(ndev);
303 	u32 reg_msr, reg_sr_mask;
304 	int err;
305 	unsigned long timeout;
306 
307 	/* Check if it is in reset mode */
308 	err = set_reset_mode(ndev);
309 	if (err < 0)
310 		return err;
311 
312 	err = xcan_set_bittiming(ndev);
313 	if (err < 0)
314 		return err;
315 
316 	/* Enable interrupts */
317 	priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL);
318 
319 	/* Check whether it is loopback mode or normal mode  */
320 	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
321 		reg_msr = XCAN_MSR_LBACK_MASK;
322 		reg_sr_mask = XCAN_SR_LBACK_MASK;
323 	} else {
324 		reg_msr = 0x0;
325 		reg_sr_mask = XCAN_SR_NORMAL_MASK;
326 	}
327 
328 	priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
329 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
330 
331 	timeout = jiffies + XCAN_TIMEOUT;
332 	while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) {
333 		if (time_after(jiffies, timeout)) {
334 			netdev_warn(ndev,
335 				"timed out for correct mode\n");
336 			return -ETIMEDOUT;
337 		}
338 	}
339 	netdev_dbg(ndev, "status:#x%08x\n",
340 			priv->read_reg(priv, XCAN_SR_OFFSET));
341 
342 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
343 	return 0;
344 }
345 
346 /**
347  * xcan_do_set_mode - This sets the mode of the driver
348  * @ndev:	Pointer to net_device structure
349  * @mode:	Tells the mode of the driver
350  *
351  * This check the drivers state and calls the
352  * the corresponding modes to set.
353  *
354  * Return: 0 on success and failure value on error
355  */
356 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
357 {
358 	int ret;
359 
360 	switch (mode) {
361 	case CAN_MODE_START:
362 		ret = xcan_chip_start(ndev);
363 		if (ret < 0) {
364 			netdev_err(ndev, "xcan_chip_start failed!\n");
365 			return ret;
366 		}
367 		netif_wake_queue(ndev);
368 		break;
369 	default:
370 		ret = -EOPNOTSUPP;
371 		break;
372 	}
373 
374 	return ret;
375 }
376 
377 /**
378  * xcan_start_xmit - Starts the transmission
379  * @skb:	sk_buff pointer that contains data to be Txed
380  * @ndev:	Pointer to net_device structure
381  *
382  * This function is invoked from upper layers to initiate transmission. This
383  * function uses the next available free txbuff and populates their fields to
384  * start the transmission.
385  *
386  * Return: 0 on success and failure value on error
387  */
388 static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
389 {
390 	struct xcan_priv *priv = netdev_priv(ndev);
391 	struct net_device_stats *stats = &ndev->stats;
392 	struct can_frame *cf = (struct can_frame *)skb->data;
393 	u32 id, dlc, data[2] = {0, 0};
394 
395 	if (can_dropped_invalid_skb(ndev, skb))
396 		return NETDEV_TX_OK;
397 
398 	/* Check if the TX buffer is full */
399 	if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
400 			XCAN_SR_TXFLL_MASK)) {
401 		netif_stop_queue(ndev);
402 		netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n");
403 		return NETDEV_TX_BUSY;
404 	}
405 
406 	/* Watch carefully on the bit sequence */
407 	if (cf->can_id & CAN_EFF_FLAG) {
408 		/* Extended CAN ID format */
409 		id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
410 			XCAN_IDR_ID2_MASK;
411 		id |= (((cf->can_id & CAN_EFF_MASK) >>
412 			(CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) <<
413 			XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
414 
415 		/* The substibute remote TX request bit should be "1"
416 		 * for extended frames as in the Xilinx CAN datasheet
417 		 */
418 		id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
419 
420 		if (cf->can_id & CAN_RTR_FLAG)
421 			/* Extended frames remote TX request */
422 			id |= XCAN_IDR_RTR_MASK;
423 	} else {
424 		/* Standard CAN ID format */
425 		id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
426 			XCAN_IDR_ID1_MASK;
427 
428 		if (cf->can_id & CAN_RTR_FLAG)
429 			/* Standard frames remote TX request */
430 			id |= XCAN_IDR_SRR_MASK;
431 	}
432 
433 	dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT;
434 
435 	if (cf->can_dlc > 0)
436 		data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
437 	if (cf->can_dlc > 4)
438 		data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
439 
440 	can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
441 	priv->tx_head++;
442 
443 	/* Write the Frame to Xilinx CAN TX FIFO */
444 	priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id);
445 	/* If the CAN frame is RTR frame this write triggers tranmission */
446 	priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc);
447 	if (!(cf->can_id & CAN_RTR_FLAG)) {
448 		priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]);
449 		/* If the CAN frame is Standard/Extended frame this
450 		 * write triggers tranmission
451 		 */
452 		priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]);
453 		stats->tx_bytes += cf->can_dlc;
454 	}
455 
456 	/* Check if the TX buffer is full */
457 	if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
458 		netif_stop_queue(ndev);
459 
460 	return NETDEV_TX_OK;
461 }
462 
463 /**
464  * xcan_rx -  Is called from CAN isr to complete the received
465  *		frame  processing
466  * @ndev:	Pointer to net_device structure
467  *
468  * This function is invoked from the CAN isr(poll) to process the Rx frames. It
469  * does minimal processing and invokes "netif_receive_skb" to complete further
470  * processing.
471  * Return: 1 on success and 0 on failure.
472  */
473 static int xcan_rx(struct net_device *ndev)
474 {
475 	struct xcan_priv *priv = netdev_priv(ndev);
476 	struct net_device_stats *stats = &ndev->stats;
477 	struct can_frame *cf;
478 	struct sk_buff *skb;
479 	u32 id_xcan, dlc, data[2] = {0, 0};
480 
481 	skb = alloc_can_skb(ndev, &cf);
482 	if (unlikely(!skb)) {
483 		stats->rx_dropped++;
484 		return 0;
485 	}
486 
487 	/* Read a frame from Xilinx zynq CANPS */
488 	id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET);
489 	dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >>
490 				XCAN_DLCR_DLC_SHIFT;
491 
492 	/* Change Xilinx CAN data length format to socketCAN data format */
493 	cf->can_dlc = get_can_dlc(dlc);
494 
495 	/* Change Xilinx CAN ID format to socketCAN ID format */
496 	if (id_xcan & XCAN_IDR_IDE_MASK) {
497 		/* The received frame is an Extended format frame */
498 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
499 		cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
500 				XCAN_IDR_ID2_SHIFT;
501 		cf->can_id |= CAN_EFF_FLAG;
502 		if (id_xcan & XCAN_IDR_RTR_MASK)
503 			cf->can_id |= CAN_RTR_FLAG;
504 	} else {
505 		/* The received frame is a standard format frame */
506 		cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
507 				XCAN_IDR_ID1_SHIFT;
508 		if (id_xcan & XCAN_IDR_SRR_MASK)
509 			cf->can_id |= CAN_RTR_FLAG;
510 	}
511 
512 	if (!(id_xcan & XCAN_IDR_SRR_MASK)) {
513 		data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET);
514 		data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET);
515 
516 		/* Change Xilinx CAN data format to socketCAN data format */
517 		if (cf->can_dlc > 0)
518 			*(__be32 *)(cf->data) = cpu_to_be32(data[0]);
519 		if (cf->can_dlc > 4)
520 			*(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
521 	}
522 
523 	stats->rx_bytes += cf->can_dlc;
524 	stats->rx_packets++;
525 	netif_receive_skb(skb);
526 
527 	return 1;
528 }
529 
530 /**
531  * xcan_err_interrupt - error frame Isr
532  * @ndev:	net_device pointer
533  * @isr:	interrupt status register value
534  *
535  * This is the CAN error interrupt and it will
536  * check the the type of error and forward the error
537  * frame to upper layers.
538  */
539 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
540 {
541 	struct xcan_priv *priv = netdev_priv(ndev);
542 	struct net_device_stats *stats = &ndev->stats;
543 	struct can_frame *cf;
544 	struct sk_buff *skb;
545 	u32 err_status, status, txerr = 0, rxerr = 0;
546 
547 	skb = alloc_can_err_skb(ndev, &cf);
548 
549 	err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
550 	priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
551 	txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
552 	rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
553 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
554 	status = priv->read_reg(priv, XCAN_SR_OFFSET);
555 
556 	if (isr & XCAN_IXR_BSOFF_MASK) {
557 		priv->can.state = CAN_STATE_BUS_OFF;
558 		priv->can.can_stats.bus_off++;
559 		/* Leave device in Config Mode in bus-off state */
560 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
561 		can_bus_off(ndev);
562 		if (skb)
563 			cf->can_id |= CAN_ERR_BUSOFF;
564 	} else if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) {
565 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
566 		priv->can.can_stats.error_passive++;
567 		if (skb) {
568 			cf->can_id |= CAN_ERR_CRTL;
569 			cf->data[1] = (rxerr > 127) ?
570 					CAN_ERR_CRTL_RX_PASSIVE :
571 					CAN_ERR_CRTL_TX_PASSIVE;
572 			cf->data[6] = txerr;
573 			cf->data[7] = rxerr;
574 		}
575 	} else if (status & XCAN_SR_ERRWRN_MASK) {
576 		priv->can.state = CAN_STATE_ERROR_WARNING;
577 		priv->can.can_stats.error_warning++;
578 		if (skb) {
579 			cf->can_id |= CAN_ERR_CRTL;
580 			cf->data[1] |= (txerr > rxerr) ?
581 					CAN_ERR_CRTL_TX_WARNING :
582 					CAN_ERR_CRTL_RX_WARNING;
583 			cf->data[6] = txerr;
584 			cf->data[7] = rxerr;
585 		}
586 	}
587 
588 	/* Check for Arbitration lost interrupt */
589 	if (isr & XCAN_IXR_ARBLST_MASK) {
590 		priv->can.can_stats.arbitration_lost++;
591 		if (skb) {
592 			cf->can_id |= CAN_ERR_LOSTARB;
593 			cf->data[0] = CAN_ERR_LOSTARB_UNSPEC;
594 		}
595 	}
596 
597 	/* Check for RX FIFO Overflow interrupt */
598 	if (isr & XCAN_IXR_RXOFLW_MASK) {
599 		stats->rx_over_errors++;
600 		stats->rx_errors++;
601 		priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
602 		if (skb) {
603 			cf->can_id |= CAN_ERR_CRTL;
604 			cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
605 		}
606 	}
607 
608 	/* Check for error interrupt */
609 	if (isr & XCAN_IXR_ERROR_MASK) {
610 		if (skb) {
611 			cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
612 			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
613 		}
614 
615 		/* Check for Ack error interrupt */
616 		if (err_status & XCAN_ESR_ACKER_MASK) {
617 			stats->tx_errors++;
618 			if (skb) {
619 				cf->can_id |= CAN_ERR_ACK;
620 				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
621 			}
622 		}
623 
624 		/* Check for Bit error interrupt */
625 		if (err_status & XCAN_ESR_BERR_MASK) {
626 			stats->tx_errors++;
627 			if (skb) {
628 				cf->can_id |= CAN_ERR_PROT;
629 				cf->data[2] = CAN_ERR_PROT_BIT;
630 			}
631 		}
632 
633 		/* Check for Stuff error interrupt */
634 		if (err_status & XCAN_ESR_STER_MASK) {
635 			stats->rx_errors++;
636 			if (skb) {
637 				cf->can_id |= CAN_ERR_PROT;
638 				cf->data[2] = CAN_ERR_PROT_STUFF;
639 			}
640 		}
641 
642 		/* Check for Form error interrupt */
643 		if (err_status & XCAN_ESR_FMER_MASK) {
644 			stats->rx_errors++;
645 			if (skb) {
646 				cf->can_id |= CAN_ERR_PROT;
647 				cf->data[2] = CAN_ERR_PROT_FORM;
648 			}
649 		}
650 
651 		/* Check for CRC error interrupt */
652 		if (err_status & XCAN_ESR_CRCER_MASK) {
653 			stats->rx_errors++;
654 			if (skb) {
655 				cf->can_id |= CAN_ERR_PROT;
656 				cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ |
657 						CAN_ERR_PROT_LOC_CRC_DEL;
658 			}
659 		}
660 			priv->can.can_stats.bus_error++;
661 	}
662 
663 	if (skb) {
664 		stats->rx_packets++;
665 		stats->rx_bytes += cf->can_dlc;
666 		netif_rx(skb);
667 	}
668 
669 	netdev_dbg(ndev, "%s: error status register:0x%x\n",
670 			__func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
671 }
672 
673 /**
674  * xcan_state_interrupt - It will check the state of the CAN device
675  * @ndev:	net_device pointer
676  * @isr:	interrupt status register value
677  *
678  * This will checks the state of the CAN device
679  * and puts the device into appropriate state.
680  */
681 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
682 {
683 	struct xcan_priv *priv = netdev_priv(ndev);
684 
685 	/* Check for Sleep interrupt if set put CAN device in sleep state */
686 	if (isr & XCAN_IXR_SLP_MASK)
687 		priv->can.state = CAN_STATE_SLEEPING;
688 
689 	/* Check for Wake up interrupt if set put CAN device in Active state */
690 	if (isr & XCAN_IXR_WKUP_MASK)
691 		priv->can.state = CAN_STATE_ERROR_ACTIVE;
692 }
693 
694 /**
695  * xcan_rx_poll - Poll routine for rx packets (NAPI)
696  * @napi:	napi structure pointer
697  * @quota:	Max number of rx packets to be processed.
698  *
699  * This is the poll routine for rx part.
700  * It will process the packets maximux quota value.
701  *
702  * Return: number of packets received
703  */
704 static int xcan_rx_poll(struct napi_struct *napi, int quota)
705 {
706 	struct net_device *ndev = napi->dev;
707 	struct xcan_priv *priv = netdev_priv(ndev);
708 	u32 isr, ier;
709 	int work_done = 0;
710 
711 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
712 	while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) {
713 		if (isr & XCAN_IXR_RXOK_MASK) {
714 			priv->write_reg(priv, XCAN_ICR_OFFSET,
715 				XCAN_IXR_RXOK_MASK);
716 			work_done += xcan_rx(ndev);
717 		} else {
718 			priv->write_reg(priv, XCAN_ICR_OFFSET,
719 				XCAN_IXR_RXNEMP_MASK);
720 			break;
721 		}
722 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK);
723 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
724 	}
725 
726 	if (work_done)
727 		can_led_event(ndev, CAN_LED_EVENT_RX);
728 
729 	if (work_done < quota) {
730 		napi_complete(napi);
731 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
732 		ier |= (XCAN_IXR_RXOK_MASK | XCAN_IXR_RXNEMP_MASK);
733 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
734 	}
735 	return work_done;
736 }
737 
738 /**
739  * xcan_tx_interrupt - Tx Done Isr
740  * @ndev:	net_device pointer
741  * @isr:	Interrupt status register value
742  */
743 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
744 {
745 	struct xcan_priv *priv = netdev_priv(ndev);
746 	struct net_device_stats *stats = &ndev->stats;
747 
748 	while ((priv->tx_head - priv->tx_tail > 0) &&
749 			(isr & XCAN_IXR_TXOK_MASK)) {
750 		priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
751 		can_get_echo_skb(ndev, priv->tx_tail %
752 					priv->tx_max);
753 		priv->tx_tail++;
754 		stats->tx_packets++;
755 		isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
756 	}
757 	can_led_event(ndev, CAN_LED_EVENT_TX);
758 	netif_wake_queue(ndev);
759 }
760 
761 /**
762  * xcan_interrupt - CAN Isr
763  * @irq:	irq number
764  * @dev_id:	device id poniter
765  *
766  * This is the xilinx CAN Isr. It checks for the type of interrupt
767  * and invokes the corresponding ISR.
768  *
769  * Return:
770  * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
771  */
772 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
773 {
774 	struct net_device *ndev = (struct net_device *)dev_id;
775 	struct xcan_priv *priv = netdev_priv(ndev);
776 	u32 isr, ier;
777 
778 	/* Get the interrupt status from Xilinx CAN */
779 	isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
780 	if (!isr)
781 		return IRQ_NONE;
782 
783 	/* Check for the type of interrupt and Processing it */
784 	if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
785 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
786 				XCAN_IXR_WKUP_MASK));
787 		xcan_state_interrupt(ndev, isr);
788 	}
789 
790 	/* Check for Tx interrupt and Processing it */
791 	if (isr & XCAN_IXR_TXOK_MASK)
792 		xcan_tx_interrupt(ndev, isr);
793 
794 	/* Check for the type of error interrupt and Processing it */
795 	if (isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
796 			XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK)) {
797 		priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_ERROR_MASK |
798 				XCAN_IXR_RXOFLW_MASK | XCAN_IXR_BSOFF_MASK |
799 				XCAN_IXR_ARBLST_MASK));
800 		xcan_err_interrupt(ndev, isr);
801 	}
802 
803 	/* Check for the type of receive interrupt and Processing it */
804 	if (isr & (XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK)) {
805 		ier = priv->read_reg(priv, XCAN_IER_OFFSET);
806 		ier &= ~(XCAN_IXR_RXNEMP_MASK | XCAN_IXR_RXOK_MASK);
807 		priv->write_reg(priv, XCAN_IER_OFFSET, ier);
808 		napi_schedule(&priv->napi);
809 	}
810 	return IRQ_HANDLED;
811 }
812 
813 /**
814  * xcan_chip_stop - Driver stop routine
815  * @ndev:	Pointer to net_device structure
816  *
817  * This is the drivers stop routine. It will disable the
818  * interrupts and put the device into configuration mode.
819  */
820 static void xcan_chip_stop(struct net_device *ndev)
821 {
822 	struct xcan_priv *priv = netdev_priv(ndev);
823 	u32 ier;
824 
825 	/* Disable interrupts and leave the can in configuration mode */
826 	ier = priv->read_reg(priv, XCAN_IER_OFFSET);
827 	ier &= ~XCAN_INTR_ALL;
828 	priv->write_reg(priv, XCAN_IER_OFFSET, ier);
829 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
830 	priv->can.state = CAN_STATE_STOPPED;
831 }
832 
833 /**
834  * xcan_open - Driver open routine
835  * @ndev:	Pointer to net_device structure
836  *
837  * This is the driver open routine.
838  * Return: 0 on success and failure value on error
839  */
840 static int xcan_open(struct net_device *ndev)
841 {
842 	struct xcan_priv *priv = netdev_priv(ndev);
843 	int ret;
844 
845 	ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
846 			ndev->name, ndev);
847 	if (ret < 0) {
848 		netdev_err(ndev, "irq allocation for CAN failed\n");
849 		goto err;
850 	}
851 
852 	ret = clk_prepare_enable(priv->can_clk);
853 	if (ret) {
854 		netdev_err(ndev, "unable to enable device clock\n");
855 		goto err_irq;
856 	}
857 
858 	ret = clk_prepare_enable(priv->bus_clk);
859 	if (ret) {
860 		netdev_err(ndev, "unable to enable bus clock\n");
861 		goto err_can_clk;
862 	}
863 
864 	/* Set chip into reset mode */
865 	ret = set_reset_mode(ndev);
866 	if (ret < 0) {
867 		netdev_err(ndev, "mode resetting failed!\n");
868 		goto err_bus_clk;
869 	}
870 
871 	/* Common open */
872 	ret = open_candev(ndev);
873 	if (ret)
874 		goto err_bus_clk;
875 
876 	ret = xcan_chip_start(ndev);
877 	if (ret < 0) {
878 		netdev_err(ndev, "xcan_chip_start failed!\n");
879 		goto err_candev;
880 	}
881 
882 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
883 	napi_enable(&priv->napi);
884 	netif_start_queue(ndev);
885 
886 	return 0;
887 
888 err_candev:
889 	close_candev(ndev);
890 err_bus_clk:
891 	clk_disable_unprepare(priv->bus_clk);
892 err_can_clk:
893 	clk_disable_unprepare(priv->can_clk);
894 err_irq:
895 	free_irq(ndev->irq, ndev);
896 err:
897 	return ret;
898 }
899 
900 /**
901  * xcan_close - Driver close routine
902  * @ndev:	Pointer to net_device structure
903  *
904  * Return: 0 always
905  */
906 static int xcan_close(struct net_device *ndev)
907 {
908 	struct xcan_priv *priv = netdev_priv(ndev);
909 
910 	netif_stop_queue(ndev);
911 	napi_disable(&priv->napi);
912 	xcan_chip_stop(ndev);
913 	clk_disable_unprepare(priv->bus_clk);
914 	clk_disable_unprepare(priv->can_clk);
915 	free_irq(ndev->irq, ndev);
916 	close_candev(ndev);
917 
918 	can_led_event(ndev, CAN_LED_EVENT_STOP);
919 
920 	return 0;
921 }
922 
923 /**
924  * xcan_get_berr_counter - error counter routine
925  * @ndev:	Pointer to net_device structure
926  * @bec:	Pointer to can_berr_counter structure
927  *
928  * This is the driver error counter routine.
929  * Return: 0 on success and failure value on error
930  */
931 static int xcan_get_berr_counter(const struct net_device *ndev,
932 					struct can_berr_counter *bec)
933 {
934 	struct xcan_priv *priv = netdev_priv(ndev);
935 	int ret;
936 
937 	ret = clk_prepare_enable(priv->can_clk);
938 	if (ret)
939 		goto err;
940 
941 	ret = clk_prepare_enable(priv->bus_clk);
942 	if (ret)
943 		goto err_clk;
944 
945 	bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
946 	bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
947 			XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
948 
949 	clk_disable_unprepare(priv->bus_clk);
950 	clk_disable_unprepare(priv->can_clk);
951 
952 	return 0;
953 
954 err_clk:
955 	clk_disable_unprepare(priv->can_clk);
956 err:
957 	return ret;
958 }
959 
960 
961 static const struct net_device_ops xcan_netdev_ops = {
962 	.ndo_open	= xcan_open,
963 	.ndo_stop	= xcan_close,
964 	.ndo_start_xmit	= xcan_start_xmit,
965 	.ndo_change_mtu	= can_change_mtu,
966 };
967 
968 /**
969  * xcan_suspend - Suspend method for the driver
970  * @dev:	Address of the platform_device structure
971  *
972  * Put the driver into low power mode.
973  * Return: 0 always
974  */
975 static int __maybe_unused xcan_suspend(struct device *dev)
976 {
977 	struct platform_device *pdev = dev_get_drvdata(dev);
978 	struct net_device *ndev = platform_get_drvdata(pdev);
979 	struct xcan_priv *priv = netdev_priv(ndev);
980 
981 	if (netif_running(ndev)) {
982 		netif_stop_queue(ndev);
983 		netif_device_detach(ndev);
984 	}
985 
986 	priv->write_reg(priv, XCAN_MSR_OFFSET, XCAN_MSR_SLEEP_MASK);
987 	priv->can.state = CAN_STATE_SLEEPING;
988 
989 	clk_disable(priv->bus_clk);
990 	clk_disable(priv->can_clk);
991 
992 	return 0;
993 }
994 
995 /**
996  * xcan_resume - Resume from suspend
997  * @dev:	Address of the platformdevice structure
998  *
999  * Resume operation after suspend.
1000  * Return: 0 on success and failure value on error
1001  */
1002 static int __maybe_unused xcan_resume(struct device *dev)
1003 {
1004 	struct platform_device *pdev = dev_get_drvdata(dev);
1005 	struct net_device *ndev = platform_get_drvdata(pdev);
1006 	struct xcan_priv *priv = netdev_priv(ndev);
1007 	int ret;
1008 
1009 	ret = clk_enable(priv->bus_clk);
1010 	if (ret) {
1011 		dev_err(dev, "Cannot enable clock.\n");
1012 		return ret;
1013 	}
1014 	ret = clk_enable(priv->can_clk);
1015 	if (ret) {
1016 		dev_err(dev, "Cannot enable clock.\n");
1017 		clk_disable_unprepare(priv->bus_clk);
1018 		return ret;
1019 	}
1020 
1021 	priv->write_reg(priv, XCAN_MSR_OFFSET, 0);
1022 	priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
1023 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
1024 
1025 	if (netif_running(ndev)) {
1026 		netif_device_attach(ndev);
1027 		netif_start_queue(ndev);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static SIMPLE_DEV_PM_OPS(xcan_dev_pm_ops, xcan_suspend, xcan_resume);
1034 
1035 /**
1036  * xcan_probe - Platform registration call
1037  * @pdev:	Handle to the platform device structure
1038  *
1039  * This function does all the memory allocation and registration for the CAN
1040  * device.
1041  *
1042  * Return: 0 on success and failure value on error
1043  */
1044 static int xcan_probe(struct platform_device *pdev)
1045 {
1046 	struct resource *res; /* IO mem resources */
1047 	struct net_device *ndev;
1048 	struct xcan_priv *priv;
1049 	void __iomem *addr;
1050 	int ret, rx_max, tx_max;
1051 
1052 	/* Get the virtual base address for the device */
1053 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 	addr = devm_ioremap_resource(&pdev->dev, res);
1055 	if (IS_ERR(addr)) {
1056 		ret = PTR_ERR(addr);
1057 		goto err;
1058 	}
1059 
1060 	ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", &tx_max);
1061 	if (ret < 0)
1062 		goto err;
1063 
1064 	ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max);
1065 	if (ret < 0)
1066 		goto err;
1067 
1068 	/* Create a CAN device instance */
1069 	ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1070 	if (!ndev)
1071 		return -ENOMEM;
1072 
1073 	priv = netdev_priv(ndev);
1074 	priv->dev = ndev;
1075 	priv->can.bittiming_const = &xcan_bittiming_const;
1076 	priv->can.do_set_mode = xcan_do_set_mode;
1077 	priv->can.do_get_berr_counter = xcan_get_berr_counter;
1078 	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1079 					CAN_CTRLMODE_BERR_REPORTING;
1080 	priv->reg_base = addr;
1081 	priv->tx_max = tx_max;
1082 
1083 	/* Get IRQ for the device */
1084 	ndev->irq = platform_get_irq(pdev, 0);
1085 	ndev->flags |= IFF_ECHO;	/* We support local echo */
1086 
1087 	platform_set_drvdata(pdev, ndev);
1088 	SET_NETDEV_DEV(ndev, &pdev->dev);
1089 	ndev->netdev_ops = &xcan_netdev_ops;
1090 
1091 	/* Getting the CAN can_clk info */
1092 	priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1093 	if (IS_ERR(priv->can_clk)) {
1094 		dev_err(&pdev->dev, "Device clock not found.\n");
1095 		ret = PTR_ERR(priv->can_clk);
1096 		goto err_free;
1097 	}
1098 	/* Check for type of CAN device */
1099 	if (of_device_is_compatible(pdev->dev.of_node,
1100 				    "xlnx,zynq-can-1.0")) {
1101 		priv->bus_clk = devm_clk_get(&pdev->dev, "pclk");
1102 		if (IS_ERR(priv->bus_clk)) {
1103 			dev_err(&pdev->dev, "bus clock not found\n");
1104 			ret = PTR_ERR(priv->bus_clk);
1105 			goto err_free;
1106 		}
1107 	} else {
1108 		priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1109 		if (IS_ERR(priv->bus_clk)) {
1110 			dev_err(&pdev->dev, "bus clock not found\n");
1111 			ret = PTR_ERR(priv->bus_clk);
1112 			goto err_free;
1113 		}
1114 	}
1115 
1116 	ret = clk_prepare_enable(priv->can_clk);
1117 	if (ret) {
1118 		dev_err(&pdev->dev, "unable to enable device clock\n");
1119 		goto err_free;
1120 	}
1121 
1122 	ret = clk_prepare_enable(priv->bus_clk);
1123 	if (ret) {
1124 		dev_err(&pdev->dev, "unable to enable bus clock\n");
1125 		goto err_unprepare_disable_dev;
1126 	}
1127 
1128 	priv->write_reg = xcan_write_reg_le;
1129 	priv->read_reg = xcan_read_reg_le;
1130 
1131 	if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1132 		priv->write_reg = xcan_write_reg_be;
1133 		priv->read_reg = xcan_read_reg_be;
1134 	}
1135 
1136 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
1137 
1138 	netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1139 
1140 	ret = register_candev(ndev);
1141 	if (ret) {
1142 		dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1143 		goto err_unprepare_disable_busclk;
1144 	}
1145 
1146 	devm_can_led_init(ndev);
1147 	clk_disable_unprepare(priv->bus_clk);
1148 	clk_disable_unprepare(priv->can_clk);
1149 	netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth:%d\n",
1150 			priv->reg_base, ndev->irq, priv->can.clock.freq,
1151 			priv->tx_max);
1152 
1153 	return 0;
1154 
1155 err_unprepare_disable_busclk:
1156 	clk_disable_unprepare(priv->bus_clk);
1157 err_unprepare_disable_dev:
1158 	clk_disable_unprepare(priv->can_clk);
1159 err_free:
1160 	free_candev(ndev);
1161 err:
1162 	return ret;
1163 }
1164 
1165 /**
1166  * xcan_remove - Unregister the device after releasing the resources
1167  * @pdev:	Handle to the platform device structure
1168  *
1169  * This function frees all the resources allocated to the device.
1170  * Return: 0 always
1171  */
1172 static int xcan_remove(struct platform_device *pdev)
1173 {
1174 	struct net_device *ndev = platform_get_drvdata(pdev);
1175 	struct xcan_priv *priv = netdev_priv(ndev);
1176 
1177 	if (set_reset_mode(ndev) < 0)
1178 		netdev_err(ndev, "mode resetting failed!\n");
1179 
1180 	unregister_candev(ndev);
1181 	netif_napi_del(&priv->napi);
1182 	free_candev(ndev);
1183 
1184 	return 0;
1185 }
1186 
1187 /* Match table for OF platform binding */
1188 static struct of_device_id xcan_of_match[] = {
1189 	{ .compatible = "xlnx,zynq-can-1.0", },
1190 	{ .compatible = "xlnx,axi-can-1.00.a", },
1191 	{ /* end of list */ },
1192 };
1193 MODULE_DEVICE_TABLE(of, xcan_of_match);
1194 
1195 static struct platform_driver xcan_driver = {
1196 	.probe = xcan_probe,
1197 	.remove	= xcan_remove,
1198 	.driver	= {
1199 		.name = DRIVER_NAME,
1200 		.pm = &xcan_dev_pm_ops,
1201 		.of_match_table	= xcan_of_match,
1202 	},
1203 };
1204 
1205 module_platform_driver(xcan_driver);
1206 
1207 MODULE_LICENSE("GPL");
1208 MODULE_AUTHOR("Xilinx Inc");
1209 MODULE_DESCRIPTION("Xilinx CAN interface");
1210